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Abstract
We investigate scheduling algorithms for distributed transactional memory systems where transactions residing at nodes of
a communication graph operate on shared, mobile objects. A transaction requests the objects it needs, executes once those
objects have been assembled, and then sends the objects to other waiting transactions. We study scheduling algorithms with
provable performance guarantees. Previously, only the offline batch scheduling setting was considered in the literature where
transactions are known a priori. Minimizing execution time, even for the offline batch scheduling, is known to be NP-hard for
arbitrary communication graphs. In this paper, we analyze for the very first time scheduling algorithms in the online dynamic
scheduling setting where transactions are not known a priori and the transactions may arrive online over time. We provide
efficient and near-optimal execution time schedules for dynamic scheduling in many specialized network architectures. The
core of our technique is a method to convert offline schedules to online. We first describe a centralized scheduler which we
then adapt to a purely distributed scheduler. To our knowledge, these are the first attempts to obtain provably efficient online
execution schedules for distributed transactional memory.

Keywords Transactional memory · Distributed systems · Execution time · Data-flow model · Dynamic scheduling

1 Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects. Tradi-
tional synchronizationmechanisms such as locks andbarriers
have well-known downsides, including deadlock, priority
inversion, reliance on programmer conventions, and vulnera-
bility to failure or delay. Transactional memory [18,37] (TM)
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has emerged as an alternative. Using TM, concurrent code is
split into transactions, blocks of code that appear to execute
atomically with respect to one another. Transactions are exe-
cuted speculatively: synchronization conflicts or failuresmay
cause an executing transaction to abort with its effects rolled
back and then the transaction is restarted. In the absence of
conflicts or failures, a transaction typically commits, causing
its effects to become visible to all threads.

TM has fundamentally changed the way programming
is done in multi-core computers both from theoretical and
practical aspect and it is an active area of research in both
academia and industry [1]. Several commercial processors
provide direct hardware support for TM such as (Intel)
Haswell [20], (IBM) Blue Gene/Q [16], (IBM) zEnterprise
EC12 [28], and (IBM) Power8 [7]. There are proposals for
adapting TM to clusters of GPUs [4,12,21]. TM is predicated
to bewidely used in distributed systems, going beyondGPUs
and clusters.

Here, we consider TM in distributed networked systems
which are widely available nowadays and there is a grow-
ing interest in implementing TM in them [4,19,26,36,39].
In a distributed TM, there is an underlying network mod-
eled as a weighted graph G. Each transaction resides at
a node of G and requires one or more shared objects for
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read or write. Particularly, we consider a data-flow model of
transaction execution [19,36], in which each transaction exe-
cutes at a node, but data objects are mobile and move to the
nodes (transactions) that need them. A transaction initially
requests the objects it needs, and executes only after it has
assembled them. When the transaction commits, it releases
its objects, possibly forwarding them to other waiting
transactions.

Execution time is a fundamental metric for any computing
system. In a multi-core TM, execute time is primarily domi-
nated by the costs of handling data conflicts. In contrast, in a
distributed TM, execution time is dominated by the costs of
moving objects from one transaction to another. The goal of
a transaction scheduling algorithm (sometimes called con-
tention management) is to minimize delays caused by data
conflicts and data movement.

We consider a synchronous model where time is divided
into discrete steps [6]. At any time step, a node may perform
three actions: (1) it may receive objects from adjacent nodes,
(2) it executes any transaction that has assembled its required
objects, and (3) it may forward objects to adjacent nodes. A
transaction’s execution step models when it commits, i.e.,
that transaction may have started earlier, but may have been
blocked while assembling the objects it needed.

In this paper, we consider for the very first time to analyze
the online dynamic scheduling setting where transactions are
not known a priori. In addition, transactionsmay arrive online
and continuously over time. This departs significantly from
the literature which studied and analyzed only the offline
batch scheduling setting [5] where all transactions were
known at beginning of time.

We provide online algorithms to compute conflict-free
execution time schedules. Each node issues one transaction
at a time requesting to access one or more shared objects.
Each object is generated at some node and moves to the
transactions that request it. The objective is to minimize the
total execution time (makespan) until all transactions com-
plete. The execution schedule determines the time stepswhen
each transaction executes and commits. After a transaction
commits, it forwards its objects to the respective next request-
ing transactions in the execution order that depend on these
objects. Typically, an object is sent along a shortest path,
implying that the transfer time depends on the distance in
G between the sender and receiver nodes. Hence, the exe-
cution time depends on both the objects’ traversal times and
inter-transaction dependencies.

It is known [6], through a reduction from vertex coloring,
that for batch problems determining the shortest execution
time in arbitrary communication graphs is NP-hard, and
even hard to approximate within a sub-linear factor of n,
the number of nodes in G. This hardness result also applies
to online problems which are more general than batch prob-
lems. Therefore, we study online scheduling algorithms from

awidely-studied notion of competitiveness—the ratio of total
execution time produced by a designed algorithm to the
smallest execution time achievable by any optimal offline
algorithm. The goal is to make the competitive ratio as
small as possible (the best possible is 1 which is hard to
achieve).

1.1 Contributions

Since the online competitive ratio is hard to approximate in
arbitrary networks, we focus on various specific distributed
computing architectures: Clique, Hypercube, Butterfly, Grid,
Line, Cluster, and Star. All these are popular topologies for a
variety of applications inmultiprocessors, networks-on-chip,
rack-scale or cluster-scale distributed systems [11,27,30].

We consider scheduling problems where each node holds
a single transaction at any moment of time, and each trans-
action requests up to k arbitrary objects. Below we list the
competitive ratios resulted fromour algorithms assuming that
there is a centralized scheduler that decides the execution
schedule. These schedules can also be computed by a decen-
tralized scheduler which affects the competitive ratios by a
poly-log factor overhead.

– Clique in a clique (complete graph) of n nodes we give
an online schedule which is O(k) competitive.

– Hypercube, Butterly, Grids in a hypercube with n nodes
we give an online schedule which is O(k log n) compet-
itive. The same bound holds also for the butterfly and
log n-dimensional grids.

– Line in a line graph of n nodes we give an online schedule
which is O(log3 n) competitive. Note that for the line
graph the competitiveness does not depend on k.

– Cluster we consider a cluster graph which consists of
cliques with β nodes each connected to each other
through bridge edges of weight γ ≥ β. We show
that there is a schedule which is O(min(kβ, logkc m) ·
log3(nγ ))-competitive for some constant c.

– Star in the star graph topology there is a central node that
connects to rays each consisting of β nodes. We obtain
a schedule which is O(logβ · min(kβ, logkc m) · log3 n)

competitive, for some constant c.

1.2 Techniques

We introduce two techniques to produce the dynamic sched-
ules which are suitable for different network topologies.
The first is a direct approach that is suitable to small
diameter graphs, while the second is an indirect approach
that converts offline batch schedules to online dynamic
schedules.

The first technique constructs online greedy schedules
based on continuously calculating a valid vertex coloring
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on the (dynamic) dependency graph of the transactions.
Since the optimal chromatic number is hard to approximate
in arbitrary graphs, this technique can be only effective in
specialized network graphs as for example those with low
diameter. Our competitive bounds on the clique, hypercube,
butterfly, and log n-dimensional grid are obtained from this
technique.

The second technique is more general and it converts arbi-
trary offline batch schedules to online dynamic schedules.
Thus, known batch scheduling results can be adapted to the
online setting. The impact to the approximation of the offline
schedule is a O(log3(nD)) factor delay, where D is the graph
diameter. This is bigger overhead than the direct method
above but the technique can be used to arbitrary graphs
including those with larger diameter. With this approach the
offline schedules by Busch et al. [5] are converted to online
schedules for the line, cluster, and star topologies, which can
be graphs with large diameter.

The conversion from offline to online (second technique)
is achieved by repeatedly dividing the transactions into buck-
ets of transactions, where each bucket is a set of transactions
that can be processed using a batch scheduler. When a
transaction is generated it is assigned to one of the buck-
ets according to its current dependencies with other existing
transactions. The transaction remains in its bucket until it is
scheduled to execute.

Each bucket has a level according to the scheduling time
for the batch problem of the transactions within. The bucket
Bi , at level i , corresponds to a batch problem that takes up
to 2i time steps to execute its transactions. The bucket Bi
is processed periodically every 2i time steps, which gives
an opportunity for new dynamically generated transactions
to accumulate within the bucket between processing times.
When a bucket is processed, the transactions within the
bucket are scheduled using a batch scheduler.

There are dependencies between the levels of the buckets,
because new transactions in higher level buckets may con-
flict with existing transactions in lower level buckets. The
buckets are processed from lower level to higher level to
handle inter-dependencies between various levels. In this
way, the periodically accumulated batch problems in the
buckets are scheduled sequentially producing a global online
schedule.

The main benefit of the buckets is that transactions with
small number of conflicts (calibrated to the object distances),
which appear in lower level buckets, canmake progress faster
than transactions with larger number of conflicts in higher
levels. In the analysis we show that if a batch scheduling
algorithm has approximation ratio bA then the online sched-
ule is O(bA log3(nD)) competitive. The poly-log factor is
the price of separating the transactions into buckets, which
however makes the online schedule feasible.

When we present the basic bucket scheduling algorithm
in Sect. 4 we assume for simplicity of presentation that
it is implemented by a central authority that has instant
knowledge about all the current transactions and objects.
In Sect. 5 we present a decentralized version of the bucket
algorithm which is based on a sparse cover decomposi-
tion of the graph that gives a O(bA log9(nD)) competitive
schedule.

1.3 Related work

The most closely related work to ours is due to Busch et
al. [5], where they provide efficient execution time sched-
ules for offline batch scheduling on the data-flow model
in specialized graphs likely to arise in practice: Clique,
Line, Grid, Cluster, Hypercube, Butterfly, and Star. Specif-
ically, the competitive ratios for execution time are O(k)
in Clique, O(1) in Line, O(k log n) in Grid, Butterfly, and
Hypercube, O(min(kβ, logkc m))-competitive in Cluster, and
O(logβ · min(kβ, logkc m))-competitive in Star. Although
the algorithms are optimal (or near-optimal) for the batch
scheduling setting, the techniques do not apply to dynamic
scheduling. The algorithms we obtain in this paper for the
specialized graphs through the bucket technique work in
the online dynamic setting with only poly-log increase in
competitive ratios. They also provide a non-trivial lower
bound on execution time, improving significantly on the triv-
ial TSP lower bound. In the lower bound, they show that
there is a scheduling problem on the grid, with 2 objects
per transaction, where every schedule must have execution
time �(n1/40/ log n) factor away from the optimal TSP tour
length of any object. The same lower bound holds also for
trees. These lower bounds also apply to the dynamic setting,
since batch problems can be viewed as special execution sce-
narios of dynamic problems.

In another work, Busch et al. [6] consider the problem of
minimizing both the execution time and communication cost
(the total distance travelled by all the objects in G) simul-
taneously for transaction scheduling for distributed TMs
under the data-flow model. They show that it is impossible
to simultaneously minimize execution time and commu-
nication cost, that is, minimizing execution time implies
high communication cost (and vice-versa), and they provide
respective trade-off bounds. In particular, if the execution
time (communication cost) is with in a O(k′) factor from
optimal, then the communication cost (execution time) is a
�(n1/4/k′) factor sub-optimal, where 1 ≤ k′ ≤ n1/4/16.
They also give efficient algorithms minimizing either exe-
cution time or communication cost individually in arbitrary
communication graphs, where the result for execution time is
sub-optimal due to the known inapproximability of the prob-
lem. Specifically, the algorithm minimizing communication
cost is O(log4 n/ log log n)-competitive and the algorithm
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minimizing execution time is O(�)-competitive, where� is
the maximum number of conflicts between transactions. All
these results were established in the offline batch scheduling
setting. They also sketch an approach for dynamic scheduling
based on graph coloring, but that approach does not provide
any competitive ratio bounds for the execution time as we do
here.

Recently, Poudel et al. [31] studied the problem of
scheduling transactions that need to be committed in the
given predefined order, which is called the predefined order
scheduling problem (originally defined in the context of
tightly-coupled multi-core systems [13,33]). Poudel et al.
considered the data-flow model and established an optimal
algorithm in the batch setting and O(log2 n)-competitive
and O(D)-competitive algorithms in the online and dynamic
settings, respectively. This problem is different and the tech-
nique developed cannot be extended to the case of no such
predefined order requirement as in this paper.

There are also other previous works [2,19,23,36,38] on
the data-flow model of distributed TMs which focus on min-
imizing only the communication cost for scheduling problem
instances with only a single shared object. Herlihy and Sun
[19] presented a O(log D)-competitive algorithm for metric-
space networks which Sharma and Busch [36] extended to
general networks with O(log2 n · log D) competitive ratio.
These algorithms are based on a hierarchical clustering
which is built up on a multi-level distance clustering of the
nodes around independent sets.

An alternative approach of spanning tree based cluster-
ing is used in [2,38]. The competitive ratios are O(DT ),
where DT is the diameter of the spanning/overlay tree used.
Kim andRavindran [23] provide communication cost bounds
for special workloads and problem instances with multiple
shared objects. The execution time minimization is consid-
ered by Zhang et al. [39]. where they use TSP tours for
object paths, which for arbitrary graphs can lead to signif-
icantly sub-optimal results according to a non-trivial lower
bound [5]. Specifically, they showed that an online determin-
istic scheduling algorithm, that always runs a maximal set of
non-conflicting transactions, provides an �(max(s, s2/D))

competitive ratio for s shared objects in a network with
normalized diameter D. They then designed a randomized
scheduling algorithm that achieves average-case competitive
ratio O(s · φA · log2 m · log2 n) for n transactions invoked
by m nodes, where φA is an approximation ratio of a TSP
algorithm. They further showed for the case of s = 1 that
finding the optimal execution time is NP-hard because it is
equivalent to finding the TSP path.

Several papers [4,9,24,26] present techniques to imple-
ment distributed TMs. However, they either use global lock
[26], serialization lease [24], or commit-time broadcasting
[4,9] which may not scale well with the size of the net-

work. Moreover, several other papers study distributed TMs
employing replication and multi-versioning [22,26].

In the control-flow model [34], opposite to the data-flow
model, objects are immobile and transactions either move
to the network nodes where the required objects reside, or
invoke remote procedure calls. Hendler et al. [17] studied a
lease based hybrid (combining data-flow with control-flow)
distributed TM which dynamically determines whether to
migrate transactions to the nodes that own the leases, or
to demand the acquisition of these leases by the node that
originated the transaction. Palmieri et al. [29] present a com-
parative study of data-flow versus control-flow models for
distributed TMs in partially-replicated environments. Oth-
ers have studied the speculative transaction execution [32]
in replicated environments, and transaction scheduling using
consistent snapshots [22,26,32] for replicated and multiver-
sioning environments. All these works provide no theoretical
analysis of execution time or communication cost.

Both offline batch and dynamic transaction scheduling
problems were widely studied in tightly-coupled multi-core
systems without involving a communication network. Sev-
eral scheduling algorithms with provable upper and lower
bounds, and impossibility results were given [3,10,14,35].
Additionally, predefined order scheduling has been studied
in tightly-coupled multi-core systems [13,33].

1.4 Roadmap

In Sect. 2 we give the model and preliminaries. We give an
online greedy algorithm in Sect. 3. We present the bucket
algorithm in Sect. 4, and discuss its decentralized version in
Sect. 5. We conclude in Sect. 6.

2 Model and preliminaries

Consider a simple graph G = (V , E, w), with nodes V ,
edges E and an edge weight function w : E → Z+. Let D
be the diameter of the graph, which is the maximum length
of any shortest path between any pair of nodes.We consider a
synchronous communication model where all actions occur
at discrete time steps. For an edge e ∈ E it takes w(e) time
steps to send a message between its nodes.

Transactions are generated continuously over time. We
assume that a transaction T is generated and resides in some
node of G and requests a set of objects O(T ) for read or
write. Transaction T executes once it acquires all the objects
in O(T ). For simplicity, we assume that the transaction exe-
cutes instantly at the time step that it gathered all the objects.
Thus, all delays in our model are due to communication. A
transaction is considered live until the time step it executes
at. After that the transaction has completed execution and is
not live anymore. We assume that the set of objects O(T )

123



Dynamic scheduling in distributed transactional memory

accessed by transaction T are assumed to not change at run-
time. However, the values at each object may get updated
due to the changes written on it by other transactions that
finished execution previously.

We have that at all times an object oi has a single writable
copy which can be modified/updated and possibly multiple
readable copies which can only be read.

We assume that an object is created at some time step at
some node of G by a transaction. At any time t , an object
oi either has been acquired by some transaction where the
object resides at the node of the transaction, or the object oi
is in transit in the graph from one transaction to another. If a
transaction T acquired an object and subsequently T finished
execution, then the object will remain at the node of T until
some other transaction requests it and the scheduler moves
the object to that transaction.

At any time t the latest transaction of an object oi , denoted
Lt (oi ), is the transaction T that holds the object oi at time
t , or if there is no such T (i.e. the object is in transit), it is
the last transaction that acquired or generated oi before time
t . Let Lt (T ) = ⋃

oi∈O(T ) Lt (oi ) denote the set of all last
transactions of the objects of transaction T at time t . The
meaning of Lt (T ) is that in order to execute transaction T
which is generated at time t , all its objects in O(T ) need to
be fetched from the previous transactions in Lt (T ) to T and
then T is ready for execution.

Let Tt denote the set of all live transactions at time t . Let
L(Tt ) = ⋃

T∈Tt Lt (T ) be the set of latest transactions for
the objects to be used by the transactions in Tt .

In an online execution schedule S each transaction is exe-
cuted at some designated time step. Consider a transaction
T generated at time t . Suppose that the transaction executes
at time tT > t in schedule S. The execution duration of T in
schedule S is the time difference tT −t . Let t∗ denote the opti-
mal time duration to execute all the transactions in Tt , given
the execution times of the transactions in L(Tt ). The com-
petitive ratio for S at time t is rS(t) = maxT∈Tt ((tT − t)/t∗).
The competitive ratio for S is rS = supt rS(t).

Definition 1 (Algorithmcompetitive ratio) For online schedul-
ing algorithm A, the competitive ratio rA is the maximum
competitive ratio over all possible execution schedulesS that
it produces, rA = supS∈S rS . (We also say that A is rA-
competitive.)

A feature of the scheduling algorithms that we describe
in the next sections is that the execution times of the new
transactions are not affecting the already determined execu-
tion times of previously scheduled transactions. With this
feature we can still manage to obtain good competitive com-
petitive ratios. Scheduling algorithmswith this feature can be
appealing in practice because future events are not affecting
the currently scheduled transactions.

3 Online greedy schedule

We describe a generic scheduling algorithm which can be
applied for arbitrary graphs. The algorithm is near optimal
for interesting special cases of small diameter graphs. The
basic idea is to give a greedy coloring for a transaction con-
flict dependency graph H where colors will be translated to
execution times. The challenge is that the dependency graph
changes over time and the greedy schedule is constrained by
the transactions that have already been scheduled. We start
with some basic definitions and results on graph coloring.

3.1 Weighted graph coloring

Consider a simple graph H = (VH , EH , w) with a weight
function w : EH → Z+ on its edges. For each v ∈ VH

let N (v) ⊆ VH denote the neighborhood of v which is
the set of adjacent nodes of v in H . The degree of v is
�(v) = |N (v)|. The weighted degree of v denoted �(v) =∑

u∈N (v) w((u, v)), is the sum of the weights of the edges
adjacent to v in H .

A valid coloring c : VH → Z∗ of H is an assignment of
integer values (colors) to the nodes of H such that for any
two adjacent nodes their respective colors differ by at least
the weights of their edges. Namely, for any (u, v) ∈ EH ,

|c(u) − c(v)| ≥ w((u, v)). (1)

A partial coloring of H is an assignment of colors to a
subset of its vertices. A partial coloring is valid as long as
Eq. 1 is satisfied for each pair of nodes that have received
a color. We continue with a result that assigns a valid color
to a node assuming that some other nodes may have already
received a color.

Lemma 1 Given an arbitrary valid partial coloring of a set
V ′ ⊆ VH , any node v ∈ VH\V ′ can be assigned a valid
color c(v) ≤ 2�(v) − �(v).

Proof Let Q ⊆ N (v) ∩ V ′ denote the neighbors of v that
have already received a color. We scan for an available color
for v sequentially starting from c(v) = 0. If there is a node
u ∈ Q such that |c(u) − c(v)| < w((u, v)), then c(v) is not
a valid color, and we set c(v) = c(u)+w((u, v)). We repeat
this process until we find an available valid color for v. Note
that each time we update c(v) one less node u ∈ Q will need
to be considered later, and the value of c(v) is increased by
at most 2w((u, v)) − 1, in case u had higher color than v.
Therefore, this process is repeated at most |Q| steps giving
a valid resulting color for v with value at most:

c(v) ≤
∑

u∈Q
(2w((u, v)) − 1) = 2

∑

u∈Q
w((u, v)) − |Q|

≤ 2�(v) − �(v). 
�
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We can obtain an improved version of Lemma 1 for the
case were all edge weights are equal.

Lemma 2 If all edges have the same weight β, given an arbi-
trary valid partial coloringof a set V ′ ⊆ VH with c(u) = kuβ
for each u ∈ V ′, for some constant ku ≥ 0, then each node
v ∈ VH\V ′, can be assigned a valid color c(v) such that
c(v) = kvβ, for some constant kv ≥ 0, and c(v) ≤ �(v).

Proof Let Q ⊆ N (v) ∩ V ′ denote the neighbors of v that
have already received a color. Each u ∈ N (v)may use a color
c(u) = kuβ. Since |N (v)| = �(v), by pigeonhole principle,
there is a kv , 0 ≤ kv ≤ �(v), such that kv �= ku , for any
u ∈ N (v). Therefore, we can set c(v) = kvβ. Note that such
a choice of color gives |c(v)− c(u)| ≥ β for each u ∈ N (v),
and hence c(v) is valid. Moreover, c(v) ≤ β�(v) = �(v).

�

3.2 Coloring-based schedule

Let T g
t ⊆ Tt denote the newly generated transactions at

time t (recall that Tt are all live transactions at time t). In
the greedy schedule, all the newly generated transactions T g

t
get immediately assigned (at time t) a designated execution
time which remains unchanged thereafter. The challenge is
to schedule the newly generated transactions T g

t based on
the existing schedules of the previously generated transac-
tions. Moreover, some objects might be in transit at time t
complicating the scheduling task. Below we describe how
to resolve these scheduling challenges by creating an appro-
priate dependency graph for the transactions at time t . The
dependency graph will be then colored to provide the result-
ing execution schedules for the transactions in T g

t .

3.2.1 Dependency graphs

At time t an object oi is either in transit or it resides at the
node of the latest transaction Lt (oi ) that held oi . If the object
oi is in transit then assume that at time t it resides at some
node vt (oi ) along a shortest path connecting Lt (oi ) to the
next node that requested oi . In case that at time t the object
oi is in transit along an edge (u, v) (already left u going to
v) of the shortest path, then we will assume in the analysis
that vt (oi ) is an artificial node with an edge connecting it to v

with weight equal to the time remaining to reach v. Assume
also for the sake of simplifying the analysis that vt (oi ) has a
temporary artificial transaction T that uses oi and executes
at time t .

Let Zt (oi ) denote the current transaction that holds the
object at time t , which is either the latest transaction Lt (oi )
or the temporary transaction in vt (oi ). Denote by Zt (T ) =
⋃

oi∈O(T ) Zt (oi ) the set of current transactions that hold all
the objects of T at time t . Let Z(Tt ) = ⋃

T∈Tt Zt (T ) denote

all the current transactions that hold the objects of the live
transactions at time t .

Consider the live transactions Tt at time t . Two transac-
tions T1, T2 ∈ Tt conflict if O(T1)∩O(T2) �= ∅. The conflict
set Ct (T ) of a transaction T ∈ Tt is the set of live transactions
in Tt that it conflicts with at time t . The extended conflict set
C ′
t (T ) of a transaction T at time t includes Ct (T ) and all the

current transactions Zt (T ) of the objects in O(T ), namely,
C ′
t (T ) = Ct (T ) ∪ Zt (T ).
The dependency graph Ht of transactions at time t , rep-

resents the conflicts of the transactions at time t . The set of
nodes V (Ht ) in Ht correspond to the live transactions, that
is, V (Ht ) = Tt . The set of edges E(Ht ) in Ht correspond to
conflicts between transactions, that is, (T1, T2) ∈ E(Ht ) if
T2 ∈ Ct (T1) (and symmetrically T1 ∈ Ct (T2)). The graph Ht

is actually weighted, such that the weight of an edge repre-
sents the distance between the respective transactions in the
original graph G.

LetT ′
t = Tt∪Z(Tt )denote the extended setof live transac-

tions at time t . We can define the extended dependency graph
H ′
t with respect to the extended conflict sets of transactions.

The set of nodes in H ′
t is the extended set of live transactions

T ′
t at time t namely, V (H ′

t ) = T ′
t . The set of edges in H ′

t
corresponds to transaction conflicts in the extended set of live
transactions so that (T1, T2) ∈ E(H ′

t ) if T2 ∈ C ′
t (T1) (and

symmetrically T1 ∈ C ′
t (T2)).

3.2.2 Greedy scheduling

A valid coloring of a set of transactions S ⊆ V (Ht ) (or
S ⊆ V (H ′

t )) assigns a unique positive integer (color) to each
transaction in S such that any two adjacent transactions in
S receive colors which differ by at least the weight of the
incident edge that connects them in Ht (or H ′

t ). A valid col-
oring can translate to an execution schedule such that the
colors assigned to the transactions correspond to the distinct
time steps that transactions execute. Since at time t some
objects may be in transit, a coloring of Ht alone may not be
adequate to provide a realistic schedule without knowing the
current positions of the objects. For this reason, we consider
a valid coloring based on the extended dependency graph H ′

t
which includes the current transactions that hold the objects
at time t including the temporary transactions for the objects
in transit.

Algorithm 1 has the details of the greedy scheduling algo-
rithm. The main objective is to give a valid coloring to all
the newly generated transactions in T g

t assuming the exist-
ing schedules of previously generated transactions and the
current positions of the objects. Since each transaction in
T ′
t \T g

t has already been scheduled, it is assumed to have
a color equal to its scheduled execution time minus t (the
remaining time until execution of the transaction). As a con-
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Algorithm 1: Online Greedy Schedule

1 foreach time step t do
2 Let T g

t be the transactions generated at time t ;
3 Let H ′

t be the extended conflict graph of the (extended) live
transactions T ′

t at time t ;
4 Transactions that have already been scheduled (T ′

t \T g
t ) are

assumed to have a color in H ′
t equal to their assigned

execution time minus t ;
5 Assign greedily a color c(T ) to each transaction T ∈ T g

t by
repeatedly applying Lemma 1 to uncolored transactions of
H ′
t ;

6 Each transaction T ∈ T g
t is scheduled to execute at time

t + c(T );

Fig. 1 An example of greedy coloring

sequence, those transactions in T ′
t \T g

t that are executing at
time t get color 0.

The algorithmapplies repeatedlyLemma1on the extended
dependency graph H ′

t to assign a color to each transaction
of T g

t . The color is then translated to an execution time by
adding the current time t . This way of coloring assumes that
the objects move to the next scheduled transactions that use
them by following shortest paths in G.

An example of greedy scheduling is shown in Fig. 1. In
this example there is a weighted graph G with nine nodes,
where the labels of the edges are their respective weights,
as shown on the top left part of Fig. 1. Each node issues a
transaction, for a total of nine transactions T1, . . . , T9. There
are two objects that are used by the transactions shown as
green and blue in Fig. 1. The green object is initially at
T1 and it is accessed by transactions T1, T3, T4, T6, T7, T9,
while the red object is initially at T2 and it is accessed by
transactions T2, T3, T4, T5, T7, T8. Transactions T1, . . . , T5
are generated at time 0 with respective dependency graph H0

(identical with extended dependency graph H ′
0) as shown on

the top right of Fig. 1, where an edge between two transac-
tions denotes a conflict of accessing the same object and the

weight denotes the shortest path distance between the trans-
actions in G. Algorithm 1 gives a color to each transaction
which appears next to the transaction label in Fig. 1 right
side. Namely, transactions T1, T2, T3, T4, T5 receive respec-
tive colors 0, 0, 5, 10, 11, which are also the actual times
that the transactions are scheduled to execute. Transactions
T6, . . . , T9 are generated at time 9 with respected extended
dependency graph H ′

9 as shown at the bottom right of Fig. 1.
Graph H ′

9, includes transactions T4 and T5 that are previ-
ously scheduled but not executed yet, and also the artificial
node v9 which holds the two objects at time 9 while they are
in transit from T3 to T4. For v9 we only depict its conflict
with T4, and we omit the conflicts with the other transactions
to avoid clutter. After we apply Algorithm 1, the transac-
tions T6, T7, T8, T9 receive respective times for execution
11, 15, 22, 26.

We continue with an analysis of Algorithm 1. Let �′
t (Ti )

and�′
t (Ti ) denote the respective regular andweighted degree

of a transaction Ti in the extended dependency graph H ′
t .

Theorem 1 (Greedy online schedule) There is an execution
schedule such that each transaction Ti ∈ T g

t generated at
time t executes by time t + 2�′

t (Ti ) − �′
t (Ti ).

Proof Given an arbitrary valid coloring of the already sched-
uled transactions T ′

t \T g
t in H ′

t , by repeatedly applying
Lemma 1 to uncolored transactions of H ′

t , we obtain a valid
coloring of the newly generated transactions T g

t in H ′
t such

that each transaction Ti ∈ T g
t can receive a color at most

2�′
t (Ti ) − �′

t (Ti ).
We can sort the transactions that request any specific

object according to their respective t + c where t is the gen-
eration time of the transaction and c is its respective color.
An object will move from node to node in ascending time
order. According to this schedule, each object in O(Ti ) will
reach Ti no later than time t + c, since the valid coloring
gives enough time for each object to be transferred to Ti by
that time. Therefore, a transaction Ti will execute by time no
later than t + c ≤ t + 2�′

t (T ) − �′
t (T ). 
�

In Algorithm 1 if we replace Lemma 1 with Lemma 2, we
obtain an improved result for the case where all edges in G
have the same weight β. Here, we can execute the transac-
tions at time steps which are multiples of β. The proof of the
following result is similar to the proof Theorem 1 but with
the use of Lemma 2.

Theorem 2 (Schedule for uniformweights) If all the edges of
the graph G have the same weight, then there is an execution
schedule such that each transaction Ti generated at time t
executes by time t + �′

t (Ti ).

For the sake of completeness we next show that the
sequential time complexity of Algorithm 1 is polynomial
with respect to the parameters of the problem. Note that,
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according to the execution model we described in Sect. 2,
the sequential steps to execute Algorithm 1 are subsumed
within a single time step t of the concurrent execution, since
the network communication delay is more detrimental to the
overall execution time. Thus, we only present a high level
overview of its complexity.

For each time step t , the sequential run time complexity of
Algorithm 1 is polynomial to the size of the extended depen-
dency graph H ′

t at time t . Specifically, it is O(n′ +m′ log n′)
where n′ and m′ are the respective number of nodes (trans-
actions) and edges of H ′

t (note that H
′
t may not be connected

with possibly having m′ < n′). The term n′ in the asymp-
totic notation is because the algorithm applies Lemma 1 for
each of the n′ nodes. Moreover, each node v with �′(v) = k
neighbors in H ′

t can be processed by first sorting the neigh-
bors according to their current colors (requires O(k log k)
steps), and then checking if the new color choices conflict
with eachneighbor node (requiresO(k) steps). Thus, this part
requires O(k log k) steps in total per node. Considering all
n′ nodes, we get total steps

∑
v∈V (H ′

t )
�′(v) log�′(v). Since

�′(v) ≤ n′ and
∑

v∈V (H ′
t )

�′(v) = 2m′, we get O(m′ log n′)
steps for processing all nodes for this part. Therefore, com-
bining with the first term n′, the overall number of steps is
O(n′ + m′ log n′).

We continue to apply Algorithm 1 in several special case
graphs, such as the complete graph, hypercube and butterfly.

3.3 Complete graph

3.3.1 Scheduling problem

Consider an unweighted complete graph (clique) G with n
nodes where every node is connected to every other node
with an edge of weight 1. Every node holds one transaction.
Each transaction requests an arbitrary set of k objects. Once a
transaction completes execution, the node of the transaction
issues at the next time step a new transaction requesting an
arbitrary set of k objects (possibly different than the previous
set). The process repeats.

3.3.2 Algorithm and analysis

We use the greedy schedule of Algorithm 1 (with Lemma 2
instead of Lemma 1). Consider a transaction Ti that is gener-
ated at time t . From Theorem 2, Ti can execute by time t +
�′
t (Ti ). Suppose that Ti uses objects O(Ti ) = {oi1 , . . . , oik }.

Suppose also that each object oi j is used by li j transac-
tions in T ′

t . Then, since the edge weights are all β = 1,
the weighted degree in the extended dependency graph is
�′
t (Ti ) ≤ ∑k

j=1 li j ≤ klmax, where lmax = max j li j . Thus,
T will execute by time no later than t + klmax.

The transactions scheduled at time t are not affected by
the transactions generated at later time. For the transactions
generated at time t , the time duration to execute all of them
is at least lmax, since at least so many transactions at time t
request the same object, and that object has to be transferred
to all of these transactions.Therefore,weobtain the following
result:

Theorem 3 (Complete graph) In the complete graph, the
greedy online schedule of Algorithm 1 has competitive ratio
O(k).

3.4 Hypercube and related graphs

In a hypercube graph [25] with n nodes any pair of nodes is
connected with a path of length at most log n edges (loga-
rithm is base 2). We can represent the hypercube graph as a
complete graph with n nodes, where the weight of an edge
ranges between 1 and log n and represents the distance of the
respective path between the incident nodes in the hypercube.
Assume for simplicity that the weights in the complete graph
are all set to the worst case uniform value β = log n. Using
the analysis for the complete graph, if we apply Algorithm
1 and Theorem 2, we get that any transaction T generated
at time t executes by time t + �′

t (T ). Since the (worst-
case) edge weights are β = log n, for k distinct objects the
weighted degree is �′

t (T ) ≤ β
∑k

j=1 li j ≤ βklmax, where
lmax = max j li j . Thus, T will execute no later than time
t + βklmax. Since lmax is a lower bound on the execution
time, we get that the resulting execution schedule has com-
petitive ratio O(βk) = O(k log n).

The same result applies to other networks where themaxi-
mumdistance betweennodes is boundedbyβ = O(log n), as
for example in butterfly networks [25] and log n-dimensional
grids [8].

Note that Theorem 2 is useful for getting upper bounds
for the worst case scenario, but Algorithm 1 with Theorem 1
may give better execution schedules when used in practice.

4 Online bucket schedule

The online greedy schedules described in the previous sec-
tion are obtained assuming a central authority with instant
knowledge about the current positions of all the transactions
and objects in the system. However, in reality such a central-
ized authority may not exist since transactions and objects
are created in a distributedmanner independent of each other.

Since all the graphs considered in the previous section
have small diameter, O(log n), a simple remedy is to have
a designated node in G to collect all the information as
new transactions are generated and objects move. With this,
each actual time step of the execution can be simulated with
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O(log n) time steps which is enough time to collect the infor-
mation in the designated node and then decide on the actions
of the next step of the execution. Thus, all the upper bounds
on the execution schedule can be scaled with a O(log n) fac-
tor, proportional to the graph diameter.

Later, in Sect. 5, we will give a more elegant decentralized
solution with smaller dependence on the graph diameter and
hence that solution is more and suitable for larger diameter
graphs. Since that solutionwill involve a hierarchical decom-
position of the graph, its overhead to the overall schedule is
a higher order poly-log factor. Thus, it does not benefit sig-
nificantly the low diameter graphs which were considered in
the previous section.

In this section, we discuss an approach that coverts the
offline scheduling algorithms to online, given a central
authority. These online algorithms will then be modified to
operate in a decentralized manner without requiring a cen-
tral authority. The benefit is that the offline batch algorithms
designed for specialized graphs in our previous work [5] can
immediately be applied to obtain execution schedules on the
online setting. Specifically, consider an arbitrary offline batch
scheduling algorithmA which can schedule any given set of
transactions in graphG. We will convertA to an online algo-
rithm with a technique that uses buckets of transactions.

Before we describe the conversion technique, we need to
perform a simple modification to A to allow it to operate
even if some of the batch transactions under considera-
tion have already been scheduled. We can achieve this by
computing an execution schedule with algorithm A for the
unscheduled transactions which is appended at the end of the
existing schedule of the already scheduled transactions. This
approach does not alter the execution times of the already
scheduled transactions. In the worst-case, the combined exe-
cution time is twice as longwith respect to the execution time
of a schedule that A would produce if all combined transac-
tions were unscheduled, since the transactions are processed
in two disjoint parts. Thus, the asymptotic performance ofA
is unaffected by this modification.

Using the proposed modification, let FA(X) denote the
time to execute a set of transactions X where some transac-
tions in X mayhave already a determined execution schedule.

4.1 The bucket algorithm

We give the transformation of the offline algorithm A to an
online algorithm. The details appear in Algorithm 2.

We will temporarily store into buckets the newly gener-
ated transactions at time t , T g

t ⊆ Tt , until their execution
schedules are determined. Let T s

t ⊆ Tt denote the set of
transactions whose schedules have already been determined
(the transactions in T s

t may execute at t or later according to
their scheduled execution time).

A bucket Bi at level i , where i ≥ 0, is a set of unsched-
uled transactions which are expected to execute in at most
2i time steps from the moment of their generation. There is
one bucket per level and the number of levels is bounded by
the diameter and nodes of G. At time t , each new transaction
T ∈ T g

t will be inserted into the bucket Bi with smallest level
i such that FA(T s

t ∪ Bi ∪ {T }) ≤ 2i . That is, T is inserted
into the smallest level bucket Bi that does not increase its
offline execution time beyond the 2i limit when we add T to
the bucket (i.e. when bucket becomes Bi ∪ {T }), given the
fixed execution times of the already scheduled transactions
in T s

t .
Buckets get activated periodically so that the transactions

within them get actual execution times. Bucket Bi gets acti-
vated every 2i time steps. Once Bi activates, say at time t ′,
all transactions in Bi get scheduled using algorithmA on the
set Bi ∪T s

t ′ . The generated schedule does not alter the execu-
tion times of the already scheduled transactions in T s

t ′ . Then,
we remove the transactions from Bi (which now becomes an
empty bucket), since the transactions in Bi are considered
scheduled and become part of T s

t ′ .
The activation times of different levels are not required to

be aligned. If however multiple buckets get activated simul-
taneously at time t ′, then we schedule transactions of lower
level buckets before higher level buckets. Thus, when higher
level buckets are scheduled at t ′ they assume that the lower
level bucket transactions are already scheduled and aremem-
bers of T s

t ′ .
Figure 2 shows an example of buckets on the line graph.

There are seven transactions, T1, . . . , T7, which are located in
the seven different nodes. The transactions T1, T3, T5, and T7
require objects (t-variables) that are in their 2i−1 proximity
and therefore they are added to the bucket Bi−1. Similarly,
the transactions T2 and T6 require objects that are in their
2i proximity, and therefore they are added to the bucket Bi .
Finally, the transaction T4 requires objects in its 2i+1 proxim-
ity, and therefore it is added to the bucket Bi+1. To clarify, in
this example the transactions that are in the same bucket use
different objects. Moreover, each double-arrow line in Fig. 2
represents the span of the objects used by the transaction in
the center of the line, so that the span is twice the proximity,
i.e. the proximity of T1 is 2i−1 and the span is 2i .

4.2 Analysis of bucket algorithm

We continue with an analysis of Algorithm 2. We first prove
two lemmas that lead to the main result in Theorem 4. (Log-
arithms are base 2.)

Lemma 3 The maximum level of any bucket is at most
log(nD) + 1.

Proof The worst time execution schedule is when the trans-
actions execute sequentially. At any time step, there can be
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Fig. 2 Buckets on the line graph

Algorithm 2: Online Bucket Schedule
1 Consider a batch scheduling algorithm A;
2 Assume disjoint buckets Bi at levels i ≥ 0, such that bucket Bi
activates every 2i time steps;

3 foreach time step t do
4 Each T ∈ T g

t will be inserted into the bucket Bi with
smallest level i such that FA(T s

t ∪ Bi ∪ {T }) ≤ 2i ;
5 if Bi activates at time t then
6 All transactions in Bi get scheduled using algorithm A

with transactions T s
t ∪ Bi ;

7 The resulting schedule does not modify the execution
times of the already scheduled transactions in T s

t ;
8 Bi becomes empty and all its transactions are inserted

into T s
t ;

no more than n scheduled transactions (one transaction from
each node). The maximum distance in G between any pair
of transactions is no more than the graph diameter D. Thus,
the worst in time schedule will execute the transactions in
sequence requiring at most time nD. Hence, the maximum
bucket level will not exceed �log(nD)� ≤ log(nD) + 1. 
�
Lemma 4 Any transaction T ∈ T g

t (generated at time t)
which is inserted into bucket Bi will be executed by time
t + (i + 1)2i+2.

Proof We prove this by induction on k, the level of bucket
Bk . For the basis case the level is k = 0. The bucket B0

gets activated at every time step. Thus, the bucket B0 gets
activated at the same time t (i.e. instantly) that transaction T
is generated. Since T ∈ B0, it was determined that FA(T s

t ∪
B0 ∪ {T }) ≤ 2i = 1, where i = 0. Hence, the transaction
T will execute by time t + 1 = t + 2i ≤ t + (i + 1)2i+2

(i = 0).
Suppose that the claim holds for all k ≤ i . We consider

now the case k = i + 1. According to the algorithm, the
bucket Bi+1 gets activated at time t ′, where t ≤ t ′ ≤ t+2i+1.
Let Bi+1,t denote the contents of Bi+1 at time t (after new
transactions were inserted into Bi+1 at time t). Consider the
latest transaction T ′′ that was inserted into Bi+1 at some time
t ′′, t ≤ t ′′ ≤ t ′. From the bucket definition, it must be that
FA(T s

t ′′ ∪ Bi+1,t ′′) ≤ 2i+1.
Suppose for now that no additional transactions had their

execution schedule determined between t ′′ and t ′, that is,

suppose that T s
t ′ ⊆ T s

t ′′ . Since Bi+1,t ′ ⊆ Bi+1,t ′′ , we get
T s
t ′ ∪ Bi+1,t ′ ⊆ T s

t ′′ ∪ Bi+1,t ′′ , which implies that FA(T s
t ′ ∪

Bi+1,t ′) ≤ FA(T s
t ′′ ∪ Bi+1,t ′′) ≤ 2i+1. Thus, in this case all

the transactions in Bi+1 can be executed no later than

t ′ + 2i+1. (2)

However, between t ′′ and t ′, some other buckets may get
activated causing a set of new transactions, say transactions
A, having their schedules determined. According to the algo-
rithm, these additional transactions must have been from
buckets at level i or lower. From induction hypothesis, those
buckets are activated the latest at time t ′ (before Bi+1 acti-
vates), such that the latest execution time of any transaction
from those buckets is t ′ + (i + 1)2i+2.

To create the schedule for the transactions in Bi+1, the
schedule for the transactions in A may need to be extended
by time

2(t ′ − t ′′ + (i + 1)2i+2), (3)

This is enough time to allow the shared objects used by the
transactions in A to move to the positions where the transac-
tions execute (according to their scheduled execution times)
and then return back to the original positions they were at
time t ′′. After that the objects (if needed) can be used by the
transactions in Bi+1.

Therefore, combining Eqs. 2 and 3, the transactions in
Bi+1 will execute no later than

t ′ + 2i+1 + 2(t ′ − t ′′ + (i + 1)2i+2)

≤ t + 2i+1 + 2i+1 + 2(2i+1 + (i + 1)2i+2)

= t + (i + 2)2i+3,

as needed. 
�
Before we proceed to prove the main result of this section,

we need to perform one more modification on the execution
schedule of algorithm A that will help with the analysis.
For any execution schedule S with duration τ , a suffix S′ is
the execution schedule with duration τ ′ ≤ τ which consists
of the last τ ′ time steps of S. In the modification, we will
ensure that any batch schedule of A has the following suffix

123



Dynamic scheduling in distributed transactional memory

property: for any set of transactions X the corresponding
execution schedule S by A is such that every suffix S′ with
respective transactions X ′ executes in time FA(X ′).

If a batch execution schedule S that was generated by A
does not satisfy the suffix property, then it can be “repaired”
by repeatedly applying algorithm A to any suffix of S that
possibly violates the suffix property. For example, suppose
that S = S1S2 for transactions X = X1 ∪ X2, where S1 is
a prefix and S2 is a suffix of S with respective transactions
X1 and X2. Note that while S has execution time FA(X), the
execution time of S2 may exceed FA(X2). When applying
the algorithm A to X2 we get a schedule S′

2 with execution
time FA(X2).

The suffix repair can first apply to the longest (with largest
execution duration) suffix S′ of S that violates the suffix prop-
erty. This is simply accomplished by using algorithm A to
schedule the transactions in the problematic suffix S′, and by
doing so the time to execute the transactions X ′ of S′ becomes
immediately FA(X ′). After that, if the suffix property is still
violated, the repairmay then apply to the next longest suffix S
(but still shorter than S′) that violates the property. We repeat
the process until there is no suffix that violates the property
anymore.

The purpose of this modification to A is to compensate
for the cases where suffixes of schedules of previously exe-
cuted transactionsmay possibly affect the performance of the
schedules for the new transactions. The modification allows
us to bound the performance of the online algorithm with
respect to the known performance of offline algorithm A.
Specifically, we are able to show that if a batch schedul-
ing algorithm A has approximation ratio bA then the online
schedule is O(bA log3(nD)) competitive; the O(log3(nD))

factor is the price of separating the transactions into buckets,
which however makes the online schedule feasible.

Theorem 4 (Bucket schedule competitiveness) The online
schedule has competitive ratio O(bA log3(nD)), where bA
is the approximation ratio of offline algorithm A.

Proof Consider some arbitrary time t where the live trans-
actions are Tt = T s

t ∪ T g
t . If the transactions in T g

t were
scheduled aloneby algorithmA then their execution schedule
time would be within a factor bA from optimal. However, the
newly generated transactions T g

t are going to be scheduled
based upon the restrictions imposed by the already scheduled
transactions T s

t . In the worst case scenario, the newly gen-
erated transactions T g

t will execute after the transactions in
T s
t . Therefore, we need to estimate how long it will take to

execute the last transactions in T s
t in order to determinewhen

the transactions in T g
t will execute, and hence determine the

duration of the whole schedule.
The transactions in T s

t have been generated from various
levels at previous buckets. Consider a specific level i that
added transactions intoT s

t . FromLemma4, any such transac-

tion from level i was generated no earlier than t−(i+1)2i+2.
Since the level i bucket activates every 2i time steps, during
the period [t − (i + 1)2i+2, t], the number of level i bucket
activations are at most (i + 1)2i+2/2i = 4(i + 1).

From the definition of Bi , at the moment when the last
transaction was inserted in Bi , algorithm A could execute
the transactions at level i within time 2i which is a O(bA)

approximation factor of the optimal. However, the bucket
may activate some time laterwhichmay stretch this execution
time. According to Lemma 4, the execution schedule of Bi
has duration at most (i + 1)2i+2 which is within a factor
O(ibA) from the optimal time schedule for the transactions
in Bi . Since from Lemma 3 the maximum level is bounded
as i ≤ log(nD) + 1, we have that the execution time of a
bucket at any level is within approximation factor

ζ = O(bA log(nD))

from optimal.
Next, we calculate the overall approximation factor of the

schedule which combines the individual approximation fac-
tors of all involved buckets. Let ξ be the total number of
buckets that contribute transactions to T s

t . From Lemma 3
and since each level contributes transactions from at most
4(i + 1) activated buckets in T s

t we get:

ξ ≤
log(nD)+1∑

i=0

4(i + 1) = O(log2(nD)).

These ξ buckets can be ordered according to when they get
activated, from earliest to latest activation time (if the acti-
vation times coincide then the lower levels are ordered first).

Now we examine the execution time of the transactions in
the ξ buckets with respect to start time t . The first bucket, say
B ′, out of ξ executes the respective transactions in T s

t in a
schedule which is within factor ζ from optimal. This is due to
the way that the schedule is created. Namely, the transactions
in B ′ are placed in a suffix of the original execution schedule
when the bucket B ′ was activated (at time t or later). Since
algorithmAwasmade to have the suffixproperty, a suffix that
would have B ′ alone (at t or later) would give an execution
time approximation factor bA. As we analyzed in Lemma 4,
the schedule of B ′ may also depend on other buckets thatmay
activate before it (between t and the activation time), which
gives a ζ total approximation factor on execution time.

Similarly, for the second of the ξ buckets, say B ′′, the
respective transactions in T s

t must execute within time pro-
portional to a factor of bA from optimal (starting at t or later)
if they were executing alone. This implies a ζ approximation
factor for B ′′ if we consider the schedule of B ′′ together
with the other buckets before it. Thus, the combined time
of the first two of the ξ buckets execute in time which has
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an approximation factor 2ζ from optimal. Generalizing, the
approximation factors of the execution times of the ξ buckets
in T s

t accumulate giving an execution time which is within
a factor ξζ from optimal.

Now consider the newly generated transactions T g
t at time

t . Note that the transactions in T g
t may be distributed among

different levels, without any specific level having multiple
activation times. With an argument similar as above, each
bucket in T g

t can be executed in time with approximation
ratio ζ from optimal, if we only consider the transactions in
T g
t . If we also consider the transactions in T s

t , each of the
buckets of the transactions in T g

t executes within time which
is a factor ξζ + ζ from optimal, where ξζ is contributed
from the previously scheduled buckets in T s

t , and ζ is the
approximation from the newly generated transactions within
a bucket in T g

t .
Thus, combining the analysis for T s

t and T g
t , the total

execution time of the transactions in Tt = T s
t ∪T g

t is within
a factor O(ξζ ) = O(bA log3(nD)) from optimal. 
�

4.3 Applications to specialized graphs

We will apply Algorithm 2 to several cases of network
topologies to convert batch scheduling algorithms to online
scheduling algorithms. Busch et al. [5] give offline schedul-
ing algorithms for a variety of specialized graphs including
the line, cluster, and star graphs. For these batch scheduling
problems there are w objects where each node generates at
most one transaction, and each transaction requests an arbi-
trary set of k objects out ofw. When we convert these offline
algorithms to online we obtain the following results.

– Line A line graph is a set of n ordered nodes so that
each node has an edge of weight 1 connecting it to
the next node in order. It is shown [5] that there is
an offline algorithm A which gives a schedule within
approximation factor bA = O(1) from optimal (asymp-
totically optimal). From Theorem 4, since D = O(n),
we obtain an online scheduling algorithm which is
O(bA log3(nD)) = O(log3 n) competitive.

– Cluster A cluster graph consists of α cliques (clusters)
with β nodes each; where all edges in the cliques have the
sameweight 1. Each clique has a designated bridge node.
The bridge nodes from different cliques connect to each
other with edges of weight γ ≥ β (there is an edge for
each pair of bridge nodes). It is shown [5] that there is an
offline algorithmA which gives a schedule with approx-
imation factor bA = O(min(kβ, logkc m)) from optimal,
for some constant c, where m = max(n, w). From The-
orem 4, since D = O(n + γ ), we obtain an online
scheduling algorithm which is O(bA log3(nD)) =
O(min(kβ, logkc m) · log3(nγ )) competitive.

– Star In the star graph there is a central node that connects
to α rays. A ray is a line graph with β nodes, where
one end of the ray connects with an edge to the central
node. All edges have weight 1. It is shown [5] that there
is an offline algorithm A which gives a schedule with
approximation factor bA = O(logβ · min(kβ, logkc m))

from optimal, for a constant c. From Theorem 4, since
D = O(n), we obtain an online scheduling algorithm
which is O(bA log3(nD)) = O(logβ ·min(kβ, logkc m) ·
log3 n) competitive.

Note that the cluster and star batch offline scheduling algo-
rithms used above are in fact randomized. In the case that
the bad event occurs for a bucket of not getting a schedule
with the specified time bound given by the offline schedule
(with small probability), then we repeat the offline algorithm
for that bucket until we successfully obtain a batch schedule
within the required time bound. Thus, the online schedules
remain feasible.

The sequential run time complexity of Algorithm 2 in
calculating an execution schedule at time step t depends on
the sequential complexity of algorithm A for each bucket
level with a small multiplicative logarithmic overhead since
there are only O(log(nD)) levels of buckets. The offline
batch scheduling algorithms we used above have polyno-
mial time complexity in computing the schedules [5]. Thus,
Algorithm 2, has polynomial time complexity in calculating
the respective online schedules for the network cases we dis-
cussed above. However, according to our execution model
these sequential calculations are subsumed within a single
time step t of the concurrent execution, since the communi-
cation delay is considered the main contributing factor in the
concurrent execution time.

5 Distributed bucket approach

The online algorithms we presented earlier use a central
authority with knowledge about all current transactions and
objects.Here,wediscuss a distributed approachwhich allows
the online schedule to be computed in a decentralizedmanner
without requiring a central authority.

The distributed approach is based on the online bucket
scheduling algorithm described in Sect. 4 but adapted appro-
priately to work in the distributed setting. In the adapted
version of the bucket algorithm, the buckets of different lev-
els are split among various nodes of the graph G in what we
call partial buckets and denote by B. To facilitate the dis-
tributed scheduling algorithm, we use a hierarchy of clusters
where designated leader nodes at the clusters hold the par-
tial buckets. We continue with describing the details of this
approach.

123



Dynamic scheduling in distributed transactional memory

5.1 Cluster decomposition

Divide the graph G into a hierarchy of clusters with H1 =
�log D�+1 layers, where D is the diameter ofG (logarithms
are base 2). A cluster is a subset of the nodes, and its diameter
is the maximum distance between any two nodes. We use
the weak diameter of the cluster where distances between
nodes in the cluster are measured with respect to G and not
within the subgraph induced by the cluster. The diameter of
each cluster at layer �, where 0 ≤ � < H1, is no more than
f (�) for some function f that we specify below. Moreover,
each node participates in no more than g(�) clusters at layer
�, for some function g. An additional property is that for
each node u in G there is a cluster at layer � such that the
(2� − 1)-neighborhood of u is contained in that cluster (the
k-neighborhood is the set of nodes which are distance at most
k from u; the 0-neighborhood is u itself).

There are cluster constructions [15,36] which give a hier-
archy with H1 layers where f (�) = O(� log n), and g(�) =
O(log n), known as a hierarchical sparse cover of G. These
constructions have the strong diameter property, where dis-
tances are measured within the induced subgraph in the
clusters, but these still serve our purpose where we require
weak diameter properties.

There is actually a hierarchical sparse cover construction
[36] such that in each layer �, a node, say u, belongs to at
most H2 = O(log n) different clusters. These H2 clusters
can be ordered as sub-layers of clusters 0 to H2 − 1 (in the
context of u), where each sub-layer is a cluster of level �

of G. Thus, a node u participates in all the H2 sub-layers
of a layer but possibly in a different cluster at each sub-
layer. At least one of those H2 clusters at layer � contains
the (2� − 1)-neighborhood of u. We use such a sparse cover
in our algorithm. In each cluster at layer � a leader node is
designated such that the leader’s (2� −1)-neighborhood is in
that cluster.

Since we have the notion of layers and sub-layers, the
notion of height can be defined as a tuple h = (h1, h2)
where h1 denotes layer and h2 denotes sub-layer. Heights
are ordered lexicographically. When the context is clear, we
use layer and sub-layer notion interchageably.

We need a notion of home cluster for transaction T defined
as follows. Let x be the maximum distance from the position
of T to one of the objects in the setO(T ). Let z be the distance
to the furthest conflicting transaction to T from the position
of T . The home cluster for T is the lowest level cluster in the
hierarchy that includes T and its max(x, z)-neighborhood.

To facilitate the actions of the distributed transaction
scheduling, each shared memory object oi carries with it
some information to assist the scheduling task. The object
oi carries the information of all the existing transaction
locations (node addresses) that will use it in the execution
schedule, and also which of these transactions have already

Fig. 3 Home clusters of transactions T1 and T2

been scheduled or not. In addition, the object oi has infor-
mation about the partial bucket locations (node addresses)
that have transactions that use it. This information which is
carried with the object is updated by the partial buckets when
new scheduling decisions are made about the object.

5.2 Distributed bucket algorithm

Algorithm 3 has the transaction actions of the distributed
bucket approach. The bucket Bi is split into possiblymultiple
partial i -buckets B which reside at different nodes. The union
of the transactions in the partial i-buckets B make the whole
bucket Bi . The partial i-buckets B may appear into multiple
layers (or sub-layers) of the hierarchy. In fact, there could be
multiple i-buckets B (for the same i) in each sub-layer. The
partial i-buckets B are hosted at leader nodes of the clusters.
All of the partial i-buckets get activated simultaneously every
2i time steps, at a time that corresponds to the activation time
of Bi . The scheduling gives priority to lower level buckets
first (similar to Algorithm 2), and within the same bucket
level priority is given to partial buckets at lower height home
clusters.

Consider a transaction T generated at time t at a node v.
Transaction T (i.e. the process that executes T in v) looks to
find all conflicting transactions with T that have already been
scheduled. Transaction T also looks for buckets that have
transactions conflicting with it. It collects this information
from the objects, as described in Algorithm 3, which helps
to determine into which bucket T will be inserted.

Figure 3 depicts an example with the home clusters of two
transactions T1 and T2. Transaction T1 uses object o1 (shown
with the red colored circle) and conflicts with transactions T3
and T4. Object o1 resides in the node of T4 at distance x1 from
T1. The distance to T3 is z1. The home cluster of T1 includes
the y = max(x1, z1)-neighborhood of T1, and T1 reports to
the leader node v1 of the cluster. The leader node v1 holds
a partial i-bucket Bv1 which includes T1, for an appropriate
parameter i . Similarly, transaction T2 uses object o2 (shown
with the green colored circle) and conflicts with transactions

123



C. Busch et al.

Algorithm 3: Distributed Bucket Schedule
1 foreach new transaction T do
2 Transaction T discovers the current positions of its objects in

G; suppose the furthest is x away from T ;
3 Each of the objects of T informs the transaction T about

other conflicting transactions (both scheduled and
unscheduled transactions);

4 Let y be the maximum of x and the distance to the furthest
conflicting transaction to T from the position of T ;

5 T picks a home cluster at the lowest height which includes T
and its y-neighborhood;

6 T reports to the leader v of the home cluster; then, v places T
into a partial i-bucket in v, where i is determined by the
transactions reported to v;

7 When the partial bucket of T gets activated, all the objects of
T are informed about the execution schedule;

T3 and T5. Transaction T2 reports to the leader v2 of its home
cluster that holds partial i ′-bucket Bv2 , for an appropriate
parameter i ′. Note that the nodes of transactions may be in
multiple clusters, as for example the node of T3 is in both
clusters, but a transaction reports to a single home cluster.

The objects could be moving from node to node while
the transactions execute. We can track an object in transit by
reaching the last node that the object departed from. While
transaction T in v tries to discover the current locations of
the objects that it uses, the objects may drift further away
from v making it even more difficult to be discovered. For
this reason, we require that an object moves in the graph
at a slower pace than the discovery request messages travel
in the graph. We can accomplish this by slowing down the
object travel time so that it takes two time steps to traverse
a unit weight link, instead of one, that is, halving the speed
that the object moves. In this way, if at time t an object is at
distance d from v, then it will be discovered by time 2d at
most. This is because within 2d time steps the object moves
at most d additional distance units away from v for a total
of at most 2d units of distance away from v. At the same
time some discovery message emanated from v catches up
with the last node that the object departed from, since the
discovery messages are transferred with regular speed.

5.3 Analysis of distributed algorithm

We continue with the analysis of Algorithm 3. We first note
that the conflicting transactionswith T could be split at differ-
ent buckets at different layers of the cluster hierarchy, which
is due to the objects of those transactions possibly being dif-
ferent than those used by T .

Lemma 5 For any two live conflicting transactions T and T ′
it cannot be that neither detect each other before they report
to their home clusters.

Proof T and T ′ both share at least one object. One of the two
transactions accesses the object first. Recall that the object
maintains the information about the transactions that access
it. The second transaction to access the object becomes aware
of the first transaction. 
�
Lemma 6 If T reports at a home cluster C then there is no
other conflicting transaction to T that reports in a different
cluster at the same sub-layer as that of C.

Proof Suppose that there is a conflicting transaction T ′ that
reports to a cluster C ′ which is at the same sub-layer as that
of C . From Lemma 5, T is aware of T ′ or vice-versa.

If T is aware of T ′, then the cluster C must contain T ′,
since T picks its home cluster to contain all the transactions
that T knows it conflicts with. Hence, T ′ must have also
reported to C , namely, C = C ′, due to the sub-layer being a
partition of G.

Symmetrically, if T ′ is aware of T , then the cluster that
T ′ has reported to must be the same with the cluster of T . 
�

FromLemma 6, if there are two transactions T and T ′ that
conflict with each other and both are in i-buckets in the same
sub-layer, then T and T ′ must be in the same i-bucket hosted
at the leader of the same home cluster within the sub-layer.
Hence, we have the following corollary:

Corollary 1 In a sub-layer, any two partial i -buckets do not
have transactions that conflict with each other.

We continue with bounding the maximum height that a
bucket can appear to in the cluster hierarchy.

Lemma 7 The maximum height in the cluster hierarchy that
a partial i -bucket can appear to is (i + 1, H2 − 1).

Proof Consider a partial i-bucket B which is hosted at some
leader node v of a cluster C at layer �. By the definition
of a bucket, the upper bound on the execution time for the
transactions in B is 2i if using the offline algorithm A for
scheduling. Thus, the maximum distance x to the objects
that any T ∈ B uses is bounded by x ≤ 2i . Hence, for
� = i +1, clusterC can contain all up to distance 2i+1−1 ≥
2i neighbors for each of the transactions in B. Since the
maximum sub-layer is H2 − 1, the height of C is at most
(i + 1, H2 − 1) (heights are ordered lexicographically). 
�

Define M = max(H1, H2, L) + 3, where L is the max-
imum number of distinct bucket levels, which according to
Lemma 3 is log(nD)+1. Note that M = O(log(nD)). Next
are adaptations of Lemma 4 and Theorem 4 in the distributed
setting. The next result is an adaptation of Lemma 4.

Lemma 8 In the distributed setting, any transaction T ∈ T g
t

(generated at time t) which is inserted into a partial i -bucket
B that resides at height ( j, k) will be executed by time t +
(iM2 + jM + k + 3)2i+3.
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Proof The combination of the level i and height ( j, k) of
B corresponds to a tuple (i, j, k). We prove the claim by
induction on the lexicographic order on the tuple (i, j, k),
where i, j, k ≥ 0.

For the basis case, the tuple is (0, 0, 0). The partial 0-
bucket B gets activated at every time step. Thus, the bucket
B gets activated at time t (i.e. instantly). Since B is a partial
0-bucket it was determined that FA(T s

t ∪ B ∪ {T }) ≤ 2i =
20 = 1, the transaction T is scheduled to execute by time
t + 1 = t + 2i ≤ t + 3 · 2i+3 (i = 0), as needed.

Suppose that the claim holds for all tuples up to τ ≥
(0, 0, 0). In the induction step, we will prove that the claim
holds for tuple τ ′ which is the immediate next in lexico-
graphic order after τ .

According to the algorithm, B gets activated at time t ′,
where t ≤ t ′ ≤ t+2i . Let Bt denote the contents of B at time
t , including the new transactions that were inserted into B at
time t . Consider the latest transaction T ′′ that was inserted
into B at some time t ′′, t ≤ t ′′ ≤ t ′. From the definition of
the level of a bucket, it must be that FA(T s

t ′′ ∪ Bt ′′) ≤ 2i .
Suppose for now that no additional transactions had their

execution schedule determined between t ′′ and t ′. Namely,
T s
t̂

⊆ T s
t ′ , for t̂, t

′′ ≤ t̂ ≤ t ′. Thus, T s
t ′ ∪ Bt ′ ⊆ T s

t ′′ ∪ Bt ′′ .

Hence, FA(T s
t ′ ∪ Bt ′) ≤ FA(T s

t ′′ ∪ Bt ′′) ≤ 2i . Since in
the distributed setting the objects move at half the speed,
this scheduling bound becomes at most 2i+1. Moreover, the
objects have to be informed about the schedule and this may
take additional time up to 2i in order for the schedule infor-
mation to reach the objects, bringing the total time to at most
2i+1 + 2i ≤ 2i+2. Thus, in this case all the transactions in B
can be scheduled to execute no later than:

t ′ + 2i+2. (4)

Equation 4 does not include the impact on the schedule
from lower lever buckets that are activated between t ′′ and t ′.
In order to accommodate these dependencies, we calculate
the worst execution schedule that may be caused from these
buckets and adjust the time bound of Eq. 4 accordingly. This
adjustment provisions that those buckets’ schedules may not
be communicated on time before t ′ to B. We breakdown the
analysis to different cases for τ ′.
Case (i) τ ′ = (i, 0, 0). In this case, B is a partial i-bucket at
height (0, 0). Note that B is at the lowest height for any partial
bucket of level i . From Corollary 1, B does not conflict with
any other partial bucket of height (0, 0). Thus, the schedule
of B may only be affected from lower level buckets i ′ < i .

Between times t ′′ and t ′ other partial buckets at level i ′ < i
may get activated resulting to a set of transactions A having
their schedules determined. These transactions A may have
dependencies with the transactions in B and are higher prior-
ity than B in the scheduling. From Lemma 7, the maximum
height of any such bucket is at most (i ′ + 1, H2 − 1). In the

worst case, those buckets are activated the latest at time t ′
(before B). From induction hypothesis, since i ′ ≤ i − 1 and
M ≥ H2+3, the latest execution time of any transaction from
those buckets is t ′+(i ′M2+(i ′+1)M+(H2−1)+3)2i

′+3 ≤
t ′ + ((i − 1)M2 + iM + M − 1)2i+2. To accommodate the
transactions in A the schedule of B needs to be shifted by
time:

2(t ′ − t ′′ + ((i − 1)M2 + iM + M − 1)2i+2). (5)

The reason for this adjustment is that it gives enough time
to allow the shared objects used by the transactions in A to
move to the positions where they execute according to their
scheduled execution times and then return back to the original
positions they were at time t ′′.

Therefore, combining Eqs. 4 and 5, and since t ′ ≤ t + 2i ,
t ′ − t ′′ ≤ 2i and iM + M ≤ (L + 1)M ≤ (M − 2)M ≤ M2

the execution time of the transactions in B is bounded by

t ′ + 2i+2 + 2(t ′ − t ′′

+((i − 1)M2 + iM + M − 1)2i+2)

≤ t + 2i + 2i+2 + 2(2i + ((i − 1)M2 + M2 − 1)2i+2)

≤ t + 2i + 2i+2 + 2(2i + (iM2 − 1)2i+2)

≤ t + 2 · 2i+3 + (iM2 − 1)2i+3

≤ t + iM22i+3 + 2i+3

≤ t + (iM2 + 3)2i+3,

as needed (recall that j = 0 and k = 0).
Case (ii) τ ′ = (i, j, k), j + k > 0. In this case, the B bucket
is at height ( j, k), where j > 0 or k > 0. The schedule of the
transactions in B depends on the schedule of partial i-buckets
at lower heights of the cluster hierarchy, i.e. ( j ′, k′) < ( j, k)
(Corollary 1 excludes dependencywithin the same height). If
no such partial level i bucket exists at lower height than B, the
analysis is similar to case (i) described above. Hence, assume
that such a lower height partial bucket exists. Since the largest
height below ( j, k) is ( j, k − 1) if k > 0, and ( j − 1, k) if
k = 0, the latest execution time of any transaction from those
buckets iswhen the height is ( j, k−1) forwhich the induction
hypothesis gives t ′ + (iM2 + jM + (k − 1) + 3)2i+3.

From the partial buckets definition, all objects needed by
every partial bucket at Bi are at distance at most 2i from the
transactions that need them after the first partial bucket of Bi
with lowest height activates. Any dependent objects can be
passed from one transaction to another in at most 2i steps.
But, considering that the objects traverse at half speed, the
objects are transferred in at most 2i+1 steps. Moreover, with
Eq. 4, we obtain the execution time of the transactions in B
is bounded by

t ′ + 2i+2 + 2i+1 + (iM2 + jM + (k − 1) + 3)2i+3
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≤ t + 2i+3 + (iM2 + jM + (k − 1) + 3)2i+3

≤ t + (iM2 + jM + k + 3)2i+3,

as needed. 
�
Next, is a distributed adaptation of Theorem 4.

Theorem 5 (Distributed bucket competitiveness) In the dis-
tributed setting, the online schedule has competitive ratio
O(bA log9(nD)), where bA is the approximation ratio of
offline algorithm A.

Proof Consider some arbitrary time t where the live trans-
actions are Tt = T s

t ∪ T g
t , where T s

t are the scheduled
transactions and T g

t are the new transactions. If the transac-
tions in T g

t were scheduled alone by algorithm A then their
execution schedule time would be within bA from optimal.
However, the newlygenerated transactionsT g

t are going to be
scheduled based on the restrictions imposed by the already
scheduled transactions T s

t . In the worst case scenario, the
newly generated transactions T g

t will execute after the trans-
actions in T s

t . Therefore, we need to estimate how long it
will take to execute the last transactions in T s

t in order to
determine when the transactions in T g

t will start to execute,
and hence determine the duration of the whole schedule.

The schedules of the transactions in T s
t have been gen-

erated from various levels at previously activated buckets.
Consider a specific level i-partial bucket B at height ( j, k)
that contributed transactions in T s

t . FromLemma 8, any such
transaction was generated no earlier than t̂ = t − (iM2 +
jM + k + 3)2i+3. From Lemma 7, the maximum height of
any partial i-bucket is (i + 1, H2 − 1), which implies that
( j, k) ≤ (i+1, H2−1). Thus, j ≤ i+1, and since i+1 ≤ H1

and H1 + 3 ≤ M , we also get i + 1 ≤ M − 3. Since H2 − 1
is the maximum possible sub-layer, and since M ≥ H2 + 3,
we also get k ≤ H2 − 1 ≤ M − 4 ≤ M − 3. Hence,

t = t − (iM2 + jM + k + 3)2i+3

≥ t − (iM2 + (i + 1)M + (M − 3) + 3)2i+3

≥ t − (iM2 + (M − 3)M + M)2i+3

= t − (iM2 + M2 − 2M)2i+3

≥ t − (iM2 + M2)2i+3

= t − (i + 1)M22i+3.

Therefore, between t̂ and t the number of (non-partial)
Bi buckets that have been activated is at most (i +
1)M22i+3/2i = 8(i + 1)M2, since Bi activates every 2i

time steps. We can treat all the partial i-buckets which are
at the same height ( j, k) as a single bucket that contributes
to T s

t , since from Corollary 1 these buckets do not interfere
with each other. Since fromLemma 7 themaximumheight of
any partial i-bucket is (i +1, H2 −1), the number of distinct

involved heights is at most (i + 2)H2 (which includes layers
0 to i +1 and H2 sub-layers from each layer). Therefore, the
total number of partial i-buckets in Bi that can contribute to
T s
t is the product of activated buckets (at most 8(i + 1)M2)

and involved heights (at most (i + 2)H2), giving at most
8(i + 1)(i + 2)H2M2 ≤ 8(i + 2)2M3 partial i-buckets.

Let ξ be the total number of distinct buckets that can con-
tribute to T s

t . From Lemma 3 we have that L ≤ log(nD)+1,
and since H1 = O(log n) and H2 = O(log n), we get
M = O(log(nD)). Thus, we get:

ξ ≤
log(nD)+1∑

i=0

8(i + 2)2M3 = O(log6(nD)).

The ξ buckets can be ordered according to when they
get activated. Let’s examine the execution time of the trans-
actions in the ξ buckets with respect to starting time t .
According to Lemma 8, the execution time of each partial
i-bucket (at a specific height) is within a factor O(iM2bA)

from the optimal time, since 2i is a bA approximation of the
optimal schedule, by the definition of the bucket level.

Considering the maximum bucket level i = O(log nD),
for the first of the ξ buckets to be activated the respective
transactions in T s

t must execute within factor of

ζ = O((log(nD))M2bA) = O(M3bA) = O(bA log3(nD))

from optimal. The reason is that their predetermined sched-
ule corresponds to a suffix (starting from t) of the original
execution schedule when the bucket was activated. Further-
more, algorithmA has the suffix property such that any suffix
of its schedule has execution time within bA from optimal,
and the schedule of A is only shifted in time to give ζ total
approximation due to other dependencies, as we analyzed in
Lemma 8.

Similarly, for the second of the ξ buckets to be activated,
the respective transactions in T s

t must execute within time
proportional to a factor of ζ from optimal starting from t if
they were running alone. Thus, the first two of the ξ buckets
execute in time 2ζ factor from optimal. Generalizing, the
ζ approximation factors accumulate and the total execution
time of the ξ buckets is within ξζ from optimal.

With a similar argument, each of the corresponding buck-
ets of T g

t executes within time which is a factor ξζ + ζ from
optimal, where ξζ is the approximation factor contributed
from the previous buckets, while ζ is the approximation from
the newly generated transactions. Thus, the total execution
time of the transactions in Tt is within a factor (ξ + 1)ζ =
O(bA log9(nD)) from optimal. 
�
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Note that Algorithm 3 also has polynomial time complex-
ity within each of the nodes that hold partial buckets, as it
adapts Algorithm 2 which has polynomial time complexity.

6 Concluding remarks

We have presented efficient execution time schedules in the
online dynamic scheduling setting on the data-flow model
of distributed transactional memory under the synchronous
communicationmodel. Only the offline batch scheduling set-
ting was studied formally previously in the literature. Our
results are the first known attempts to obtain provably effi-
cient online execution schedules for distributed transactional
memory.

There are some open questions. It would be interesting to
examine the impact of congestion on the links of the graph,
especially if the links have bounded capacity, as it may limit
the number of messages that can be propagated concurrently.
Furthermore, it would also be interesting to evaluate our algo-
rithm against different application benchmarks in a practical
setting.
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