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Enhancing Power System Operational Resilience
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Abstract—Catastrophic impacts of wildfires on the
performance of power grids have increased in the recent
years. Though various methods have been applied to enhance
power grid resilience against severe weather events, only a
few have focused on wildfires. Most previous operational-based
resilience enhancement methods have focused on corrective or
restorative strategies during and after extreme events without
proactively preparing the system for forecasted potential
failures. Also, the propagation behavior of wildfires among
system components induces further complexities resulting in
a mathematically involved problem accompanied with many
modeling challenges. During sequential failures, operators need
to make decisions in a fast-paced manner to maintain reliable
operation and avoid cascading failures and blackouts. Thereby,
the complexity of decision processes increases dramatically
during extreme weather events. This paper proposes a
probabilistic proactive generation redispatch strategy to enhance
the operational resilience of power grids during wildfires.
A Markov decision process is used to model system state
transitions and to provide generation redispatch strategies for
each possible system state given component failure probabilities,
wildfire spatiotemporal properties, and load variation. For a
realistic system representation, dynamic system constraints are
considered including ramping rates and minimum up/down
times of generating units, load demand profile, and transmission
constraints. The IBM ILOG CPLEX Optimization Studio is
utilized to solve the optimization problem. The IEEE 30-bus
system is used to validate the proposed strategy under various
impact scenarios. The results demonstrate the effectiveness of
the proposed method in enhancing the resilience level of power
grids during wildfires.

Index Terms—Extreme weather events, generation redispatch,
Markov decision process, resilience, wildfires.

NOMENCLATURE

Indices and Sets

C Index of impacted system components.

i, i′ Index of Markov states.

i′′ Index of all proceeding states from Si,t.

j Index of generators.

m Index of system components.

n, n′ Index of buses.

t Index of time instants.

ΩA Set of all possible actions.

ΩG Set of all generators.

ΩG
n Set of generators connected to bus n.

ΩN Set of all buses.

ΩN
n Set of buses connected to bus n.

ΩT Set of all time instants.

Ωc,t Set of all impacted components at t.

ΩS,t Set of all Markov states at t.
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ΩS
i,t+ Set of all possible transition states from Si,t.

Notation for Optimization Problem

a An action.

Aa,t Possible actions at t.

b Linear fuel cost coefficient.

Ct(Si,t, Aa,t) Immediate cost of state Si,t given Aa,t.

Ccu Cost of curtailed loads.

Cun,t,i Load curtailment at bus n in state i at t.

Cf (P
G
j,t,i) Operating cost of generator j in state i

at t.

Csu(T
ON
j,t,i ) Startup cost of generator j in state i at t.

Csd(T
OFF
j,t,i ) Shutdown cost of generator j in state i

at t.

λm,t Failure probability of component m at t.

NC,t Number of impacted components at t.

P (Si,t, Si′,t+1) Transition probability from Si,t to

Si′,t+1.

P (om,t, om,t+1) Transition probability due to change of

status of component om from t to t+ 1.

Si Markov state.

Si,t Markov state at t.

T Number of decision periods.

v∗t (Si,t) The optimal value of state Si,t.

vt(Si,t, Aa,t) Expected overall cost of state Si,t given

Aa,t.

W1 Weighting factor of load curtailment cost.

W2 Weighting factor of operational cost.

Notation for System Constraints

Bn,n′ Susceptance of line between bus n and

bus n′.

Ln,t,i Amount of load in MW at bus n in state

i at t.

om,t Status of component m at t.

PG
j,t,i Supplied real power by generator j in

state i at t.

P
G,Min
j , P

G,Max
j Minimum/maximum power rating of

generator j.

PL
n,n′,t,i Real power flow between bus n and bus

n′ in state i at t.

PMin
n,n′ , PMax

n,n′ Real power flow limits between bus n and

bus n′.

RUP
j , RDN

j Up/down ramping rate of generator j.

TON
j,t,i , T

OFF
j,t,i Turn on/off signal of generator j in state

i at t.

UT,DT Up/down time.

uj,t,i Status of generator j in state i at t.

θn,t,i Voltage angle of bus n in state i at t.
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I. INTRODUCTION

EXTREME weather events have shown significant impacts

on power system operations ranging from prolonged

outages to catastrophic destruction of system components [1],

[2]. Economic losses due to extreme weather-related outages

is estimated to exceed $25 billion per year in the United

States [3]. In 2018, a statistical analysis on wildfires over

the period 2000–2016 has shown that wildfires cost utilities

more than $700 million in parts of California’s transmission

and distribution systems [4]. The risk of severe wildfire has

forced electric utilities to cut off power to 800, 000 customers

in California, USA in 2019 [5]. The recent Dixie wildfire

in the West coast of the U.S. has lasted for more than 60
days, burned almost one million acres of land, and resulted in

evacuation orders for thousands of families [6]. In California, it

is estimated that more than 1.8 million acres will be impacted

by wildfires in 2021 [7].

Various strategies have been proposed to improve the

resilience of power systems against extreme weather

events. Such strategies have focused mainly on restoration

approaches such as mobile energy storage systems, network

reconfiguration, and microgrid formation [8], [9]. Proactive

and corrective resilience-based enhancement strategies have

not been sufficiently explored, specifically against wildfires

[10]. To reduce modeling complexities, some generation

and transmission constraints are usually relaxed, yielding

higher resilience levels [11], [12]. Impacts of load variations,

system preparedness level, event attack time (i.e., the instant

at which an extreme event hits the system), and future

potential failures have been given less attention [1]. Since

extreme weather events may create sequential failures of

system components, other studies have considered the role

of system operators in the decision making process for

improved resilience [11], [13]. The need of having a fast-acting

decision tool to optimize system operations during extreme

events has increased dramatically [14]. Thus, implementing

resilience-based strategies that enhance the performance of

power systems during wildfires, taking into account the

aforementioned constraints, operational costs, and extreme

weather spatiotemporal characteristics, has become more

important than ever before.

Enhancement strategies for operational resilience focus on

utilizing available system assets to provide an immediate

solution due to severe impacts of adverse events. Resilience

enhancement strategies can be classified according to the

study period into: proactive, corrective, and restorative [15].

Proactive and corrective strategies tend to prepare the system

in advance or instantly controlling the system due to severe

impacts of extreme events, whereas restorative strategies

provide solutions to retain failed components or curtailed loads

in a stable and reliable manner [1].

Several operational resilience enhancement strategies

have been proposed. Maintenance planning [16]–[18] and

mobile energy storage allocation [19]–[21] strategies have

been studied to prepare the system before an event. A

decision-making framework based on an analytical hierarchy

process has been proposed in [22] to evaluate possible

locations of solar panels and battery energy storage systems

for multiple contingencies to improve resilience of distribution

systems and reduce operational costs. In [23], a graph

theory-based approach integrated with Choquet integral has

been used to quantify resilience enhancements and to maintain

power supply to critical loads at the distribution level. In

[24], a procurement plan of black start units has been

studied assuring sufficient energy supply prior to events

at minimal cost; however, the spatiotemporal characteristics

of extreme weather events have not been considered. A

proactive generation redispatch strategy has been proposed

in [11] to reduce load curtailments during hurricanes where

operational costs and load variations are not considered.

An approach for generation redispatch during hurricanes has

been proposed in [12], [25], which takes into account event

attack time, operational costs, and generation level prior to

the event. Though several resilience enhancement strategies

have been studied at the distribution level, developing

resilience enhancement methods at the transmission level still

requires further investigation [16]. The impacts of sequential

probabilistic component failures create stressed operating

conditions on the transmission system with the potential of

cascading failures or blackouts. Also, preparing power systems

for potential N −k (i.e., k > 1) contingencies is an important

factor for enhancing power system resilience against extreme

events—N − 1 and N − 1 − 1 criteria can be sufficient for

normal outages.

Several studies have been conducted to assess the impacts

of wildfires on power grids. In [10], a brief review of

challenges and solutions to improve grid resilience during

wildfires has been presented. A detailed review in [26], [27]

has presented causes of wildfires and prevention, detection

and management of wildfires. In [28], an analytical method

has been proposed to quantify the impacts of wildfires on

conductivity of transmission lines based on radiative heating.

A simplified flame model has been provided in [29] to model

a flame front behavior in wildfires. In [30], a convolutional

neural network model has been trained for real-time fault

localization for wildfire detection at distribution system levels.

A proactive line outage prediction model due to wildfire

progression has been proposed in [31].

A few studies have proposed several resilience enhancement

strategies against wildfires [32]–[35]. In [32], the impact

of wildfires on the optimal power flow solution of

transmission system has been studied based on propagation

of flat fire surface toward one transmission line. In [33],

a proactive dispatch algorithm of distributed generators

at the distribution level has been proposed considering

uncertainties of wildfire progression and accompanied impacts

on transmission line ratings. A stochastic programming

approach has been proposed in [34] to determine the

optimal utilization of renewable energy resources on the

main feeder of a distribution system during a wildfire given

uncertainties of weather parameters. In [35], a resilience-based

enhancement strategy has been proposed to avoid spurious

trip of inverter-based resources and eliminate the risk of

wildfires. A probabilistic decision process has been proposed

in [36] to improve resilience of power systems against
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wildfires; however, the propagation rate of a wildfire has

not been considered. Although several enhancement strategies

against wildfires have been proposed, only a few have

tested the applicability of proactive generation redispatch

considering probabilistic behavior of component failures due

to spatiotemporal characteristics of wildfires.

In this paper, a generation redispatch strategy is proposed

to enhance the operational resilience of power grids against

wildfires. The Markov decision process (MDP) is used to

determine the optimal generation dispatch decision at each

time instant as a wildfire propagates across a power system.

Due to uncertainties of component failures, the system

topology, represented by a Markov state, varies based on

available assets. The proposed algorithm aims to reduce the

amount of load curtailments and operational costs during

wildfire events. Several system dynamic constraints have been

considered including transmission constraints (line capacity,

line availability, etc.), generation constraints (ramping rates,

minimum up/down times, start-up/shut-down generation costs,

etc.), and other constraints such as load variation. A wildfire

is assumed to spread across a power system during the

peak load period to increase the severity level of the event.

A mixed integer linear programming (MILP) optimization

problem is formulated using the recursive MDP on MATLAB

environment integrated with CPLEX solver to determine

optimal generation redispatch strategies. The effectiveness of

the proposed method is validated through simulation scenarios

on the IEEE 30-bus transmission system. The impacts of

generator ramping characteristics on resilience quantification

are assessed.

The contribution of this paper is summarized as follows:

• Integrate the spatiotemporal characteristics of wildfires

into probabilistic sequential failure behavior of power

grid components.

• Develop a Markov decision process to determine optimal

generation level at each time instant considering dynamic

system constraints, spatiotemporal fragility model, and

load variation.

• Provide extensive simulation results via a standard test

system to validate the capability and effectiveness of the

proposed probabilistic proactive generation redispatch to

improve operational resilience of power systems.

• Assess the role of implementation time of the proposed

strategy on resilience level for further improvements.

• Evaluate the impacts of generators’ ramping

characteristics on power system resilience level.

The rest of the paper is organized as follows. Section

II explains the concept of proactive generation redispatch.

Section III describes the MDP algorithm for minimal overall

operational and curtailment costs during extreme weather

events. Section IV shows the implementation procedure on

the IEEE 30-bus system and discusses the results. Section V

provides concluding remarks.

II. PROACTIVE GENERATION REDISPATCH

This section describes the proposed resilience enhancement

strategy for transmission systems against wildfires. First, it

illustrates the impacts of propagation of a wildfire on power

system components. Then, it explains the recursive decision

process to formulate a probabilistic generation redispatch

algorithm.

A. Impacts of Wildfire Progression

The propagation properties and spatiotemporal characteristics

of each extreme event have unique impacts on the performance

of system components. For instance, the path of a hurricane

can be predicted with a higher accuracy than the direction

and behavior of a wildfire [28]. Probabilistic models have

been proposed to model the propagation behavior of wildfires,

identify the potential impacted components, and evaluate their

probabilities of failure [10], [37]. Although fragility models

have been used extensively in resilience-based studies [38],

other studies have simulated actual events or forecasted failure

scenarios [11], [12], [39]. As a wildfire propagates, system

components can be impacted at sequential time intervals [10].

Wildfires are characterized by the possibility to change path,

to be completely extinguished, or to have less intensity at

any time instant [10]. Fig. 1(a) shows a scenario where

three system components (A, B, and C) are on the potential

trajectory of a wildfire at five time instants (t1 to t5). Also,

the restoration time of failed components is usually high due

to the significant damage and destruction caused by wildfires

[34].

(a) (b)

A

t1

t4

t2

t3

t5
B

C

Fig. 1. (a) Components on the trajectory of a wildfire, and (b) Potential
Markov states at each time instant

B. System States during Wildfires

Due to potential failures introduced by wildfires, the power

grid might have different operating states at each time instant.

In this work, a Markov state is defined to represent a unique

system topology based on the available components. The total

number of impacted components at time t is represented

by NC,t; and hence, 2NC,t is the total number of Markov

states. Since failed components are assumed to withhold

failure status during the event period, the set of impacted

components at time t includes all current and previously

impacted components. Fig. 1(b) provides an illustration of

Markov states at each time instant due to progression of a

wildfire, presented in Fig. 1(a) So represents Markov state

with no failures, whereas SABC denotes Markov state where

all potential components are in failure states. Since at any time

instant the power system can reside in one of several possible

states, it is required to evaluate the transition probabilities from
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one state to consequential states. The transition probability, P ,

from state Si,t to Si′,t+1 can be evaluated as follows.

P (Si,t, Si′,t+1) =
∏

m∈Ωc,t+1

P (om,t, om,t+1) , i ∈ ΩS,t , (1)

P (om,t, om,t+1) =















1 om,t = 0, om,t+1 = 0

0 om,t = 0, om,t+1 = 1

1− λm,t+1 om,t = 1, om,t+1 = 1

λm,t+1 om,t = 1, om,t+1 = 0

(2)

C. Recursive Markov Process

The operational performance of the power grid varies

significantly due to the sequential failure of power system

components. For a resilient power grid, the priority is given

to reducing the amount of load curtailments during extreme

weather events rather than minimizing operational costs. In

addition, the stochastic progression of wildfires across system

components should be considered to obtain a feasible strategy

that satisfies all system constraints such as ramping rates,

minimum up and down times, and varying load demand.

The proactive generation redispatch algorithm determines the

optimal generation profile of each generator during the course

of an extreme event given current and forecasted system states.

To maintain resilient operation of the system, availability

of non-impacted assets must be assured during and after

wildfires. Although the aforementioned constraints are difficult

to fulfill during severe situations; it is recommended to have

higher generation resources [25], [32]. For instance, multiple

transmission line failures can result in islanding of the power

grid into multiple grids where the generation level at each

islanded grid should be sufficient to supply the required load;

otherwise, curtailing loads will be a non-avoidable decision

[25].

Since the status of each component might change during

the progression of a wildfire, system operators should make

decisions considering current and future states of the system.

Each decision not only impacts the performance of the system

at the current instant but also during upcoming instants.

For example, turning off a reliable generator earlier in time

may result in larger load curtailments in the following time

instants. Also, maintaining full operation of a potentially

impacted generator may lead to sudden power outages and

cascading failures during the wildfire progression. Since

generation dispatch usually takes place in terms of minutes, a

discrete-time MDP can be used to model the whole process.

Several methods have been used to solve the MDP such as

the backward induction method and the value iteration method

[40]. A proper solution of each state is obtained considering

current system states as well as possible future states. In some

cases, time-dependent constraints correlating Markov states

at sequential time instants exhibit further complexities to the

problem formulation. Therefore, the aforementioned solution

techniques can be deemed infeasible. The linear scalarization

method has proven to solve time-dependent MDPs via

transforming the multi-objective optimization problem into a

single objective optimization problem [11], [25].

Fig. 2 shows the progression behavior of a wildfire on

system components. Prior to the event, no failure state

is observed. All Markov states are encountered and their

transition probabilities are calculated. At each time instant, the

optimization model takes into account all possible observable

states. An action is made and the system holds a new Markov

state with a new set of observable states. An action represents

the supplied real power by operating generators. This process

is repeated for all time instants.

III. MARKOV DECISION PROCESS FORMULATION

This section provides a detailed formulation of the

multi-objective optimization problem using MDP to minimize

operational costs and load curtailment costs. A recursive model

based on discrete-time MDP is developed based on variations

of system topology as a result of sequential component failure.

Various generation and transmission constraints are considered

in the proposed algorithm.

A. Objective Function

Determining the minimal value function is necessary to hold a

specific system state at a given time. In this work, the optimal

generation redispatch value for a specific system state Si,t at

a given time t is expressed as follows.

v∗t (Si,t) = min{vt(Si,t, Aa,t), a ∈ ΩA}, i ∈ ΩS,t, t ∈ ΩT (3)

SA

S0

S0

SA

SB

SAB SC

SB

SBC

S0

SA

SAB

SABC

SAC

S0

�S,t2

t4t3t2t1

SA

S0

S0

SA

SB

SAB SC

SB

SBC

S0

SA

SAB

SABC

SAC

S0

t4t3t2t1

SA

S0

S0

SA

SB

SAB SC

SB

SBC

S0

SA

SAB

SABC

SAC

S0

t4t3t2t1

Possible State

Observed State

Invalid state transition

Possible state transition 

Action

Observable states

(a) (b) (c)

Fig. 2. (a) Markov states prior to the event, (b) Markov decision at t1, and (c) Markov decision at t2.
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The value function of each state in MDP can be evaluated as

follows.

vt(Si,t, Aa,t) = Ct(Si,t, Aa,t) +
∑

i′∈ΩS
i,t+1

[P (Si,t, Si′,t+1) . vt+1(Si′,t+1, Aa′,t+1)] , (4)

In (4), {a, a′} ∈ ΩA, i ∈ ΩS,t, and {t, t + 1} ∈ ΩT . The

immediate cost of a Markov state can be evaluated as follows.

Ct(Si,t, Aa,t) = W1

[

Ccu .
∑

n∈ΩN

Cun,t,i

]

+

W2





∑

j∈ΩG

Cf (P
G
j,t,i) + Csu(T

ON
j,t,i ) + Csd(T

OFF
j,t,i )





(5)

where W1 and W2 are weighting factors to prioritize each

objective function [41]. Various methods can be used to

determine their proper values such as the Pareto analysis

method [42]. In this paper, W1 should have higher value

compared to W2 to assure that the algorithm prioritizes

reducing load curtailments over operational costs.

B. Constraints

Transmission and generation constraints should be fulfilled

to maintain reliable operation of power grids. In this paper,

dynamic generation constraints that govern the operation

of generators during dispatching are considered. Also,

transmission line constraints such as flow limits and their

availability are considered. These constraints are explained as

follows.

1) Power Balance

At any instant during normal operation conditions, the total

amount of supplied power should be equal to the total load

demand. If curtailing loads is necessary, the total supplied

power should be equal to load demand after deducting the

load curtailment. The power balance at system state Si,t at

time t can be expressed as follows.

∑

j∈ΩG
n

PG
j,t,i−(Ln,t,i−Cun,t,i)+

∑

n′∈ΩN
n

PL
n,n′,t,i = 0,∀n ∈ ΩN (6)

2) Transmission Flow Limits

Power flow through a specific line connected at buses n

and n′ of system state Si,t must lie within the predefined line

capacity limits as follows.

Bn,n′ .(θn,t,i − θn′,t,i)− PL
n,n′,t,i ≤ PMax

n,n′ , (7)

Bn,n′ .(θn,t,i − θn′,t,i)− PL
n,n′,t,i ≥ PMin

n,n′ ,

∀n ∈ ΩN ,n′ ∈ ΩN
n

(8)

3) Load Curtailment Limits

For each Markov state, Si,t, the amount of load curtailment

at each bus should be less than or equal to the total amount

of load at the same bus as follows.

0 ≤ Cun,t,i ≤ Ln,t,i ∀n ∈ ΩN , ∀t ∈ ΩT (9)

4) Generator Status

The status of each generator at state Si,t is represented by

a binary number as follows.

uj,t,i ∈ {0, 1} ∀j ∈ ΩG (10)

5) Generator Ramping Rates

The ramping behavior of each generator is governed by

its status and generation level at the current instant and its

expected status and generation level at the following instant.

In (11), a generator should supply its minimum capacity when

fired up or should not exceed the maximum ramp up rate if

already running. A running generator can ramp down without

exceeding its ramping down rate till it reaches minimum

capacity as provided in (12). The ramping constraints should

be satisfied as follows.

PG
j,t+1,i′ − PG

j,t,i ≤ (2− uj,t,i − uj,t+1,i′).P
G,Min
j

+(1 + uj,t,i − uj,t+1,i′).R
UP
j ∀i′ ∈ ΩS

i,t+1

(11)

PG
j,t,i − PG

j,t+1,i′ ≤ (2− uj,t,i − uj,t+1,i′).P
G,Min
j

+(1− uj,t,i + uj,t+1,i′).R
DN
j ∀i′ ∈ ΩS

i,t+1

(12)

6) Generator Minimum Up/Down Time

Since the proactive redispatch is time-dependent, minimum

up and down times for each generator should be satisfied as

follows.

t
∑

t−UT+1

TON
j,t,i ≤ uj,t,i′′ ∀t ∈ {UT, · · · , T}, (13)

t
∑

t−DT+1

TOFF
j,t,i ≤ 1− uj,t,i′′ ∀t ∈ {DT, · · · , T},

∀j ∈ ΩG, ∀i′′ ∈ ΩS
i,t+

(14)

In (13), there should be at most one instant of turn on signal

for a duration of UT prior to T ; whereas in (14), there should

be at most one instant of turn off signal for a duration DT

prior to T when the generator’s status changes into 0.

7) Power Limits of Generating Units

The supplied real power of each generator can be as

expressed as follows.

P
G,Min
j .uj,t,i ≤ PG

j,t,i ≤ P
G,Max
j .uj,t,i ∀j ∈ ΩG (15)

IV. IMPLEMENTATION AND RESULTS

The MDP is formulated as an MILP optimization problem

and solved using the CPLEX solver to handle large number

of variables and constraints.

A. Data Description

The proposed approach is applied to the IEEE 30-bus system

for validation [43]. Generator data are provided in Table I.

In this work, the wildfire is assumed to propagate across

the system as shown in Fig. 3. Due to the spatiotemporal

characteristics of wildfires, system components may fail at

each time instant. Table II lists the set of impacted components

and their failure probabilities. Although the propagation speed

of a wildfire varies based on weather factors, fuel data

(e.g., land type), and wildfire data, the scope of this work
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is resilience enhancement strategy under a given wildfire

scenario. The impact of load variation is considered by scaling

the system nominal load using load demand profile obtained

from [44] as shown in Fig. 4.

TABLE I
GENERATOR PARAMETERS

Unit
Cost ($) Time (min) Power (MW) Ramp

b Csu Csd UT DT Min Max (MW/hour)

G1 2.00 70 176 15 15 30 120 12.0

G2 1.75 74 187 15 15 35 140 12.0

G3 2.00 50 113 15 15 10 50 7.2

G4 3.25 110 267 15 15 5 30 6.0

G5 3.00 72 180 15 15 10 55 7.2

G6 3.00 40 113 15 15 15 40 6.0

1
2

3
4

5

7

6

8

28

29

30

27

26

25

2122

242315

14

12

13

16 17

20

10 9

18 19

G1 G2 G3 G4

G5

11

G6

Fig. 3. Wildfire propagation on IEEE 30-bus system

TABLE II
LIST OF IMPACTED COMPONENTS WITH THEIR PROBABILITY OF FAILURE

Time Instant Component No. Description Failure Probability

t1 – – –

t2 C1 Line 16-17 0.7

t3 C2 Line 4-6 0.4

t4 C3 Line 2-6 0.6

t5 C4 Line 2-5 0.3

t6
C5 G3 0.7

C6 Line 5-7 0.3

B. Case Studies

The performance and effectiveness of the proposed method

are tested and validated through several test cases. To induce

more severe circumstances, the wildfire event is assumed

to take place during the peak load period. The wildfire

duration for crossing the indicated lines is assumed to be

25 minutes sampled at 5 minute intervals for the recursive

discrete decision epochs. As previously mentioned, to ensure

that the algorithm prioritizes reducing load curtailments over

operational costs, the scaling weight of W1 is selected to be

significantly higher than W2. In this paper, W1 equals 100
and W2 is 1. The performance of the proposed algorithm is

Fig. 4. Load scaling profile

tested through three simulation cases, which are: 1) corrective

strategy, 2) immediate proactive strategy, and 3) predictive

proactive strategy. The impact of the propagation rate of

a wildfire is assessed to validate the effectiveness of the

proposed algorithm under diverse circumstances. Also, the

impacts of different generator ramping rates are studied to

assess their role in resilience enhancement. The optimal

generation dispatch during normal operation (no wildfire) is

computed and used for comparison.

1) Corrective Strategy

Since the system may experience actual failures during a

wildfire, the generation dispatch has to be readjusted to adapt

to such failures and fulfill system generation and transmission

constraints. In this case, no redispatch is applied prior to

the event attack time; however, dispatching is applied at

each time instant during the wildfire event to fulfill the

current system constraints. In other words, the decisions are

made to fulfill the current system constraints ignoring future

impacts. This case is used for comparison and validation of

the proactive generation redispatch algorithm and to highlight

the importance of proactive resilience enhancement strategies.

Fig. 5(a) and Fig. 5(b) show the generation dispatch solution

during normal operation and corrective strategy, respectively.

For Fig. 5(b), the amount of load curtailment (dashed line)

keeps growing throughout the wildfire duration for several

reasons. First, G3 (yellow line) ramps down to avoid any

constraint violation starting at 18:45 due to sequential failures

of transmission lines 2–5 and 5–7. Also, the failures of

lines 2–5, 2–6, 4–6 and 16–17 impose stressful burden on

the amount of transferable power from G1, G2 and G6 to

the load spots on the right side of the grid and results in

ramping down of G1 and G2. As a result, the generation

profile of all units have changed significantly. It is obvious

that proactive strategies are required to improve the system

performance and reduce the amount of load curtailments.

Also, the generation and transmission constraints impose

further complexities which should be considered during the
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Fig. 5. Optimal generation dispatch under (a) normal operation, (b) corrective strategy, (c) immediate proactive strategy given no components fail during
wildfire, and (d) immediate proactive strategy given all potential components fail during wildfire

enhancement strategy.

2) Immediate Proactive Strategy

In this case, the MDP algorithm proactively dispatches

generators when a wildfire occurs based on the predicted

direction and speed of the wildfire and potential failures

of system components. The formulated MDP considers all

possible component failures due to the wildfire, which were

ignored in case 1. The initial generation levels are obtained

from the scheduled generation dispatch solution under normal

operation and integrated into the MDP to ensure that the

optimization problem is initialized with the proper system

status prior to strategy implementation. Fig. 5(c) and Fig.

5(d) show the optimal generation dispatch for two scenarios:

S1—no components fail, and S2—all potential components

fail, respectively.

In this case, generation profiles for all generators have

changed significantly, as shown in Fig. 5(c) and Fig. 5(d)

compared to the corrective strategy case. Considering the

results in Fig. 5(c), high reliance on the right-side generators

(G4 and G5) compared to the left-side generators (G1 and

G2) is observed during the first few instants to avoid violating

the ramping constraints of large generation units, G1 and G2,

which are highly utilized prior to the event due to their low

operational costs. A very fast ramping up behavior of G4 and

G5 is observed to compensate for the ramping down of G1

and G2 as well as increase in load demand. G3 supplies high

generation level at early instants utilizing its low operational

costs; however, it ramps down at 18:35 to prepare for possible

shutdown at 18:50. This highlights the capability of MDP

to utilize low-operational cost generators. Since G6 has high

operational costs, it ramps down at 18:40 to reduce the

operational costs during severe situations. Generators G1 and

G2 ramp up at 18:40 while G4 ramps down at 18:45 to reduce

the overall operational costs since no failure takes place. On

the other hand, G1 and G2 ramp up momentarily between

18:40 and 18:45 to utilize their low-operational costs even

with decreasing in load demand. As a result, MDP utilizes

low-operational cost generators as long as all generation and

transmission constraints are not violated.

For scenario S2 (Fig. 5(d)), the loss of G3 and islanding of

bus 5 results in non-avoidable curtailments at 18:50, yielding

higher load curtailments compared to S1. Although system

components do not fail in S1 (Fig. 5(b)), load is curtailed

at earlier time instants to avoid much larger curtailments

in proceeding instants. From the results, the proposed MDP

algorithm provides much less load curtailments compared to

the corrective strategy.

Our work shows that MDP selects the optimal generation

redispatch at each instant that ensures not only minimal

load curtailments at the current instant but less negative

impacts on the following time instants. In other words, the

load curtailment profile for both scenarios is the same for

all time instants till 18:45, which highlights the capability

of MDP to consider future impacts and mitigate the worst

case scenario earlier in time. The proposed algorithm is

able to reduce the total amount of load curtailments more

than 50%. Additionally, MDP prioritizes reducing amount of

load curtailments over operational costs in present and future

instants.

3) Predictive Proactive Strategy

Similar to case 2, the proposed strategy utilizes MDP

to proactively dispatch generators given a predicted wildfire

event. In other words, the optimal redispatch is determined

prior to the potential wildfire. The MDP algorithm is used

to determine the optimal initial generation level prior to the

event so that if an event happens, further load curtailments will

be avoided. Fig. 6 compares generation profile for S2 under

immediate and predictive proactive strategies.

The impact of the generation level prior to the event on

the performance of the redispatch strategy is clearly noticed.

The obtained generation dispatch profiles, shown in Fig. 6(b),

are significantly different compared to Fig. 6(a). In this case,

G2, G4 and G5 have higher initial generation levels than G1

compared to case 2. The full utilization of G4 and G5 earlier

in time results in lower load curtailments at 18:40 and 18:45.

MDP has prioritized G5 over G4 due to its lower operational

costs. Also, MDP has selected a higher initial generation

level for G2 since it has the lowest operational costs and
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Fig. 6. Optimal generation dispatch for S2 under (a) immediate proactive
strategy and (b) predictive proactive strategy

highest generation capacity. Although G3 is expected to fail

at 18:50, it is optimally utilized prior to that instant due to

its low operational costs, which highlights the effectiveness of

MDP to differentiate between low– and high–operational cost

generators. MDP provides a proactive resilience enhancement

approach to determine the proper allocation of sources prior

to extreme weather events and avoid large curtailments.

The total amount of load curtailment during the event

duration (18:30 to 18:50) is lower in Fig. 6(b) implying

higher resilience level; however, both strategies show same

amount of load curtailments at 18:50. Deeper investigation

shows that the shared spots of load curtailment at 18:50
for both strategies are buses 8, 12, 14, 15, 29, and 30.

Such curtailments are deemed non-avoidable due to either

insufficient generation supply or exceeding transmission

capabilities. For instance, the load demand at bus 8 at 18:50
of almost 37 MW—calculated by scaling the base load

using provided load profile—can be supplied through G4 and

transferable power through transmission lines connected to

bus 8. If G4 has a capacity lower than the load demand,

the remaining load demand should be supplied through

transferable power over transmission lines; however, that

might not be feasible if these lines are fully occupied due

to other load requirements. Regardless of the non-avoidable

curtailments, case 3 provides better resilience level represented

by fewer load curtailments. The obtained strategies reflect the

effectiveness of the MDP algorithm to consider future potential

generation outages and transmission failures. Also, MDP can

be used to determine the most vulnerable spots due to extreme

events and provide proper proactive planning.

To show the significance of the proposed algorithm on the

overall costs, Table III describes the variation of cost values

for S2. The operational cost is higher in case 3 than in case

2. The curtailment cost is less in case 3 compared to case 2.

This implies the capability of MDP to prioritize reducing load

curtailment costs over operational costs. Also, relaxing the

initial generation level constraint results in less total cost. The

cost analysis can be used to determine optimal decisions taking

into account the energy market regulations during extreme

weather events.

TABLE III
COST ANALYSIS

Cost ($) Normal
operation

Proactive strategy

Immediate Predictive

(Case 2) (Case 3)

Operational 2562 2711 2751

Curtailments 0 17454 13447

Total 2562 20165 16199

4) Role of Wildfire Propagation Rate

Due to the large geographical distance between some

components at the transmission level, the sequential failure

behavior might take several hours instead of a few minutes

[32]. In this case, the wildfire event is assumed to propagate

across the system in 5 hours. The decisions are made at the

start of each hour. To create more stressed operating conditions

and show the importance of the proposed algorithm, a few

extra constraints are imposed. First, the wildfire is assumed

to ignite prior to peak load demand period. Each generator

ramping rate (MW/hour) is assumed to be 25% of maximum

power capacity [45]. Line 4–12 replaces line 16–17 in the list

of potential components at t2 (Table II) to create an islanding

scenario and potential isolation of the two largest generators.
Fig. 7 compares the immediate proactive strategy and the

corrective strategy with the normal operating conditions for

a 5-hour wildfire event. The total amount of load curtailment

is reduced dramatically by applying the proactive redispatch

strategy as noticed in Fig. 7(c) and 7(d). The islanding of buses

1, 2, 3, and 4 due to wildfire shows insufficient generation

capability, yielding non-avoidable load curtailments. On the

other hand, the MDP selects G2 over G1 in the proactive

strategy compared to the corrective strategy revealing the

effectiveness of MDP to consider low-cost generators. Fig.

5 and Fig. 7 confirm the capability of the proposed algorithm

to provide feasible solution and better resilience for fast and

slow-paced extreme weather events.
5) Impacts of Ramping Rates

The MDP solution relies on many factors including the

dynamic characteristics of generators. Better resilience levels

can be obtained through larger power capacity and faster

ramping performance. In this case, the role of ramping rates is

assessed. Three conditions are simulated: (a) nominal ramping

rates, (b) 20% increase in ramping rates, and (c) 50% increase

in ramping rates. The generator capacity is assumed fixed as

provided in Table II. For all simulated conditions, the initial

generation levels are obtained from the scheduled generation

dispatch solution under normal system operation, as shown in

Fig. 5(a).
Fig. 8 shows the results for the two previously mentioned

failure scenarios—S1: no components fail, and S2: all potential

components fail. It is obvious that increasing the ramping

rates results in a better performance represented in less load

curtailments in both scenarios from 18:35 to 18:45. During

the severe failure scenario (S2), increasing the ramping rate by

50% enables the system to eliminate the avoidable curtailments

of other cases and highlights the presence of non-avoidable
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load curtailments at 18:50. By comparing Fig. 8(c) and Fig.

8(e) with Fig. 8(a), it is noticeable that even with no failure

occurrence, having a faster ramping provides the system with

much faster response and proper immediate preparedness.

The generation profile of all generators varies based on

ramping rates. Reliance on generators with low operation cost

such as G2 is noticed when the ramping capabilities increase.

In Fig. 8(c) and Fig. 8(d), the generation profiles of G3, G4,

and G5 increase due to the need of high generation supply on

the right side of the grid. Fig. 8(e) and Fig. 8(f) show that G4 is

utilized only when needed due to its high operational costs. In

other words, G4 ramps down at 18:40 to reduce operational

costs. In most cases, G1 ramps down due to its high cost

compared to G2—which is located in the same geographical

vicinity—and transmission power limitation of line 4-12.

In short, increasing the ramping rates creates more flexible

system constraints achieving better resilient performance.

Table IV shows the effect of various ramping rates on

operational costs and curtailment costs. In S1, the total

costs with 20% ramp increase is almost half the total costs

for nominal case. The total costs in S1 with 50% ramp

increase is $2600, which is very close to normal operation

condition of $2562. During severe situations, when all

potential components fail, increasing the ramping rates reduces

the curtailment costs dramatically but increases the operational

costs slightly resulting in overall total costs reduction. In brief,

increasing the ramping rates results in reducing the total costs

between 25% to 67% among all scenarios.

TABLE IV
COST ANALYSIS UNDER VARIOUS RAMPING RATES

Cost ($)
S1 S2

Nominal 20% 50% Nominal 20% 50%

Operat. 2573 2597 2600 2711 2735 2741

Curtail. 5347 1352 0 17454 13459 12107

Total 7920 3949 2600 20165 16193 14847

V. CONCLUSION

This paper has proposed a probabilistic proactive generation

redispatch strategy to enhance the operation resilience of

power grids during wildfires. The proposed method minimizes

the cost of load curtailments as well as the operational

costs under specified system modeling constraints. MDP is

used to formulate the recursive decision optimization problem

encountering the impact of potential failures and their failure

probabilities. The proposed algorithm determines the optimal

generation redispatch profile given uncertain future of system

topology. The proposed method was demonstrated on the

IEEE 30-bus system and various test cases were conducted

to validate the accuracy and effectiveness of the proposed

algorithm. The results showed that the generation redispatch

strategy enhances the operational resilience of power grids.

Proactive generation redispatch was able to reduce the total

amount of load curtailment by 50% in some cases. The

role of ramping rates was tested to quantify its impact on

resilience of power systems. In some cases, increasing the

ramping rates helped in reducing the overall costs by 65%
and eliminating avoidable load curtailments. The proposed

algorithm facilitates the decision making process for system

operators during extreme events by providing the operator with

a shortened list of decisions at specific time instant considering

all potential future impacts. This algorithm paves a framework

for system operators that considers the uncertainty behavior

of extreme weather events. Also, it helps system planners to

determine proper system generation and transmission upgrades

for more resilient power grids.
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