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A B S T R A C T   

Power system state estimation (PSSE) is commonly formulated as weighted least-square (WLS) algorithm and 
solved using iterative methods such as Gauss-Newton methods. However, iterative methods have become more 
sensitive to system operating conditions than ever before due to the deployment of intermittent renewable en
ergy sources, zero emission technologies (e.g., electric vehicles), and demand response programs. Appropriate 
PSSE approaches are required to avoid pitfalls of the WLS-based PSSE computations for accurate prediction of 
operating conditions. This paper proposes a data-driven real-time PSSE using a deep ensemble learning algo
rithm. In the proposed approach, the ensemble learning setup is formulated with dense residual neural networks 
as base-learners and multivariate-linear regressor as meta-learner. Historical measurements and states are uti
lised to train and test the model. The trained model can be used in real-time to estimate power system states 
(voltage magnitudes and phase angles) using real-time measurements. Most of current data-driven PSSE methods 
assume the availability of a complete set of measurements, which may not be the case in real power system data- 
acquisition. This paper adopts multivariate linear regression to forecast system states for instants of missing 
measurements to assist the proposed PSSE technique. Case studies are performed on various IEEE standard 
benchmark systems to validate the proposed approach. The results show that the proposed approach outperforms 
existing data-driven PSSE techniques. The developed source code of the proposed solution is publicly available at htt 
ps://github.com/nbhusal/Power-System-State-Estimation.   

1. Introduction 

Power System State Estimation (PSSE) is used to provide real-time 
database for control and monitoring systems of power grids and to 
assist system operators in making well-informed remedial action de
cisions in case of contingencies. PSSE techniques use power system 
measurements like line flows, nodal voltages (magnitude and phase 
angle), and nodal injections (obtained from supervisory control and data 
acquisition (SCADA) system), to estimate power system states such as 
voltage magnitudes and phase angles at system nodes. PSSE is a non- 
convex problem generally formulated based on weighted least square 
(WLS) methods and solved using iterative methods such as Gauss- 
Newton methods. However, these methods are sensitive to system 
operating conditions and uncertainties. Also, the increase in the 
deployment of intermittent renewable energy sources (e.g., photovoltaic 

and wind power generation), power system-dependent zero emission 
technologies (e.g., electric vehicles), and load demand in modern power 
grids has led to frequent and sizeable voltage fluctuations. Furthermore, 
disparate cyber-attacks and natural events exacerbate the operation and 
control of power systems [1,2]. The aforementioned unpredictable 
behaviour of power grids makes conventional solutions for PSSE, like 
WLS-based methods, computationally expensive and sub-optimal. 
Therefore, it is important to develop computationally efficient and 
technically feasible alternative solutions for power system state esti
mation that address the above-mentioned uncertainties. 

Several model-based methods have been proposed in the literature to 
solve the PSSE problem using a number of statistical criteria. Most 
commonly used criteria are (a) maximum likelihood criterion—it max
imises the probability of the estimated states being equal to true values 
of the states; (b) WLS criterion—it minimises the sum of squares of 
weighted errors of actual measurements and estimated measurements; 
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(c) minimum variance criterion—it minimises the expected value of the 
sum of squares of errors between true states and estimated states; (d) 
least absolute value criterion—it minimises the sum of absolute values of 
deviations between estimated and actual measurements [3–9]. Other 
criteria include minimum mean square estimator [10], Schweppe Huber 
generalised M-estimator, and least-median and least-trimmed square 
estimator [11]. However, model-based approaches are sensitive to ini
tialisation, require several iterations, are computationally intensive, and 
produce sub-optimal performance, specifically with newly emerging 
uncertainties and growing system dynamics. 

The development of various machine learning (ML) approaches has 
led to the use of big data in potpourri of complex power system prob
lems, and PSSE is not an exception [12–14]. Data-driven PSSE ap
proaches provide great flexibility and scalability. They also have the 
capability to improve the run-time efficiency and accuracy of conven
tional state estimation approaches [15]. In [16,15,17], a hybrid of data- 
driven and statistical criteria (e.g., WLS and least absolute value) have 
been used to estimate power system states. In the hybrid approach, ML 
models (neural network (NN) in [16] and long-short-term-memory 
(LSTM) in [15]) have been used as a surrogate model to map available 
measurements or historical states in the neighbourhood of the true 
latent states. These approximate states have been used as initialisation 
for model-based criterion. Numerous model-free data-driven approaches 
have also been proposed in literature. These approaches use historical 
similar measurements or simulated measurements and their states for 
the training, validation, and testing of the ML models. Trained models 
have been used for real-time state estimation. ML approaches such as k- 
nearest neighbour in [18], LSTM in [19], physics-inspired unrolled deep 
neural network (DNN) [20], auto-associated neural network [21], 
physics-aware NN [22], deep recurrent neural network [23], and deep 

generative adversary network [24], to name a few, have been used for 
PSSE. A comparison between the proposed approaches with some of 
these approaches is provided in the case studies. 

The aforementioned data-driven approaches provide rich literature 
on PSSE and contribute towards the development of resilient future 
power grids. However, shallow neural network models suffer from 
scalability and computational inefficiencies [25]. Furthermore, due to 
the stochastic nature of DNN, they are sensitive to a specific set of 
training data, which in turn results in different predictions—different 
sets of weights may be obtained every single time they are trained. In 
other words, the stochastic nature of DNN poses high variance and 
makes the development of final prediction models difficult. 

This paper proposes a data-driven real-time PSSE model using deep 
ensemble learning method. Actual historical data (obtained from 
SCADA) and simulation-derived data (sampled snapshots using MAT
POWER) are utilised to train several parallel dense Residual Neural 
Networks (ResNetD). The ResNetD captures the nonlinear relationship 
between input measurements and output states. The output states pro
duced by base-learner ResNetD are very close to actual states and they 
capture various features existing between input measurements and 
output states. The multivariate linear regression (MLR) is used to form 
the ensemble model for estimating the final power system states (voltage 
magnitudes and phase angles). The trained ensemble learning model is 
used to predict power system states in real-time. During testing phase, 
additional Gaussian noise is added in the data to test the robustness of 
the proposed approach against measurement errors. During the imple
mentation of the proposed data-driven PSSE in real-time, there may be 
missing measurements that lead to the failure of the state estimation. To 
deal with this problem, we adopted the MLR to forecast missing states at 
any instant. The accuracy and efficiency of the proposed method against 
standard ML methods is validated through comprehensive case studies 
on the IEEE 14,30,57,69, and 118 bus benchmark systems. 

The major contributions of this paper towards ML-based state-of-the- 
art state estimation are summarised as follows. 

• Deep neural networks have the capability to map nonlinear re
lationships between the input data and the output because of their 
nonlinear nature. They provide great flexibility and scalability with 
system size and amount of available samples. However, deep neural 
networks learn through stochastic training algorithms resulting in 
high variation in training parameters of the model. This may make 
deep neural networks find different sets of weights every time they 
are trained and may produce different results. This work proposes 
ensemble learning setup to solve the high variance problem associ
ated with the state-of-the-art deep learning based state estimation 
techniques. Ensemble learning models train multiple models and 
combine the output of those models for the final prediction resulting 
in variance reduction. The ensemble learning model not only reduces 
the variance in prediction but also its performance improves in terms 
of accuracy and efficiency if the models are selected appropriately.  

• Motivated by the capability of recently advanced residual neural 
network architectures [26,27,20,28–30] to map nonlinear relation
ships between input and output variables, the ResNetD is developed 
to capture the nonlinear relationship existing in the state estimation 
problem. Also, the work presented in [31–34] for state forecasting 
shows that linear models can appropriately forecast power system 
states using historical states. Therefore, this paper utilises a number 
of ResNetD models as base-learners to predict states that act similar 
to historical states used for state forecasting approaches. However, 
states predicted by ResNetD are much closer to actual states due to its 
capability to map the nonlinear relationship between input mea
surements and system states. MLR maps the relationship between the 
outputs of the base-learner modes and the actual states to further 
improve the overall performance. 

The rest of the paper is organised as follows. Section 2 presents 

Nomenclature 

z measurement vector 
x state vector 
e measurement residual vector 
h nonlinear function, relating state vector to 

measurement vector 
H Jacobian matrix 
G gain matrix 
ζ set of all buses 
n total number of buses in a power network 
ζv

t and ζδ
t set of buses at which voltage magnitude and phase angle 

measurements are available at any instant t, 
respectively. 

Vi
t voltage magnitude measurement at bus i at any instant t 

δi
t phase angle measurement at bus i at any instant t 

ζp
t and ζq

t set of buses at which real and reactive power 
measurements are available at any instant t, 
respectively. 

Pi
t real power injection measurement at bus i at any instant 

t 
Qi

t reactive power injection measurement at bus i at any 
instant t 

£ total number of branches in a power network 
£p

t and £q
t set of branches at which real and reactive power flow 

measurements are available at any instant t, 
respectively 

Pii′
t real power flow measurement from line i to i′ at any 

instant t 
Qii′

t reactive power flow measurement from line i to i′ at 
instant t  
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details on power system state estimation and problem formulations. 
Section 3 describes the proposed deep ensemble learning setup for PSSE 
with an algorithm to deal with missing measurements. Section 4 ex
amines the proposed approach through numerical case studies. Section 5 
provides concluding remarks. 

2. PSSE problem formulation 

This section briefly discusses the preliminaries and problem formu
lation of PSSE. We will not reproduce rigorous derivations of the PSSE 
problem; rather, we will use the expressions of the PSSE problem to 
develop the proposed approach. 

2.1. Preliminaries of PSSE 

Given network configuration and parameters and a set of measure
ments, z, the AC state estimation determines system states as follows 
[35]. 

z = h(x) + e, (1)  

where 

z = [z1, z2, ⋯, zm]: set of measurements 
x = [x1,x2, ⋯,x2n]: vector of state variables 
e = [e1, e2, e3, ⋯, em]: vector of measurement residuals 
h = [h1(x), h2(x), ⋯, hm(x)]: nonlinear function (i.e., system model) 
relates state vector to the measurement set 

Historical real power system measurements and states are not easily 
accessible for training and testing of the proposed data-driven PSSE. 
Therefore, WLS with Gauss-Newton method is used to generate training 
data. WLS-based optimisation to determine the estimated state vector, ̂x, 
can be expressed as follows. 

minJ(x) =
1
2
(z − h(x) )

T W(z − h(x) ), (2)  

where W is the weight vector developed based on the variance of the 
measurement errors (σ2

1, σ2
2, ⋯, σ2

m) represented as, 

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
σ2

1
0 ⋯ 0

0
1
σ2

2
⋯ 0

⋮ ⋮ ⋱ 0

0 0 ⋯
1

σ2
m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3) 

The minimum value of the optimisation problem (2) can be 
computed using a first-order optimality condition as follows. 

g(x) =
∂J(x)

∂x
= − HT (x)W[z − h(x)] = 0. (4) 

The state vector x̂ in (4) can be solved as the limit of the sequence of 
states, x̂k, by means of Gauss-Newton recursive scheme; one step of such 
recursive scheme can be presented as follows. 

x̂k+1 = x̂k + G(x̂k)
−1HT (x̂k)W[z − h(x̂k)], (5)  

where H and G are, respectively, Jacobian and Gain matrices and can be 
expressed as follows. 

H(x̂k ) =

[
∂h(x)

∂x

]

x=̂xk

, (6)  

G(x̂k) = HT (x̂k)WH(x̂k), (7)  

where x̂ = [V̂t
1
, V̂t

2
, …, V̂t

n
, δ̂t

1
, δ̂t

2
, …, δ̂t

n
] is the estimated state vector, 

which consists of voltage magnitudes, V̂t
i
, and phase angles, δ̂t

i
, for the 

ith bus at time t. 

2.2. Problem statement 

The problem of data-driven PSSE is to map the available set of 
measurements, zt, to the power system state variables, x̂t . This problem 
can be expressed as follows. 

x̂t = f (zt), (8)  

where the set of measurements can be expressed as follows. 

zt =
[
{|Vi

t|}i∈ζv
t
, {δi

t}i∈ζδ
t
{Pi

t}i∈ζp
t
,

{Qi
t}i∈ζq

t
, {Pii′

t }(i,i)∈£p
t
, {Qii′

t }(i,i)∈£q
t

]T  

with {|Vi
t |} being voltage magnitude measurements at any instant t that 

are available at ζv
t buses; {δi

t} is phase angle measurements at any instant 
t that are available at ζδ

t buses; {Pi
t} and {Qi

t} are real and reactive power 
injection measurements at any instant t that are available at ζp

t and ζq
t 

buses, respectively; and {Pii′
t } and {Qii′

t } respectively, are power flow 
measurements from bus i to i′ at any instant t that are available for £p

t and 
£q

t lines. (ζv
t , ζδ

t , ζp
t , ζq

t )∈ ζ with ζ = {1, 2, ⋯, n} being the set of all buses 
and (£p

t , £q
t ) ∈ £ with £ is total number of branches in a power network. 

The function, f, contains weights (w1, w2, w3, ⋯, w2n) that map the 
relationship between input measurements and output states. The prob
lem is to find the weights, w1,w2,w3,⋯,w2n, that reduce the overall loss 
between predicted and actual states. 

3. The proposed PSSE method 

In the proposed method, a neural network in the ensemble learning 
setup is used. Before proceeding further to describe the proposed model, 
the functionality and importance of the ensemble learning in solving the 
PSSE problem are explained as follows. 

In ensemble learning, multiple machine learning algorithms are 
brought out together to solve the same prediction or classification 
problem. Subsequently, results from different methods are collected and 
combined. Machine learning (ML) models in the ensemble learning are 
called base-learners that weakly predict a certain parameter. These weak 
learners are trained to generate a set of hypotheses and subsequently 
combined to produce more accurate results. Base-learners are combined 
either in a sequential or parallel manner. The final results are obtained 
using various techniques including, but not limited to, majority voting, 
averaging, and weighted averaging [36]. 

Traditional ML models suffer from two disadvantages. First, given a 
training data set, it is often not possible to find the best ML algorithm 
due to their black-box nature. Thus, although data-driven ML models 
provide superior results over other models, their performance cannot be 
explained [37]. In other words, regardless of how many times these 
models are tried (e.g., in a trial and error fashion), users may not be able 
to identify the best model. Second, even if the best algorithm is identi
fied, the ML model may not provide the optimal performance for certain 
sample data as the search process of disparate ML algorithms is different. 
Thus, to compensate for the error of some models, it is feasible to 
combine different learners to get optimal performance. The capability of 
ensemble learning lies in the fact that base learners are diverse in nature. 
The diversity can be obtained using different ML models, different 
training parameters, different training data sets, and of course, a com
bination of all of them [36,38]. The added diversity enables the models 
to correct errors of some members as different learners make different 
errors on the same set of inputs. However, careful attention is needed 
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while forming the variations in models, datasets, or training parameters. 
Selection of inappropriate base-learner models may worsen the perfor
mance if the majority of selected base-learners capture similar features 
and miss a critical feature even if a few other base-model capture the 
critical features. Thus, the combination of carefully chosen different 
base-learners reduces the overall prediction error. Hence, ensemble 
learning is a powerful method to ensure accurate generalisation capa
bility in a training process. 

The major drawback of the ensemble learning is that, as compared to 
a single base learner, the model is redundant and requires more training. 
However, neural network training is a one-time offline process. Thus, 
ensemble learners provide a generalised model, but it requires extra 
training (that is done one time). Since the training process is done only 
once, it does not pose a problem when a system operates. In the oper
ating phase, the execution time is still low (operating phase execution 
time for the proposed model is provided in the results section) and better 
than the mathematical model based state estimators. 

3.1. Attributions of the proposed model 

This paper has used a stacking ensemble technique to develop 
ensemble learning model for PSSE. In the stacking ensemble technique, 
the base-learners are combined in parallel. In this technique, heteroge
neous weak learners learn on training data independently. The inde
pendent learners are combined using a meta-model that provides output 
based on predictions obtained from weak learners [36]. This paper uses 
dense residual neural network (ResNetD) model as a base learner. Before 
explaining the functionality of ResNetD, we describe the development of 
the proposed ResNetD as a base-learner. 

Many architectures of the neural network have been proposed in the 
literature to map the non-linear relationship between input and output 
vectors of a given system. This includes, but not limited to, classical ML 
techniques (e.g., decision tree and k-nearest neighbours regression), 
multilayer perceptron (MLP), CNN, recurrent neural network (e.g., 
LSTM), and hybrid architectures (e.g., CNN-LSTM and ResNet). Given 
the aforementioned advantage of ensemble learning, we leverage 
ensemble learning setup for PSSE. To develop an appropriate model of 
ensemble learning setup for PSSE, ML models including MLP, CNN, 
LSTM, and ResNet are tested as base learners. A number of these models 
individually and in combination are stacked in parallel to test their 
performance with various meta-learners. ML models, such as MLP, 
ResNet, k-nearest neighbours, decision tree, CNN, and MLR, are tested as 
meta-learners for the above-mentioned base-learners. Individually, 
dense neural network-based ResNet (ResNetD) architecture appropri
ately maps the non-linear relationship between input measurements and 
the output state variables than any other approach for our problem. 
Development and testing of ResNetD is motivated from recently 
advanced residual neural network architectures [26,27,20,28–30] to 
map nonlinear relationship between the input and output variables. 
Also, with the above-mentioned models as meta-learners, ResNetD has 
produced better results compared to other architectures. The results 
produced by the combined architecture of ResNetD as base-learners are 
very close to true states. Authors of [31–34] have demonstrated that 
linear models can accurately forecast power system states using histor
ical states. Since results obtained from ResNetD as base-learners are 
similar to historical states (but much close to actual states than historical 
states because of the capability of ResNetD to capture the nonlinear 
relationship) used for state forecasting approaches, MLR maps these 
states even closer to actual states. Therefore, a number of parallel 
ResNetD as base-learners and MLR as meta-learners are taken as 
ensemble learning setup for the PSSE problem. 

3.2. Residual neural network as a base learner model 

Residual Neural Network (ResNet) is a type of artificial neural 
network that builds on a structure known from pyramidal cells in the 

cerebral cortex. ResNet is formed by skipping the connections or by 
jumping over some layers of the feed forward neural network. Typical 
ResNet is formed by skipping two or three layers that contain batch 
normalisation and a non-linear function (rectified linear unit (ReLU)) in 
between. These skipped connections are important in “vanishing” and 
“exploding” gradient issues by reusing an activation function from a 
previous layer until the adjacent layer learns its weights [39,26]. 
Another advantage of skipping layers is that it simplifies the network 
and speeds up learning processes as fewer layers are used in the training. 

Inspired by ResNet architecture proposed in [26,27,20,28–30], a 
ResNetD is developed as shown in Fig. 1 as a base-learner. One block of 
the proposed ResNetD architecture is formed by merging the regular 
information flow, the output of previous blocks’ dense layers, and 
connecting the input through a dense layer directly (as shown in Fig. 1 
with 2 skip neurons in the regular information flow). The advantage of 
this approach is that it improves the information flow and recovers the 
missing features. In this paper, Hubber loss is employed as loss function 
because of its robustness against outliers [40]. ReLU is used as an acti
vation function for the proposed ResNetD. 

3.3. The proposed deep ensemble learning setup 

The proposed model uses stack generalisation of the ensemble 
learning to predict power system states. The proposed architecture 
employs a number of parallel ResNetD as base-learners and MLR as 
meta-learners. Although all of the six ResNetD models used in this paper 
have the same architecture, they act like a diverse set of models because 
of the stochasticity involved in the model. Therefore, even though the 
models are redundant, their outputs will be different and the differences 
in their outputs result in the formation of appropriate base-learners. The 
architecture of a base-learner, ResNetD, is provided in Section 3.2. Brief 
description of MLR is provided in 3.4, as it is well-known technique. 
Fig. 2 shows the basic architecture of the proposed PSSE. 

It is assumed in the proposed work that similar operating patterns to 
current state exist in the historical dataset. Similar operating patterns do 
not always mean the same topology. For large power systems, change of 
topology at the local level may not change the electricity generation or 
consumption in the local network. Operating points may still be 
considered similar to historical points if the local network is considered 
as an aggregated node [18]. For the case of topology change at a higher 
level in the bulk power system, where the operating point may change 
with the change of topology, the proposed model has to be trained again 
with the historical dataset of the changed topology. For the bulk power 
system, the immediate training after the topology change may be 
computationally challenging and expensive. The frameworks presented 
in [41,42] work with adaptive learning and could be used for the case of 
topology change at a higher level in the bulk power system. However, 
further detailed analysis is needed to deem the applicability of ap
proaches presented in [41,42] in our proposed work, which is left as a 
future work. These assumptions also exist in most of the ML based state- 
of-the-art state estimation approaches. Although it has been shown in 
[43–45] that the forecasting aided state estimator can address the lack of 
measurements, measurement errors, grid topology and link parameters 
change, the problem of topology change in the bulk system that changes 
the operating point still a challenge. 

For normal conditions, the proposed state estimation model can 
accurately predict power system states. If some of the measurements are 
missing or time delayed, forecasted states obtained from the proposed 
state forecasting approach can be utilised to estimate missing mea
surements as pseudo-measurements. Forecasting-aided state estimation 
approach can also deal with measurement errors, network configura
tion, sudden changes in the network, and change in network parameters 
[43]. For a state estimation approach to be robust, it must be insensitive 
to major measurement errors and network topology changes ([35] 
chapter 6). Therefore, the proposed state estimator is robust against 
local topology change, missing measurements, and measurement errors. 
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The purpose of the PSSE is to estimate voltage magnitudes and phase 
angles at all n buses of a power system at any instant using measure
ments obtained from various measurement devices. In practical power 
systems, measurements can come from different measurement devices 
including PMU and SCADA. Also, different measurement types and lo
cations introduce time synchronisation and time skewness issues 
because of the different latency of measurements. Several approaches, 
for example [46–49], have been presented to deal with this challenge. In 
this paper, we have assumed that measurements are synchronised using 
one of already available synchronisation approaches. Measurements, 
zT = [z1, z2, ⋯, zm], obtained from the field devices may consist of real 
and reactive power flows in different branches, nodal voltage magni
tudes and phase angles, and real and reactive power injections at various 
buses of a power network. 

It can be seen from Fig. 2, in the proposed approach, m measure
ments (with m⩾2n as the necessary condition for the system to be 
observable; observability of a network depends upon several conditions 
including type and location of measurements as well as the network 
topology, the details on the system observability condition are provided 
in chapter 4 of [35]) are used as inputs to the base-learners. Each of the 
base-learners computes the state vector independently (parallel stack
ing) as an output vector. The output of base-learners is provided as input 
to the meta-learner that predicts the final state vector variable, X, which 
consists of n voltage magnitudes and n phase angles for n buses of a 
power network. The meta-learner (MLR) maps prediction very close to 
actual states. Hereinafter “Stacked ResNetD” is used to denote this 
ensemble learning model. Fig. 3 shows the flowchart of the proposed 
method. 

For the training and testing of the proposed model, the availability of 
a complete set of historical measurements and states is assumed. While 
at the instant of real-time operation of the proposed PSSE, if some of 
measurements are missing or topology are changing, the forecasted 
states can be used for monitoring and control of the power system. 

Forecasting aided state estimation helps to deal with errors, sudden 
change in the network, and topology and network parameters change 
[43,45,20,23,44]; therefore, forecasting missing measurements is 
important for the completeness of the data-driven PSSE. Multivariate- 
linear regression for state forecasting is described in Section 3.4 to 
deal with the problem of missing measurements. 

3.4. Multivariate-linear regression for state forecasting 

The general assumption of data-driven PSSE approaches is the 
availability of complete measurements during real-time state estima
tion, which may not be true in real-time data acquisition. Some of 
measurements may not be available while performing state estimation at 
control centres due to various reasons such as measurement device 
failures, unreported outages, denial of the service attacks, transmission 
line sags, and transmission channel failures. Although missing mea
surement data may not be frequent in practical power systems, an al
gorithm is needed for missing measurements for the completeness of the 
proposed state estimation approach. To deal with these missing mea
surements/states, we forecast missing states. Forecasting of missing 
states has several advantages because it compensates for various errors, 
sudden changes, and topology and network parameter changes. The 
advantages of forecasting missing states or measurements to deal with 
changes in network typologies and parameters are provided in [43]. 
Mathematically, forecasting system states for next hours (xt+1) given 
historical states (xt−h,xt−h+1, …,xt−1,xt) can be expressed as follows. 

x̂t+1 = ϕ(xt−h, xt−h+1, …, xt−1, xt) (9)  

ẑt+1 = ht+1(x̂t+1) + et+1 (10)  

It can be seen from (9) that an appropriate mapping function ϕ needs to 
be developed to appropriately forecast next state. Forecasted states can 

Fig. 1. Architecture of ResNetD with K = 2, where K denotes number of hidden units W, and Z and X represent the input measurement vector and output state 
variable vector, respectively. 

Fig. 2. Proposed deep ensemble learning based PSSE. Input vector Zt is the real time measurement vector of size m. The intermediate vectors X1′

, X2′ ⋯Xb′ are the 
estimated voltage magnitudes and phase angles from b number of base-learners. The output vector Xt includes n voltage magnitudes and n phase angles estimate for a 
power network with n buses. 
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be used directly as states of next hours or can be used in (10) as states to 
generate pseudo-measurements of the next hour. Missing measurements 
are replaced with pseudo-measurements and provided as input to the 
proposed state estimator along with available measurements. The per
formance of the linear and non-linear models are similar for the state 
forecasting [31–34]. However, nonlinear models come with added 
computational time and complexity. Therefore, MLR is adopted in this 
work to forecast future states. MLR has the following benefits over the 
other non-linear models: it is easy to train; takes much less time for 

training; and is much easier to understand. The input to MLR is historical 
states as explained above and the output is the states of the next one step 
(one hour if the state estimation is done hourly) or more hours (for multi 
step forecast). In this work, most recent 24 hours of the historical time- 
series states are used as input and output states of the next hour are 
forecasted. Analytically, MLR can be expressed as follows. 

x̂t+1 = α0 + β0xt + β1xt−1 + ⋯ + βh−1xt−h+1 + βhxt−h (11)  

where α0 is the intercept and β0 through βh are regression coefficients for 

Fig. 3. Flowchart of the proposed PSSE. Huber loss is the used as loss function. The proposed work is run for 200 epochs, this number is determined empirically by 
looking into the training of ML model error settling around. 
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state forecasting. 

3.5. Evaluation metrics 

The proposed work is compared with various state-of-the-art 
methods using the following evaluation metrics.  

1. Mean Absolute Error (MAE): 

MAE =
1

TN
∑T

t=1

∑N

i=1
|xi

t − x̂i
t| (12)    

2. Root Mean Square Error (RMSE): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

TN
∑T

t=1

∑N

i=1
(xi

t − x̂i
t)

2
√

(13)   

where N = n is the total number of estimated voltage or phase angle 
states; T is the total number of test samples; and xi

t and x̂i
t represent 

actual and predicted states, respectively. 

4. Numerical evaluation 

This section validates the proposed approach through numerical 
examples. Section 4.1 describes step-by-step training and testing data 
generation. Section 4.2 presents comparisons between the proposed 
Stacked ResNetD structure and existing methods including MLP, CNN, 
and ProxlNet for PSSE. Section 4.3 shows the performance of the pro
posed model with Non-Gaussian Noise in measurements. Section 4.4 
shows the capability of the proposed PSSE to emulate the generalized 
maximum-likelihood (GM)-estimator proposed in [5,11] for power 
system state estimation. Finally, Section 4.5 shows the performance of 
the MLR against CNN, LSTM, and CNN-LSTM for time-series state 
forecast. 

4.1. Dataset generation 

The performance of the proposed state estimation is demonstrated 
through various case studies on the standard IEEE benchmark systems: 
IEEE 14, IEEE 30, IEEE 57, IEEE 69, and IEEE 118-bus systems. As his
torical measurements and states of real power systems are not easily 
accessible for training the proposed model, training data are generated 
using real power load dataset (varying power demands help capture the 
dynamics of real power systems) from Global Energy Forecasting 
Competition 2012 [50]. Load profile of zone 1 is taken in this paper. 
Load profiles are normalised to match the scale of the tested systems. 
The load time series dataset is normalised by the peak value as follows. 
Let X = x1, x2, ⋯, x8760 denote the actual load in the dataset. The nor
malised load profile can be determined as follows. 

Xprofile =
x1, x2, …, x8760

max(x1, x2, …, x8760)
(14)  

To obtain the load demand at each node for each time instant, actual 
load demand at each node is multiplied by the normalised load profile of 
(14). 

Simulations are performed using Power System Simulation Package 
(MATPOWER) [51] to generate the data and Python with Keras and 
Scikit-learn libraries is used for training and testing of machine learning 
models. AC power flow is solved for the entire simulation period of the 
load data and various power flow results such as line flows (real and 
reactive power flows), nodal voltage magnitudes and phase angles, and 
nodal power injections are recorded. Gaussian and non-Gaussian noises 
are used to emulate real-world data. While estimating system states from 

measurements using WLS method to generate the training and testing 
data, measurement standard errors (0.01,0.01414,0.01414, and 0.0122) 
are used for voltage magnitudes, phase angles, line power flows, and 
nodal power injections, respectively. One of the necessary conditions for 
a system to be observable is that the total number of measurements 
should be greater than or equal to the total number of states to be 
estimated. 

The number of measurements taken for the 14-bus system is 64. 
Although it can be predicted only with 32 measurements (data for this 
case are provided in the shared code), 64 measurements are provided 
because having redundant measurements have several benefits such as 
(a) it improves the performance of the model when there are suspected 
measurements; (b) it can obtain better estimate for the suspected data 
sets; (c) has capability to estimate important non-telemetered variables 
(e.g., transformer taps); and capability to determine the unknown status 
of CBs and to detect topological errors [35]. For the 30-bus system, 110 
measurement data points are used; the proposed methods can also work 
with less number measurements, for example 80 measurements (data for 
this case are provided in the shared code). For 57-, 69-, and 118-bus 
systems, 216, 210, 562 number of measurements are chosen, respec
tively. For this study, the number of measurements are determined 
empirically. 

As an example of location of measurement devices, the locations of 
the 32 measurements for the 14-node system are as follows: bus real and 
reactive power injection measurements are taken from buses [2, 4, 8, 10, 
11, 12, 14], i.e., total of 7 × 2 = 14 measurements; voltage magnitude 
and phase angle measurements of bus 1; i.e., total of 1 × 2 = 2 mea
surements; and real and reactive power flow measurements are taken as 
follows (from bus–to bus): 1–2,2–3,2–5,4–6,4–7,6–11,6–13,12–13, i.e., 
2 × 8 = 16. Locations for the tested systems are determined empirically 
and by following a similar location as that of state estimation work 
presented in [5,11]. 

Measurement locations of the SCADA system is very important as the 
number of measurements and locations have influence over the result 
and observability of the system. However, determining the optimal 
number of measurements and optimal locations of SCADA is outside the 
scope of this paper. 

4.2. Results of stacked ResNetD for PSSE 

The m measurements are provided as input and the n voltage mag
nitudes and n phase angles are provided as estimated outputs to train the 
model which can be performed off-line for a real power system. The 
trained model can be used in real-time to estimate current states of the 
system with given current measurements. 

For each of the IEEE 14−, 30−, 57−, and 69-bus test systems, a total 
of 39, 444 data points are generated. For the IEEE 118 bus system, a total 
of 17, 520 data points are generated. From the total dataset, 40% are 
utilised for training the base-learners, 36% for training the meta-learner, 
and the remaining 24% are used for testing the complete ensemble 
learning setup. The point to be noted while training the meta-learner is 
that it must be trained with separate data-set than the one used to train 
base-learners to avoid the over-fitting. A Gaussian white noise with 
signal-to-noise ratio of 50 dB is added to the training data set. In real- 
time measurements, errors at any instant may be different from that of 
the previous instant of time. To capture changing measurement errors 
and check the robustness of the proposed model against measurement 
errors, Gaussian white noises with signal-to-noise ratio of 20 dB are 
added in the test data set to alter them more than training data set. 
Gaussian noise is considered based on the general convention used to 
generate a dataset for data-driven based state estimation. However, real 
measurements do not necessarily follow the Gaussian noise. Specifically, 
load does not usually follow a Gaussian distribution. Advance metering 
infrastructure can be used to develop distribution functions for load 
points. To test the proposed approach on different distributions and 
noises, we have used non-Gaussian noise as well in Section 4.3. The per- 
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unit values of voltage magnitudes are converted to percent values and 
phase angles are converted from radian to degree for better 
visualisation. 

The proposed Stacked ResNetD for state estimation is compared with 
multi-layer-perceptron (MLP), CNN, and Prox-linear net.  

• Multilayer Perceptron (MLP): MLP has a layered architecture with 
input, hidden, and output layers. The normalised input is fed at the 
input layer. The cardinality of the input vector determines the 
number of neurons in the input layer. There can be multiple hidden 
layers in the MLP. The final prediction output is obtained from the 
output layer. In this work, MLP consisting of 6 hidden layers with 
ReLU as activation function and adaptive moment estimation 
(Adam) as optimisation function is used.  

• Convolution Neural Networks (CNNs): CNNs have been used in many 
applications. The CNNs have a convolution layer followed by a 
pooling layer. The CNN and pooling layers find the low level feature 
of the input vector. Fully connected layers are added after the 
convolution and pooling layers. The CNN architecture is well-suited 
for 2-D input. However, it can also be used efficiently for 1-D inputs 
like time-series. One of the benefits of CNN is that they are easier to 
train and have a fewer parameters as compared to the fully con
nected neural network with the same number of hidden units. The 
CNN architecture is presented to compare it with the proposed 
approach which consists sequentially of: two 1-D convolution layer 
with 64 filters and kernel size of 3; one 1-D max pooling layer with 
pool size of 3; one 1-D convolution layer with filter size of 128 and 
kernel size of 3; one 1-D global average pooling layer; two dense 
layers with 4n units and ReLU activation function; and a output 
dense layer with 2n units and ReLU activation function. CNN model 
uses Adam as an optimiser. 

• Prox-linear Net (ProxlNet): Authors of [20] have proposed a Proxl
Net for real-time PSSE. The ProxlNet has been formed by skipping 
the layer that connects the input directly to the immediate output 
layer, where each layer consists of a fixed number of hidden layers. 
The ProxlNet architecture used for comparison consists of 2 skip- 
connection layers with 3 hidden units between each layer. For the 
detailed architecture of ProxlNet, refer to [20]. 

The aforementioned existing techniques are run 6 times indepen
dently with a batch size of 64 and 200 epochs, and the minimum values 
(prediction vary because of the stochastic nature of the deep learning 
models) of RMSE and MAE for all runs are taken for comparison with the 
proposed Stacked ResNetD. The batch size of 64 and 200 epochs are 
determined empirically. The number of epochs are selected after 
observing the training error settling in the machine learning models. The 
number of epochs could be different for different models; however, in 
this work, we have determined it conservatively. In other words, during 
the training phase, some of models may settle earlier than 200 epochs 
while others may take around 200 epochs to settle; therefore, the 
number of epochs is chosen to be 200. As the training is offline pro
cedure, the number of training epochs can be selected based on system 
requirements. The structure of ResNetD used as a base-learner is same as 
shown in Fig. 1 where three blocks containing 2 skip hidden units in the 
regular information flow of each blocks are used. The number of neurons 
selected for each input and hidden layers is the total number of input 
measurements of a specific system; for the output layer, the total neu
rons equal to total number of states to be predicted. 

Because size of data is sufficiently large, we train all 6 parallel 
ResNetD base-learners with same dataset and parameters. Before 
deciding to train all the base-learners with same set of training, we also 
tested the performance of ResNetD as base-learners by dividing the 
training data into 6 folds. The performance of Stacked ResNetD on the 
test dataset is better when trained with the entire training dataset for all 
of the parallel base-learners than that when trained with 6-fold of data 
for 6 parallel ResNetD. 

Table 1 shows a comparison between MLP, CNN, ProxlNet, and 
proposed Stacked ResNetD models in terms of RMSE and MAE of voltage 
magnitude estimation for IEEE 14, 30, 57, 69, and 118 benchmark sys
tems. The values of the metrics show that the proposed Stacked ResNetD 
ensemble learning setup captures the true relationship between input 
measurements and the estimated voltage states. The proposed base- 
learner has regular information flow, skipping connection, and direct 
connection to the input data through dense layer. All this together 
solving “vanishing” and “exploding” issues, improving the regular in
formation flow and recovering missing features. MLR as meta-learner 
further improves the results towards the actual values. 

Table 2 shows a comparison between MLP, CNN, ProxlNet, and the 
proposed Stacked ResNetD in terms of RMSE and MAE metrics of phase 
angles estimation for IEEE 14, 30, 57, 69, and 118 benchmark systems. 
The results obtained by the proposed approach is closer to actual state 
values. 

The run-time performance of each model is determined over all 
testing datasets and is averaged over each instance. Table 3 shows the 
run-time performance of each model per instance estimation. 

Figs. 4–8 show the estimated voltage magnitudes and phase angles of 
the proposed Stacked ResNetD along with the MLP, CNN, and ProxlNet 
techniques at different buses of IEEE benchmark systems. These figures 
show that the states estimated by the proposed Stacked ResNetD are 
comparable to the actual states obtained by the WLS method. The states 
predicted by ResNetD are very close to the actual states. The states 
predicted by ResNetD as base-learners are linear approximations to 
actual states. Therefore, MLR as a meta-learner estimates the states with 
low bias. 

4.3. Performance of the proposed model with non-Gaussian noise 

We have used non-Gaussian noise to test the proposed approach on 
different distributions and noises. To test such cases, measurement er
rors are emulated randomly as follows. A random noise of size 0–3% of 
original power flow results are generated and inserted into measurement 
data. Separate random errors are generated for each measurement at 
every instance and added or subtracted from the original measurements. 
In this way, the error size and the disturbed measurements are changing 
every instance. Out of total of m measurements, random errors are added 
in the first 50% and subtracted from the remaining 50% to make it more 
deceptive. 

Figs. 9–13 show the performance of MLP, CNN, ProxlNet, and the 
proposed Stacked ResNetD in terms of RMSE and MAE metrics. The 
results show that the proposed PSSE can estimate the states accurately 
even with non-Gaussian noise. 

4.4. Performance of the proposed PSSE with GM-estimator 

As the main purpose of the proposed work is to develop a machine 
learning model that can emulate the physical state estimator models 
appropriately, we have also tested it with a generalised M-Estimator 
(GM-Estimator) to demonstrate the capability of the proposed method to 
emulate the GM-Estimator proposed in [5,11]. The MATLAB code for 
GM-Estimator is obtained from [5,11]. This case is tested only on the 
IEEE 30- and 57-node test systems because with the MATLAB code 
provided in [5,11] for 69 and 118 bus system, GM-estimator state esti
mation is very time consuming and difficult to converge with time 
varying loads. There can be several ways to reduce the computational 
burden of the physical models which is outside the scope of the proposed 
work. To test the performance of proposed model with different number 
of input measurements, in this case the number of input measurements 
are different than that used in WLS based data generation: 80 mea
surements are used for 30 bus system, and 216 measurements are used 
for 57 bus system. In this case, the dataset is generated using a GM- 
Estimator. To incorporate Gaussian and non-Gaussian noise, datasets 
are generated with Gaussian noise and non-Gaussian noise and shuffled 
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together and used for training and testing of the GM-Estimator. As there 
are 6 base learners in proposed model, MLP, CNN, and ProxlNet are also 
run for 6 times independently and the minimum of each run (prediction 
vary because of the stochastic nature of the deep learning models) is 

compared with the results of the proposed model. The per-unit values of 
voltage magnitudes are converted into percent values and phase angles 
are converted from radian to degree for better visualisation. 

Table 1 
Comparisons between MLP, CNN, ProxlNet, and proposed Stacked ResNetD in terms of RMSE and MAE metrics for voltage magnitudes estimation.  

Models IEEE 14 Bus IEEE 30 Bus IEEE 57 Bus IEEE 69 Bus IEEE 118 Bus 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

MLP 2.4574  1.8533  4.1737  2.9253  5.1976  3.5885  6.8272  5.3114  1.8588  1.3944  
CNN 2.2262  1.4926  4.2576  2.9005  5.1595  3.4571  6.8614  5.3225  1.9343  1.4635  
ProxlNet 2.4592  1.8815  4.1405  2.8885  5.1273  3.5283  6.6526  5.1737  1.8385  1.3784  
Proposed 0.2605  0.1660  0.4753  0.2852  0.4766  0.2931  0.6486  0.4238  0.1894  0.1196  
Stacked ResNetD            

Table 2 
Comparisons between MLP, CNN, ProxlNet, and proposed Stacked ResNetD models in terms of RMSE and MAE metrics for phase angles estimation.  

Models IEEE 14 Bus IEEE 30 Bus IEEE 57 Bus IEEE 69 Bus IEEE 118 Bus 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

MLP 0.5496  0.3533  1.2202  0.6854  1.8197  1.1970  2.5232  1.6724  1.4351  1.0852  
CNN 0.6496  0.4631  1.2513  0.7312  1.8677  1.2741  2.5242  1.6980  2.1926  1.5885  
ProxlNet 0.5122  0.3213  1.1840  0.6581  1.7650  1.1558  2.4475  1.6324  1.3061  1.0045  
Proposed 0.1102  0.0733  0.5472  0.1873  0.2978  0.1581  0.5417  0.3156  0.2104  0.1272  
Stacked ResNetD            

Table 3 
Comparisons between MLP, CNN, ProxlNet, and proposed Stacked ResNetD 
models in terms of run-time performance per instance estimation where ‘s’ de
notes seconds and ‘ms’ denotes milliseconds.  

Models IEEE 14 
Bus 

IEEE 30 
Bus 

IEEE 57 
Bus 

IEEE 69 
Bus 

IEEE 118 
Bus 

WLS 5.566 ms  0.0196 s  0.2917 s  0.3867 s  2.22 s  
GM- 

Estimator 
– 0.2133 s  1.23 s  – – 

MLP 0.0229 
ms  

0.0294 
ms  

0.0512 
ms  

0.0435 
ms  

0.205 ms  

CNN 0.095 ms  0.1074 
ms  

0.211 ms  0.196 ms  0.53 ms  

ProxlNet 0.0249 
ms  

0.0347 
ms  

0.0535 
ms  

0.0464 
ms  

0.241 ms  

Proposed 0.237 ms  0.312 ms  0.597 ms  0.591 ms  2.03 ms  
Stacked 

ResNetD       

Fig. 4. Prediction vs actual voltage magnitude and phase angles at bus 10 of 
IEEE 14-bus system. 

Fig. 5. Voltage magnitude and phase prediction vs actual at bus 20 of IEEE 30- 
bus system. 

Fig. 6. Prediction vs actual voltage magnitude and phase angles at bus 28 of 
IEEE 57-bus system. 
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For the 30-bus system, RMSE for voltage magnitude estimation with 
MLP, CNN, ProxlNet, and the proposed Stacked ResNetD are 0.3815,

0.3984, 0.3518, and 0.2551, respectively. MAE for voltage magnitude 
estimation with MLP, CNN, ProxlNet, and the proposed Stacked 
ResNetD are 0.2663,0.2418,0.2510, and 0.1353, respectively. Similarly, 
for phase angle estimation, RMSE of MLP, CNN, ProxlNet, and the 

Fig. 7. Prediction vs actual voltage magnitude and phase angles at bus 35 of 
IEEE 69-bus system. 

Fig. 8. Prediction vs actual voltage magnitude and phase angles at bus 59 of 
IEEE 118-bus system. 

Fig. 9. Performance of various models on IEEE 14-bus system with non- 
Gaussian measurement noise. RMSE V and MAE V are for voltage magnitudes 
and RMSE A and MAE A are for phase angles. Score in the vertical axis denotes 
voltage in percentage value for RMSE V and MAE V and phase angle in degree 
for RMSE A and MAE A. 

Fig. 10. Performance of various models on IEEE 30-bus system with non- 
Gaussian measurement noise. RMSE V and MAE V are for voltage magnitudes 
and RMSE A and MAE A are for phase angles. Score in the vertical axis denotes 
voltage in percentage value for RMSE V and MAE V and phase angle in degree 
for RMSE A and MAE A. 

Fig. 11. Performance of various models on IEEE 57-bus system with non- 
Gaussian measurement noise. RMSE V and MAE V are for voltage magnitudes 
and RMSE A and MAE A are for phase angles. Score in the vertical axis denotes 
voltage in percentage value for RMSE V and MAE V and phase angle in degree 
for RMSE A and MAE A. 

Fig. 12. Performance of various models on IEEE 69-bus system with non- 
Gaussian measurement noise. RMSE V and MAE V are for voltage magnitudes 
and RMSE A and MAE A are for phase angles. Score in the vertical axis denotes 
voltage in percentage value for RMSE V and MAE V and phase angle in degree 
for RMSE A and MAE A. 
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proposed Stacked ResNetD are 0.1689, 0.2171, 0.1603, and 0.0741, 
respectively. The phase angle estimation MAE of MLP, CNN, ProxlNet, 
and the proposed Stacked ResNetD are 0.0948, 0.1103, 0.0841, and 
0.025, respectively. 

For the 57-bus system, RMSE for voltage magnitude estimation of 
MLP, CNN, ProxlNet, and the proposed Stacked ResNetD are 1.2161,

2.2138, 1.022, and 0.8897, respectively. MAE for voltage magnitude 
estimation of MLP, CNN, ProxlNet, and the proposed Stacked ResNetD 
are 0.5714, 0.8481, 0.5545, and 0.3805, respectively. Similarly, for 
phase angle, RMSE of MLP, CNN, ProxlNet, and the proposed Stacked 
ResNetD are 0.4100,0.8304,0.3681, and 0.2986, respectively. The phase 
angle estimation MAE of MLP, CNN, ProxlNet, and the proposed Stacked 
ResNetD are 0.1638, 0.2216,0.1644, 0.0918, respectively. 

The performance of the proposed model is better than the other ML 
models because the proposed model with ResNetD as base learner can 
capture the non-linear relationship between input measurements and 
output states. The MLR as meta-learner further improves the results 
because of the approximate linear relationships between the output of 
the different ResNetD models and the actual states. The results show that 
the proposed model can accurately emulate the GM-Estimator. 

The run-time performance of machine learning models, WLS, and 
GM-Estimator is as shown in Table 3. 

4.5. Results of MLR for state forecasting 

When some of the measurements are missing during real-time 
operation, usually state forecasting is performed. In this section, MLR 
is compared with most common time-series forecasting models such as 
CNN, LSTM, and hybrid CNN-LSTM for forecasting of the power system 
states. Each of these models is briefly discussed as follows.  

• CNN: The CNN used for the comparison consists sequentially of: two 
1-D convolution layer with kernel size of 3, 64 filters and ReLU as 
activation function; one 1-D max pooling layer with pool size of 2; 
one 1-D convolution layer with 128 filters and kernel size of 3; one 1- 
D global average pooling layer; one single dense layer with 50 units 
and activation function of ReLU; and final dense layer with unit size 
equal to number of states to be forecasted.  

• LSTM: LSTM has layered architecture. LSTM architecture used for 
the comparison consists sequentially of: three-layer of LSTM with 
ReLU activation function with 4n,2n, and 2n units, respectively; and 
two dense layers with 2n number of units in each layer and ReLU as 
activation function.  

• CNN-LSTM: The hybrid combination of CNN and LSTM consists of 
CNN networks followed by LSTM networks. CNN-LSTM used for the 

comparison consists of two layers of 1-D convolution layer with 64 
filters, kernel size of 3 in each, and ReLU as activation function; one 
1-D max pooling layer with pool size of 2; two LSTM layers with 2n 
number of units with ReLU activation function; and three dense 
layers with 2n units with ReLU activation function in each layer. 

Adam is used as an optimiser and mean absolute error is taken as a loss 
function for all of the models. All of the CNN, LSTM, and CNN-LSTM 
models are run 6 times independently with batch size of 32 and 200 
epochs, and the minimum values of metrics of all runs are taken for the 
purpose of comparison. 

Out of the available historical data, 40% are used for training and the 
remaining 60% are used for testing. For this time-series forecasting, the 
last 24 step time series data of states are utilised to forecast current 
hour’s state. Although a state is forecasted only for one step (one hour), 
the proposed approach can be used to forecast the states for multiple 
steps (two or more hours) with a little modification. 

Table 4 provides comparisons between CNN, LSTM, CNN-LSTM, and 
MLR models in terms of RMSE and MAE metrics forecast of voltage 
magnitudes for IEEE 14,30, 57,69, and 118 benchmark systems on test 
datasets. It can be seen from the table that the performance of MLR is 
remarkably better than the other models for all of the tested systems. 

Table 5 presents a comparison between forecast of phase angles of 
MLR against LSTM, CNN-LSTM, and CNN on test data-set of IEEE 14,30,

57, 69, and 118 bus benchmark systems in terms of RMSE and MAE 
metrics. It can be seen that MLR outperforms all other models for all of 
the studied IEEE benchmark systems. 

Figs. 14–18 show the comparison between CNN, LSTM, CNN-LSTM, 
and MLR to forecast the power system states. These figures show the 
competitive performance of MLR for state forecasting. 

MLR is mapping the historical states closer to actual states than any 
other compared deep learning models. This could be due to the existence 
of an approximately linear relationship between historical power system 
states. 

Although the proposed state forecasting approach can forecast the 
current states when all sets of measurements are available, the states 
thus obtained are not as close as estimated states using the proposed 
PSSE with the current measurements (the comparison results are not 
provided for obviousness and simplicity of expositions, if interested it 
can be verified with provided source code). Therefore, the state fore
casting should only be used at the instant of missing measurements. 

5. Conclusions 

This paper has proposed a data-driven real-time PSSE using a deep 
ensemble learning method. The proposed deep ensemble learning setup 
was formed by stacking several parallel ResNetD as base-learners and 
multivariate-linear regression as meta-learner. In this work, historical 
measurements and states were utilised to train the proposed model for 
the estimation of power system states (voltage magnitudes and phase 
angles). The trained model was utilised to predict the states of the power 
system in real time using real-time measurements. The data-driven PSSE 
assumes the availability of a complete set of measurements; however, 
some of the real-time measurements may be missing leading to failure in 
estimating the states. To deal with missing measurements, this paper 
adopted multivariate-linear regression to forecast the missing states at 
any instant using historical states. Several case studies were performed 
in various IEEE benchmark systems. Case studies showed that the pro
posed approach outperformed various machine learning techniques. 
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Fig. 13. Performance of various models on IEEE 118-bus system with non- 
Gaussian measurement noise. RMSE V and MAE V are for voltage magnitudes 
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voltage in percentage value for RMSE V and MAE V and phase angle in degree 
for RMSE A and MAE A. 
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Table 4 
Comparisons between voltage magnitude forecast using CNN, LSTM, CNN-LSTM, and MLR models in terms of RMSE and MAE metrics for standard IEEE 14,30,57,69, 
and 118 benchmark systems.  

Models IEEE 14 Bus IEEE 30 Bus IEEE 57 Bus IEEE 69 Bus IEEE 118 Bus 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

LSTM 0.4174  0.2927  0.3351  0.2397  0.9008  0.5772  0.5312  0.3554  0.5271  0.3751  
CNN-LSTM 0.4233  0.3029  0.3349  0.2382  0.9028  0.6159  0.5278  0.3715  0.5108  0.3421  
CNN 0.4218  0.3233  0.3640  0.2814  0.6700  0.5799  0.4946  0.3444  0.4868  0.3305  
Proposed 0.1241  0.0845  0.1509  0.1044  0.2115  0.1417  0.2529  0.1955  0.1919  0.1420  
MLR            

Table 5 
Comparisons between phase angles forecast using CNN, LSTM, CNN-LSTM, and MLR models in terms of RMSE and MAE metrics for standard IEEE 14,30,57,69, and 
118 benchmark systems.  

Models IEEE 14 Bus IEEE 30 Bus IEEE 57 Bus IEEE 69 Bus IEEE 118 Bus 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

LSTM 0.0337  0.0263  0.0399  0.0318  0.0853  0.0647  0.0601  0.0516  0.2182  0.1594  
CNN-LSTM 0.0399  0.0325  0.0526  0.0392  0.1108  0.0902  0.0602  0.0526  0.2037  0.1525  
CNN 0.0686  0.0575  0.0633  0.0492  0.0864  0.0707  0.0659  0.0562  0.2325  0.1730  
Proposed 0.0037  0.0025  0.0036  0.0025  0.0094  0.0067  0.0015  0.0010  0.0460  0.0343  
MLR            

Fig. 14. Prediction vs actual voltage magnitudes and phase angles at all buses 
of IEEE 14 bus system at instant 500. 

Fig. 15. Prediction vs actual voltage magnitudes and phase angles at all buses 
of IEEE 30 bus system at instant 500. 

Fig. 16. Prediction vs actual voltage magnitudes and phase angles at all buses 
of IEEE 57 bus system at instant 500. 

Fig. 17. Prediction vs actual voltage magnitudes and phase angles at all buses 
of IEEE 69 bus system at instant 500. 
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