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ABSTRACT

Power system state estimation (PSSE) is commonly formulated as weighted least-square (WLS) algorithm and
solved using iterative methods such as Gauss-Newton methods. However, iterative methods have become more
sensitive to system operating conditions than ever before due to the deployment of intermittent renewable en-
ergy sources, zero emission technologies (e.g., electric vehicles), and demand response programs. Appropriate
PSSE approaches are required to avoid pitfalls of the WLS-based PSSE computations for accurate prediction of
operating conditions. This paper proposes a data-driven real-time PSSE using a deep ensemble learning algo-
rithm. In the proposed approach, the ensemble learning setup is formulated with dense residual neural networks
as base-learners and multivariate-linear regressor as meta-learner. Historical measurements and states are uti-
lised to train and test the model. The trained model can be used in real-time to estimate power system states
(voltage magnitudes and phase angles) using real-time measurements. Most of current data-driven PSSE methods
assume the availability of a complete set of measurements, which may not be the case in real power system data-
acquisition. This paper adopts multivariate linear regression to forecast system states for instants of missing
measurements to assist the proposed PSSE technique. Case studies are performed on various IEEE standard
benchmark systems to validate the proposed approach. The results show that the proposed approach outperforms
existing data-driven PSSE techniques. The developed source code of the proposed solution is publicly available at htt
ps://github.com/nbhusal/Power-System-State-Estimation.

1. Introduction

Power System State Estimation (PSSE) is used to provide real-time
database for control and monitoring systems of power grids and to
assist system operators in making well-informed remedial action de-
cisions in case of contingencies. PSSE techniques use power system
measurements like line flows, nodal voltages (magnitude and phase
angle), and nodal injections (obtained from supervisory control and data
acquisition (SCADA) system), to estimate power system states such as
voltage magnitudes and phase angles at system nodes. PSSE is a non-
convex problem generally formulated based on weighted least square
(WLS) methods and solved using iterative methods such as Gauss-
Newton methods. However, these methods are sensitive to system
operating conditions and uncertainties. Also, the increase in the
deployment of intermittent renewable energy sources (e.g., photovoltaic
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and wind power generation), power system-dependent zero emission
technologies (e.g., electric vehicles), and load demand in modern power
grids has led to frequent and sizeable voltage fluctuations. Furthermore,
disparate cyber-attacks and natural events exacerbate the operation and
control of power systems [1,2]. The aforementioned unpredictable
behaviour of power grids makes conventional solutions for PSSE, like
WLS-based methods, computationally expensive and sub-optimal.
Therefore, it is important to develop computationally efficient and
technically feasible alternative solutions for power system state esti-
mation that address the above-mentioned uncertainties.

Several model-based methods have been proposed in the literature to
solve the PSSE problem using a number of statistical criteria. Most
commonly used criteria are (a) maximum likelihood criterion—it max-
imises the probability of the estimated states being equal to true values
of the states; (b) WLS criterion—it minimises the sum of squares of
weighted errors of actual measurements and estimated measurements;
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Nomenclature

Z measurement vector

x state vector

e measurement residual vector

h nonlinear function, relating state vector to
measurement vector

H Jacobian matrix

G gain matrix

¢ set of all buses

n total number of buses in a power network

¢Vand{? set of buses at which voltage magnitude and phase angle
measurements are available at any instant t,

respectively.
Vi voltage magnitude measurement at bus i at any instant t
s phase angle measurement at bus i at any instant t

¥ and ¢! set of buses at which real and reactive power
measurements are available at any instant t,

respectively.

Pi real power injection measurement at bus i at any instant
t

Qi reactive power injection measurement at bus i at any
instant t

£ total number of branches in a power network

£ and £ set of branches at which real and reactive power flow
measurements are available at any instant t,

respectively

pi real power flow measurement from line i to i at any
instant t

QF reactive power flow measurement from line i to i at
instant t

(c) minimum variance criterion—it minimises the expected value of the
sum of squares of errors between true states and estimated states; (d)
least absolute value criterion—it minimises the sum of absolute values of
deviations between estimated and actual measurements [3-9]. Other
criteria include minimum mean square estimator [10], Schweppe Huber
generalised M-estimator, and least-median and least-trimmed square
estimator [11]. However, model-based approaches are sensitive to ini-
tialisation, require several iterations, are computationally intensive, and
produce sub-optimal performance, specifically with newly emerging
uncertainties and growing system dynamics.

The development of various machine learning (ML) approaches has
led to the use of big data in potpourri of complex power system prob-
lems, and PSSE is not an exception [12-14]. Data-driven PSSE ap-
proaches provide great flexibility and scalability. They also have the
capability to improve the run-time efficiency and accuracy of conven-
tional state estimation approaches [15]. In [16,15,17], a hybrid of data-
driven and statistical criteria (e.g., WLS and least absolute value) have
been used to estimate power system states. In the hybrid approach, ML
models (neural network (NN) in [16] and long-short-term-memory
(LSTM) in [15]) have been used as a surrogate model to map available
measurements or historical states in the neighbourhood of the true
latent states. These approximate states have been used as initialisation
for model-based criterion. Numerous model-free data-driven approaches
have also been proposed in literature. These approaches use historical
similar measurements or simulated measurements and their states for
the training, validation, and testing of the ML models. Trained models
have been used for real-time state estimation. ML approaches such as k-
nearest neighbour in [18], LSTM in [19], physics-inspired unrolled deep
neural network (DNN) [20], auto-associated neural network [21],
physics-aware NN [22], deep recurrent neural network [23], and deep
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generative adversary network [24], to name a few, have been used for
PSSE. A comparison between the proposed approaches with some of
these approaches is provided in the case studies.

The aforementioned data-driven approaches provide rich literature
on PSSE and contribute towards the development of resilient future
power grids. However, shallow neural network models suffer from
scalability and computational inefficiencies [25]. Furthermore, due to
the stochastic nature of DNN, they are sensitive to a specific set of
training data, which in turn results in different predictions—different
sets of weights may be obtained every single time they are trained. In
other words, the stochastic nature of DNN poses high variance and
makes the development of final prediction models difficult.

This paper proposes a data-driven real-time PSSE model using deep
ensemble learning method. Actual historical data (obtained from
SCADA) and simulation-derived data (sampled snapshots using MAT-
POWER) are utilised to train several parallel dense Residual Neural
Networks (ResNetD). The ResNetD captures the nonlinear relationship
between input measurements and output states. The output states pro-
duced by base-learner ResNetD are very close to actual states and they
capture various features existing between input measurements and
output states. The multivariate linear regression (MLR) is used to form
the ensemble model for estimating the final power system states (voltage
magnitudes and phase angles). The trained ensemble learning model is
used to predict power system states in real-time. During testing phase,
additional Gaussian noise is added in the data to test the robustness of
the proposed approach against measurement errors. During the imple-
mentation of the proposed data-driven PSSE in real-time, there may be
missing measurements that lead to the failure of the state estimation. To
deal with this problem, we adopted the MLR to forecast missing states at
any instant. The accuracy and efficiency of the proposed method against
standard ML methods is validated through comprehensive case studies
on the IEEE 14,30,57,69, and 118 bus benchmark systems.

The major contributions of this paper towards ML-based state-of-the-
art state estimation are summarised as follows.

e Deep neural networks have the capability to map nonlinear re-
lationships between the input data and the output because of their
nonlinear nature. They provide great flexibility and scalability with
system size and amount of available samples. However, deep neural
networks learn through stochastic training algorithms resulting in
high variation in training parameters of the model. This may make
deep neural networks find different sets of weights every time they
are trained and may produce different results. This work proposes
ensemble learning setup to solve the high variance problem associ-
ated with the state-of-the-art deep learning based state estimation
techniques. Ensemble learning models train multiple models and
combine the output of those models for the final prediction resulting
in variance reduction. The ensemble learning model not only reduces
the variance in prediction but also its performance improves in terms
of accuracy and efficiency if the models are selected appropriately.
Motivated by the capability of recently advanced residual neural
network architectures [26,27,20,28-30] to map nonlinear relation-
ships between input and output variables, the ResNetD is developed
to capture the nonlinear relationship existing in the state estimation
problem. Also, the work presented in [31-34] for state forecasting
shows that linear models can appropriately forecast power system
states using historical states. Therefore, this paper utilises a number
of ResNetD models as base-learners to predict states that act similar
to historical states used for state forecasting approaches. However,
states predicted by ResNetD are much closer to actual states due to its
capability to map the nonlinear relationship between input mea-
surements and system states. MLR maps the relationship between the
outputs of the base-learner modes and the actual states to further
improve the overall performance.

The rest of the paper is organised as follows. Section 2 presents
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details on power system state estimation and problem formulations.
Section 3 describes the proposed deep ensemble learning setup for PSSE
with an algorithm to deal with missing measurements. Section 4 ex-
amines the proposed approach through numerical case studies. Section 5
provides concluding remarks.

2. PSSE problem formulation

This section briefly discusses the preliminaries and problem formu-
lation of PSSE. We will not reproduce rigorous derivations of the PSSE
problem; rather, we will use the expressions of the PSSE problem to
develop the proposed approach.

2.1. Preliminaries of PSSE

Given network configuration and parameters and a set of measure-
ments, z, the AC state estimation determines system states as follows
[35].

z=h(x)+e, (€8]
where

2 = [21,22,,2m]: set of measurements

X = [x1,X2, -, X2q]: Vector of state variables

e = [e1,ez,e3, -+, en): vector of measurement residuals

h = [h1(x), ha(x), -+, hm(x)]: nonlinear function (i.e., system model)
relates state vector to the measurement set

Historical real power system measurements and states are not easily
accessible for training and testing of the proposed data-driven PSSE.
Therefore, WLS with Gauss-Newton method is used to generate training
data. WLS-based optimisation to determine the estimated state vector, X,
can be expressed as follows.

mind (x) = 3(z — (o)) Wz = hx)), @

where W is the weight vector developed based on the variance of the
measurement errors (62,03, -+, 62) represented as,

1 B
= 0 0
0}
1
0 - 0
W= 0, 3)
0
1
0 0 - —
L o d

m

The minimum value of the optimisation problem (2) can be
computed using a first-order optimality condition as follows.

= aJ (x)

8() = =57 = —H' (W[ — ()] = 0. @

The state vector X in (4) can be solved as the limit of the sequence of
states, Xx, by means of Gauss-Newton recursive scheme; one step of such
recursive scheme can be presented as follows.

Ret = T+ G(E) T H (R) Wt — h(Z))], (5)

where H and G are, respectively, Jacobian and Gain matrices and can be
expressed as follows.

H(%) = [a;;g)} e (6)
G(x) = H (X)WH (%), 7
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- —~1 2 —~n ~1 ~2 o~n, ., .
wherex = [V, , V¢ ,.... V¢ ,6 ,6 ,...,0; | is the estimated state vector,

which consists of voltage magnitudes, /V\tl, and phase angles, 5;, for the
ith bus at time t.

2.2. Problem statement

The problem of data-driven PSSE is to map the available set of
measurements, 2, to the power system state variables, X;. This problem
can be expressed as follows.

}\r =f (Zr)7 (€)]
where the set of measurements can be expressed as follows.
G = {Ivﬂ}ie:)‘? {55}1'6{;;{[);}1'6{’;7

. " o T
{Qf}ie:;’v {Pﬁl }(i,i)ei",” {Qﬁl }<i,i)e£,’

with {|V|} being voltage magnitude measurements at any instant t that
are available at {¥ buses; {6} is phase angle measurements at any instant
t that are available at ¢ buses; {P!} and {Q!} are real and reactive power
injection measurements at any instant ¢t that are available at ¢ and ¢f
buses, respectively; and {P¥} and {Q} respectively, are power flow
measurements from busitoi atany instant t that are available for £ and
£ lines. (&V,£°, &, (e ¢ with ¢ = {1,2,--,n} being the set of all buses
and (£, £]) € £ with £ is total number of branches in a power network.

The function, f, contains weights (wy, wy, ws, ---, wo,) that map the
relationship between input measurements and output states. The prob-
lem is to find the weights, w1, wa,ws, -+, wa,, that reduce the overall loss
between predicted and actual states.

3. The proposed PSSE method

In the proposed method, a neural network in the ensemble learning
setup is used. Before proceeding further to describe the proposed model,
the functionality and importance of the ensemble learning in solving the
PSSE problem are explained as follows.

In ensemble learning, multiple machine learning algorithms are
brought out together to solve the same prediction or classification
problem. Subsequently, results from different methods are collected and
combined. Machine learning (ML) models in the ensemble learning are
called base-learners that weakly predict a certain parameter. These weak
learners are trained to generate a set of hypotheses and subsequently
combined to produce more accurate results. Base-learners are combined
either in a sequential or parallel manner. The final results are obtained
using various techniques including, but not limited to, majority voting,
averaging, and weighted averaging [36].

Traditional ML models suffer from two disadvantages. First, given a
training data set, it is often not possible to find the best ML algorithm
due to their black-box nature. Thus, although data-driven ML models
provide superior results over other models, their performance cannot be
explained [37]. In other words, regardless of how many times these
models are tried (e.g., in a trial and error fashion), users may not be able
to identify the best model. Second, even if the best algorithm is identi-
fied, the ML model may not provide the optimal performance for certain
sample data as the search process of disparate ML algorithms is different.
Thus, to compensate for the error of some models, it is feasible to
combine different learners to get optimal performance. The capability of
ensemble learning lies in the fact that base learners are diverse in nature.
The diversity can be obtained using different ML models, different
training parameters, different training data sets, and of course, a com-
bination of all of them [36,38]. The added diversity enables the models
to correct errors of some members as different learners make different
errors on the same set of inputs. However, careful attention is needed
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while forming the variations in models, datasets, or training parameters.
Selection of inappropriate base-learner models may worsen the perfor-
mance if the majority of selected base-learners capture similar features
and miss a critical feature even if a few other base-model capture the
critical features. Thus, the combination of carefully chosen different
base-learners reduces the overall prediction error. Hence, ensemble
learning is a powerful method to ensure accurate generalisation capa-
bility in a training process.

The major drawback of the ensemble learning is that, as compared to
a single base learner, the model is redundant and requires more training.
However, neural network training is a one-time offline process. Thus,
ensemble learners provide a generalised model, but it requires extra
training (that is done one time). Since the training process is done only
once, it does not pose a problem when a system operates. In the oper-
ating phase, the execution time is still low (operating phase execution
time for the proposed model is provided in the results section) and better
than the mathematical model based state estimators.

3.1. Attributions of the proposed model

This paper has used a stacking ensemble technique to develop
ensemble learning model for PSSE. In the stacking ensemble technique,
the base-learners are combined in parallel. In this technique, heteroge-
neous weak learners learn on training data independently. The inde-
pendent learners are combined using a meta-model that provides output
based on predictions obtained from weak learners [36]. This paper uses
dense residual neural network (ResNetD) model as a base learner. Before
explaining the functionality of ResNetD, we describe the development of
the proposed ResNetD as a base-learner.

Many architectures of the neural network have been proposed in the
literature to map the non-linear relationship between input and output
vectors of a given system. This includes, but not limited to, classical ML
techniques (e.g., decision tree and k-nearest neighbours regression),
multilayer perceptron (MLP), CNN, recurrent neural network (e.g.,
LSTM), and hybrid architectures (e.g., CNN-LSTM and ResNet). Given
the aforementioned advantage of ensemble learning, we leverage
ensemble learning setup for PSSE. To develop an appropriate model of
ensemble learning setup for PSSE, ML models including MLP, CNN,
LSTM, and ResNet are tested as base learners. A number of these models
individually and in combination are stacked in parallel to test their
performance with various meta-learners. ML models, such as MLP,
ResNet, k-nearest neighbours, decision tree, CNN, and MLR, are tested as
meta-learners for the above-mentioned base-learners. Individually,
dense neural network-based ResNet (ResNetD) architecture appropri-
ately maps the non-linear relationship between input measurements and
the output state variables than any other approach for our problem.
Development and testing of ResNetD is motivated from recently
advanced residual neural network architectures [26,27,20,28-30] to
map nonlinear relationship between the input and output variables.
Also, with the above-mentioned models as meta-learners, ResNetD has
produced better results compared to other architectures. The results
produced by the combined architecture of ResNetD as base-learners are
very close to true states. Authors of [31-34] have demonstrated that
linear models can accurately forecast power system states using histor-
ical states. Since results obtained from ResNetD as base-learners are
similar to historical states (but much close to actual states than historical
states because of the capability of ResNetD to capture the nonlinear
relationship) used for state forecasting approaches, MLR maps these
states even closer to actual states. Therefore, a number of parallel
ResNetD as base-learners and MLR as meta-learners are taken as
ensemble learning setup for the PSSE problem.

3.2. Residual neural network as a base learner model

Residual Neural Network (ResNet) is a type of artificial neural
network that builds on a structure known from pyramidal cells in the
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cerebral cortex. ResNet is formed by skipping the connections or by
jumping over some layers of the feed forward neural network. Typical
ResNet is formed by skipping two or three layers that contain batch
normalisation and a non-linear function (rectified linear unit (ReLU)) in
between. These skipped connections are important in “vanishing” and
“exploding” gradient issues by reusing an activation function from a
previous layer until the adjacent layer learns its weights [39,26].
Another advantage of skipping layers is that it simplifies the network
and speeds up learning processes as fewer layers are used in the training.

Inspired by ResNet architecture proposed in [26,27,20,28-30], a
ResNetD is developed as shown in Fig. 1 as a base-learner. One block of
the proposed ResNetD architecture is formed by merging the regular
information flow, the output of previous blocks’ dense layers, and
connecting the input through a dense layer directly (as shown in Fig. 1
with 2 skip neurons in the regular information flow). The advantage of
this approach is that it improves the information flow and recovers the
missing features. In this paper, Hubber loss is employed as loss function
because of its robustness against outliers [40]. ReLU is used as an acti-
vation function for the proposed ResNetD.

3.3. The proposed deep ensemble learning setup

The proposed model uses stack generalisation of the ensemble
learning to predict power system states. The proposed architecture
employs a number of parallel ResNetD as base-learners and MLR as
meta-learners. Although all of the six ResNetD models used in this paper
have the same architecture, they act like a diverse set of models because
of the stochasticity involved in the model. Therefore, even though the
models are redundant, their outputs will be different and the differences
in their outputs result in the formation of appropriate base-learners. The
architecture of a base-learner, ResNetD, is provided in Section 3.2. Brief
description of MLR is provided in 3.4, as it is well-known technique.
Fig. 2 shows the basic architecture of the proposed PSSE.

It is assumed in the proposed work that similar operating patterns to
current state exist in the historical dataset. Similar operating patterns do
not always mean the same topology. For large power systems, change of
topology at the local level may not change the electricity generation or
consumption in the local network. Operating points may still be
considered similar to historical points if the local network is considered
as an aggregated node [18]. For the case of topology change at a higher
level in the bulk power system, where the operating point may change
with the change of topology, the proposed model has to be trained again
with the historical dataset of the changed topology. For the bulk power
system, the immediate training after the topology change may be
computationally challenging and expensive. The frameworks presented
in [41,42] work with adaptive learning and could be used for the case of
topology change at a higher level in the bulk power system. However,
further detailed analysis is needed to deem the applicability of ap-
proaches presented in [41,42] in our proposed work, which is left as a
future work. These assumptions also exist in most of the ML based state-
of-the-art state estimation approaches. Although it has been shown in
[43-45] that the forecasting aided state estimator can address the lack of
measurements, measurement errors, grid topology and link parameters
change, the problem of topology change in the bulk system that changes
the operating point still a challenge.

For normal conditions, the proposed state estimation model can
accurately predict power system states. If some of the measurements are
missing or time delayed, forecasted states obtained from the proposed
state forecasting approach can be utilised to estimate missing mea-
surements as pseudo-measurements. Forecasting-aided state estimation
approach can also deal with measurement errors, network configura-
tion, sudden changes in the network, and change in network parameters
[43]. For a state estimation approach to be robust, it must be insensitive
to major measurement errors and network topology changes ([35]
chapter 6). Therefore, the proposed state estimator is robust against
local topology change, missing measurements, and measurement errors.
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-

Fig. 1. Architecture of ResNetD with K = 2, where K denotes number of hidden units W, and Z and X represent the input measurement vector and output state

variable vector, respectively.

|
: | :
Real-Time g sueioiois

Measurements |

(Z)
| Base Learners

e — ———

I Meta—LearnerI

Estimated States
(Xo)
Power System
State Estimator

Fig. 2. Proposed deep ensemble learning based PSSE. Input vector Z; is the real time measurement vector of size m. The intermediate vectors X!', X% ...X? are the
estimated voltage magnitudes and phase angles from b number of base-learners. The output vector X; includes n voltage magnitudes and n phase angles estimate for a

power network with n buses.

The purpose of the PSSE is to estimate voltage magnitudes and phase
angles at all n buses of a power system at any instant using measure-
ments obtained from various measurement devices. In practical power
systems, measurements can come from different measurement devices
including PMU and SCADA. Also, different measurement types and lo-
cations introduce time synchronisation and time skewness issues
because of the different latency of measurements. Several approaches,
for example [46-49], have been presented to deal with this challenge. In
this paper, we have assumed that measurements are synchronised using
one of already available synchronisation approaches. Measurements,
2! = [21,22, -+, 2m), Obtained from the field devices may consist of real
and reactive power flows in different branches, nodal voltage magni-
tudes and phase angles, and real and reactive power injections at various
buses of a power network.

It can be seen from Fig. 2, in the proposed approach, m measure-
ments (with m>2n as the necessary condition for the system to be
observable; observability of a network depends upon several conditions
including type and location of measurements as well as the network
topology, the details on the system observability condition are provided
in chapter 4 of [35]) are used as inputs to the base-learners. Each of the
base-learners computes the state vector independently (parallel stack-
ing) as an output vector. The output of base-learners is provided as input
to the meta-learner that predicts the final state vector variable, X, which
consists of n voltage magnitudes and n phase angles for n buses of a
power network. The meta-learner (MLR) maps prediction very close to
actual states. Hereinafter “Stacked ResNetD” is used to denote this
ensemble learning model. Fig. 3 shows the flowchart of the proposed
method.

For the training and testing of the proposed model, the availability of
a complete set of historical measurements and states is assumed. While
at the instant of real-time operation of the proposed PSSE, if some of
measurements are missing or topology are changing, the forecasted
states can be used for monitoring and control of the power system.

Forecasting aided state estimation helps to deal with errors, sudden
change in the network, and topology and network parameters change
[43,45,20,23,44]; therefore, forecasting missing measurements is
important for the completeness of the data-driven PSSE. Multivariate-
linear regression for state forecasting is described in Section 3.4 to
deal with the problem of missing measurements.

3.4. Multivariate-linear regression for state forecasting

The general assumption of data-driven PSSE approaches is the
availability of complete measurements during real-time state estima-
tion, which may not be true in real-time data acquisition. Some of
measurements may not be available while performing state estimation at
control centres due to various reasons such as measurement device
failures, unreported outages, denial of the service attacks, transmission
line sags, and transmission channel failures. Although missing mea-
surement data may not be frequent in practical power systems, an al-
gorithm is needed for missing measurements for the completeness of the
proposed state estimation approach. To deal with these missing mea-
surements/states, we forecast missing states. Forecasting of missing
states has several advantages because it compensates for various errors,
sudden changes, and topology and network parameter changes. The
advantages of forecasting missing states or measurements to deal with
changes in network typologies and parameters are provided in [43].
Mathematically, forecasting system states for next hours (x.1) given
historical states (x; p,X pi1,-.-,Xt—1,X:) can be expressed as follows.

:Y\t+1 = ¢(xr—h7xr—h+17 e X1 7xz) 9
/Z\r+1 = hz+1 (55,“) + e (10)

It can be seen from (9) that an appropriate mapping function ¢ needs to
be developed to appropriately forecast next state. Forecasted states can
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Read power system network data
(network topology, load profile, etc. )

l

Generate historical training and testing dataset
using WLS and Gauss-Newton methods

Separate dataset for
base-learner model

reached ?

Separate dataset for
. ta-1
Loop fori=1 to b, fmefa- camer
b is total number of base-learners
Separate dataset Initialise weights and bias
for testing
Compute loss
function
Update weights

Is predefined
number of epochs

Record updated weights and bias of
each base learner model

I

Load base-learner models and combine
with MLR to train the compete model

l

parameters

Ensemble prediction

I

Evaluate the model using
performance metrics

)

Fig. 3. Flowchart of the proposed PSSE. Huber loss is the used as loss function. The proposed work is run for 200 epochs, this number is determined empirically by

looking into the training of ML model error settling around.

be used directly as states of next hours or can be used in (10) as states to
generate pseudo-measurements of the next hour. Missing measurements
are replaced with pseudo-measurements and provided as input to the
proposed state estimator along with available measurements. The per-
formance of the linear and non-linear models are similar for the state
forecasting [31-34]. However, nonlinear models come with added
computational time and complexity. Therefore, MLR is adopted in this
work to forecast future states. MLR has the following benefits over the
other non-linear models: it is easy to train; takes much less time for

training; and is much easier to understand. The input to MLR is historical
states as explained above and the output is the states of the next one step
(one hour if the state estimation is done hourly) or more hours (for multi
step forecast). In this work, most recent 24 hours of the historical time-
series states are used as input and output states of the next hour are

forecasted. Analytically, MLR can be expressed as follows.
:’C\H] = Qo +ﬂ0xr + B Xig + +ﬂh—lx1—h+l +ﬂhxr—h 1)

where ay is the intercept and g, through f, are regression coefficients for
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state forecasting.

3.5. Evaluation metrics

The proposed work is compared with various state-of-the-art
methods using the following evaluation metrics.

1. Mean Absolute Error (MAE):

1 T N

MAE = SS -g 12)

=1 =l

2. Root Mean Square Error (RMSE):

1 T N o g2
RMSE = \/ ﬁzl:l > =) 13)

where N = n is the total number of estimated voltage or phase angle

states; T is the total number of test samples; and xi and ?i represent
actual and predicted states, respectively.

4. Numerical evaluation

This section validates the proposed approach through numerical
examples. Section 4.1 describes step-by-step training and testing data
generation. Section 4.2 presents comparisons between the proposed
Stacked ResNetD structure and existing methods including MLP, CNN,
and ProxINet for PSSE. Section 4.3 shows the performance of the pro-
posed model with Non-Gaussian Noise in measurements. Section 4.4
shows the capability of the proposed PSSE to emulate the generalized
maximum-likelihood (GM)-estimator proposed in [5,11] for power
system state estimation. Finally, Section 4.5 shows the performance of
the MLR against CNN, LSTM, and CNN-LSTM for time-series state
forecast.

4.1. Dataset generation

The performance of the proposed state estimation is demonstrated
through various case studies on the standard IEEE benchmark systems:
IEEE 14, IEEE 30, IEEE 57, IEEE 69, and IEEE 118-bus systems. As his-
torical measurements and states of real power systems are not easily
accessible for training the proposed model, training data are generated
using real power load dataset (varying power demands help capture the
dynamics of real power systems) from Global Energy Forecasting
Competition 2012 [50]. Load profile of zone 1 is taken in this paper.
Load profiles are normalised to match the scale of the tested systems.
The load time series dataset is normalised by the peak value as follows.
Let X = x1, X2, -+, Xg7e0 denote the actual load in the dataset. The nor-
malised load profile can be determined as follows.

X1, X2, .-+, X8760
Xpromie = max(Xy, Xz, ..., Xg760) as)
To obtain the load demand at each node for each time instant, actual
load demand at each node is multiplied by the normalised load profile of
(14).

Simulations are performed using Power System Simulation Package
(MATPOWER) [51] to generate the data and Python with Keras and
Scikit-learn libraries is used for training and testing of machine learning
models. AC power flow is solved for the entire simulation period of the
load data and various power flow results such as line flows (real and
reactive power flows), nodal voltage magnitudes and phase angles, and
nodal power injections are recorded. Gaussian and non-Gaussian noises
are used to emulate real-world data. While estimating system states from
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measurements using WLS method to generate the training and testing
data, measurement standard errors (0.01,0.01414,0.01414, and 0.0122)
are used for voltage magnitudes, phase angles, line power flows, and
nodal power injections, respectively. One of the necessary conditions for
a system to be observable is that the total number of measurements
should be greater than or equal to the total number of states to be
estimated.

The number of measurements taken for the 14-bus system is 64.
Although it can be predicted only with 32 measurements (data for this
case are provided in the shared code), 64 measurements are provided
because having redundant measurements have several benefits such as
(a) it improves the performance of the model when there are suspected
measurements; (b) it can obtain better estimate for the suspected data
sets; (c) has capability to estimate important non-telemetered variables
(e.g., transformer taps); and capability to determine the unknown status
of CBs and to detect topological errors [35]. For the 30-bus system, 110
measurement data points are used; the proposed methods can also work
with less number measurements, for example 80 measurements (data for
this case are provided in the shared code). For 57-, 69-, and 118-bus
systems, 216,210,562 number of measurements are chosen, respec-
tively. For this study, the number of measurements are determined
empirically.

As an example of location of measurement devices, the locations of
the 32 measurements for the 14-node system are as follows: bus real and
reactive power injection measurements are taken from buses (2, 4, 8, 10,
11, 12, 14, i.e., total of 7 x 2 = 14 measurements; voltage magnitude
and phase angle measurements of bus 1; i.e., total of 1 x 2 = 2 mea-
surements; and real and reactive power flow measurements are taken as
follows (from bus-to bus): 1-2,2-3,2-5,4-6,4-7,6-11,6-13,12-13, i.e.,
2 x 8 = 16. Locations for the tested systems are determined empirically
and by following a similar location as that of state estimation work
presented in [5,11].

Measurement locations of the SCADA system is very important as the
number of measurements and locations have influence over the result
and observability of the system. However, determining the optimal
number of measurements and optimal locations of SCADA is outside the
scope of this paper.

4.2. Results of stacked ResNetD for PSSE

The m measurements are provided as input and the n voltage mag-
nitudes and n phase angles are provided as estimated outputs to train the
model which can be performed off-line for a real power system. The
trained model can be used in real-time to estimate current states of the
system with given current measurements.

For each of the IEEE 14—, 30—, 57—, and 69-bus test systems, a total
of 39, 444 data points are generated. For the IEEE 118 bus system, a total
of 17,520 data points are generated. From the total dataset, 40% are
utilised for training the base-learners, 36% for training the meta-learner,
and the remaining 24% are used for testing the complete ensemble
learning setup. The point to be noted while training the meta-learner is
that it must be trained with separate data-set than the one used to train
base-learners to avoid the over-fitting. A Gaussian white noise with
signal-to-noise ratio of 50 dB is added to the training data set. In real-
time measurements, errors at any instant may be different from that of
the previous instant of time. To capture changing measurement errors
and check the robustness of the proposed model against measurement
errors, Gaussian white noises with signal-to-noise ratio of 20 dB are
added in the test data set to alter them more than training data set.
Gaussian noise is considered based on the general convention used to
generate a dataset for data-driven based state estimation. However, real
measurements do not necessarily follow the Gaussian noise. Specifically,
load does not usually follow a Gaussian distribution. Advance metering
infrastructure can be used to develop distribution functions for load
points. To test the proposed approach on different distributions and
noises, we have used non-Gaussian noise as well in Section 4.3. The per-
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unit values of voltage magnitudes are converted to percent values and
phase angles are converted from radian to degree for better
visualisation.

The proposed Stacked ResNetD for state estimation is compared with
multi-layer-perceptron (MLP), CNN, and Prox-linear net.

e Multilayer Perceptron (MLP): MLP has a layered architecture with
input, hidden, and output layers. The normalised input is fed at the
input layer. The cardinality of the input vector determines the
number of neurons in the input layer. There can be multiple hidden
layers in the MLP. The final prediction output is obtained from the
output layer. In this work, MLP consisting of 6 hidden layers with
ReLU as activation function and adaptive moment estimation
(Adam) as optimisation function is used.

Convolution Neural Networks (CNNs): CNNs have been used in many
applications. The CNNs have a convolution layer followed by a
pooling layer. The CNN and pooling layers find the low level feature
of the input vector. Fully connected layers are added after the
convolution and pooling layers. The CNN architecture is well-suited
for 2-D input. However, it can also be used efficiently for 1-D inputs
like time-series. One of the benefits of CNN is that they are easier to
train and have a fewer parameters as compared to the fully con-
nected neural network with the same number of hidden units. The
CNN architecture is presented to compare it with the proposed
approach which consists sequentially of: two 1-D convolution layer
with 64 filters and kernel size of 3; one 1-D max pooling layer with
pool size of 3; one 1-D convolution layer with filter size of 128 and
kernel size of 3; one 1-D global average pooling layer; two dense
layers with 4n units and ReLU activation function; and a output
dense layer with 2n units and ReLU activation function. CNN model
uses Adam as an optimiser.

Prox-linear Net (ProxINet): Authors of [20] have proposed a Proxl-
Net for real-time PSSE. The ProxINet has been formed by skipping
the layer that connects the input directly to the immediate output
layer, where each layer consists of a fixed number of hidden layers.
The ProxINet architecture used for comparison consists of 2 skip-
connection layers with 3 hidden units between each layer. For the
detailed architecture of ProxINet, refer to [20].

The aforementioned existing techniques are run 6 times indepen-
dently with a batch size of 64 and 200 epochs, and the minimum values
(prediction vary because of the stochastic nature of the deep learning
models) of RMSE and MAE for all runs are taken for comparison with the
proposed Stacked ResNetD. The batch size of 64 and 200 epochs are
determined empirically. The number of epochs are selected after
observing the training error settling in the machine learning models. The
number of epochs could be different for different models; however, in
this work, we have determined it conservatively. In other words, during
the training phase, some of models may settle earlier than 200 epochs
while others may take around 200 epochs to settle; therefore, the
number of epochs is chosen to be 200. As the training is offline pro-
cedure, the number of training epochs can be selected based on system
requirements. The structure of ResNetD used as a base-learner is same as
shown in Fig. 1 where three blocks containing 2 skip hidden units in the
regular information flow of each blocks are used. The number of neurons
selected for each input and hidden layers is the total number of input
measurements of a specific system; for the output layer, the total neu-
rons equal to total number of states to be predicted.

Because size of data is sufficiently large, we train all 6 parallel
ResNetD base-learners with same dataset and parameters. Before
deciding to train all the base-learners with same set of training, we also
tested the performance of ResNetD as base-learners by dividing the
training data into 6 folds. The performance of Stacked ResNetD on the
test dataset is better when trained with the entire training dataset for all
of the parallel base-learners than that when trained with 6-fold of data
for 6 parallel ResNetD.
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Table 1 shows a comparison between MLP, CNN, ProxINet, and
proposed Stacked ResNetD models in terms of RMSE and MAE of voltage
magnitude estimation for IEEE 14, 30,57,69, and 118 benchmark sys-
tems. The values of the metrics show that the proposed Stacked ResNetD
ensemble learning setup captures the true relationship between input
measurements and the estimated voltage states. The proposed base-
learner has regular information flow, skipping connection, and direct
connection to the input data through dense layer. All this together
solving “vanishing” and “exploding” issues, improving the regular in-
formation flow and recovering missing features. MLR as meta-learner
further improves the results towards the actual values.

Table 2 shows a comparison between MLP, CNN, ProxINet, and the
proposed Stacked ResNetD in terms of RMSE and MAE metrics of phase
angles estimation for IEEE 14, 30,57,69, and 118 benchmark systems.
The results obtained by the proposed approach is closer to actual state
values.

The run-time performance of each model is determined over all
testing datasets and is averaged over each instance. Table 3 shows the
run-time performance of each model per instance estimation.

Figs. 4-8 show the estimated voltage magnitudes and phase angles of
the proposed Stacked ResNetD along with the MLP, CNN, and ProxINet
techniques at different buses of IEEE benchmark systems. These figures
show that the states estimated by the proposed Stacked ResNetD are
comparable to the actual states obtained by the WLS method. The states
predicted by ResNetD are very close to the actual states. The states
predicted by ResNetD as base-learners are linear approximations to
actual states. Therefore, MLR as a meta-learner estimates the states with
low bias.

4.3. Performance of the proposed model with non-Gaussian noise

We have used non-Gaussian noise to test the proposed approach on
different distributions and noises. To test such cases, measurement er-
rors are emulated randomly as follows. A random noise of size 0-3% of
original power flow results are generated and inserted into measurement
data. Separate random errors are generated for each measurement at
every instance and added or subtracted from the original measurements.
In this way, the error size and the disturbed measurements are changing
every instance. Out of total of m measurements, random errors are added
in the first 50% and subtracted from the remaining 50% to make it more
deceptive.

Figs. 9-13 show the performance of MLP, CNN, ProxINet, and the
proposed Stacked ResNetD in terms of RMSE and MAE metrics. The
results show that the proposed PSSE can estimate the states accurately
even with non-Gaussian noise.

4.4. Performance of the proposed PSSE with GM-estimator

As the main purpose of the proposed work is to develop a machine
learning model that can emulate the physical state estimator models
appropriately, we have also tested it with a generalised M-Estimator
(GM-Estimator) to demonstrate the capability of the proposed method to
emulate the GM-Estimator proposed in [5,11]. The MATLAB code for
GM-Estimator is obtained from [5,11]. This case is tested only on the
IEEE 30- and 57-node test systems because with the MATLAB code
provided in [5,11] for 69 and 118 bus system, GM-estimator state esti-
mation is very time consuming and difficult to converge with time
varying loads. There can be several ways to reduce the computational
burden of the physical models which is outside the scope of the proposed
work. To test the performance of proposed model with different number
of input measurements, in this case the number of input measurements
are different than that used in WLS based data generation: 80 mea-
surements are used for 30 bus system, and 216 measurements are used
for 57 bus system. In this case, the dataset is generated using a GM-
Estimator. To incorporate Gaussian and non-Gaussian noise, datasets
are generated with Gaussian noise and non-Gaussian noise and shuffled
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Table 1
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Comparisons between MLP, CNN, ProxINet, and proposed Stacked ResNetD in terms of RMSE and MAE metrics for voltage magnitudes estimation.

Models IEEE 14 Bus IEEE 30 Bus IEEE 57 Bus IEEE 69 Bus IEEE 118 Bus
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
MLP 2.4574 1.8533 41737 2.9253 5.1976 3.5885 6.8272 5.3114 1.8588 1.3944
CNN 2.2262 1.4926 4.2576 2.9005 5.1595 3.4571 6.8614 5.3225 1.9343 1.4635
ProxINet 2.4592 1.8815 4.1405 2.8885 5.1273 3.5283 6.6526 5.1737 1.8385 1.3784
Proposed 0.2605 0.1660 0.4753 0.2852 0.4766 0.2931 0.6486 0.4238 0.1894 0.1196
Stacked ResNetD
Table 2
Comparisons between MLP, CNN, ProxINet, and proposed Stacked ResNetD models in terms of RMSE and MAE metrics for phase angles estimation.
Models IEEE 14 Bus IEEE 30 Bus IEEE 57 Bus IEEE 69 Bus IEEE 118 Bus
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
MLP 0.5496 0.3533 1.2202 0.6854 1.8197 1.1970 2.5232 1.6724 1.4351 1.0852
CNN 0.6496 0.4631 1.2513 0.7312 1.8677 1.2741 2.5242 1.6980 2.1926 1.5885
ProxINet 0.5122 0.3213 1.1840 0.6581 1.7650 1.1558 2.4475 1.6324 1.3061 1.0045
Proposed 0.1102 0.0733 0.5472 0.1873 0.2978 0.1581 0.5417 0.3156 0.2104 0.1272
Stacked ResNetD
Table 3 =
c
Comparisons between MLP, CNN, ProxINet, and proposed Stacked ResNetD 8105
models in terms of run-time performance per instance estimation where ‘s’ de- 3100
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Fig. 4. Prediction vs actual voltage magnitude and phase angles at bus 10 of
IEEE 14-bus system.

together and used for training and testing of the GM-Estimator. As there
are 6 base learners in proposed model, MLP, CNN, and ProxINet are also
run for 6 times independently and the minimum of each run (prediction
vary because of the stochastic nature of the deep learning models) is

Time in hours

Fig. 6. Prediction vs actual voltage magnitude and phase angles at bus 28 of
IEEE 57-bus system.

compared with the results of the proposed model. The per-unit values of
voltage magnitudes are converted into percent values and phase angles
are converted from radian to degree for better visualisation.
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Fig. 9. Performance of various models on IEEE 14-bus system with non-
Gaussian measurement noise. RMSE V and MAE V are for voltage magnitudes
and RMSE A and MAE A are for phase angles. Score in the vertical axis denotes
voltage in percentage value for RMSE V and MAE V and phase angle in degree
for RMSE A and MAE A.

For the 30-bus system, RMSE for voltage magnitude estimation with
MLP, CNN, ProxlINet, and the proposed Stacked ResNetD are 0.3815,
0.3984,0.3518, and 0.2551, respectively. MAE for voltage magnitude
estimation with MLP, CNN, ProxINet, and the proposed Stacked
ResNetD are 0.2663,0.2418,0.2510, and 0.1353, respectively. Similarly,
for phase angle estimation, RMSE of MLP, CNN, ProxINet, and the
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Fig. 10. Performance of various models on IEEE 30-bus system with non-
Gaussian measurement noise. RMSE V and MAE V are for voltage magnitudes
and RMSE A and MAE A are for phase angles. Score in the vertical axis denotes
voltage in percentage value for RMSE V and MAE V and phase angle in degree
for RMSE A and MAE A.
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Fig. 11. Performance of various models on IEEE 57-bus system with non-
Gaussian measurement noise. RMSE V and MAE V are for voltage magnitudes
and RMSE A and MAE A are for phase angles. Score in the vertical axis denotes
voltage in percentage value for RMSE V and MAE V and phase angle in degree
for RMSE A and MAE A.
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Fig. 12. Performance of various models on IEEE 69-bus system with non-
Gaussian measurement noise. RMSE V and MAE V are for voltage magnitudes
and RMSE A and MAE A are for phase angles. Score in the vertical axis denotes
voltage in percentage value for RMSE V and MAE V and phase angle in degree
for RMSE A and MAE A.
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Fig. 13. Performance of various models on IEEE 118-bus system with non-
Gaussian measurement noise. RMSE V and MAE V are for voltage magnitudes
and RMSE A and MAE A are for phase angles. Score in the vertical axis denotes
voltage in percentage value for RMSE V and MAE V and phase angle in degree
for RMSE A and MAE A.

proposed Stacked ResNetD are 0.1689, 0.2171, 0.1603, and 0.0741,
respectively. The phase angle estimation MAE of MLP, CNN, ProxINet,
and the proposed Stacked ResNetD are 0.0948, 0.1103, 0.0841, and
0.025, respectively.

For the 57-bus system, RMSE for voltage magnitude estimation of
MLP, CNN, ProxINet, and the proposed Stacked ResNetD are 1.2161,
2.2138,1.022, and 0.8897, respectively. MAE for voltage magnitude
estimation of MLP, CNN, ProxINet, and the proposed Stacked ResNetD
are 0.5714, 0.8481, 0.5545, and 0.3805, respectively. Similarly, for
phase angle, RMSE of MLP, CNN, ProxINet, and the proposed Stacked
ResNetD are 0.4100,0.8304,0.3681, and 0.2986, respectively. The phase
angle estimation MAE of MLP, CNN, ProxINet, and the proposed Stacked
ResNetD are 0.1638,0.2216,0.1644,0.0918, respectively.

The performance of the proposed model is better than the other ML
models because the proposed model with ResNetD as base learner can
capture the non-linear relationship between input measurements and
output states. The MLR as meta-learner further improves the results
because of the approximate linear relationships between the output of
the different ResNetD models and the actual states. The results show that
the proposed model can accurately emulate the GM-Estimator.

The run-time performance of machine learning models, WLS, and
GM-Estimator is as shown in Table 3.

4.5. Results of MLR for state forecasting

When some of the measurements are missing during real-time
operation, usually state forecasting is performed. In this section, MLR
is compared with most common time-series forecasting models such as
CNN, LSTM, and hybrid CNN-LSTM for forecasting of the power system
states. Each of these models is briefly discussed as follows.

e CNN: The CNN used for the comparison consists sequentially of: two
1-D convolution layer with kernel size of 3,64 filters and ReLU as
activation function; one 1-D max pooling layer with pool size of 2;
one 1-D convolution layer with 128 filters and kernel size of 3; one 1-
D global average pooling layer; one single dense layer with 50 units
and activation function of ReLU; and final dense layer with unit size
equal to number of states to be forecasted.
LSTM: LSTM has layered architecture. LSTM architecture used for
the comparison consists sequentially of: three-layer of LSTM with
ReLU activation function with 4n,2n, and 2n units, respectively; and
two dense layers with 2n number of units in each layer and ReLU as
activation function.
e CNN-LSTM: The hybrid combination of CNN and LSTM consists of
CNN networks followed by LSTM networks. CNN-LSTM used for the
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comparison consists of two layers of 1-D convolution layer with 64
filters, kernel size of 3 in each, and ReLU as activation function; one
1-D max pooling layer with pool size of 2; two LSTM layers with 2n
number of units with ReLU activation function; and three dense
layers with 2n units with ReLU activation function in each layer.

Adam is used as an optimiser and mean absolute error is taken as a loss
function for all of the models. All of the CNN, LSTM, and CNN-LSTM
models are run 6 times independently with batch size of 32 and 200
epochs, and the minimum values of metrics of all runs are taken for the
purpose of comparison.

Out of the available historical data, 40% are used for training and the
remaining 60% are used for testing. For this time-series forecasting, the
last 24 step time series data of states are utilised to forecast current
hour’s state. Although a state is forecasted only for one step (one hour),
the proposed approach can be used to forecast the states for multiple
steps (two or more hours) with a little modification.

Table 4 provides comparisons between CNN, LSTM, CNN-LSTM, and
MLR models in terms of RMSE and MAE metrics forecast of voltage
magnitudes for IEEE 14,30,57,69, and 118 benchmark systems on test
datasets. It can be seen from the table that the performance of MLR is
remarkably better than the other models for all of the tested systems.

Table 5 presents a comparison between forecast of phase angles of
MLR against LSTM, CNN-LSTM, and CNN on test data-set of IEEE 14,30,
57,69, and 118 bus benchmark systems in terms of RMSE and MAE
metrics. It can be seen that MLR outperforms all other models for all of
the studied IEEE benchmark systems.

Figs. 14-18 show the comparison between CNN, LSTM, CNN-LSTM,
and MLR to forecast the power system states. These figures show the
competitive performance of MLR for state forecasting.

MLR is mapping the historical states closer to actual states than any
other compared deep learning models. This could be due to the existence
of an approximately linear relationship between historical power system
states.

Although the proposed state forecasting approach can forecast the
current states when all sets of measurements are available, the states
thus obtained are not as close as estimated states using the proposed
PSSE with the current measurements (the comparison results are not
provided for obviousness and simplicity of expositions, if interested it
can be verified with provided source code). Therefore, the state fore-
casting should only be used at the instant of missing measurements.

5. Conclusions

This paper has proposed a data-driven real-time PSSE using a deep
ensemble learning method. The proposed deep ensemble learning setup
was formed by stacking several parallel ResNetD as base-learners and
multivariate-linear regression as meta-learner. In this work, historical
measurements and states were utilised to train the proposed model for
the estimation of power system states (voltage magnitudes and phase
angles). The trained model was utilised to predict the states of the power
system in real time using real-time measurements. The data-driven PSSE
assumes the availability of a complete set of measurements; however,
some of the real-time measurements may be missing leading to failure in
estimating the states. To deal with missing measurements, this paper
adopted multivariate-linear regression to forecast the missing states at
any instant using historical states. Several case studies were performed
in various IEEE benchmark systems. Case studies showed that the pro-
posed approach outperformed various machine learning techniques.
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Table 4
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Comparisons between voltage magnitude forecast using CNN, LSTM, CNN-LSTM, and MLR models in terms of RMSE and MAE metrics for standard IEEE 14,30,57,69,
and 118 benchmark systems.

Models IEEE 14 Bus IEEE 30 Bus IEEE 57 Bus IEEE 69 Bus IEEE 118 Bus
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
LSTM 0.4174 0.2927 0.3351 0.2397 0.9008 0.5772 0.5312 0.3554 0.5271 0.3751
CNN-LSTM 0.4233 0.3029 0.3349 0.2382 0.9028 0.6159 0.5278 0.3715 0.5108 0.3421
CNN 0.4218 0.3233 0.3640 0.2814 0.6700 0.5799 0.4946 0.3444 0.4868 0.3305
Proposed 0.1241 0.0845 0.1509 0.1044 0.2115 0.1417 0.2529 0.1955 0.1919 0.1420
MLR
Table 5

Comparisons between phase angles forecast using CNN, LSTM, CNN-LSTM, and MLR models in terms of RMSE and MAE metrics for standard IEEE 14,30,57,69, and
118 benchmark systems.

Models IEEE 14 Bus IEEE 30 Bus IEEE 57 Bus IEEE 69 Bus IEEE 118 Bus
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

LSTM 0.0337 0.0263 0.0399 0.0318 0.0853 0.0647 0.0601 0.0516 0.2182 0.1594
CNN-LSTM 0.0399 0.0325 0.0526 0.0392 0.1108 0.0902 0.0602 0.0526 0.2037 0.1525
CNN 0.0686 0.0575 0.0633 0.0492 0.0864 0.0707 0.0659 0.0562 0.2325 0.1730
Proposed 0.0037 0.0025 0.0036 0.0025 0.0094 0.0067 0.0015 0.0010 0.0460 0.0343
MLR
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