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Abstract—This paper summarizes the development and imple-
mentation of resilience valuation metrics for solar plus storage
in the City of Reno. The proposed resilience valuation metrics
are intended to assist local governments, policy makers, and
building owners in making well-informed decisions and plans
for resilience enhancement of power supply. The valuation
metrics are developed based on historical data of extreme events,
historical outage data, cost of outages, and classifications of
critical loads to determine the likelihood, expected duration, and
average cost of outages. Events that last for less than 24 hours are
not considered in developing metrics for resilience valuation. The
proposed approach enables resilience valuation based on selected
parameters such as sites, types and characteristics of critical
loads, and size of solar and energy storage systems. The ten
regions in the continental United States and territories identified
by the Federal Emergency Management Agency (FEMA) are
used to classify types of extreme events at different locations.
Although resilience value of solar plus storage alone may not
justify investments in some resilience enhancement projects, the
stacked value (resilience value, revenue, avoided costs, etc.) of
solar plus storage during their lifetime will be an important
measure in weighting different investment alternatives. The
proposed resilience valuation approach is demonstrated on a
Public Safety Center in City of Reno.

Index Terms—Energy storage, extreme events, resilience met-
rics, resilience valuation, solar energy

I. INTRODUCTION

The frequency of extreme events, both natural and man-
made, has recently increased, causing prolonged power out-
ages to major pieces of power system equipment [1], [2].
These events have brought significant concerns about the
reliability and resilience of power supplies, which can damage
major equipment such as substations, transmission lines, and
power plants. This calls for developing resilience evaluation
and valuation methodologies and metrics to both measure the
resilience of a given system and monetize the resilience to
help decision makers choose between different alternatives.
Upfront costs associated with resilience enhancement can be a
challenge to local governments. Therefore, the first step toward
incorporating resilience in decision making processes is to
develop resilience valuation metrics and methods to compare
planning and operation alternatives and to provide techno-
economic justifications for resilience enhancement.

Several methods have been proposed for resilience valua-
tion. Existing resilience valuation methods can be summarized
as follows.
Bottom-up/Survey-based Methods. Bottom-up approaches
measure the value of resilience based on customer behavior
and preference. Survey-based methods are generally employed
to estimate how electricity outages affect customers. Generally,
value of lost production and outage related costs which result
from power outages are used to estimate direct the cost of
an outage. To determine the value of power loss on the
residential sector, surveys ask residential customers a series
of contingent valuation questions. Survey questions typically
focus on customers’ willingness to pay or accept higher fees
in exchange for improved and more reliable service.

Bottom-up methods are classified into two approaches as
follows [3], [4]. Stated preference method: This method is
developed based on customer surveys from their hypothetical
willingness to pay for better service [5]. Stated preference
approaches include contingent valuation method [6], con-
joint analysis [7], and discrete choice experiments (DCE)
[8]. Conjoint analysis and DCE ask respondents to choose
between different options for better service [7]. Revealed
preference/market-based methods: These methods use real
world data to estimate power interruptions [9]. These methods
are classified mainly into defensive behavior and damage cost
methods.
Economy-wide/Macroeconomic Approaches. Economy-
wide approaches measure the value of resilience based
on the effect of power interruptions on economic regions
using indicators such as employment and economic output.
There are two major types of regional impact modeling
indicators: input-output (I-O) methods and commutable
general equilibrium (CGE). I-O methods evaluate the public
policies that affect the whole society. The I-O method has the
capability to estimate induced and indirect economic effects
(e.g., purchasing power from end users) caused by the direct
policy change. The I-O method itself cannot directly provide
the value of the resilience; rather, it provides the important
economic information regarding the impact of extreme events.
Value of Lost Load. Value of lost load (VoLL) method uses a
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contingent valuation method to estimate the value of avoided
power outages. VoLL is an economic metric that provides
information about cost of a power outage, and it represents an
approximate price that a customer is willing to pay in exchange
of better service or avoided power interruption. Several factors
can be included in the VoLL such as damage to equipment,
lost supplies, lost data, and health and social impacts. VoLL is
affected by context and attributes of power interruption such
as customer type, outage duration, timing (time of day and the
season of the year), magnitude of the outage, and geographical
location [5], [10], [11].

Most existing methods define VoLL in terms of static or
constant cost value [5], [12]–[16]. The static VoLL does not
vary with the duration of outage and is simply multiplied with
the kWh lost load to estimate the value of the cost of power
outages. However, the specific relationship of compounding of
cost of outage with time is yet to be developed and understood.
Development of a temporal (time dependent) relationship
between duration of power outage and the cost of outage
demands a careful attention to avoid the deviation between
the outage recovery cost imposed ($/kWh) to customers and
the total economic impact [10], [17]. Developing outage cost
estimation model for prolonged outages is a very challenging
task mainly due to a lack of outage cost data [7].

This paper proposes resilience valuation metrics for solar
plus storage and applies it on a public safety center in City
of Reno. The contributions of the paper include development
of (a) a methodology for determining likelihood and expected
duration of power outages due to extreme events; (b) generic
resilience valuation metrics for buildings with and without
solar and energy storage systems; and (c) a framework for
selecting location-dependent resilience valuation parameters.

The rest of the paper is organized as follows. Section II
provides background on resilience valuation efforts. Section
III describes the development of the proposed metrics for
resilience valuation. Section IV shows the application of the
proposed work at a public safety center in Reno and discusses
the results. Section V provides concluding remarks.

II. BACKGROUND ON RESILIENCE VALUATION

A. Factors impacting cost of outages.

Power interruption is complicated by numerous stochastic
variables that affect the cost of power outage [18].

1) Customer Type and Size: Power outage cost depends on
who/what experiences the outage. Effect of outage is different
for different types and sizes of customers. For example, a short
duration outage at a data center can cause much more outage
cost than for residential or agricultural customers. Criticality
of the load also impacts the cost of power outages. For
example, power outage in a critical facility (e.g., hospital,
police station, disaster shelter center, etc.) hinders emergency
services. Therefore, cost of power outage in critical facilities
is much more than that at noncritical facilities.

2) Time of the event: Cost of the power outages is also
affected by when an outage occurs. Specifically, time of day,

day of the week, and season of the year affect expected outage
costs. Residential customers can be less affected by the power
outage during the day (both household and leisure activities
may be affected) than at the evening while commercial cus-
tomers can be more affected by power outages during the
day (working hours) than during the evening. Similarly, power
outage during the working days can have more impact than that
at weekends to a commercial customer. Heating, ventilation,
and air conditioning (HVAC) use patterns are different in
different seasons (due to different weather conditions), which
affect power outage impact. For example, a power outage
during a mild spring evening is much less impactful than that
at hot summer or at bone-chilling cold winter.

3) Scale of Outage (Magnitude): The amount of load lost
along with their overall impact affect the total cost of the
power outages. The severity of scale of outage depends on
consumer type and critical load characteristics.

4) Duration: Cost of power outage is essentially influenced
by the duration of the power outage. Long duration power out-
age have more impacts on all types of customers (residential,
commercial, industrial, etc.). Consequences of long duration
power outages may include loss of lives, damage to buildings
and infrastructure, discomfort, and irritation. Although short
duration outages may not have much impact for residential
customers, commercial and industrial customers may experi-
ence huge loss for both momentary and long duration outages.

5) Advanced warning: If an outage is anticipated, the dam-
age from the power outage could be much less than that if it is
unexpected. Advanced warning may help to shift the power use
patterns for flexible loads. Based on the advance warning of
the outage, damage of outage could be significantly reduced.
For example, data can be safely saved, machinery could be
safely shutdown, backup resources could be increased, and
impacted residential customers can be moved to safe areas.

B. Societal Impact of Power Outages

Here we provide a brief analysis of recently used approaches
for power outage cost estimates. Outage cost estimation gen-
erally falls into three approaches [5], [11]: (a) estimation of
cost based on case studies; (b) survey based approach for
outage cost estimation; and (c) economy-wide macroeconomic
approaches.

Case studies based methods utilize real power outage repos-
itories (e.g., blackout data) to estimate the power outage
cost. These studies are real, provide more accurate estimates,
and do not depend on hypothetical assumptions. The major
disadvantages of these approaches are: (a) there are a very
few outages, specifically, in developed countries; therefore, not
enough data for analysis and validation; (b) since most large
scale outages are unplanned and unanticipated, it is difficult
and expensive to gather the relevant data from the real power
outages; and (c) these studies are focused on specific events
and locations; therefore, these studies are limited for use in
future power outage cost estimation for resilience analysis. For
detailed information on outage case studies, refer to [19]–[22].
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Survey-based approaches perform the end use customer
survey to determine the cost of power outages. In these
approaches, customers are asked for their willingness to pay
for a hypothetical power interruption or willingness to accept
the cost for a hypothetical power interruption. The main dis-
advantages of these approaches include: (a) they are based on
empirical assumptions and hypothetical situations; (b) there is
a large discrepancy between willingness to pay and willingness
to accept values determined which clearly shows confusion of
the end use customers; and (c) they are very time consuming
and expensive. Significant work, for example [23]–[30], from
all around the world have used survey-based methods for the
estimation of power outage cost.

Economy wide macroeconomic approaches use economic
indicators such as employment rate and regional economic
output. Economy based models consider the electricity as input
to production of goods. Therefore, the economic indicators
can estimate the cost of power outages. Economy based
approaches generally use publicly used data and are easier to
implement. Economic models are more appropriate for macro
level studies. However, they are not very useful for individual
customer level studies. It is generally difficult to obtain the
cost of power outage for a specific duration from the macro
economic approaches. Qualitative and quantitative analyses of
power outage cost estimation approaches are provided in [5].
In [11], the authors have provided an approach to estimate
the power outage cost. Authors of [31] have incorporated the
duration-dependent customer damage functions into energy
planning and operations decisions.

Utilities have used the Interruption Cost Estimate (ICE)
calculator (an example of survey-based methods) from the
Lawrence Berkeley National Laboratory (LBNL) to estimate
the interruption cost to value potential benefits of preventive
investments [32]. However, ICE Calculator is based on eco-
nomic surveys of short-term interruptions (up to 16 hours).
LBNL team suggests that the estimates obtained from ICE cal-
culator are inappropriate for resilience planning [25] because
resilience studies are concerned with longer-duration events
(24 hours or more)—the rate of interruption cost increases
with the increase of outage time.

Although there are several limitations in determining the
long-duration outage cost through the extrapolation of short-
duration costs, they are currently the only available means to
calculate customer costs for longer-duration outages. As far
as we know, there are no credible sources that provide power
outage costs for longer-duration outages, which is needed for
resilience valuation. In this work, we have used extrapolation
techniques to generate the data. Note that these data are used
for demonstration purpose only; real data must be used for any
actual analysis. A curve fitting approach is used to extrapolate
cost data for outages beyond 16 hours using the available cost
data for outages up to 16 hours. Using the available data,
different types of models are fitted and the model with the
least value of root mean squared (RMS) error is used for
extrapolation.

III. RESILIENCE VALUATION METRIC

A methodology for valuing non-energy savings for energy
security projects is provided in [33], which is based on the
reliability of the commercial power supply and cost of power
outages. The report provided in [33] uses reliability indices
SAIDI, SAIFI, and ASAI to estimate the avoided cost for
outages that mostly last for less than 24 hours. In this paper,
we consider events that last for more than 24 hours. We have
found that twenty-four hours mark is the approximate point
at which the literature makes the distinction between short-
duration and long duration outages [18], [24], [26]. As power
system resilience evaluation is generally considered for longer-
duration outages, we have taken 24 hours (1 day) threshold for
resilience evaluation.

A. Response to Extreme Events

To develop a resilience valuation metric, it is important
to understand potential degradation and recovery of power
supply. For a building (or a group of buildings) to provide
power supply robustness (i.e., withstand and absorb), it must
have a local energy source (e.g., distributed energy resource
or DER). The end goal of this task is to develop resilience
valuation metrics for solar plus storage based on (a) providing
uninterruptable power supply (withstand) and power supply to
critical loads during contingencies (absorb), and (b) reducing
amount of interrupted loads (absorb) and interruption time
(recover). Several metrics and methods can be used to value
resilience. In this work, we have developed two metrics for
resilience valuation, which are the expected cost of service
interruption due to extreme events (ECOSIEE) and avoided
interruption costs due solar plus storage (AICSS).

B. Expected Cost of Service Interruption

The ECOSIEE metric provides a valuation measure to
interruption costs. It can also be used to measure the ability of
a system to recover from potentially disruptive events. Power
outages that last for more than 24 hours are considered for
resilience valuation, i.e., events that last for less than 24 hours
are included in existing reliability metrics.

The following variables are used in the development of the
proposed ECOSIEE metric:

• Outage duration, D, which depends on disaster type; in
this work, D is considered at least 1 day, i.e., D ≥ 24
hours. D is a vector with dimension of (1× nd), where
nd is number of intervals of the studied period.

• Season, S, where the year is divided into four seasons
(spring (Sp), summer (Su), autumn (Au), and winter
(Wi)). Each season is divided into three periods: morn-
ing, afternoon, and night. Therefore, S is a vector with
dimension of (1 × 12), i.e., 4 seasons and three periods
per day.

• Load types: essential (Es), priority (Pr), and discretionary
(Di) loads.

Other factors can be included in this metric such as scale
of outage, advanced warning, and time of the event. These
factors can be modeled with the amount of the lost load. For
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example, advanced warning can reduce damage and loss of
critical loads; scale of outage can impact the amount of lost
load; and events during weekday or weekend have different
cost of outages.

To develop this metric, consider a matrix of outage cost,
C(S,D), which is a function of outage duration, season, and
load type. The dimensions of this matrix is (12×3nd), which
can be expressed as follows,

C(S,D) = [CEs(S,D) CPr(S,D) CDi(S,D)] (1)

where CEs(S,D), CPr(S,D), and CDi(S,D) are respectively
cost of interruption matrices for essential, priority, and discre-
tionary loads for the set of time intervals and four seasons.
These matrices have dimensions of (12×nd), i.e., four seasons
with nd outage intervals in each season.

Cost of interruption of essential loads for element i of the
season vector and element j of outage duration vector, CICi,j ,
can be expressed as follows,

CICi,j = Ci,j(S,D) (2)

Cost of interruption of essential and priority loads,
CICMi,j , for same outages of (2) can be expressed as follows,

CICMi,j = Ci,j(S,D) + Ci,j+nd
(S,D) (3)

In (3), we increase the index j by nd because the priority
load belongs to CPr(S,D) in (1).

Cost of interruption of all loads, CIALi,j , for same outages
of (2) can be expressed as follows,

CIALi,j = Ci,j(S,D) + Ci,j+nd
(S,D) + Ci,j+2nd

(S,D)
(4)

In (4), we increase the index j by nd and 2nd because
the priority and discretionary loads belong to CPr(S,D) and
CDi(S,D), respectively, in (1).

The proposed ECOSIEE index can be calculated as follows:

ECOSIEE =

12∑
i=1

nd∑
j=1

Pi,j{xi : xi ∈ Xex}Ci,j (5)

where Pi,j{xi : xi ∈ Xex} is the probability of service
interruption duration Dj during season Si due to extreme
events, where Xex is the set of service interruptions due
to extreme events; and Ci,j is cost of service interruption
for interruption duration Dj during season Si. In (5), the
summation is taken over 12 periods because we consider
four seasons with three periods in each day, i.e., morning,
afternoon, and night.

C. Resilience Value of Solar plus Storage

Avoided interruption costs due solar plus storage (AICSS)
can be used to measure the resilience value of solar plus
storage. The metric of AICSS provides a measure for avoided
costs due to the ability of a system to withstand contingen-
cies without suffering operational compromise, which can be
offered by solar plus storage.

The underlying concept of calculating the AICSS is similar
to calculating the expected cost of service interruption due

to extreme events (ECOSIEE) except that it represents the
difference between the cost of interruptions with and without
adding solar plus storage. In other words, the duration of
outages in the matrix given in (1) must be updated to represent
outages avoided due to solar plus storage rather than total
outage time. In other words, the new outage duration in (1)
will be less than the original outage duration. For each event,
the time during which the solar plus storage system can
provide power supply and corresponding outage cost (if solar
plus storage are not added) are used to calculate the AICSS.
Mathematically, AICSS can be represented as follows.

AICSS =
12∑
i=1

nd∑
j=1

Pmod
i,j {xi : xi ∈ Xex}Ai,j (6)

where Ai,j is avoided cost of service interruption due to
solar plus storage for potential interruption duration Dj during
season Si.

D. Calculation Procedure

The following steps are used to calculate the resilience
valuation metrics.

1) Collect data which include historical outage data, extreme
event data according FEMA regions (it can be divided
into smaller zones if need be), typical critical load pro-
files, solar radiations in a given site, and outage costs.

2) Analyze data as follows: remove all events that last for
less than 24 hours; filter outage data based on common
disasters in a given region; and create probability dis-
tribution functions for outages, which can capture both
likelihoods and duration of outages.

3) For passive buildings, which do not have local DERs
(e.g., solar plus storage in this case), calculate resilience
value by summing up multiplications of likelihood, du-
ration, and cost of outages. This value can be used to
calculate how much can be lost if solar plus storage are
not integrated to a building or center.

4) For active buildings, which have DERs, calculate the dif-
ference between resilience value before and after adding
DERs, which represents the resilience value of DERs.

IV. CASE STUDY

The proposed resilience valuation metrics are used to es-
timate the value of resilience of solar plus storage at the
Reno’s Public Safety Center (114,500-square-foot building).
The City’s new Public Safety Center will be located in a
retrofitted building originally occupied by a newspaper com-
pany. The new facility will house Reno’s police and fire
services, as well as evidence storage and other services.

Sequential Monte Carlo simulation with the importance
sampling approach is used to estimate the average annual
interruption cost due to extreme events.

Outage duration: the mean time between outages and mean
time of outages are calculated using outage data in FEMA re-
gion 9 (California, Nevada, and Oregon). The total number of
events recorded since 2002 till 2020 in region 9 is 471 events.
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Based on the outage data, the mean time between outages and
mean time of outages for all events are respectively 346.58
hours and 21.97 hours. When considering only outages that
last for more than 24 hours, the mean time between outages
and mean time of outages are respectively 1839.36 (76.64
days) and 61.67 (2.57 days) hours—these values represent the
entire region. Scaling up or down these numbers to match a
specific area within a region will be required. For example,
mean time between outages and mean time of outages at
building in a city is less than mean time between outages
and mean time of outages of a FEMA region.

Load and DER size: The total annual electricity consump-
tion of the Public Safety Center is estimated to be 4.2 GWh.
The peak demand of the building is 1,427 kilowatts (kW)
in August when air conditioning loads are the highest, and
402 kW in December. In this case study, the critical load
is assumed to be 15% of the building hourly load, which
corresponds to 215 kW as a peak critical load (15% of 1,427
KW). The cost of interruption is calculated for the cases before
and after installing solar plus storage. The size of the battery
is 215 kW/1,720 kWh and the size of solar PV is 430 kW.
The requred area to install PV panels with size of 430 kW is
about 32,000-square-foot, which would approximately occupy
28% of the roof of the building.

Based on the above values and parameters, the total cost of
interruption per year before adding the solar plus storage is
$2,475, and total cost of interruption per year after adding the
solar plus storage is $150. Therefore, the avoided interruption
cost per year due solar plus storage (AICSS) is $2,325. It
is worth mentioning here that the cost of power interruptions
after adding solar plus storage is not zero because we included
solar energy variability in the analysis—i.e., if power outages
occur during cloudy days, the PV system cannot supply the
demand and same time fully charge the battery.

V. CONCLUSION

This paper has provided a resilience valuation approach for
solar plus storage. The approach was based on Monte Carlo
simulations of extreme events utilizing Importance Sampling
technique. Resilience value of solar plus storage was estimated
based on likelihood of power outages and expected outage
times due to extreme events in a given FEMA region, expected
cost of outages, and critical load characteristics. The proposed
approach was used to estimate the resilience value of solar
plus storage in a facility owned by the City of Reno, Nevada.
Although resilience value of solar plus storage alone may
not justify capital investments, stacked value of resilience
value, revenues, renewable energy credits, etc. may justify an
investment. Also, resilience valuation can be used to compare
investment alternatives.
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