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Abstract—Catastrophic  impacts of wildfires on the
performance of power grids have increased in the recent
years. Though various methods have been applied to enhance
power grid resilience against severe weather events, only a
few have focused on wildfires. Most previous operational-based
resilience enhancement methods have focused on corrective or
restorative strategies during and after extreme events without
proactively preparing the system for forecasted potential
failures. Also, the propagation behavior of wildfires among
system components induces further complexities resulting in
a mathematically involved problem accompanied with many
modeling challenges. During sequential failures, operators need
to make decisions in a fast-paced manner to maintain reliable
operation and avoid cascading failures and blackouts. Thereby,
the complexity of decision processes increases dramatically
during extreme weather events. This paper proposes a
probabilistic proactive generation redispatch strategy to enhance
the operational resilience of power grids during wildfires.
A Markov decision process is used to model system state
transitions and to provide generation redispatch strategies for
each possible system state given component failure probabilities,
wildfire spatiotemporal properties, and load variation. For a
realistic system representation, dynamic system constraints are
considered including ramping rates and minimum up/down
times of generating units, load demand profile, and transmission
constraints. The IBM ILOG CPLEX Optimization Studio is
utilized to solve the optimization problem. The IEEE 30-bus
system is used to validate the proposed strategy under various
impact scenarios. The results demonstrate the effectiveness of
the proposed method in enhancing the resilience level of power
grids during wildfires.

Index Terms—Extreme weather events, generation redispatch,
Markov decision process, resilience, wildfires.

NOMENCLATURE
Indices and Sets
C Index of impacted system components.
i, 1 Index of Markov states.
i Index of all proceeding states from .S, ;.
J Index of generators.
m Index of system components.
n, n’  Index of buses.
t Index of time instants.
04 Set of all possible actions.
Q¢ Set of all generators.
¢ Set of generators connected to bus n.
QN Set of all buses.
Qv Set of buses connected to bus n.

or Set of all time instants.

Qe Set of all impacted components at ¢.

Qg+  Set of all Markov states at t.
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possible transition states from S; ;.

Notation for Optimization Problem

An action.

Possible actions at t.

Linear fuel cost coefficient.

Immediate cost of state S;; given A, ;.
Cost of curtailed loads.

Load curtailment at bus n in state ¢ at .
Operating cost of generator j in state ¢
at ¢.

Startup cost of generator j in state ¢ at ¢.
Shutdown cost of generator j in state ¢
at ¢.

Failure probability of component m at .
Number of impacted components at .
Transition probability from S;; to
St t41-

Transition probability due to change of
status of component o,,, from ¢ to ¢ + 1.
Markov state.

Markov state at ¢.

Number of decision periods.

The optimal value of state S; ;.
Expected overall cost of state S;; given
A(L,t-

Weighting factor of load curtailment cost.
Weighting factor of operational cost.

Constraints

Susceptance of line between bus n and
bus n'.

Amount of load in MW at bus n in state
1 at t.

Status of component m at t.

Supplied real power by generator j in
state 7 at t.

Minimum/maximum power rating of
generator j.

Real power flow between bus n and bus
n/ in state ¢ at t.

Real power flow limits between bus n and
bus n'.

Up/down ramping rate of generator j.
Turn on/off signal of generator j in state
1 at t.

Up/down time.

Status of generator j in state ¢ at ¢.
Voltage angle of bus n in state ¢ at ¢.
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I. INTRODUCTION

XTREME weather events have shown significant impacts

on power system operations ranging from prolonged
outages to catastrophic destruction of system components [1],
[2]. Economic losses due to extreme weather-related outages
is estimated to exceed $25 billion per year in the United
States [3]. In 2018, a statistical analysis on wildfires over
the period 2000-2016 has shown that wildfires cost utilities
more than $700 million in parts of California’s transmission
and distribution systems [4]. The risk of severe wildfire has
forced electric utilities to cut off power to 800, 000 customers
in California, USA in 2019 [5]. The recent Dixie wildfire
in the West coast of the U.S. has lasted for more than 60
days, burned almost one million acres of land, and resulted in
evacuation orders for thousands of families [6]. In California, it
is estimated that more than 1.8 million acres will be impacted
by wildfires in 2021 [7].

Various strategies have been proposed to improve the
resilience of power systems against extreme weather
events. Such strategies have focused mainly on restoration
approaches such as mobile energy storage systems, network
reconfiguration, and microgrid formation [8], [9]. Proactive
and corrective resilience-based enhancement strategies have
not been sufficiently explored, specifically against wildfires
[10]. To reduce modeling complexities, some generation
and transmission constraints are usually relaxed, yielding
higher resilience levels [11], [12]. Impacts of load variations,
system preparedness level, event attack time (i.e., the instant
at which an extreme event hits the system), and future
potential failures have been given less attention [1]. Since
extreme weather events may create sequential failures of
system components, other studies have considered the role
of system operators in the decision making process for
improved resilience [11], [13]. The need of having a fast-acting
decision tool to optimize system operations during extreme
events has increased dramatically [14]. Thus, implementing
resilience-based strategies that enhance the performance of
power systems during wildfires, taking into account the
aforementioned constraints, operational costs, and extreme
weather spatiotemporal characteristics, has become more
important than ever before.

Enhancement strategies for operational resilience focus on
utilizing available system assets to provide an immediate
solution due to severe impacts of adverse events. Resilience
enhancement strategies can be classified according to the
study period into: proactive, corrective, and restorative [15].
Proactive and corrective strategies tend to prepare the system
in advance or instantly controlling the system due to severe
impacts of extreme events, whereas restorative strategies
provide solutions to retain failed components or curtailed loads
in a stable and reliable manner [1].

Several operational resilience enhancement strategies
have been proposed. Maintenance planning [16]-[18] and
mobile energy storage allocation [19]-[21] strategies have
been studied to prepare the system before an event. A
decision-making framework based on an analytical hierarchy
process has been proposed in [22] to evaluate possible
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locations of solar panels and battery energy storage systems
for multiple contingencies to improve resilience of distribution
systems and reduce operational costs. In [23], a graph
theory-based approach integrated with Choquet integral has
been used to quantify resilience enhancements and to maintain
power supply to critical loads at the distribution level. In
[24], a procurement plan of black start units has been
studied assuring sufficient energy supply prior to events
at minimal cost; however, the spatiotemporal characteristics
of extreme weather events have not been considered. A
proactive generation redispatch strategy has been proposed
in [11] to reduce load curtailments during hurricanes where
operational costs and load variations are not considered.
An approach for generation redispatch during hurricanes has
been proposed in [12], [25], which takes into account event
attack time, operational costs, and generation level prior to
the event. Though several resilience enhancement strategies
have been studied at the distribution level, developing
resilience enhancement methods at the transmission level still
requires further investigation [16]. The impacts of sequential
probabilistic component failures create stressed operating
conditions on the transmission system with the potential of
cascading failures or blackouts. Also, preparing power systems
for potential N — k (i.e., kK > 1) contingencies is an important
factor for enhancing power system resilience against extreme
events—/N — 1 and N — 1 — 1 criteria can be sufficient for
normal outages.

Several studies have been conducted to assess the impacts
of wildfires on power grids. In [10], a brief review of
challenges and solutions to improve grid resilience during
wildfires has been presented. A detailed review in [26], [27]
has presented causes of wildfires and prevention, detection
and management of wildfires. In [28], an analytical method
has been proposed to quantify the impacts of wildfires on
conductivity of transmission lines based on radiative heating.
A simplified flame model has been provided in [29] to model
a flame front behavior in wildfires. In [30], a convolutional
neural network model has been trained for real-time fault
localization for wildfire detection at distribution system levels.
A proactive line outage prediction model due to wildfire
progression has been proposed in [31].

A few studies have proposed several resilience enhancement
strategies against wildfires [32]-[35]. In [32], the impact
of wildfires on the optimal power flow solution of
transmission system has been studied based on propagation
of flat fire surface toward one transmission line. In [33],
a proactive dispatch algorithm of distributed generators
at the distribution level has been proposed considering
uncertainties of wildfire progression and accompanied impacts
on transmission line ratings. A stochastic programming
approach has been proposed in [34] to determine the
optimal utilization of renewable energy resources on the
main feeder of a distribution system during a wildfire given
uncertainties of weather parameters. In [35], a resilience-based
enhancement strategy has been proposed to avoid spurious
trip of inverter-based resources and eliminate the risk of
wildfires. A probabilistic decision process has been proposed
in [36] to improve resilience of power systems against

/publications_standards/publications/rights/index.html for more information.
ENO. Downloaded on January 31 ,2025 at 04:02:31 UTC from IEEE Xplore. Restrictions apply.



0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re:

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTA.2022.3145765, IEEE

Transactions on Industry Applications

wildfires; however, the propagation rate of a wildfire has
not been considered. Although several enhancement strategies
against wildfires have been proposed, only a few have
tested the applicability of proactive generation redispatch
considering probabilistic behavior of component failures due
to spatiotemporal characteristics of wildfires.

In this paper, a generation redispatch strategy is proposed
to enhance the operational resilience of power grids against
wildfires. The Markov decision process (MDP) is used to
determine the optimal generation dispatch decision at each
time instant as a wildfire propagates across a power system.
Due to uncertainties of component failures, the system
topology, represented by a Markov state, varies based on
available assets. The proposed algorithm aims to reduce the
amount of load curtailments and operational costs during
wildfire events. Several system dynamic constraints have been
considered including transmission constraints (line capacity,
line availability, etc.), generation constraints (ramping rates,
minimum up/down times, start-up/shut-down generation costs,
etc.), and other constraints such as load variation. A wildfire
is assumed to spread across a power system during the
peak load period to increase the severity level of the event.
A mixed integer linear programming (MILP) optimization
problem is formulated using the recursive MDP on MATLAB
environment integrated with CPLEX solver to determine
optimal generation redispatch strategies. The effectiveness of
the proposed method is validated through simulation scenarios
on the IEEE 30-bus transmission system. The impacts of
generator ramping characteristics on resilience quantification
are assessed.

The contribution of this paper is summarized as follows:

o Integrate the spatiotemporal characteristics of wildfires
into probabilistic sequential failure behavior of power
grid components.

« Develop a Markov decision process to determine optimal
generation level at each time instant considering dynamic
system constraints, spatiotemporal fragility model, and
load variation.

o Provide extensive simulation results via a standard test
system to validate the capability and effectiveness of the
proposed probabilistic proactive generation redispatch to
improve operational resilience of power systems.

o Assess the role of implementation time of the proposed
strategy on resilience level for further improvements.

e Evaluate the impacts of generators’ ramping
characteristics on power system resilience level.

The rest of the paper is organized as follows. Section
IT explains the concept of proactive generation redispatch.
Section IIT describes the MDP algorithm for minimal overall
operational and curtailment costs during extreme weather
events. Section IV shows the implementation procedure on
the IEEE 30-bus system and discusses the results. Section V
provides concluding remarks.

II. PROACTIVE GENERATION REDISPATCH
This section describes the proposed resilience enhancement
strategy for transmission systems against wildfires. First, it
illustrates the impacts of propagation of a wildfire on power
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system components. Then, it explains the recursive decision
process to formulate a probabilistic generation redispatch
algorithm.

A. Impacts of Wildfire Progression

The propagation properties and spatiotemporal characteristics
of each extreme event have unique impacts on the performance
of system components. For instance, the path of a hurricane
can be predicted with a higher accuracy than the direction
and behavior of a wildfire [28]. Probabilistic models have
been proposed to model the propagation behavior of wildfires,
identify the potential impacted components, and evaluate their
probabilities of failure [10], [37]. Although fragility models
have been used extensively in resilience-based studies [38],
other studies have simulated actual events or forecasted failure
scenarios [11], [12], [39]. As a wildfire propagates, system
components can be impacted at sequential time intervals [10].
Wildfires are characterized by the possibility to change path,
to be completely extinguished, or to have less intensity at
any time instant [10]. Fig. 1(a) shows a scenario where
three system components (A, B, and C) are on the potential
trajectory of a wildfire at five time instants (¢; to t5). Also,
the restoration time of failed components is usually high due
to the significant damage and destruction caused by wildfires
[34].
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Fig. 1. (a) Components on the trajectory of a wildfire, and (b) Potential
Markov states at each time instant

B. System States during Wildfires

Due to potential failures introduced by wildfires, the power
grid might have different operating states at each time instant.
In this work, a Markov state is defined to represent a unique
system topology based on the available components. The total
number of impacted components at time ¢ is represented
by Nc,.; and hence, 2Nc.t s the total number of Markov
states. Since failed components are assumed to withhold
failure status during the event period, the set of impacted
components at time ¢ includes all current and previously
impacted components. Fig. 1(b) provides an illustration of
Markov states at each time instant due to progression of a
wildfire, presented in Fig. 1(a) S, represents Markov state
with no failures, whereas S4pc denotes Markov state where
all potential components are in failure states. Since at any time
instant the power system can reside in one of several possible
states, it is required to evaluate the transition probabilities from
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one state to consequential states. The transition probability, P,
from state .S; ; to Sy 441 can be evaluated as follows.

P(S;t,Sir141) = H P(om,t,0mi+1) » 1 € Qs (1)

meQe t41
1 Om,t = 0, Om,t+1 = 0
0 Omit =0,0m 41 =1

2

P(0om,t50m,t41) =
( oty Tt ) 1- >\m,t+1 Omt = 1, Om,t+1 = 1

Am 41 Omit=1,0m,41 =0

C. Recursive Markov Process

The operational performance of the power grid varies
significantly due to the sequential failure of power system
components. For a resilient power grid, the priority is given
to reducing the amount of load curtailments during extreme
weather events rather than minimizing operational costs. In
addition, the stochastic progression of wildfires across system
components should be considered to obtain a feasible strategy
that satisfies all system constraints such as ramping rates,
minimum up and down times, and varying load demand.
The proactive generation redispatch algorithm determines the
optimal generation profile of each generator during the course
of an extreme event given current and forecasted system states.
To maintain resilient operation of the system, availability
of non-impacted assets must be assured during and after
wildfires. Although the aforementioned constraints are difficult
to fulfill during severe situations; it is recommended to have
higher generation resources [25], [32]. For instance, multiple
transmission line failures can result in islanding of the power
grid into multiple grids where the generation level at each
islanded grid should be sufficient to supply the required load;
otherwise, curtailing loads will be a non-avoidable decision
[25].

Since the status of each component might change during
the progression of a wildfire, system operators should make
decisions considering current and future states of the system.
Each decision not only impacts the performance of the system
at the current instant but also during upcoming instants.
For example, turning off a reliable generator earlier in time
may result in larger load curtailments in the following time

instants. Also, maintaining full operation of a potentially
impacted generator may lead to sudden power outages and
cascading failures during the wildfire progression. Since
generation dispatch usually takes place in terms of minutes, a
discrete-time MDP can be used to model the whole process.
Several methods have been used to solve the MDP such as
the backward induction method and the value iteration method
[40]. A proper solution of each state is obtained considering
current system states as well as possible future states. In some
cases, time-dependent constraints correlating Markov states
at sequential time instants exhibit further complexities to the
problem formulation. Therefore, the aforementioned solution
techniques can be deemed infeasible. The linear scalarization
method has proven to solve time-dependent MDPs via
transforming the multi-objective optimization problem into a
single objective optimization problem [11], [25].

Fig. 2 shows the progression behavior of a wildfire on
system components. Prior to the event, no failure state
is observed. All Markov states are encountered and their
transition probabilities are calculated. At each time instant, the
optimization model takes into account all possible observable
states. An action is made and the system holds a new Markov
state with a new set of observable states. An action represents
the supplied real power by operating generators. This process
is repeated for all time instants.

III. MARKOV DECISION PROCESS FORMULATION

This section provides a detailed formulation of the
multi-objective optimization problem using MDP to minimize
operational costs and load curtailment costs. A recursive model
based on discrete-time MDP is developed based on variations
of system topology as a result of sequential component failure.
Various generation and transmission constraints are considered
in the proposed algorithm.

A. Objective Function

Determining the minimal value function is necessary to hold a
specific system state at a given time. In this work, the optimal
generation redispatch value for a specific system state S; ; at
a given time t is expressed as follows.

v} (i) = min{ve(Sip, Aay),a € Q)i € Qg t € QT (3)
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Fig. 2. (a) Markov states prior to the event, (b) Markov decision at ¢1, and (c) Markov decision at ta.
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The value function of each state in MDP can be evaluated as
follows.

0e(Sits Aat) = Co(Sie, Aay) +
Z [P(Sit, Sir 1) - V41 (Sir 415 Aar p11)] s 4D

; s
VEQY

In (4), {a,a’} € Q4, i € Qg4, and {t,t + 1} € Q. The
immediate cost of a Markov state can be evaluated as follows.

Ci(Sit Aat) =Wi | Cou . > Cuppi| +

neQN

Wa | D Cp(PE) + CoulTHN) + CoaTEEF)
jEQG

&)

where W; and W, are weighting factors to prioritize each
objective function [41]. Various methods can be used to
determine their proper values such as the Pareto analysis
method [42]. In this paper, W; should have higher value
compared to Ws to assure that the algorithm prioritizes
reducing load curtailments over operational costs.

B. Constraints
Transmission and generation constraints should be fulfilled
to maintain reliable operation of power grids. In this paper,
dynamic generation constraints that govern the operation
of generators during dispatching are considered. Also,
transmission line constraints such as flow limits and their
availability are considered. These constraints are explained as
follows.

1) Power Balance

At any instant during normal operation conditions, the total
amount of supplied power should be equal to the total load
demand. If curtailing loads is necessary, the total supplied
power should be equal to load demand after deducting the
load curtailment. The power balance at system state S;; at
time ¢ can be expressed as follows.

> P i~(Lnpi=Cunii)+Y  Prp i =050 QN (6)

JEQG n €QN

2) Transmission Flow Limits

Power flow through a specific line connected at buses n
and n’ of system state S; ; must lie within the predefined line
capacity limits as follows.

L M
Bn,n“(gn,t,i - 0”’,t,i) - Pn,n’,t,i < Pn.,r?’w ’ (7

L M1
Bn,n“(gn,t,i - 9”’,t,i) - Pn,n’,t,i > Pn.,rf’n’ (8)

Vn e QVn' e QY

3) Load Curtailment Limits

For each Markov state, S; ¢, the amount of load curtailment
at each bus should be less than or equal to the total amount
of load at the same bus as follows.

0< Cupi < Lpti Yne QN vieQl )
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4) Generator Status
The status of each generator at state .S; ; is represented by
a binary number as follows.

ujri € {0,1} Vj € Q° (10)

5) Generator Ramping Rates

The ramping behavior of each generator is governed by
its status and generation level at the current instant and its
expected status and generation level at the following instant.
In (11), a generator should supply its minimum capacity when
fired up or should not exceed the maximum ramp up rate if
already running. A running generator can ramp down without
exceeding its ramping down rate till it reaches minimum
capacity as provided in (12). The ramping constraints should
be satisfied as follows.

G G G, Min
P',t+1,i' - P',t,i <(2— i — 'Pj

Uj,t+1,i’)

’ / UP ! S (1)
(4w — wjerre) B0 Vi€ Q744
G G G,M1i
Pj,t,i — Pj,t+1,i’ S (2 — Uj,t’i — Uj,t+1,i’)-Pj mn (12)

DN \j;: s
F(1 = wjei +ujr). Ry V€ Q7

6) Generator Minimum Up/Down Time
Since the proactive redispatch is time-dependent, minimum
up and down times for each generator should be satisfied as
follows.
t

Z TON <wujper VEE{UT,-- T}, (13)
t—UT+1
t
Y TS 1w (DT TH

t—DT+1
Vi€ vi"eQf,,

In (13), there should be at most one instant of turn on signal
for a duration of UT prior to T'; whereas in (14), there should
be at most one instant of turn off signal for a duration DT
prior to 7" when the generator’s status changes into 0.

7) Power Limits of Generating Units
The supplied real power of each generator can be as
expressed as follows.

G,Min G G, Max . G
Pj Ujtd < Pj,t,i < Pj Ujit,i Vj e Q

15)

IV. IMPLEMENTATION AND RESULTS

The MDP is formulated as an MILP optimization problem
and solved using the CPLEX solver to handle large number
of variables and constraints.

A. Data Description

The proposed approach is applied to the IEEE 30-bus system
for validation [43]. Generator data are provided in Table I.
In this work, the wildfire is assumed to propagate across
the system as shown in Fig. 3. Due to the spatiotemporal
characteristics of wildfires, system components may fail at
each time instant. Table II lists the set of impacted components
and their failure probabilities. Although the propagation speed
of a wildfire varies based on weather factors, fuel data
(e.g., land type), and wildfire data, the scope of this work
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is resilience enhancement strategy under a given wildfire
scenario. The impact of load variation is considered by scaling
the system nominal load using load demand profile obtained
from [44] as shown in Fig. 4.

TABLE 1
GENERATOR PARAMETERS
Unit Cost ($) Time (min) | Power (MW) Ramp
b Csy Cgsq | UT DT | Min Max | (MW/hour)
Gi1 [ 200 70 176 | 15 15 30 120 12.0
Go | 175 74 187 | 15 15 35 140 12.0
Gs [ 200 50 113 | 15 15 10 50 7.2
G4 | 325 110 267 | 15 15 5 30 6.0
Gs [ 300 72 180 | 15 15 10 55 7.2
Ge | 300 40 113 | 15 15 15 40 6.0

Fig. 3. Wildfire propagation on IEEE 30-bus system

TABLE II
LIST OF IMPACTED COMPONENTS WITH THEIR PROBABILITY OF FAILURE

Time Instant | Component No. | Description | Failure Probability

t1 - - -
to Ch Line 16-17 0.7
t3 Co Line 4-6 0.4
ta C3 Line 2-6 0.6
ts Cy Line 2-5 0.3
ts Cs G3 0.7

Cs Line 5-7 0.3

B. Case Studies

The performance and effectiveness of the proposed method
are tested and validated through several test cases. To induce
more severe circumstances, the wildfire event is assumed
to take place during the peak load period. The wildfire
duration for crossing the indicated lines is assumed to be
25 minutes sampled at 5 minute intervals for the recursive
discrete decision epochs. As previously mentioned, to ensure
that the algorithm prioritizes reducing load curtailments over
operational costs, the scaling weight of Wy is selected to be
significantly higher than W5. In this paper, W; equals 100
and Wy is 1. The performance of the proposed algorithm is
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Fig. 4. Load scaling profile

tested through three simulation cases, which are: 1) corrective
strategy, 2) immediate proactive strategy, and 3) predictive
proactive strategy. The impact of the propagation rate of
a wildfire is assessed to validate the effectiveness of the
proposed algorithm under diverse circumstances. Also, the
impacts of different generator ramping rates are studied to
assess their role in resilience enhancement. The optimal
generation dispatch during normal operation (no wildfire) is
computed and used for comparison.

1) Corrective Strategy

Since the system may experience actual failures during a
wildfire, the generation dispatch has to be readjusted to adapt
to such failures and fulfill system generation and transmission
constraints. In this case, no redispatch is applied prior to
the event attack time; however, dispatching is applied at
each time instant during the wildfire event to fulfill the
current system constraints. In other words, the decisions are
made to fulfill the current system constraints ignoring future
impacts. This case is used for comparison and validation of
the proactive generation redispatch algorithm and to highlight
the importance of proactive resilience enhancement strategies.

Fig. 5(a) and Fig. 5(b) show the generation dispatch solution
during normal operation and corrective strategy, respectively.
For Fig. 5(b), the amount of load curtailment (dashed line)
keeps growing throughout the wildfire duration for several
reasons. First, G5 (yellow line) ramps down to avoid any
constraint violation starting at 18:45 due to sequential failures
of transmission lines 2-5 and 5-7. Also, the failures of
lines 2-5, 2-6, 4-6 and 16-17 impose stressful burden on
the amount of transferable power from G, Gy and Gg to
the load spots on the right side of the grid and results in
ramping down of G; and Ga. As a result, the generation
profile of all units have changed significantly. It is obvious
that proactive strategies are required to improve the system
performance and reduce the amount of load curtailments.
Also, the generation and transmission constraints impose
further complexities which should be considered during the
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Fig. 5. Optimal generation dispatch under (a) normal operation, (b) corrective strategy, (c) immediate proactive strategy given no components fail during
wildfire, and (d) immediate proactive strategy given all potential components fail during wildfire

enhancement strategy.
2) Immediate Proactive Strategy

In this case, the MDP algorithm proactively dispatches
generators when a wildfire occurs based on the predicted
direction and speed of the wildfire and potential failures
of system components. The formulated MDP considers all
possible component failures due to the wildfire, which were
ignored in case 1. The initial generation levels are obtained
from the scheduled generation dispatch solution under normal
operation and integrated into the MDP to ensure that the
optimization problem is initialized with the proper system
status prior to strategy implementation. Fig. 5(c) and Fig.
5(d) show the optimal generation dispatch for two scenarios:
S1—no components fail, and Se—all potential components
fail, respectively.

In this case, generation profiles for all generators have
changed significantly, as shown in Fig. 5(c) and Fig. 5(d)
compared to the corrective strategy case. Considering the
results in Fig. 5(c), high reliance on the right-side generators
(G4 and G5) compared to the left-side generators (G and
G) is observed during the first few instants to avoid violating
the ramping constraints of large generation units, G; and Ga,
which are highly utilized prior to the event due to their low
operational costs. A very fast ramping up behavior of G4 and
G5 is observed to compensate for the ramping down of G
and G, as well as increase in load demand. G'3 supplies high
generation level at early instants utilizing its low operational
costs; however, it ramps down at 18:35 to prepare for possible
shutdown at 18:50. This highlights the capability of MDP
to utilize low-operational cost generators. Since G¢ has high
operational costs, it ramps down at 18:40 to reduce the
operational costs during severe situations. Generators G and
G2 ramp up at 18:40 while G4 ramps down at 18:45 to reduce
the overall operational costs since no failure takes place. On
the other hand, G; and G2 ramp up momentarily between
18:40 and 18:45 to utilize their low-operational costs even
with decreasing in load demand. As a result, MDP utilizes
low-operational cost generators as long as all generation and
transmission constraints are not violated.
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For scenario S5 (Fig. 5(d)), the loss of G35 and islanding of
bus 5 results in non-avoidable curtailments at 18:50, yielding
higher load curtailments compared to S;. Although system
components do not fail in S; (Fig. 5(b)), load is curtailed
at earlier time instants to avoid much larger curtailments
in proceeding instants. From the results, the proposed MDP
algorithm provides much less load curtailments compared to
the corrective strategy.

Our work shows that MDP selects the optimal generation
redispatch at each instant that ensures not only minimal
load curtailments at the current instant but less negative
impacts on the following time instants. In other words, the
load curtailment profile for both scenarios is the same for
all time instants till 18:45, which highlights the capability
of MDP to consider future impacts and mitigate the worst
case scenario earlier in time. The proposed algorithm is
able to reduce the total amount of load curtailments more
than 50%. Additionally, MDP prioritizes reducing amount of
load curtailments over operational costs in present and future
instants.

3) Predictive Proactive Strategy

Similar to case 2, the proposed strategy utilizes MDP
to proactively dispatch generators given a predicted wildfire
event. In other words, the optimal redispatch is determined
prior to the potential wildfire. The MDP algorithm is used
to determine the optimal initial generation level prior to the
event so that if an event happens, further load curtailments will
be avoided. Fig. 6 compares generation profile for Sy under
immediate and predictive proactive strategies.

The impact of the generation level prior to the event on
the performance of the redispatch strategy is clearly noticed.
The obtained generation dispatch profiles, shown in Fig. 6(b),
are significantly different compared to Fig. 6(a). In this case,
G, G4 and G5 have higher initial generation levels than G,
compared to case 2. The full utilization of G4 and G35 earlier
in time results in lower load curtailments at 18:40 and 18:45.
MDP has prioritized G5 over G4 due to its lower operational
costs. Also, MDP has selected a higher initial generation
level for Gy since it has the lowest operational costs and
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Fig. 6. Optimal generation dispatch for S under (a) immediate proactive
strategy and (b) predictive proactive strategy

highest generation capacity. Although G is expected to fail
at 18:50, it is optimally utilized prior to that instant due to
its low operational costs, which highlights the effectiveness of
MDP to differentiate between low— and high—operational cost
generators. MDP provides a proactive resilience enhancement
approach to determine the proper allocation of sources prior
to extreme weather events and avoid large curtailments.

The total amount of load curtailment during the event
duration (18:30 to 18:50) is lower in Fig. 6(b) implying
higher resilience level; however, both strategies show same
amount of load curtailments at 18:50. Deeper investigation
shows that the shared spots of load curtailment at 18:50
for both strategies are buses 8, 12, 14, 15, 29, and 30.
Such curtailments are deemed non-avoidable due to either
insufficient generation supply or exceeding transmission
capabilities. For instance, the load demand at bus 8 at 18:50
of almost 37 MW-—calculated by scaling the base load
using provided load profile—can be supplied through G4 and
transferable power through transmission lines connected to
bus 8. If G4 has a capacity lower than the load demand,
the remaining load demand should be supplied through
transferable power over transmission lines; however, that
might not be feasible if these lines are fully occupied due
to other load requirements. Regardless of the non-avoidable
curtailments, case 3 provides better resilience level represented
by fewer load curtailments. The obtained strategies reflect the
effectiveness of the MDP algorithm to consider future potential
generation outages and transmission failures. Also, MDP can
be used to determine the most vulnerable spots due to extreme
events and provide proper proactive planning.

To show the significance of the proposed algorithm on the
overall costs, Table III describes the variation of cost values
for Sy. The operational cost is higher in case 3 than in case
2. The curtailment cost is less in case 3 compared to case 2.
This implies the capability of MDP to prioritize reducing load
curtailment costs over operational costs. Also, relaxing the
initial generation level constraint results in less total cost. The
cost analysis can be used to determine optimal decisions taking
into account the energy market regulations during extreme
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weather events.

TABLE III
COST ANALYSIS
N | Proactive strategy
. ormal

Cost ($) operation Immediate | Predictive
(Case 2) (Case 3)

Operational 2562 2711 2751

Curtailments 0 17454 13447

Total 2562 20165 16199

4) Role of Wildfire Propagation Rate

Due to the large geographical distance between some
components at the transmission level, the sequential failure
behavior might take several hours instead of a few minutes
[32]. In this case, the wildfire event is assumed to propagate
across the system in 5 hours. The decisions are made at the
start of each hour. To create more stressed operating conditions
and show the importance of the proposed algorithm, a few
extra constraints are imposed. First, the wildfire is assumed
to ignite prior to peak load demand period. Each generator
ramping rate (MW/hour) is assumed to be 25% of maximum
power capacity [45]. Line 4-12 replaces line 16-17 in the list
of potential components at 5 (Table II) to create an islanding
scenario and potential isolation of the two largest generators.

Fig. 7 compares the immediate proactive strategy and the
corrective strategy with the normal operating conditions for
a 5-hour wildfire event. The total amount of load curtailment
is reduced dramatically by applying the proactive redispatch
strategy as noticed in Fig. 7(c) and 7(d). The islanding of buses
1, 2, 3, and 4 due to wildfire shows insufficient generation
capability, yielding non-avoidable load curtailments. On the
other hand, the MDP selects G2 over (G; in the proactive
strategy compared to the corrective strategy revealing the
effectiveness of MDP to consider low-cost generators. Fig.
5 and Fig. 7 confirm the capability of the proposed algorithm
to provide feasible solution and better resilience for fast and
slow-paced extreme weather events.

5) Impacts of Ramping Rates

The MDP solution relies on many factors including the
dynamic characteristics of generators. Better resilience levels
can be obtained through larger power capacity and faster
ramping performance. In this case, the role of ramping rates is
assessed. Three conditions are simulated: (a) nominal ramping
rates, (b) 20% increase in ramping rates, and (c) 50% increase
in ramping rates. The generator capacity is assumed fixed as
provided in Table II. For all simulated conditions, the initial
generation levels are obtained from the scheduled generation
dispatch solution under normal system operation, as shown in
Fig. 5(a).

Fig. 8 shows the results for the two previously mentioned
failure scenarios—S7: no components fail, and Ss: all potential
components fail. It is obvious that increasing the ramping
rates results in a better performance represented in less load
curtailments in both scenarios from 18:35 to 18:45. During
the severe failure scenario (S2), increasing the ramping rate by
50% enables the system to eliminate the avoidable curtailments
of other cases and highlights the presence of non-avoidable

/publications_standards/publications/rights/index.html for more information.
ENO. Downloaded on January 31 ,2025 at 04:02:31 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTA.2022.3145765, IEEE

Transactions on Industry Applications

load curtailments at 18:50. By comparing Fig. 8(c) and Fig.
8(e) with Fig. 8(a), it is noticeable that even with no failure
occurrence, having a faster ramping provides the system with
much faster response and proper immediate preparedness.

The generation profile of all generators varies based on
ramping rates. Reliance on generators with low operation cost
such as G5 is noticed when the ramping capabilities increase.
In Fig. 8(c) and Fig. 8(d), the generation profiles of Gz, G4,
and G5 increase due to the need of high generation supply on
the right side of the grid. Fig. 8(e) and Fig. 8(f) show that G is
utilized only when needed due to its high operational costs. In
other words, G4 ramps down at 18:40 to reduce operational
costs. In most cases, G; ramps down due to its high cost
compared to G—which is located in the same geographical
vicinity—and transmission power limitation of line 4-12.
In short, increasing the ramping rates creates more flexible
system constraints achieving better resilient performance.

Table IV shows the effect of various ramping rates on
operational costs and curtailment costs. In S;, the total
costs with 20% ramp increase is almost half the total costs
for nominal case. The total costs in S; with 50% ramp
increase is $2600, which is very close to normal operation
condition of $2562. During severe situations, when all
potential components fail, increasing the ramping rates reduces
the curtailment costs dramatically but increases the operational
costs slightly resulting in overall total costs reduction. In brief,
increasing the ramping rates results in reducing the total costs
between 25% to 67% among all scenarios.

V. CONCLUSION

This paper has proposed a probabilistic proactive generation
redispatch strategy to enhance the operation resilience of
power grids during wildfires. The proposed method minimizes
the cost of load curtailments as well as the operational
costs under specified system modeling constraints. MDP is
used to formulate the recursive decision optimization problem
encountering the impact of potential failures and their failure
probabilities. The proposed algorithm determines the optimal
generation redispatch profile given uncertain future of system
topology. The proposed method was demonstrated on the
IEEE 30-bus system and various test cases were conducted
to validate the accuracy and effectiveness of the proposed
algorithm. The results showed that the generation redispatch
strategy enhances the operational resilience of power grids.
Proactive generation redispatch was able to reduce the total
amount of load curtailment by 50% in some cases. The
role of ramping rates was tested to quantify its impact on
resilience of power systems. In some cases, increasing the
ramping rates helped in reducing the overall costs by 65%
and eliminating avoidable load curtailments. The proposed
algorithm facilitates the decision making process for system
operators during extreme events by providing the operator with
a shortened list of decisions at specific time instant considering
all potential future impacts. This algorithm paves a framework
for system operators that considers the uncertainty behavior
of extreme weather events. Also, it helps system planners to
determine proper system generation and transmission upgrades
for more resilient power grids.
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