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ABSTRACT

Analytical battery models depend on a set of complex nonlinear equations that make them impractical to use
in probabilistic analyses (e.g., reliability evaluation) of power systems. Machine-learning algorithms have the
potential to reduce or even avoid the computational complexities of incorporating actual battery characteristics
in probabilistic analyses. In this paper, a neural network (NN)-based approach is proposed to develop a battery
model that captures the non-linear interactions between charging/discharging power and battery state of
charge (SoC). In the proposed approach, an NN with a rectified linear unit activation function is trained
using historical data generated from an experimentally validated battery model. Another NN with linear
activation function is trained to capture the relationship between charging/discharging power limits and SoC.
Weights and biases of the trained networks in conjunction with mixed integer linear programming are used to
develop an accurate and computationally attractive battery model. Also, a mathematical model is formulated
to accommodate the proposed battery model in power system reliability evaluation. Moreover, a genetic
algorithm-based approach is used to determine optimal locations for batteries considering the developed model
to enhance reliability of power systems. The proposed approach is demonstrated on a modified version of the
IEEE 33-bus distribution system. Monte Carlo simulation is performed to calculate reliability indices. The results
show that the proposed battery model is effective to incorporate actual battery characteristics in probabilistic

analyses (evaluating reliability and finding optimal battery locations) of power systems.

1. Introduction

The deployment of energy storage devices (ESDs) in power systems
has increased significantly to provide both operational (e.g., to main-
tain or increase stability or reliability of power systems) and ancillary
services (e.g., frequency regulation or operating reserve in electricity
market) of power grids. With the increasing deployment of ESDs, in-
corporating accurate battery models in probabilistic analyses of power
systems has gained significant importance to allocate them properly for
enhancing their efficiency in providing grid support. However, the use
of analytical/experimental battery models in probabilistic analysis of
power systems has become a bottleneck due to the heavy computational
burden associated with the requirement of solving a set of nonlin-
ear equations for a large number of iterations. Ideal battery models
have been commonly used in probabilistic analysis of power systems.
Although the use of ideal battery models in power system problems
reduces the computational burden, inaccuracies remains in the ob-
tained results due to the consideration of constant charging/discharging
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efficiency, which may increase the investment or decrease the battery
performance significantly.

Machine learning (ML) algorithms can be a promising solution to
reduce computational burden of capturing non-linear battery character-
istics in probabilistic analyses. For instance, neural networks (NNs) can
be trained to capture the relationships between charging/discharging
power and battery state of charge (SoC) without solving non-linear
equations. Therefore, developing ML-based accurate battery models is
indispensable to overcome the computational barrier of using accurate
battery models in power system planning studies.

Several studies have focused on providing a proper battery model
under a wide range of considerations. Review of the state-of-the-art in
the field of battery modeling has been provided in [1]. Authors of [2-5]
have proposed several analytical methods to calculate battery circuit
parameters (i.e., resistance, capacitance, and open circuit voltage).
Also, a comprehensive battery model considering electrochemical prop-
erties has been developed and experimentally validated in [6]. Focusing
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on the trade-off between speed and accuracy, several types of battery
circuit models have been studied, which facilitate the selection process
of a certain model for a specific task [7]. A procedure to experimentally
validate the relationship between charge/discharge capabilities and
SoC of different types of batteries has been proposed in [8]. In [9], an
improved deep learning-based method has been proposed to determine
battery SoC that is applicable in electric vehicles. A convolutional NN
and a long short-term memory method have been used to predict the
remaining battery lifetime in [10]. A coupled cation-vacancy pair in Ni-
doped CoSe has been introduced in [11] to boost hydrogen evolution
reaction activity, which provides guidance to design new electrocat-
alysts. In [12], a Fe-incorporated topochemical deintercalation-based
redesign method has been used to improve intrinsic activity of six-
coordinated octahedrons in Co,Sg. RhSe, has been reported as a “3D”
electrocatalyst for hydrogen evolution reaction with top-class activity
in [13], which is synthesized using a facile solid-state method. In [14],
graphene-like Cog g5Se has been doped with sulfur to enhance hydro-
gen evolution reaction (HER) in electrocatalytic, which inspires for
intrinsic HER activity optimization of other similar transition metal
chalcogenides. The pulse laser ablation in air (LAA) has been employed
in [15] to modify several features of energy-related catalytic reactions
such as morphology modulation, defects engineering, or heterojunction
fabrication. Although each proposed model has its own advantages
and disadvantages, reducing the complexity of using battery model
in probabilistic analyses of power systems is still under investigation.
Therefore, it is imperative to develop an accurate battery model that
can be used to incorporate the non-linear relationship between charg-
ing/discharging power and energy level of batteries in probabilistic
analyses of power systems.

Several battery models have been proposed [2-10] to capture the
physical interactions within a battery unit; however, each model is built
based on various assumptions to reduce the complexity of nonlinear
phenomena. Selecting a proper model for a specific power system
study always exhibits a trade-off between efficiency, accuracy, and
complexity [16]. Analytical battery models are highly complex yielding
increased computational burden [17] especially for time involved prob-
lems such as reliability evaluation of electric power systems. In [18],
an ideal battery model with constant charging/discharging rates has
been used to analyze the impacts of dynamic thermal rating and battery
energy storage systems on reliability of wind-integrated power sys-
tems. A multiobjective framework considering an ideal battery model
has been proposed in [19] to optimize uprating of real-time ther-
mal rating of lines and capacity of battery energy storage systems
against wind curtailment, network aging and reliability. In [20], a
method considering ideal batter models has been proposed to ana-
lyze the combined effects of battery energy storage systems, demand
response, and dynamic thermal rating on reliability of power sys-
tems. Although the proposed approaches in [18-20] have provided
insights into improving power system reliability using battery stor-
age systems, these approaches considered ideal battery models where
charging/discharging rates are constant. However, in the practical
scenario, discharging efficiency is low for high current value and low
SOC (can be dropped up to 33% from the maximum value) [6,17]. Also,
the charging efficiency follows a nonlinear behavior with a smaller effi-
ciency dropping in the smaller operating region [6,17]. Therefore, use
of actual charging/discharging efficiencies of batteries is necessary to
improve accuracy of evaluating and enhancing power system reliability
with battery energy storage systems. Thus, it has become important to
have an accurate battery model that captures non-linear interactions
between charging/discharging power and SoC of batteries in power
system reliability enhancement studies.

Optimal deployment of battery energy storage systems (BESSs) in
power systems has gained significant momentum to improve the overall
performance of power systems. An ideal battery model under constant
charging/discharging rates has been used in [21] to determine opti-
mal locations and sizes for batteries to improve load factor of power
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systems. Impacts of different constant charging/discharging rates on
supply, bidding, optimal scheduling, and optimal siting of batteries
have been analyzed in [22]. An strategy to determine optimal battery
locations has been proposed in [23] to maintain voltage limits of
distribution systems integrated with photovoltaic generators. Several
ideal battery model-based optimal battery siting strategies have been
proposed to improve voltage profile of power systems considering
battery lifespan [24], load-sensitivity [25], and cost reduction [26].
In [27], a method to determine optimal battery locations considering
ideal battery models has been proposed to enhance reliability of solar-
integrated power systems. A method to quantify the sizes of battery
energy storage devices using ideal battery model has been proposed
in [28] to reduce the negative impacts of wind energy on power sys-
tems. Although BESSs have been used in a wide range of applications,
their potential use to increase the reliability of power systems has not
been explored comprehensively. In addition, most of the studies have
relied on ideal battery models to reduce the computational burdens
ignoring the impacts on accuracy of obtained results. Thus, a method
to determine optimal battery locations based on an accurate battery
model to maximize power system reliability with high accuracy needs
to be developed.

In this paper, a data-driven accurate battery model is developed
to capture non-linear characteristics of batteries without solving non-
linear equations. In the proposed approach, an NN with a rectified
linear unit activation function (ReLU) is trained to capture the non-
linear relationship between charging/discharging power and energy
level of batteries. Another NN with linear activation function is trained
to establish the relationship between charging/discharging power lim-
its and SoC. A historical data set to train both NNs is generated using
an experimentally validated battery model in [6]. The weights and
biases of the trained networks in conjunction with mixed integer linear
programming (MILP) are used to develop the proposed accurate battery
model. A linearized AC power flow model is leveraged to integrate the
proposed battery model in power system reliability evaluation. Optimal
locations for batteries considering the developed model is determined
using a genetic algorithm (GA) to enhance reliability of power systems.
Main contributions of the proposed work in comparison with existing
methods are summarized as follows.

The proposed data-driven battery model is effective in removing
the computational issues of incorporating the actual/experimental
relationship between charging/discharging power and SoC levels of
batteries in probabilistic analysis of power systems, which is bene-
ficial to enhance the accuracy of power system planning studies for
battery energy storage systems.

NNs are trained to capture the relationship between charging/
discharging power and energy and charging/discharging power limits
and SoC of batteries. Weights and biases of the trained networks
and MILP are used to formulate a mathematical model for the
proposed battery model, which is used to develop a framework for
integrating actual battery characteristics in power system reliability
evaluation using a linearized AC power flow. The developed frame-
work eliminates the scalability issues of incorporating actual battery
characteristics in reliability studies of large integrated power grids by
removing the requirement of solving computationally expensive AC
optimal power flow for a large number of iterations.

A GA-based algorithm is proposed to provide a guideline for incorpo-
rating the proposed accurate battery model in determining optimal
battery locations to enhance power system reliability.

The effectiveness of the proposed approach is demonstrated on a
modified version of the IEEE 33-bus distribution system. Monte Carlo
simulation is performed to calculate reliability indices.

The rest of the paper is arranged as follows. Section 2 describes
the proposed battery modeling approach. Section 3 illustrates the in-
tegration strategy of battery model into reliability evaluation problem.
Section 4 provides a description of the optimal siting strategy for relia-
bility enhancement. Section 5 demonstrates the proposed method using
numerical examples. Section 6 provides several concluding remarks.
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Fig. 1. Battery Equivalent Circuit Model.

2. The proposed data-driven accurate battery model

The proposed approach to develop data-driven battery model has
three main steps, which are as follows: collect historical data to train
the NNs, perform training of the NNs using historical data, and extract
the weights and biases of the trained networks in conjunction with
mixed integer linear programming to develop the accurate battery
model. These steps are described in the following subsections.

2.1. Data generation scheme

In this paper, an experimentally validated battery model provided
in [6] is used to generate training data for the proposed battery model.
Fig. 1 shows the equivalent circuit of this battery model.

The equivalent circuit model contains a voltage source and three re-
sistors that represent three electrochemical processes, which are ohmic
losses, charge transfer, and membrane diffusion. In [6], a mathe-
matical model based on the equivalent circuit model of Fig. 1 has
been developed to express the non-linear relationships between charg-
ing/discharging power and SoC. Instead of reproducing the complex
mathematical representation, only the required expressions for this
work are provided next.

2.1.1. The voltage source
The expression for the equivalent voltage is as follows.

R, T ((1-X,) X
g d d
Veg =Upy + F Jn(“’cd .(; _Xafl)> + Uiy @

where Uy = is the reference potential at equilibrium; R, is the gas
constant; F is the Faraday constant; T is the temperature; X,; and X,
are the molar fractions of cathode and anode, respectively; v;, is the
non-ideal interaction voltage; and V,, is the equilibrium voltage of the
battery. The expressions for the X,,, X,,, and v;,, in terms of SoC, are
as follows,

X4 =0.083 +0.917 - SoC, )
X,;, =1-0.7-SoC, 3
Uipg = Uim,cd - Uim,ad’ (4)
U 2X, - j-(1-X)
o= ) gyt 2 T
it ,Z A [(226, D Gx ®)

where A; is the interaction parameters for seventh order Redlich-Kister
equation and i = cd,ad, where cd denotes cathode and ad denotes
anode.
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2.1.2. The equivalent resistances
The expressions for ohmic losses, charge transfer, and membrane
diffusion are as follows.

* Ohmic losses
Ropm = RohmA,O + Rohm,T T+ Rohm,SgC - SoC 6)

where R, 05 Ropmr> @0d R, s,c are the parameters to obtain
resistance using ohmic phenomena.
Charge transfer
1 R,-T- oEa/RgT)
Rc’z(x X005 | TR Agn -k
ed " Xad SET * Ko

)

where Agp; is the solid electrolyte interface area; E, is the
activation energy; and k, is the reaction rate constant.
The membrane diffusion

b
d,mem > ( 8)

where K uoms bgmem> and Ty 4 e are the membrane diffusion
constants.

RdA,mem = KdA,mem + eXp (

The resultant equivalent resistance for all the losses of the battery
circuit model, R,,,, is as follows.

Rtot = Rohm + Rct + Rd,mem! (9)

From the equivalent circuit model, the discharging efficiency is calcu-
lated as follows.

ais o Py T R (10)
Pout Veq

where P%“ is the outgoing power from battery; P% is the discharged
power to the grid; I is the discharging/charging current of the battery
equivalent circuit model; and 49/ is the discharging efficiency.
Similarly, the expression for the charging efficiency is represented
as follows.
ch _ P_m — Veq

=] —m8m—, 11
peh Veq+I'Rtot an

where P! is the outgoing charging power from grid; P is the incom-
ing power to the battery; and 5" is the charging efficiency.
Finally, the relationship between battery energy level and charg-
ing/discharging power is expressed as follows.
1 .
E = E_ +n" P — — P!, 12)
-1

Subject to,

EM < E, < EM™, (13)

0 < Ptch < Ptch,max’ (14)

0< Ptdis < Ptdis,max’ (15)
E!

SoC, = B (16)

where 7 represents the time step; E,_; is the energy level at previous
time step; E, is the energy level at current time step; E™" and E™* are
the minimum and maximum allowable energy level of the battery; Ef
is the battery capacity; P,””‘"“‘x and P,d”‘m“" are the maximum charging
and discharging power limits at current time step, respectively; and
SoC, is the state of charge at current time step.

The mathematical expressions to determine the charging/dis-
charging power limits are taken from [17] and expressed as follows.

Rch,max - Veq,x . Ifh,max + (Itch,max)Z . Rmt (17)

Ptdix,max — Veq,t . Ildis,max _ (Itdix,max)z . Rtar (18)
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ch,max dis,max
It It

where and are the maximum charging and discharging
current. Further illustration to calculate Ifh’"“"‘ and I,’”“"“‘”‘ in terms of
SoC has been provided in [17].

The expressions provided in (1)-(18) are used to generate training
data for the proposed battery model. The procedure to select input and
output (target) parameters as well as NNs training are described in the

following subsection.
2.2. Training neural networks to capture actual battery characteristics

The relationship between charging/discharging power and battery
energy level follows a non-linear behavior, whereas the relationship
between charging/discharging power limits and SoC exhibits a linear
behavior for a wide range of SoC levels (25%-95%). Therefore, an
NN with ReLU activation function is used to capture the non-linear
behavior whereas another NN with linear activation function is used
to capture the linear behavior.

2.2.1. Training algorithm for the NN with ReLU activation function to

capture relationship between energy level and charging/discharging power
The input training matrix, X, to capture the relationship between

charging/discharging power and energy level is provided as follows.

1 ch,1 dis,1
El—l P)‘—l 1)1‘—1
E2 PCh'z Pt—l
—1 -1 dis,2
X=[x!' % e owr)Z[ TN =2, 19)

n ch,n dis,n
Et—l Pt—l Pr—l

where x" represents the nth training sample; E! |, Pf_hl’", and Pi’f’" are
the energy level, charging power, and discharging power, respectively,
at previous time step for the nth sample; and T, represents the transpose
of a matrix.

The output training vector, Y, is expressed as follows.

Y =[B! E? e, (20)

where E;” is the energy level at current time step for the nth sample.

Both the input and output training matrices of (19) and (20) are cal-
culated using (1)-(16). The energy level, charging power/discharging
power, and SoC are varied randomly using uniform distribution func-
tions to generate the training data set.

Since the ReLU activation function is represented as f(.) = max(0,.),
the upper bound for the ReLU activation function is set as E™MX,
Therefore, the mathematical model of the used NN is expressed as
follows.

E'=x"-W +b, (21)

t

E" = min(max(0, "), E™™), (22)

where W and b are the matrix and vector for weights and biases, respec-
tively; and E]' is the predicted output by the NN. The initial weights and
biases are randomly selected using Standard Gaussian distribution. The
mean square error between actual and predicted outputs are minimized
to train the NN using,

n
. l n _ preny2
rvrl}nbl ; ;(Et E™). (23)

2.2.2. Training algorithm for the NN with linear activation function to
capture relationship between SoC and charging/discharging power limits

The input training vector to capture the relationship between SoC
and charging/discharging limits using an NN with linear activation
function is as follows.

A=[SoC! SoC? socm]", (24)
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where A is the training input matrix and SoC}" is the SoC of the mth
sample.
The labeled output training vector, B, is given in (25).

B= [P*,max,l P*,max,Z P*,max,m]T’ (25)
= |P > A s

The symbol * is replaced by charging or discharging based on the scope
of implementation.

The expression to calculate charging/discharging power limits from
SoC based on linear activation function is as follows.

P = SoCMW* + b, (26)
where W* and b* are weights and biases, respectively and P,;™" is
the predicted charging/discharging power limits by the NN. To train
the NN, the mean square error is minimized as follows.

m
: 1 s, Maxs sk, max\2
Jnin, — ;(Pm - Py, @7)

2.3. Mathematical model for the proposed battery model

After training the NNs, a mathematical representation using the
weights and biases of the trained networks is developed to avoid the
requirement of non-linear equations to capture battery characteristics.
In this model, the expression to calculate the energy level at current
time step is as follows.

E}' = min(E""*", E"ma%) (28)

Etn,remp — max(Ef, En,min) (29)

Subjected to the following constraints,

Ermin < geTP < grin 4 (1 - Z, )M, (30)
En < B < BN+ Z, M, (31)
E"MX — (1 - Z, )M < E! < E™™, (32)
EM"™ — 7, M < E" < E"™, (33)
Z,,€{0,1}, 34
Z,, € 10,1}, (35)

where Z,, and Z,,, are introduced integer variables to represent
decision of including an edge in a graph; E"*"” is the calculated energy
level between maximum and minimum energy limits of the battery
using (28)—(35) at time 7 for the n'h sample; and M is a sufficiently
large number to ensure validity of the inequality constraints for all
values of the integers variables.

The derived mathematical model explains the behavior of the bat-
tery model under charging and discharging conditions. If the value of
Et” becomes less than E”™™" due to discharging, then (29) and (30)
force Z;, to be one. Consequently, (28) and (30) keep E = Ermin
On the other hand, if the value of E[" becomes more than E”™" after
charging/discharging, then (29) and (30) force Z,, to be zero, and
(28) and (31) keep E:'"e'"p = E"t" Similarly, if E"{' is more than E™max
for charging then (29) and (32) force Z,, to be one. Therefore, E}'
becomes E™™* by (28) and (33). If the EZ""“'"” is less than E"™™m2X for
charging/discharging then (28) and (32) force Z,, to be zero, and E]'
becomes E,”””"‘p by (28) and (33).
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3. Integrating the proposed battery model in power system relia-
bility evaluation

This section explains the integration procedure of the developed
battery model into power system reliability evaluation and enhance-
ment. In the power system reliability studies, a power flow is solved
to solve the optimization problem of minimizing load curtailments. In
this paper, a linearized AC power flow formulation described in [29]
and mixed integer linear programming are leveraged to formulate the
objective function and network constraints with the proposed battery
model.

3.1. Objective function

The objective function to minimize load curtailments is formulated
as follows.

Y
c,min __ c,r
Vo mln( PR Lnb”)) vd (36)

nbeNb
where d is an indicator for a day in the year; Y is the total number
of simulation years; N is the set for all buses; L a and L% are
the active and reactive load curtailments of a power system on dth
day of Yth year at bus r; and £ mit js the minimum amount of load
curtailment of a power system on the dth day.

3.2. Network constraints

The network constraints to solve the optimization problem given in
(36) are explained as follows.

3.2.1. Power balance equations
The power balance at time 7 on a day d can be expressed as follows.

Bl 0,4~ G qVig+ Pl + P+ Ly
, pet 37)

=P/, + P, v1,vd,
G/ J0a+BaVia+ Q + Lf = Q,d, vt,Vd, (38)

where ¢ is the index for hours of a day, running from 1 to 24; Bt 4
and G’ are the modified susceptance and conductance matrices [29],
respectlvely, , 4 is the conventional susceptance matrix; G,, is the
conventional conductance matrix; 6, , is the vector of nodal voltage
angles; V,, is the vector of nodal voltage magnitudes; Pg is the
vector of real power generation; Qg is the vector of reactlve power
generation; Pd” is the vector for dlschargmg power of batteries; P”h
is the vector for charging power of batteries; Pl is the vector for real
power demand; Q is the vector for reactive power demand; L") ", is the
vector of active load curtailment; and L ", is the vector of reactlve load
curtailment.

3.2.2. Battery model equality constraints
The battery model, representing SoC and power values, at time ¢ on
day d is expressed as follows.

Eq,=E_ 14— W(P;f"f - PLh) +b, vi.vd, (39)
pdismax _ deSOCt,d + bdm, V1,Vd, (40)
Ptc.:,max — WcmSOC,’d + bcm’ VI, Vd, (41)

where E,_, , is the battery energy level before charging/discharging;
E,, is the battery energy level after charging/discharging; W and b
are the weights and biases of the trained NN obtained using (19)-
(23); SoC, 4 is the battery SoC; P;Z*"‘"" is the maximum discharging
power; P‘: M js the maximum charging power; W% and »%" are the
weights and biases for discharging, respectively; and W™ and b°™ are
the weights and biases for charging which are obtained from the trained
NN based on (24)-(27).
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3.2.3. Battery model inequality constraints

The mathematical model introduced in Section 2.3 is used to derive
the inequality constraints for battery model in reliability evaluation
problems as follows.

E™ < B SE™ 4+ (1-Zy, )M, Vi,¥d, (42)
E,d<E P<E g+ Z 4M, Vt,Vd, (43)
E™ —(1-Z,,) < E 4 < E™, V1,Vd, 449
EfY = Zy M S E g < ES", Vi,Vd, (45)
Z1,4€{0,1}, V1,4, (46)
Zy.q € (0,1}, V1,Vd. (47)

3.2.4. Charging/discharging power limits
The battery charging and discharging power limits at time ¢ on day
d must be within the battery capacity, which are expressed as follows,

ch ch,max
0O< P, <P, ,

Vt,Vd, (48)

di. dis,max
0< Py < Pr; , Vi,vd. (49)
3.2.5. Generation power limits
The generated power of all generators at time ¢ on day d is as
follows.

min 4 ma.
P < PS, < PP, VLV, (50)

oyt < Qf, <O, Vi,Vd, (s1)

where P;‘i“ is the vector of minimum real power generation; P
is the vector of maximum real power generation; Q™" is the vector
of minimum reactive power generation; and Q9™ is the vectors of
maximum reactive power generation.

3.2.6. Load curtailment limits

The amount of load curtailment at each bus should be less than or
equal to the total amount of load at the same bus for a specific time ¢
on day d, which are expressed as follows.

0<Ly§<P, Vvivd, (52)
0<Lyi<Q, Vivd. (53)

3.2.7. Feeder capacity constraints

The forward and reverse power flows through a specific line con-
nected at any time ¢ on day d must be within line capacities, which are
expressed as follows.

SF <SP vt vd, (54)

- SR <SP, vt vd, (55)

where ST is the vector of maximum forward line flow capacities; S
is the vector of maximum reverse line flow capacities; S{Fd is the vector
of forward line flows; and S’ th is the vector of reverse line flows.

3.2.8. Voltage limits
Voltage magnitudes for all buses at time 7 on day d can be expressed

as follows.
ymin <V, S VMR YV, (56)

where V™" is the vector of minimum bus voltage magnitudes; and V™
is the vector of maximum bus voltage magnitudes.
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3.2.9. Angle limits
Voltage angles for all buses at time 7 on day d can be expressed as
follows.

—x<6,4<7 ViVd. (57)

3.3. Reliability evaluation index

In reliability evaluation studies of power systems, the energy indices
have been observed as the slowest indices in terms of convergence using
Monte Carlo Simulation [30]. Therefore, the expected demand not
supplied (EDNS) index is calculated in this work. It is worth mentioning
here that the operators will also have the flexibility to choose other
reliability indices for evaluating reliability of power systems with the
proposed battery model. The EDNS is expressed as follows.

Y
1 c,min
EDNS = ———— Lo s 58
((8760><Y) ; dy ) 8)
where Y is the total number simulated years; and Lfl“';‘i" is the amount
of minimum load curtailments on day d of year y.

4. Optimal battery locations for reliability maximization

This section describes the criteria used to evaluate optimal locations
for batteries to enhance reliability of power systems considering the
proposed battery model.

4.1. Evaluation criteria

To achieve efficient utilization of batteries in power systems, an
optimal battery siting strategy needs to be developed. In this work,
we have focused on determining optimal battery locations to maximize
power system reliability. The EDNS and Energy Index of Reliability
(EIR) are used to determine optimal locations for batteries. The ability
of both indices to capture the severity of expected power system
outages makes them good candidates for reliability evaluation criteria.
The EIR is calculated as follows.

_ EDNS x 8760
ET()tal

EIR=1 s (59)
where Er,,, is the total amount of required energy in each year.

The value of EIR provides an indicator for the reliability level.
For instance, a perfectly reliable system (EDNS = 0) has EIR value
of one, whereas the EIR value reduces if EDNS is greater than zero.
In other words, the value of EIR is inversely proportional of EDNS
(reliability decreases as well). Therefore, we need to maximize the
EIR via determining optimal locations for batteries to enhance the
reliability of power systems. If the total number of possible deployment
sites is my, for a specific number of batteries, N*', then the decision to
locate the batteries can be represented using m,, binary bits. Thus, a
binary string, X, with m,, bits can be used to encode the variables. The
mathematical model to represent the optimization problem is expressed
as follows.

max f = EIR(X), (60)
Mp;
Subject to, )’ X < N, (61)

ibr=1

where X is the binary string.
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4.2. The algorithm to determine optimal battery locations

As there could be several feasible sites, the optimal sites that max-
imize EIR are searched through GA. Determining optimal locations
of battery energy storage systems requires repetitively running the
simulations for a large number of scenarios. This exhaustive search
could take a very long time (days to months depending on system
sizes) to obtain the complete solution. In [31], GA has been used
for optimal siting and sizing of distributed generators with storage
systems using feeder reconfiguration. In [32], optimal sites and sizes
for utility-scale shared energy storage systems with high solar pene-
tration have been determined using GA. In [33], GA has been used to
solve generation expansion planning problems. GA has been used to
solve electric distribution service restoration through minimizing out-
of service area, switching operation, and power loss [34]. Following
the same convention of [31-34], GA is adopted to find the optimal or
near optimal battery locations. In the GA, the variables are represented
by chromosomes which are composed of genes. Several steps such as
reproduction, crossover, and mutation are conducted iteratively among
chromosomes to reach the best fitness. A solution is obtained by either
converging to a best fitness value or reaching the maximum number of
iterations [35].

The detailed procedure to determine the optimal battery locations
for reliability maximization problem using GA algorithm is illustrated
as follows.

1. Develop Battery Model: Construct an equivalent battery model
using electrochemical properties based on Section 2.1.

2. Capturing Non-linear Battery Characteristics: Train an NN
with ReLU activation function to capture the relationship between
battery energy level and charging/discharging power based on
the procedure described in Section 2.2.1. Also, train two NNs with
a linear activation function separately to establish relationship
between SoC, charging power limits, and discharging power limits
based on Section 2.2.2.

3. Battery Mathematical Model: Extract all the weights and biases
of the trained NNs. Then, formulate a mathematical model in-
corporating integer variables for the proposed NN-based battery
model using the procedure described in 2.3.

4. Reliability Evaluation Formulation: Integrate the developed
NN-based battery model into reliability evaluation problem based
on Section 3.

5. Optimal Battery Locations: Determine the optimal sites for bat-
tery units to enhance the reliability of power systems using GA
based on Section 4.1.

The architecture to both develop and integrate the proposed battery
model in probabilistic analyses is shown in Fig. 2.

5. Implementation and results

To validate the proposed method, simulations are carried out on a
modified version of the IEEE 33-bus distribution system. The IEEE 33-
bus test system consists of 33 nodes, 32 branches, 5 tie-lines, 3 laterals,
and the operating voltage is 12.66 kV [36]. In the modified IEEE 33-bus
system, locations of the generating units and ratings of the photovoltaic
(PV) units are selected based on the provided modification in [37]. The
total peak demand of the modified 33-bus test system is 2972 kW [37].
The limits of hourly generation amount of PV units are calculated using
PVWatts calculator developed by the US National Renewable Energy
Laboratory [38]. The rating of each battery is taken from [6], which is
5.32 kWh and we assume that 10 batteries are aggregated to install at
each selected location. Thus, the aggregated capacity of the batteries
to be installed is 53.20 kWh. The locations of the DGs in the modified
IEEE 33-bus distribution system are shown in Fig. 3. The ratings of all
the DGs are given in Table 1.

Three different case studies are carried out to demonstrate the
proposed method, which are as follows.
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Fig. 2. Architecture to develop and integrate the proposed battery model in
probabilistic analyses.

Substation

Fig. 3. Modified IEEE 33-bus distribution system.

* Case I: Comparative study between equivalent battery circuit model
and machine learning-based battery model.

+ Case II: Analyzing the impacts of the accurate battery model on
reliability of power systems.

+ Case III: Analyzing the impacts of accurate battery model in deter-
mining optimal battery sites.

The above mentioned case studies are described as follows.

Case I.. In this case, the accuracy of predicted next state energy
level and charging/discharging power limits of the trained NNs are
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Table 1

Ratings of generators of the modified IEEE 33-bus.
Types of Locations Rating Types of Locations Rating
generators (Node No.) kw) generators (nod No.) kw)
DG 6 1200 PV 12 50
DG 8 400 PV 16 50
DG 14 400 PV 18 100
DG 24 800 PV 24 300
DG 25 800 PV 25 250
DG 30 400 PV 29 100
DG 32 400 PV 30 200
PV 7 100 PV 31 150
PV 10 100 PV 32 50

analyzed. From the experimental results provided in [6], it is ob-
served that the discharging efficiency of Li-ion batteries is low at low
SoC level, whereas the charging efficiency is low at high SoC level.
Therefore, we assume that the permissible SoC levels of batteries for
charging/discharging are 25-95%.

To predict next state energy level using current state energy level
and charging/discharging power, a single layer NN with an ReLU
activation function is trained based on the approach described in
section 2.2.1. The input training data and labeled target data are
randomly sampled for different SoC levels using (1)—(20). Total of 1000
samples are used to train the network. Among these samples, 70% are
used for training and 30% are used for testing. To demonstrate the
effectiveness of the trained network, a snapshot of the predicted results
by the trained network for 50 randomly selected input samples (current
state energy level and charging/discharging power) and the results of
experimentally validated equivalent circuit model for the same inputs
are shown in Fig. 4.

From Fig. 4, it can be seen that the difference between the re-
sults obtained using the trained network and experimentally validated
circuit model is almost zero. Thus, it can be claimed that the pro-
posed NN-based battery model can precisely emulate the results of
experimentally validated circuit model.

To predict charging power limits from SoC levels, a single layer NN
with linear activation function is trained based on Section 2.2.2. The
training samples for different random SoC levels are generated using
(17), (24), and (25). The total number of training samples for this sce-
nario is also 1000. Similarly, 70% of these samples are used for training
and remaining 30% are used for testing. To demonstrate effectiveness
of the trained network, a snapshot of the predicted charging power
limits by the trained NN and calculated charging power limits using
equivalent battery circuit model for 25 different SoC levels is shown in
Fig. 5.

Similar to charging power limits and SoC, a single layer NN with
linear activation function is trained based on Section 2.2.2 to predict
the discharging power limits from SoC levels. The training samples for
different random SoC levels are generated using (18), (24), and (25).
Also, the total number of training samples for this scenario is 1000, and
70% of these samples are used for training and remaining 30% are used
for testing. Also, a snapshot for the predicted discharging power limits
of the trained NN for 25 different SoC levels and calculated discharging
power limits using (18) based on the equivalent circuit model for the
same SoC levels are shown in Fig. 6.

From Figs. 5 and 6, we can see that the trained networks for both
charging and discharging power limits are capable to mimic the results
of experimentally validated circuit model.

Case II:. In this case, the reliability of the modified IEEE 33-bus dis-
tribution system is calculated using both the proposed accurate battery
model and ideal battery model. Two aggregated batteries are installed
at two randomly selected buses (i.e., bus no. 24 and 30). The algorithm
described in Section 3 is used to evaluate the reliability with accurate
battery models. The reliability with ideal battery model is calculated
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to analyze the impacts of the accurate battery model on power system Table 2
reliability evaluation. In [39,40], the charging/discharging efficiencies Reliability index of the modified IEEE 33-bus.

. . . S i EDNS (kW,
for the ideal battery model have been varied from 85%-95%. Following cenarios (kW7year)
. . . . . . . With NN-based battery model 5.41196
the same convention, both charging and discharging efficiencies are With ideal battery model 4.61579

considered constant (95%) for the ideal battery model. The results for
the accurate and ideal battery models are shown in Table 2.

From Table 2, it can be seen that the EDNS with accurate model is
approximately 17.41% larger than that of ideal battery model. There-
fore, inclusion of the accurate battery model in the reliability evalua-
tion methods is important to achieve accurate results. in Section 4 using both the accurate and ideal battery models. Similar

Case III:. In this case, the optimal locations to install batteries to en-

hance the reliability are determined based on the procedure described
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Table 3
Optimal locations for batteries to maximize reliability of the modified IEEE 33-bus.
Scenarios Battery locations EDNS
(Bus No.) (kW/year)
With ideal battery model 7, 24 3.70451
With NN-based battery model 8,7 3.29342

to [36], we assume that two optimal locations from six candidate buses
will be determined to install two aggregated batteries to enhance reli-
ability of the modified IEEE 33-bus distribution system. The candidate
buses are 7, 8, 24, 25, 30, and 32 [36]. The decision of installing the
batteries in the selected buses are represented using binary strings. The
determined optimal locations for the accurate and ideal battery models
with respective EDNS values are shown in Table 3. In the above case
studies, we have presented results for maximizing the expected index
of reliability. In other words, we investigated the impacts of the actual
battery model on determining optimal battery locations to minimize
expected load curtailment. From the results of Tables 2 and 3, we can
see that optimal battery locations for ideal battery models are different
from the proposed actual battery model. This indicates that using ideal
battery models the results will be conservative (as shown in Table 3).
In addition to being computationally attractive, the proposed model
provides more accurate results. Therefore, it can be concluded that the
proposed battery model can play a vital role in determining accurate
optimal battery locations to maximize reliability of power systems.

It is worth mentioning here that the proposed battery model can
be realized into practical power systems with the knowledge of system
characteristics such as number of nodes and branches, number of tie
lines, operating voltages, generation capacity, load profile, availability
of system equipment, candidate locations etc., which can be a great
future research scope. To incorporate the proposed data-driven battery
model into probabilistic analysis of practical power systems, first, NNs
need to be trained to establish actual relationships between charg-
ing/discharging power and energy and charging/discharging power
limits and SoC of batteries based on the proposed approach in Sec-
tions 2.1 and 2.2. Then, weights and biases of the trained networks
and MILP need to be used to formulate a mathematical model for the
proposed battery model based on Section 2.3.

Also, in this work, Case I validates the effectiveness of the proposed
battery model in emulating the characteristics of analytical/accurate
battery models. Comparative results between ideal battery models and
proposed battery models are provided in Case I and Case III to demon-
strate the impacts of actual battery models on the obtained results
compared to the ideal battery models. The comparative study be-
tween the proposed battery model and analytical battery models for
computational speed can be a future scope of research.

6. Conclusion

This paper has proposed a machine learning-based battery model
to capture actual battery characteristics without solving a set of non-
linear equations. The non-linear relationship between battery energy
level and charging/discharging power has been captured using an NN
with ReLU activation function whereas an NN with linear activation
function has been used to capture the relationship between SoC and
charging/discharging power limits. Also, a mathematical model has
been developed using mixed integer linear programming, weights and
biases of the trained NNs, and a linearized AC power flow model to cap-
ture the time-synchronized relationship between charging/discharging
power and energy level of batteries in the reliability evaluation problem
of power systems. Moreover, a GA-based approach is used to determine
optimal locations for batteries to enhance reliability of power systems
considering the proposed battery model. The proposed approach was
demonstrated on a modified version of the IEEE 33-bus distribution
system through several case studies. The results of these case studies
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showed that the developed machine learning-based battery model can
mimic the characteristics of experimentally validated equivalent bat-
tery model. Also, the results showed that the accurate battery model
has significant impacts on both reliability evaluation efforts and results
of optimal battery siting.

CRediT authorship contribution statement

Md. Kamruzzaman: Methodology, Software, Writing — original
draft. Xiaohu Zhang: Conceptualization, Methodology, Supervision.
Michael Abdelmalak: Methodology. Di Shi: Writing — reviewing. Mo-
hammed Benidris: Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work was supported by the U.S. National Science Foundation
(NSF) under Grant NSF 1847578.

References

[1] D.M. Rosewater, D.A. Copp, T.A. Nguyen, R.H. Byrne, S. Santoso, Battery energy
storage models for optimal control, IEEE Access 7 (2019) 178357-178391.

[2] M. Sitterly, L.Y. Wang, G.G. Yin, C. Wang, Enhanced identification of battery
models for real-time battery management, IEEE Trans. Sustain. Energy 2 (3)
(2011) 300-308.

[3] R. Ahmed, M.E. Sayed, I. Arasaratnam, J. Tjong, S. Habibi, Reduced-order
electrochemical model parameters identification and state of charge estimation
for healthy and aged Li-ion batteries—Part II: Aged battery model and state
of charge estimation, IEEE J. Emerg. Sel. Top. Power Electron. 2 (3) (2014)
678-690.

[4] Y. Cao, R.C. Kroeze, P.T. Krein, Multi-timescale parametric electrical battery
model for use in dynamic electric vehicle simulations, IEEE Trans. Transp. Electr.
2 (4) (2016) 432-442.

[5] M. Kwak, B. Lkhagvasuren, J. Park, J. You, Parameter identification and SoC
estimation of a battery under the hysteresis effect, IEEE Trans. Ind. Electron.
(2019) 1, http://dx.doi.org/10.1109/TIE.2019.2956394.

[6] Alberto Berrueta, Andoni Urtasun, Alfredo Urstia, Pablo Sanchis, A comprehen-
sive model for Lithium-ion batteries: From the physical principles to an electrical
model, Energy 144 (2018) 286-300.

[7] A. Fotouhi, D.J. Auger, K. Propp, S. Longo, Accuracy versus simplicity in online
battery model identification, IEEE Trans. Syst. Man Cybern. Syst. 48 (2) (2018)
195-206.

[8] H. Pandzi¢, V. Bobanac, An accurate charging model of battery energy storage,
IEEE Trans. Power Syst. 34 (2) (2019) 1416-1426.

[9] Dickshon N.T. How, Mahammad A. Hannan, Molla S. Hossain Lipu, Khairul S.M.
Sahari, Pin Jern Ker, Kashem M. Muttaqi, State-of-charge estimation of Li-ion
battery in electric vehicles: A deep neural network approach, IEEE Trans. Ind.
Appl. 56 (5) (2020) 5565-5574.

[10] Lei Ren, Jiabao Dong, Xiaokang Wang, Zihao Meng, Li Zhao, M. Jamal Deen, A
data-driven auto-CNN-LSTM prediction model for Lithium-ion battery remaining
useful life, IEEE Trans. Ind. Inf. 17 (5) (2021) 3478-3487.

[11] Wenwu Zhong, Zongpeng Wang, Nan Gao, Liangai Huang, Zhiping Lin, Yanping
Liu, Fanqi Meng, Jun Deng, Shifeng Jin, Qinghua Zhang, et al., Coupled va-
cancy pairs in Ni-doped cose for improved electrocatalytic hydrogen production
through topochemical deintercalation, Angewandte Chemie Int. Ed. 59 (50)
(2020) 22743-22748.

[12] Zongpeng Wang, Zhiping Lin, Jun Deng, Shijie Shen, Fanqi Meng, Jitang Zhang,
Qinghua Zhang, Wenwu Zhong, Lin Gu, Oxygen evolution reaction: Elevating the
d-band center of six-coordinated octahedrons in Co9S8 through Fe-incorporated
topochemical deintercalation (Adv. Energy Mater. 5/2021), Adv. Energy Mater.
11 (5) (2021) 1-7.

[13] Wenwu Zhong, Beibei Xiao, Zhiping Lin, Zongpeng Wang, Liangai Huang, Shijie
Shen, Qinghua Zhang, Lin Gu, RhSe2: a superior 3D electrocatalyst with multiple
active facets for hydrogen evolution reaction in both Acid and Alkaline solutions,
Adv. Mater. 33 (9) (2021) 2007894.

[14] Shijie Shen, Zhiping Lin, Kai Song, Zongpeng Wang, Liangai Huang, Linghui Yan,
Fangi Meng, Qinghua Zhang, Lin Gu, Wenwu Zhong, Reversed active sites boost
the intrinsic activity of graphene-like cobalt selenide for hydrogen evolution,
Angewandte Chemie Int. Ed. 60 (22) (2021) 12360-12365.


http://refhub.elsevier.com/S2352-152X(21)00984-1/sb1
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb1
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb1
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb2
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb2
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb2
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb2
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb2
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb3
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb3
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb3
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb3
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb3
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb3
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb3
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb3
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb3
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb4
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb4
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb4
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb4
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb4
http://dx.doi.org/10.1109/TIE.2019.2956394
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb6
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb6
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb6
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb6
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb6
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb7
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb7
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb7
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb7
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb7
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb8
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb8
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb8
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb9
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb9
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb9
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb9
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb9
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb9
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb9
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb10
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb10
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb10
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb10
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb10
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb11
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb11
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb11
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb11
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb11
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb11
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb11
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb11
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb11
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb12
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb12
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb12
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb12
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb12
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb12
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb12
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb12
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb12
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb13
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb13
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb13
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb13
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb13
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb13
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb13
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb14
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb14
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb14
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb14
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb14
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb14
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb14

M. Kamruzzaman et al.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Zhiping Lin, Shijie Shen, Zongpeng Wang, Wenwu Zhong, Laser ablation in air
and its application in catalytic water splitting and Li-ion battery, Iscience (2021)
102469.

Z. Xi, M. Dahmardeh, B. Xia, Y. Fu, C. Mi, Learning of battery model bias for
effective state of charge estimation of Lithium-ion batteries, IEEE Trans. Veh.
Technol. 68 (9) (2019) 8613-8628.

A.J. Gonzalez-Castellanos, D. Pozo, A. Bischi, Non-ideal linear operation model
for Li-ion batteries, IEEE Trans. Power Syst. 35 (1) (2020) 672-682.

Jiashen Teh, Ching-Ming Lai, Reliability impacts of the dynamic thermal rating
and battery energy storage systems on wind-integrated power networks, Sustain.
Energy Grids Netw. 20 (2019) 100268.

Mohamed K. Metwaly, Jiashen Teh, Optimum network ageing and battery
sizing for improved wind penetration and reliability, IEEE Access 8 (2020)
118603-118611, http://dx.doi.org/10.1109/ACCESS.2020.3005676.

Mohamed Kamel Metwaly, Jiashen Teh, Probabilistic peak demand matching by
battery energy storage alongside dynamic thermal ratings and demand response
for enhanced network reliability, IEEE Access 8 (2020) 181547-181559, http:
//dx.doi.org/10.1109/ACCESS.2020.3024846.

Kyung-Hee Jung, Hoyong Kim, Daeseok Rho, Determination of the installation
site and optimal capacity of the battery energy storage system for load leveling,
IEEE Trans. Energy Convers. 11 (1) (1996) 162-167.

H. Mohsenian-Rad, Optimal bidding, scheduling, and deployment of battery
systems in California day-ahead energy market, IEEE Trans. Power Syst. 31 (1)
(2016) 442-453.

Wong Ling Ai, Hussain Shareef, Ahmad Asrul Ibrahim, Azah Mohamed, Optimal
battery placement in photovoltaic based distributed generation using binary
firefly algorithm for voltage rise mitigation, in: IEEE International Conference
on Power and Energy (PECon), Kuching, Malaysia, 2014, pp. 155-158.

K. Khalid Mehmood, S.U. Khan, S. Lee, Z.M. Haider, M.K. Rafique, C. Kim,
Optimal sizing and allocation of battery energy storage systems with wind and
solar power DGs in a distribution network for voltage regulation considering the
lifespan of batteries, IET Renew. Power Gener. 11 (10) (2017) 1305-1315.

S. Shafig, B. Khan, A.T. Al-Awami, Optimal battery placement in distribution net-
work using voltage sensitivity approach, in: IEEE Power and Energy Conference
At Illinois (PECI), Champaign, IL, USA, USA, 2019, pp. 1-4.

A.A. Seijas, P.C. del Granado, H. Farahmand, J. Rueda, Optimal battery systems
designs for Distribution Grids: What size and location to invest in? in: Interna-
tional Conference on Smart Energy Systems and Technologies (SEST), Sep., 2019,
pp. 1-6.

10

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Journal of Energy Storage 44 (2021) 103292

Farihan Mohamad, Jiashen Teh, Ching-Ming Lai, Optimum allocation of battery
energy storage systems for power grid enhanced with solar energy, Energy 223
(2021) 120105.

Samer Sulaeman, Yuting Tian, Mohammed Benidris, Joydeep Mitra, Quantifica-
tion of storage necessary to firm up wind generation, IEEE Trans. Ind. Appl. 53
(4) (2017) 3228-3236.

S. Elsaiah, M. Benidris, J. Mitra, Analytical approach for placement and sizing
of distributed generation on distribution systems, IET Gen., Trans. & Dist. 8 (6)
(2014) 1039-1049.

R. Billinton, W. Li, Reliability Assessment of Electric Power Systems using Monte
Carlo Methods, Plenum Press, Ney York, USA, 1994.

Fazel Abbasi, Seyed Mehdi Hosseini, Optimal DG allocation and sizing in pres-
ence of storage systems considering network configuration effects in distribution
systems, IET Generation Trans. Distribut. 10 (3) (2016) 617-624.

Narayan Bhusal, Mukesh Gautam, Mohammed Benidris, Sushil J. Louis, Optimal
sizing and siting of multi-purpose utility-scale shared energy storage systems, in:
52nd North American Power Symposium (NAPS), Tempe, AZ, USA, 2021, pp.
1-6.

P. Murugan, S. Kannan, S. Baskar, Application of NSGA-II algorithm to single-
objective transmission constrained generation expansion planning, IEEE Trans.
Power Syst. 24 (4) (2009) 1790-1797.

Yogendra Kumar, Biswarup Das, Jaydev Sharma, Multiobjective, multiconstraint
service restoration of electric power distribution system with priority customers,
IEEE Trans. Power Deliv. 23 (1) (2008) 261-270.

J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications To Biology, Control, and Artificial Intelligence., MIT
Press, 1992.

S. Elsaiah, M. Benidris, J. Mitra, Reliability improvement of power distribu-
tion system through feeder reconfiguration, in: International Conference on
Probabilistic Methods Applied To Power Systems, Durham, UK, 2014, pp. 1-6.
C. Zhang, Y. Xu, Z.Y. Dong, Robustly coordinated operation of a multi-energy
micro-grid in grid-connected and islanded modes under uncertainties, IEEE Trans.
Sustain. Energy (2019) http://dx.doi.org/10.1109/TSTE.2019.2900082.
National Renewable Energy Laboratory (NREL), NREL’s PVWatts® calculator,
2018, URL https://pvwatts.nrel.gov/.

Mohamed Alamgir, Ann Marie Sastry, Efficient batteries for transportation
applications, in: Proceedings SAE Converge, 2008.

X. Wang, Y. Hou, Y. Zhu, Y. Wu, R. Holze, An aqueous rechargeable lithium
battery using coated li metal as anode, Sci. Rep. 3 (1401) (2013).


http://refhub.elsevier.com/S2352-152X(21)00984-1/sb15
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb15
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb15
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb15
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb15
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb16
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb16
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb16
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb16
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb16
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb17
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb17
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb17
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb18
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb18
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb18
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb18
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb18
http://dx.doi.org/10.1109/ACCESS.2020.3005676
http://dx.doi.org/10.1109/ACCESS.2020.3024846
http://dx.doi.org/10.1109/ACCESS.2020.3024846
http://dx.doi.org/10.1109/ACCESS.2020.3024846
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb21
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb21
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb21
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb21
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb21
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb22
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb22
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb22
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb22
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb22
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb24
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb24
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb24
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb24
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb24
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb24
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb24
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb27
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb27
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb27
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb27
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb27
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb28
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb28
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb28
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb28
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb28
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb29
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb29
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb29
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb29
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb29
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb30
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb30
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb30
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb31
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb31
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb31
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb31
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb31
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb33
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb33
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb33
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb33
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb33
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb34
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb34
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb34
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb34
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb34
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb35
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb35
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb35
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb35
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb35
http://dx.doi.org/10.1109/TSTE.2019.2900082
https://pvwatts.nrel.gov/
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb40
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb40
http://refhub.elsevier.com/S2352-152X(21)00984-1/sb40

	A data-driven accurate battery model to use in probabilistic analyses of power systems
	Introduction
	The proposed data-driven accurate battery model
	Data generation scheme
	The voltage source
	The equivalent resistances

	Training neural networks to capture actual battery characteristics
	Training algorithm for the NN with ReLU activation function to capture relationship between energy level and charging/discharging power
	Training algorithm for the NN with linear activation function to capture relationship between SoC and charging/discharging power limits

	Mathematical model for the proposed battery model

	Integrating the proposed battery model in power system reliability evaluation
	Objective function
	Network constraints
	Power balance equations
	Battery model equality constraints 
	Battery model inequality constraints 
	Charging/discharging power limits 
	Generation power limits 
	Load curtailment limits 
	Feeder capacity constraints 
	Voltage limits 
	Angle limits 

	Reliability evaluation index

	Optimal battery locations for reliability maximization
	Evaluation criteria
	The algorithm to determine optimal battery locations

	Implementation and results
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


