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Abstract—Several coordinated control strategies along with
extensive communication networks have been proposed and
employed for proper monitoring and control of increased pen-
etration of distributed generators (DGs) in microgrids (MGs).
Because of communication networks, MGs are being exposed
to numerous cyber-attacks with possibility of impacting active
power sharing. In this context, an attacker can launch individual
as well as coordinated data falsification attacks on distributed
frequency control systems of MGs. This paper proposes a two-
stage machine learning-based approach to detect and locate data
falsification attacks on distributed frequency control of islanded
MGs. In the first stage (regression), environmental parameters
including solar irradiance, ambient temperature, and wind speed
are provided to a machine learning regressor to predict active
power from DGs. In the second stage (classification), a logistic
regression compares the predicted active power of DGs with the
measured active power of DGs to detect and locate data attacks
in real time. Case studies on a modified version of the IEEE 123-
node distribution system show that the proposed work can detect
low margin attacks on distributed frequency control schemes with
97% accuracy.

Index Terms—Active power sharing, cyber-attack, machine
learning, distributed generator, frequency control, microgrids.

I. INTRODUCTION

Microgrids (MGs) are small power systems that have the
capability to operate in grid connected as well as islanded
modes. Different types of distributed generators (DGs) are
being integrated into MGs to support their autonomous op-
eration. With the increased grid penetration of DGs, several
coordinated control strategies through the deployment of ad-
vanced automation and communication networks have been
proposed to facilitate reliable active power sharing and effi-
cient frequency control following a disturbance. However, the
increased adoption of advanced communication technologies
are exposing active power sharing and frequency control of
MGs to multiple types of attacks from adversaries.

Frequency control can be divided into primary (local),
secondary (power balance redispatch), and territory (economic
dispatch) levels. Types of secondary and territory frequency
control can be broadly categorized into: (i) centralized control
and (ii) distributed control. In the centralized control scheme,
a master controller receives information from DGs including
available net active and reactive power injections, frequency,
and operational cost from the participating DGs, and provides
operation decisions to participating DGs. Since this scheme
heavily depends on two-way high-bandwidth communication
technologies to monitor and control DGs, any failure in com-

munication systems will expose a single point failure and im-
pact the performance of MGs [1]. Distributed control schemes,
on the other hand, are equipped with a master controller, which
communicates with some of local DGs (referred to as pinned
DGs) for flow of information. Pinned DGs communicate with
other DGs through sparse communication for active power
sharing and frequency control, reactive power sharing and
voltage control, and economic operation [2]. Involvement of
communication networks and information flow makes MG
controllers susceptible to denial of service attacks and false
data injection (FDI) attacks [3].

An FDI attack can have several impacts on the operation
of MGs. In an FDI attack, adversaries may inject, alter,
block, delete, and/or modify data of a single or multiple
participating DGs in a coordinated manner by attacking any
portion of communication links or DG nodes. Combination
of multiple intelligent attacks launched in multiple nodes
and communication networks in a sneaking fashion not only
deteriorates the power system but also makes them formidable
[4]. Impacts of FDI attacks on active power sharing have been
studied in [5]–[7]. Although research on cybersecurity of MGs
is relatively new field, some insightful studies (including [6],
[7]) have been proposed for the detection of cyber-attacks on
the distributed frequency control in MGs. However, further
research is needed for maturity of attack prevention, detection,
and recovery measures of active power sharing and frequency
control in MGs. In our previous work [8], we have proposed
the coordinated data falsification detection in the DG domain.
Work presented in [8] is focused on the manipulation of the
DGs for the monetary benefits. The work presented in this
paper mainly focuses on the manipulation of DGs and their
impact on power sharing regulate system frequency. Although
the approaches are similar, however, conceptually these papers
are different.

This paper proposes a two-stage machine learning-based
approach to detect and locate cyber-attacks in distributed
frequency control of MGs. The proposed work can detect
coordinated attacks on DG nodes and communication links of
distributed control schemes. Since power output of DGs (e.g.,
PV systems) depends upon environmental parameters such as
solar irradiance, ambient temperature, and wind speed, the first
stage (regression) utilizes these parameters to predict active
power output of DGs. Several algorithms are investigated
for regression performance including Multilayer perceptron
(MLP), random forest regressor (RFR), convolutional neural



network (CNN), long short-term memory (LSTM) neural net-
work, and CNNLSTM. In the second stage (classification), a
logistic regression compares the predicted and measured active
power of DGs for online detection of attacks. Case studies on
a modified version of the IEEE 123-node distribution system
show that the proposed work can detect low margin cyber-
attacks on distributed secondary frequency control schemes
with 97% accuracy.

The rest of the paper is organized as follows. Section II
provides a brief description of distributed frequency control
and data attack models. Section III describes the proposed
cyber-attack detection mechanism. Section IV verifies the
proposed solution. Section V provides concluding remarks.

II. COORDINATED DISTRIBUTED FREQUENCY CONTROL

In this work, inverter-based controllable DGs, specifically
PVs and wind turbine generators, are deemed to operate
in isolated MGs. DGs are assumed to participate in the
secondary frequency control for maintaining the power balance
in MGs [9]. This section describes preliminaries of distributed
frequency control and cyber-threat models.

A. Preliminaries of Communication Network

Communication networks connecting DGs in a microgrid
can be modeled by a digraph. A digraph is generally expressed
as G = {V,E,A} where V = {v1, v2, · · · , vN} denotes
the set of N vertices (nodes); E is set of arcs (edges)
E ⊆ V × V ; and A = {aij}N×N denotes adjacency matrix.
DGs at N locations represent the vertices and communication
links between these DGs represent the arcs in the digraph. Let
(vi, vj) be an arc from vertex i to j (i.e., vertex j can receive
information from vertex i), i.e., aij = 1 if (vi, vj) ∈ E;
otherwise aij = 0. The in-degree matrix can be expressed
as D = diag{di} ∈ <N×N with di =

∑N
j=1 aij . Now,

the Laplacian matrix of the digraph can be expressed as
L = D−A. In case of distributed coordinated control strategy,
the master controller (MC) communicates only with pinned
(leader) DGs and the pinned DGs are responsible for trans-
mitting information to other DGs using sparse communication
[10]. Fig. 1 shows an architecture of a MG and information
flow between DGs.

B. Active Power Sharing and Secondary Control

Active power sharing among participating DGs on the
primary control is based on their rated capacities of the droop
setting, which can be expressed as follows [11].

ωi = ωni −miPi (1)

where ωi denotes frequency of DG i; mi represents droop
coefficient of DG i; ωni denotes reference set point for DG i;
and Pi is active power injection from DG i.

When power imbalances occur in a microgrid because of
sudden changes in system operating conditions (e.g., island-
ing, load changes, generator unit tripping, etc.), microgrids
may not be able to compensate frequency deviations using
primary frequency control alone. Under such circumstances,
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Fig. 1. Communication network for distributed control systems in MGs, where
the master controller can exchange information only with pinned DGs. Each
DGs has local control scheme and can communicate with neighboring DGs.

the secondary frequency control is required. In this context,
communication networks are inevitable to coordinate between
participating DGs for secondary frequency control [12].

The operational objectives of the secondary frequency con-
trol in MGs are: (a) no frequency deviation between DGs dur-
ing synchronized conditions (i.e., ω1 = ω2 = · · · = ωN = ω∗)
and (b) proportional active power sharing among all DGs (i.e.,
m1P1 = m2P2 = · · · = mNPN ). Therefore, the objective of
the secondary control system is to select ωni to synchronize
the following frequency control input, uωi , and active power
sharing control input, uδi , to zero.

uωi =

N∑
j=1

aij (ωj − ωi)− gi (ω − ω∗) (2)

uδi =

N∑
j=1

aij (mjPj −miPi)− gi (miPi −miP
∗
i ) (3)

where gi = 1 if DG i is pinned, otherwise gi = 0; and P ∗i
and ω∗ are optimal active power and frequency set points
respectively.

C. Potential Cyber-threat Model

As described in section II-B, the secondary frequency
control in an isolated MG is performed through the communi-
cation between the participating DGs and their neighbors. In
this process, frequency and active power sharing information
of participating DGs are shared through sparse communication
networks to compute the set point for each DG. Because of
the reliance of secondary frequency control systems on com-
munication networks, it can be susceptible to cyber-attacks.
A malicious input signal injected by an attacker can alter the
frequency set point infringing the optimal operating points of
participating DGs.

Cyber attacks can lead to violations of the active power
limits of DGs, which can further lead to system wide insta-
bility. Adversaries can attack communication links between
DGs, local DGs (local controllers), and the master controller
[6]. The proposed work mainly concerns with detection of



data falsification attacks on control inputs, uδi , of the sparse
communication links and local controllers. The study on attack
detection on frequency control input, uωi , and sophisticated
attack on master controller is left as future work.

When one or more communication links are attacked and
false data are injected, active power sharing control input uδi
can be modified as follows.

uδi =
∑
j∈Vca

aij (mj(Pj + ∆Pj)−miPi)

+
∑

k∈V−Vca

aik (mkPk −miPi)− gi (miPi −miP
∗
i )

(4)

where Vca denotes a set of DGs whose active power sharing
information is received from compromised communication
links and ∆Pj is the active power bias inserted by an adversary
on the active power injection of DG j through the compro-
mised communication links. In (4), the first term represents
active power sharing information received from DGs that
are connected to compromised communication links, and the
second term represents the active power sharing information
received from DGs that are connected to uncompromised
communication links.

Similarly, when one or more local controllers of DGs are
attacked, the active power sharing control input, uδi , can be
modified as follows.

uδi =
∑

j∈V−Vda

aij (mjPj −mi(Pi + ∆Pi))

+
∑
k∈Vda

aik(mk(Pk + ∆Pk)−mi(Pi + ∆Pi))

−gi (mi(Pi + ∆Pi)−miP
∗
i )

(5)

uδj =
∑

s∈V−Vda−vi

ajs (msPs −mjPj) +∑
r∈Vda+vi

ajr (mr(Pr + ∆Pr) −mjPj)

−gj
(
mjPj −mjP

∗
j

)
(6)

where Vda + vi is a set of compromised DGs. Equation (5)
denotes the active power sharing control input of an attacked
DG, where the first term represents active power sharing
information received from unattacked DGs and the second
term represents the active power sharing information received
from attacked DGs. Equation (6) denotes active power sharing
control input of an unattacked DG in which the first term
represents active power sharing information received from
unattacked DGs and the second term represents the active
power sharing information received from attacked DGs.

It can be seen from (4), (5), and (6) that an attacker can
manipulate power injection, P + ∆P , in a single or multiple
vertices (DGs) to alter the active power sharing control in-
put. Therefore, this paper proposes a machine learning-based
method to detect and locate attacks on active power injections
of DGs. In this paper, we have assumed that an attacker inserts
additive injection bias (i.e., ∆P > 0). Note that the proposed

approach can also be applied to detect a deductive injection
bias (i.e., ∆P < 0).

III. THE PROPOSED ATTACK DETECTION MODEL

This section describes the proposed attack detection mech-
anism including attributes, two-stage regression and classifi-
cation models, training attributes, and evaluation metrics.

Note that the data processing, feature engineering, hyper-
parameter tuning, etc., are the important strategies that are
integral parts of machine learning-based approaches in the
real applications and numerous works have been dedicated
to it. However, details on optimal parameter tuning, feature
engineering, data cleaning, etc., are out of scope of this paper.

A. Attributes of the Proposed Attack Detection Mechanism

Most of existing machine learning-based attack detection
approaches are based on binary classification problems that
detect whether there is an attack or not (1 or 0). In this paper,
instead of using a label for the entire system, we label each DG
by ‘1’ or ‘0’ (i.e., attacked or not, respectively) to appropriately
locate cyber-attacks. Therefore, the proposed approach is an
N-label-based multi-label classification. From the perspective
of machine learning-based methods, classifying an attack on
a system to success or failure is a single-label classifica-
tion problem whereas classifying more than one DG at the
same time with multiple labels is a multi-label classification
problem. Although machine learning techniques have achieved
significant progress in the single-label classification problem,
they are still facing several challenges in solving multi-
label classification problems. Therefore, deliberate attention
is needed to design multi-label classification problems.

Fig. 2 shows the block diagram of the proposed approach. In
the proposed work, we use a two-stage approach consisting of
regression and classification stages to detect data falsification
attacks on active power sharing in MGs. The attack can
also be detected directly only with multi-label classification.
However, the proposed two-stage approach has the following
advantages over existing approaches: (a) since the regression
stage predicts the power output of each DG, predictions can be
used to set active power sharing information if the attack flag is
‘on’ at any instance; (b) after obtaining predicted values from
the regression model, the task of the classification problem
is to compare predicted values with measured quantities by
developing a threshold to detect attacks; therefore, a compli-
cated multi-label classification problem turns into a simple
comparison problem.

This paper mainly deals with data falsification attacks
on active power injections of inverter-based DGs including
PVs and wind turbines. As power outputs produced by DGs
depend upon environmental parameters, the proposed model
takes current weather data including solar irradiance, ambient
temperature, and wind speed as input in the regression stage
(brief description of regression model is provided in III-B)
and predicts outputs of DGs as shown in Fig. 2. The output



from the regressor model and the current active power mea-
surements are provided as input to the classification model to
decide whether DGs are attacked or not.

During the training phase of the classifier, a combination of
current active power measurements and the predicted active
power vector, (zt = z1t , z

2
t , ..., z

2N
t ), is provided as input and

class labels, yt, are provided as output. The training output
class labels are determined as follows.

yit =

{
1, if DG i is attacked at instance t
0, otherwise (7)

B. Regression Stage: Active Power Prediction

Power generated by PV systems depends upon solar ir-
radiance and ambient temperature whereas that of a wind
turbine depends upon wind speed. Therefore, during training,
weather data are used as input to the regression and active
power produced by DGs are used as output. During online
operation, the trained regressor model takes weather data as
input to predict the active power. Then, the predicted power is
compared with measured active power to detect the presence
of attacks. Machine learning models including random forest,
MLP, CNN, LSTM, and CNN-LSTM are investigated to test
their performance for active power prediction of DGs in MGs.
These models are chosen because of their capability to map
the highly nonlinear relationships between weather parameters
and active power of DGs. Specifications of the models used in
the proposed work is provided in section IV. Since machine
learning models can accurately predict the power, attacks
smaller than the forecast error are insignificant. Therefore,
these can be used as a basis to classify cyber-attacks on real
measurements.

C. Classification Stage: Logistic Regression

The task of the logistic regression in the proposed work
is to compare predictions obtained from a regressor with
actual measurements to produce class labels. As the inbuilt
logistic regression classifier in scikit-learn library of Python
is a binary classifier (0/1), the multi-output classification
support of the scikit-learn library is used for the multi-label
classification of the proposed work. The main concept of this
setting is to use one classifier per target, which allows multi-
label classification with a binary classifier. Detailed description
of logistic regression is not included for bravity; interested
reader can refer to [13], [14].

D. Evaluation Metrics

Mean absolute error (MAE) and root mean square error
(RMSE) are used to evaluate the performance of the regressor.
MAE and RMSE can be expressed as follows.

MAE =
1

T

T∑
t=1

|xt − x̂t| (8)

RMSE =

√√√√ 1

T

T∑
t=1

(xti − x̂ti)
2 (9)

where T is total number of test samples; and xt and x̂t rep-
resent actual and predicted active power of DGs, respectively.

The performance of the classification model for the pro-
posed work is evaluated using the following standard evalua-
tion metrics.

Accuracy: A = (Tp + Tn)/(Tp + Tn + Fp + Fn) (10)
Precision: P = Tp/(Tp + Fp) (11)
Recall: R = Tp/(Tp + Fn) (12)

F1-Score = 2× (P ×R)/(P + R) (13)
False Alarm: FA = Fp/(Fp + Tn) (14)

In these metrics, Tp is the number of compromised DGs
labeled as compromised; Tn is the number of uncompromised
DGs labeled as uncompromised; Fp is the number of uncom-
promised DGs labeled as compromised; and Fn is the number
of compromised DGs labeled as uncompromised.

IV. SIMULATION AND VERIFICATION

Simulations and verification are carried out on the mod-
ified IEEE 123-node test feeder. The following DGs are
added to the system: total of 5 PV systems and 5 wind
turbine generators each of size 120 kVA are added at nodes
1, 18, 40, 47, 49, 55, 60, 66, 76, 99 respectively as shown in
Fig. 3. Network data of the IEEE 123-node test feeder are
given in [15].

As it is described in section II, an attacker can alter one
or multiple DGs. In this process, we assume that out of the
total 10 DGs, 6 DGs are compromised. Since an intelligent
attacker can change power injection biases, from time to time,
the proposed model is trained and tested on a data-set with
time-varying injection biases. At each time sequence, a random
number between 5 and 20 is generated and that percentage
of actual injection is used as a power injection bias of the
instant. Power injection biases are limited within 5% to 20%
(i.e., ∆Pt = 0.05 ∗ PDG,t(act) to 0.2 ∗ PDG,t (act)) because
generation biases higher than 20% can be easily detected
and generation biases lower than 5% may not be of interest
for attackers. Algorithm 1 provides the procedure of attack
function and class label generation.

Since the tested system is unbalanced and power flow
calculations need to be performed for several scenarios, an
integrated OpenDSS and MATLAB environment is used to
calculate the power flow in generating a dataset for the
proposed method. The unbalanced power flow is solved for
8760 snapshots and active power measurement data of each
DG participating in the frequency control are recorded. All
aforementioned machine learning models are developed in
Python using the scikit-learn and TensorFlow backend keras
library. Out of total 8760 hourly data instances, 34% of the
data are used for training the regressor model and 66% of the
data are used for testing. For classification, 70% of test data
of regressor (i.e., 0.7×66 = 46.2% of total data) are used for
training and 30% of test data are used for testing the logistic
regression (i.e., 0.3× 66 = 19.8% of total data).
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Fig. 3. Modified IEEE 123 node system with PVs and wind turbines.

To test the regression performance, RFR, MLP, CNN,
LSTM, CNN-LSTM are used. For each model (except RFR),
ReLU is used as an activation function in input and hidden
layers and a linear activation function is used in the final layer.
Adaptive moment estimation is used as optimization function
and mean square error is used as a loss function. Further
specifications of these models are provided as follows.
• Random Forest Regressor (RFR): RFR is an ensemble

learning technique that aggregates results from multiple
decision trees (classification and regression trees (CART)
[16]). For the proposed work, the default model setting

Algorithm 1: Attack function and class labels gener-
ation for the proposed work.
Input : Input uncompromised readings PDG(act)
Initialize PDG = PDG(act)
Randomly generate na attack instants from the total

classification time sequence data (Ts)
for k ← 1 to na do

randomly choose Nc (out of total N DGs) DGs
that are attacked

randomly generate the size of percentage
generation bias lying between 5% and 20%

obtain the generation bias for all the attacked DGs
apply the additive attacks in respective DGs
obtain the generation values after the attacks
update PDG including the attacks

Output1: Generation with attack function, PDG
Determine the additive classes
Initialize additive class Pclass, add = zeros(Ts, N)
for i← 1 to Ts do

for j ← 1 to N do
if PDG(i, j) > PDG(act) then

Pclass, add(i, j) = 1

Output : PDG, Pclass, add

provided in scikit-learn library is used.
• Multilayer Perceptron (MLP): In this work, MLP con-

sisting of one input and 5 hidden layers with 30 neurons
in each layer; and a final dense layer with 10 neurons is
used.



• CNN: The CNN used for the proposed work consists
sequentially of: one 1-D convolution layer with kernel
size of 3 and 64 filters; one 1-D convolution layer with
64 filters and kernel size of 1; two dense layers with 30
neurons; and a final dense layer with 10 neurons.

• LSTM: LSTM architecture used for the proposed work
consists sequentially of: five layers of LSTM each with
30 units; one dense layer with 30 neurons; and final dense
layer with 10 neurons.

• CNN-LSTM: The hybrid of CNN and LSTM consists
of CNN networks followed by LSTM networks. CNN-
LSTM used for the proposed work consists of one 1-D
convolution layer with 64 filters and kernel size of 3;
three LSTM layers with 30 units; two dense layers with
30 neurons; and final dense layer with 10 neurons.

The performance of RFR, MLP, CNN, LSTM, and CNN-
LSTM in terms of RMSE and MAE is shown in Table I. The
results show that all the tested models have the capability
to capture the complex pattern within the input weather
parameters and the output active power of DGs. However, RFR
is least sensitive to the parameter variation and the results
obtained using RFR are more consistent compared to other
tested models.

TABLE I
RMSE AND MAE METRICS FOR THE TESTED MODELS

Metrics RFR MLP CNN LSTM CNN-LSTM

RMSE 2.04 2.58 2.70 2.76 2.40

MAE 0.57 0.69 0.58 0.73 0.38

The predicted values obtained from each of the models in
the regression stage are compared with real-time measure-
ments obtained from each DG using logistic regression. In
this work, the default setting provided in scikit-learn library
is used for the logistic regression. Table II shows the perfor-
mance result, where subscripts with linear regression denote
aforementioned regression models and A, P, R, F1-S, and FA
denote accuracy, precision, recall, F1-Score, and false alarm,
respectively. It can be seen that the logistic regression can
detect attacks with all of investigated regression models with
high accuracy (above 96%).

TABLE II
ATTACK DETECTION PERFORMANCE OF LOGISTIC REGRESSION

Models A (%) P (%) R (%) F1-S (%) FA (%)

LRRFR 97.29 99.79 84.24 91.36 0.035

LRMLP 96.69 92.86 86.03 89.78 1.153

LRCNN 96.60 95.56 83.90 89.35 0.799

LRLSTM 96.78 91.73 89.12 90.40 1.646

LRCNN−LSTM 96.70 94.00 86.10 89.88 1.125

V. CONCLUSION

This paper has proposed a machine learning-based two-
stage approach to detect cyber attacks on distributed frequency
control strategies. Different machine learning algorithms were

used in the first stage (regression) to test their ability to predict
the output power of DGs using prominent environmental
parameters as input. The predicted values were compared with
real-time active power measurements using logistic regression
to detect attacks on distributed frequency control. Case studies
on IEEE 123-node distribution system showed that the pro-
posed work can detect low margin cyber-attacks on distributed
frequency control schemes with as high as 97% accuracy.
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