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ABSTRACT
Consider distributed transactional memory systems where trans-
actions residing at nodes of a communication graph operate on
shared, mobile objects. A transaction requests the objects it needs,
executes once those objects have been assembled, and then for-
wards those objects to other waiting transactions. We study the
predefined order scheduling problem of committing transactions
according to their priorities. This problem naturally arises in areas,
such as loop parallelization and state-machine-based computing,
where producing executions equivalent to a priority order is needed
to satisfy certain properties. Specifically, we study predefined order
scheduling considering two performance metrics fundamental to
any distributed system: (i) execution time - total time to commit
all the transactions and (ii) communication cost - the total distance
messages travel. We design scheduling algorithms that are simulta-
neously efficient for both the metrics and rigorously evaluate them
through several benchmarks on random and grid graphs, validating
their efficiency. To the best of our knowledge, this is the first study
of predefined order scheduling in distributed systems.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms; •
Theory of computation → Scheduling algorithms; Parallel
algorithms; Online algorithms.
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1 INTRODUCTION
Concurrent processes (threads) need to synchronize to avoid in-
troducing inconsistencies while accessing shared data objects. Tra-
ditional synchronization mechanisms such as locks and barriers
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have well-known downsides, including deadlock, priority inversion,
reliance on programmer conventions, and vulnerability to failure
or delay. Transactional memory (TM) [14, 30] has emerged as an
attractive alternative. Using TM, program code is split into transac-
tions, blocks of code that appear to execute atomically. Transactions
are executed speculatively: synchronization conflicts (or failures)
may cause an executing transaction to abort: its effects are rolled
back and the transaction is restarted. In the absence of conflicts
(or failures), a transaction typically commits, causing its effects to
become visible to all threads. Several commercial processors sup-
port TM, for example, (Intel) Haswell [17], (IBM) Blue Gene/Q [22],
(IBM) zEnterprise EC12 [22], and (IBM) Power8 [8].

TM has been studied heavily in the past for shared memory multi-
core systems where processing cores operate on a single shared
memory and the latency to perform a memory access is the same
for all the processors. However, the shared memory multi-core par-
adigm is shifting towards many-core to non-uniform memory ac-
cess (NUMA) to more general distributed networked architectures,
where the latency to perform a memory access varies depending
on the processor in which the thread executes and the physical
segment of memory that stores the requested memory location.
The recent focus has been on how to support TM in distributed
shared memory systems, incorporating memory access latency into
analysis and evaluation. Some proposals include TM2C for many-
core systems [12], Nemo for NUMA systems [21], the systems in
[3, 19] for clusters, the system in [10] for GPUs, and Hyflow [31]
for distributed systems.

TM is beneficial in distributed computing platforms where the
data is spread across the participating nodes. For example, dis-
tributed data centers can use TM to simplify the burden of dis-
tributed synchronization and provide more reliable and efficient
concurrent program execution while accessing data in possibly
remote compute nodes. The distributed TM designed on top of
such systems needs to execute the transactions effectively by tak-
ing into consideration the system’s infrastructure. Especially, the
network structure can play a crucial role in the performance of the
distributed TM, since the data that the transactions access has to
be reached across the network in a timely manner.

In this paper, we study the predefined order scheduling prob-
lem, denoted as PredOrderScheduling, in a n-node connected,
undirected, and weighted graph G, where each node denotes a
processing node and each edge denotes a communication link
between processing nodes. There are a set of w shared objects
S := {S1, S2, . . . , Sw } that reside on the nodes of G. We consider
the data-flow model [15], where transactions execute at nodes
where they were mapped (i.e., immobile) but the shared objects
move to transactions (at graph nodes) needing them. PredOrder-
Scheduling is defined as follows. Consider a set of transactions
T := {T (v1,aдe1),T (v2,aдe2), . . .} mapped (arbitrarily) to the
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nodes of G, i.e., T (vi ,aдei ) is mapped to node vi of G. Each trans-
action T (vi ,aдei ) accesses (reads/writes) an arbitrary subset ofw
shared objects from S. The transactions in T must commit in the
order of the parameter aдe , i.e., transaction T (vi ,aдei ) commits
only after all transactions T (vj ,aдej ) with aдej < aдei have been
committed. In T (vi ,aдei ), aдei provides a predefined commit or-
der (or priority) to T (vi ,aдei ) among transactions in T ; aдei is an
externally provided parameter (details in Section 2).

PredOrderScheduling naturally arises in applications where
producing executions equivalent to a predefined order is needed to
satisfy/guarantee certain properties. Example applications include
speculative loop parallelization and distributed computation us-
ing state machine approach [24]. In loop parallelization [25], loops
designed to run sequentially are parallelized by executing their
operations concurrently using TM. Providing an order matching
the sequential one is fundamental to enforce equivalent semantics
for both the parallel and sequential code. Regarding state machine
approach [16], many distributed systems order tasks before exe-
cuting them to guarantee that a single state machine abstraction
always evolves consistently on distinct nodes, e.g., Paxos [18].

This is the first time PredOrderScheduling is considered in
distributed systems. Previously, PredOrderScheduling has been
studied only in shared memory multi-core systems [11, 24] where
execution time is the only metric of interest. Nevertheless, [11, 24]
do not provide provable guarantees on execution time, i.e., they
focused on empirical studies. Moreover, the techniques developed in
[11, 24] do not extend for PredOrderScheduling in a distributed
setting as they have no latency consideration.

In this paper, we design scheduling algorithms for PredOrder-
Scheduling in the synchronous data-flow model [6, 7] where time
is divided into discrete steps and aim to optimize two performance
metrics that are fundamental to any distributed system: (i) execution
time – the total time to execute and commit all the transactions, and
(ii) communication cost – the total distance messages travel during
execution. The messages are of two types: (a) the messages involved
in moving the shared objects (read/written by transactions) to the
transactions needing them and (ii) the messages involved in inform-
ing the commit status of transactions. A transaction’s execution
terminates as soon as it commits. That transaction may have started
earlier but blocked while assembling the required objects.

We provide both offline and dynamic (online) algorithms to com-
pute conflict-free schedules. The schedule determines the time step
when each transaction executes and commits. After a transaction
commits, it forwards its objects to any next requesting transactions
in the execution order. Typically, an object is sent along a shortest
path (or close to it), implying that the transfer time depends on the
distance in G between the sender and receiver nodes. Execution
time depends on the objects’ traversal times, inter-transaction data
dependencies, and commit of higher priority transactions.

We measure the efficiency of the designed scheduling algorithms
from a widely-studied notion of competitiveness – the ratio of total
time (total communication cost) for a designed algorithm to the
shortest time (minimum communication cost) achievable by any
scheduling algorithm. The goal is to make the competitive ratio as
small as possible (the best possible is 1 which is hard to achieve).
Contributions.We have the following five contributions.

• For the offline version with complete knowledge of all trans-
actions, their priorities, and the shared objects they need,
we provide a scheduling algorithm that achieves simultane-
ously optimal execution time and communication cost in
any graphG , i.e., the algorithm is 1-competitive (Section 3).

• For the offline version with only knowledge on the transac-
tions and their priorities (but not the shared objects), we pro-
vide a scheduling algorithm that isO(log2 n)-competitive for
both execution time and communication cost in any graph
G. The competitive ratio becomes O(1) on special graphs,
such as doubling dimension graphs (Section 4).

• For the dynamic (online) version with transactions arriving
over time, we provide a scheduling algorithm that is O(D)-
competitive for both execution time and communication cost
in any graph G, where D is the diameter of G (Section 5).

• For relaxed PredOrderScheduling where transactions at
different nodes can commit out of order provided that they
do not conflict with any lower aged transaction, we design
algorithms achieving the same competitive bounds as in the
above three non-relaxed counterparts (Section 6).

• We implement and rigorously evaluate the designed algo-
rithms through 3 micro-benchmarks and 3 complex STAMP
benchmarks on random and grid graphs (Section 7).

Techniques. The first offline algorithm (with complete knowledge
on transactions, their priorities, and the objects they access) works
using object tours for each object connecting the mapped nodes
of transactions using that object in the priority order through the
shortest paths inG . The lowest aged transaction using that object is
connected to the owner node of that object again through a shortest
path in G. A transaction can then execute when it has all needed
objects assembled at its mapped node and the transaction before it
in the priority order has been committed. We show that this method
is optimal for both time and communication.

The second offline algorithm (only knowledge on transactions
and their priorities but not the shared objects) exploits the concepts
behind well-studied distributed directory protocols [15, 28] designed
for synchronizing access to shared objects, adapted appropriately
to send commit messages and shared objects to the nodes that need
them, and shows that they allow to control execution time and
communication cost simultaneously. In particular, the algorithm
guarantees that the commit message from current transaction to
the next in the order is sent with cost only a O(log2 n) factor away
from the best possible shortest path distance in any graphG (which
can be improved to a O(1) factor on a special graph G). It is also
guaranteed that when the commit message is received from the
previous transaction, the shared objects accessed by the current
transaction have already been assembled to its mapped node, so
that the current transaction can execute and commit immediately.

These techniques are then extended to the dynamic (online)
version appropriately so that the designed algorithm can provide
O(D)-competitive ratios for both time and communication even
without knowing transaction priorities beforehand. It turned out
that the directory protocol ideas (based on the hierarchy of clus-
ters partitioning ofG) used in the O(log2 n)-competitive algorithm
above could only provide O(D log2 n)-competitive bounds for the
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dynamic version. Therefore, the dynamic algorithm uses the direc-
tory protocol ideas (based on the spanning tree of G) so that the
O(log2 n) can be removed from the competitive bound. The above
techniques are then extended to handle both offline and dynamic
versions of relaxed PredOrderScheduling, achieving the same
competitive bounds as in the algorithms for non-relaxed versions.
RelatedWork. The most closely related works to ours are [11, 24]
in shared-memory multi-core systems. Gonzalez-Mesa et al. [11]
introduced and studied PredOrderScheduling and Saad et al.
[24] presented three improved algorithms and evaluated them. We
study this problem in this paper for the very first time in distributed
shared memory systems, where the goal is to minimize execution
time and communication cost. The goal in [11, 24] is to minimize
only the execution time and they did not provide formal competitive
analysis of execution time like we do here.

The other previous works [15, 28, 33] in distributed shared mem-
ory systems focused on minimizing only the communication cost.
The execution time minimization is first considered by Zhang et
al. [33]. Busch et al. [4] considered for the first time minimizing
both the execution time and communication cost. They showed
that it is impossible to simultaneously minimize execution time
and communication cost for all the scheduling problem instances
in arbitrary G even in the offline setting, i.e., minimizing execu-
tion time implies high communication cost (and vice-versa). Then
they provided offline algorithms optimizing individually execution
time or communication cost. Busch et al. [5] considered transac-
tion scheduling in special topologies (e.g., grid, line, clique, star,
hypercube, butterfly, and cluster) and provided offline algorithms
that minimize simultaneously execution time and communication
cost. Later, Poudel and Sharma [23] provided an evaluation frame-
work for processing transactions in distributed system following
[5]. Recently, Busch et al. [7] provided dynamic (online) algorithms.

We consider in this paper the data-flow model. There is another
model called the control-flow model [26], in which objects are im-
mobile and transactions either move to the network nodes where
the required objects reside, or invoke remote procedure calls. It is
believed that the data-flow model provides a clear abstraction and
is more amenable to control both time and communication [15].
Most of the previous studies on scheduling with provable bounds
in distributed systems, e.g., [5–7], used the data-flow model.

(Equal-priority) transaction scheduling in general is widely-
studied in shared memory multi-core systems. Several scheduling
algorithms with provable upper and lower bounds, and impossibil-
ity results were given [1, 13, 27], besides several other scheduling
algorithms that were evaluated only experimentally [32]. These
scheduling algorithms and ideas developed, however, are not suit-
able for distributed shared memory systems as they do not deal
with a crucial performance metric, communication cost.
Roadmap. We discuss model and some preliminaries in Section 2.
We present our five contributions in Sections 3–7. We give conclud-
ing remarks in Section 8. Pseudocodes and some proofs are omitted
due to space constraints.

2 MODEL AND PRELIMINARIES
Graph. We consider a distributed system G = (V ,E,w) of n
nodes (representing processing nodes) V = {v1,v2, . . . ,vn }, edges

(representing communication links between nodes) E ⊆ V × V ,
and edge weight function w : E → Z+. A path p in G is a se-
quence of nodes (with respective edges between adjacent nodes)
with length(p) =

∑
e ∈p w(e). We assume that G is connected. Let

dist(u,v) denote the shortest path length (distance) between two
nodes u and v . The communication links are bidirectional – the
messages can be sent in both directions. It is also assumed that both
the nodes and links are non-faulty and the links deliver messages
in a FIFO order. The messages can be of any size and any number
of messages can traverse an edge at any time, i.e., no bandwidth
restriction. The diameter D is the maximum shortest path distance
between any two nodes in G. The k-neighborhood of a node u ∈ G
is the set of nodes which are at distance ≤ k from u.
Communication Model.We consider the synchronous commu-
nication model where time is divided into discrete steps such that
at each time step a node receives messages, performs a local com-
putation, and then transmits messages to adjacent nodes [5–7].
For an edge e = (u,v) ∈ E, it takes w(e) time steps to transfer
a message msд from u to v (and vice-versa); the communication
cost contributed bymsд is w(e). We assume that the message size
is sufficient to convey the information about an object over the
network. In realistic settings, the costs to transfer objects over the
interconnection links may vary depending on the object’s size. In
this case, our bounds are affected only by the size factor (maximum
object size divided by the size of the object that can be transferred
over any link e = (u,v) ∈ E of weight w(e) in w(e) time steps).
Transactions. Let S = {S1, S2, . . . , Sw } denote the totalw shared
objects available in G. Each object has some value which can be
read/written. The shared objects reside at nodes and are mobile,
i.e., an object can move from one graph node to another. The node
of G where an object Si is currently positioned is called the owner
of Si , denoted as owner (Si ). Initially, the shared objects may be
distributed arbitrarily at the nodes of G. A transaction T (vi ,aдei )
is an atomic block of code mapped and executed at node vi which
requires a set of objects S(T (vi ,aдei )) ⊆ S and has priority aдei .
Transaction T (vi ,aдei ) may modify some objects during execution
while others remain unchanged. To simplify the analysis, we assume
that each object has a single copy (for both read/write) and resides
at one node at any time. We assume that each node runs a single
thread and issues transactions sequentially, i.e., a node can issue a
new transaction only after its previous transaction commits.
Transaction Execution and Conflicts. Transaction T (vi ,aдei )
can finish execution and commit only after all its required objects
are gathered at vi and it is the first among the not-yet-committed
transactions in the predefined order. An execution of T (vi ,aдei )
ends with either commit (success) or abort (failure). Two transac-
tions T (vi ,aдei ) and T (vj ,aдej ) conflict if they request (at least) a
same shared object and at least one of them wants to modify that
object (write a new value in it). A conflict is handled by aborting one
of the transactions, or deferring the access of one transaction until
the other commits. We assume that an aborted transaction restarts
immediately from its beginning. A scheduling algorithm A deter-
mines the time that objects move from one node to another and
the time that transactions execute. The transaction’s computation
time is one time step once it has the required objects.
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Figure 1: An illustration of the time step ti in which
transactionT (vi ,aдei ) using shared objects S(T (vi ,aдei )) exe-
cutes and commits in Off-Opt. There are 4 shared objects
S1, . . . , S4, initially at their owner nodes. The object tour
Object_Tour (Sj ) for each object Sj is also shown. The length
ofObject_Tour (Sj ) is the communication cost of Sj . The total
execution time is t4 = 18 and the total communication cost
is the sum of the object tours of S1, . . . , S4.

Performance Metrics.We consider two performance metrics fun-
damental to any distributed system, namely execution time and
communication cost. Let E be an execution schedule based on
scheduling algorithm A. The metrics can be defined as follows.

Definition 2.1 (Execution Time). For a set of transactions T in G,
the time of an execution E is the time elapsed until the last transaction
finishes its execution in E. The execution time of scheduling algorithm
A is the maximum time over all possible executions for T .

Definition 2.2 (Communication Cost). For a set of transactions T
in G, the communication cost of an execution E is the sum of the
distances messages travel during E. The communication cost of A is
the maximum cost over all possible executions for T .

The Scheduling Problem. Each transaction T (vi ,aдei ) is as-
signed age, aдei , before it is being activated, and the age signifies
the transaction commit order [11, 24]. Following [11, 24], parameter
aдe is supposed to satisfy the following three properties: (i) unique –
no two transactions in T can have the same age, (ii) non-modifiable
– does not change even if T (vi ,aдei ) is aborted multiple times, and
(iii) externally determined – an external parameter that does not
depend on the execution of concurrent transactions. Formally,

Definition 2.3 (PredOrderScheduling). Given a set of transac-
tions T := {T (v1,aдe1),T (v2,aдe2), . . .} mapped (arbitrarily) to the
nodes of a distributed system G, commit transactions in T in the
increasing order of the parameter aдe .

A relaxed PredOrderSchedulingwhere transactions don’t need
to execute in the increasing order of aдe is studied in Section 6.

3 OFFLINE OPTIMAL-TIME-AND-
COMMUNICATION ALGORITHM

We study here offline PredOrderScheduling with complete
knowledge on the problem – the transactions in T , their prior-
ities, the shared objects transactions need, the initial positions of
shared objects in S. We provide a polynomial-time algorithm Off-
Opt that achieves optimal execution time and communication cost
i.e., Off-Opt is 1-competitive in both time and communication.

Algorithm Off-Opt. Off-Opt constructs an object tour, denoted
as Object_Tour (Sj ), for each object Sj ∈ S starting from its ini-
tial owner node visiting all the transactions in T that access
it in the order of their priorities. Object_Tour (Sj ) for an object
Sj ∈ S is constructed as follows. Let T(Sj ) ⊆ T be the set
of transactions in T that access object Sj (for read/write). Or-
der the transactions in T(Sj ) according to their ages, starting
from the lowest aged transaction to the highest. Let T(Sj ) :=
{T (v1(Sj ),aдe1(Sj )),T (v2(Sj ),aдe2(Sj )), . . .} be the set after the
ordering. Let owner (Sj ) be the owner node of object Sj . Con-
nect owner (Sj ) with the mapped node v1(Sj ) of the lowest aged
transaction T (v1(Sj ),aдe1(Sj )) ∈ T (Sj ) through the shortest
path dist(v1(Sj ),owner (Sj )) in G. Then, connect the node v1(Sj )
of T (v1(Sj ),aдe1(Sj )) ∈ T (Sj ) with the second lowest aged
transaction T (v2(Sj ),aдe2(Sj )) ∈ T (Sj ) through the shortest
path dist(v1(Sj ),v2(Sj )) in G. Repeat this process until the high-
est aged transaction in T(Sj ) is connected to the second high-
est aged transaction in T(Sj ). Therefore, Object_Tour (Sj ) :=
{owner (Sj ),v1(Sj ),v2(Sj ), . . .}, with each pair of successive nodes
are connected through the shortest paths in G.

The object tours help transactions to decide on the time steps
they can execute and commit. Off-Opt decides on the time step
ti transaction T (vi ,aдei ) can execute and commit as follows. Let
S(T (vi ,aдei )) ⊆ S be the set of objects required byT (vi ,aдei ). The
lowest aged transaction T (v1,aдe1) ∈ T can execute and commit
at time step t1 = t ′1 + 1, where

t ′1 = max
Sj ∈S(T (v1,aдe1))

dist(v1,owner (Sj ))

such that by time step t ′1 the lowest aged transaction T (v1,aдe1)
assembles each object Sj ∈ S(T (v1,aдe1)) at v1.

For simplicity in exposition, let T (vi−1,aдei−1) be the transac-
tion in T that (immediately) precedes T (vi ,aдei ) in the aдe or-
der. If there does not exist T (vi−1,aдei−1), then vi−1 is the owner
node owner (Sj ), i.e., owner (Sj ) precedesvi andT (vi ,aдei ) is in fact
T (v1,aдe1). Let ti−1 be the time step at which T (vi−1,aдei−1) has
been committed. Pick an object Sj ∈ S(T (vi ,aдei )). Consider the
object tour for Sj ,Object_Tour (Sj ). LetT (vprev(Sj ),aдeprev(Sj )) be
the transaction that used Sj beforeT (vi ,aдei )1. Let tprev(Sj ) be the
time step at which T (vprev(Sj ),aдeprev(Sj )) has been committed.
Off-Opt decides that

ti =

{
ti−1 + 1, if t ′i < ti−1
t ′i + 1, otherwise,

where

t ′i = max
Sj ∈S(T (vi ,aдei ))


dist(vi ,vprev(Sj ))+

tprev(Sj ), if vprev(Sj ) , owner (Sj )

dist(vi ,owner (Sj )), otherwise.

Initially, each object Sj moves from its owner node owner (Sj )
to the first transaction in the order that requests it following
Object_Tour (Sj ). From that node it moves towards the next node in

1 T (vprev (Sj ), aдeprev (Sj )) may not necessarily be T (vi−1, aдei−1);
T (vprev (Sj ), aдeprev (Sj )) is T (vi−1, aдei−1) if and only if Sj ∈

S(T (vi−1, aдei−1), otherwise it is some other transaction in T .
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Object_Tour (Sj ) as soon as the transaction on that node commits.
The algorithm terminates as soon as the highest aged transaction
T (vh ,aдeh ) ∈ T executes and commits at time step th . Object Sj
stopsmoving after it reaches the last node inObject_Tour (Sj ). Fig. 1
illustrates ideas behind Off-Opt.
Analysis of Off-Opt. We analyze Off-Opt for correctness, exe-
cution time, and communication cost bounds.

Theorem 3.1. Off-Opt correctly solves PredOrderScheduling.

Proof. Consider any transaction T (vi ,aдei ) ∈ T . Consider an-
other transaction T (vi−1,aдei−1) ∈ T that immediately precedes
T (vi ,aдei ) in the age order. In Off-Opt,T (vi ,aдei ) does not commit
before T (vi−1,aдei−1) since ti ≥ ti−1 + 1. Furthermore, T (vi ,aдei )
does not execute until all objects it requires assemble at its mapped
node vi which happens by time t ′i . If t

′
i < ti−1, then ti = ti−1 + 1

satisfies ti > ti−1, otherwise ti = t ′i + 1 satisfies that ti > ti−1.
Therefore, Off-Opt correctly solves PredOrderScheduling. □

Theorem 3.2. Off-Opt achieves optimal execution time.

Theorem 3.3. Off-Opt achieves optimal communication cost.

Theorem 3.4. Off-Opt computes the execution schedule in poly-
nomial time.

4 OFFLINE EFFICIENT-TIME-AND-
COMMUNICATION ALGORITHM

We study here offline PredOrderScheduling with a priori knowl-
edge only on the transactions and their priorities. The transactions
are not known about the shared objects they access until runtime.
We provide a polynomial-time algorithm Off-Eff that simultane-
ously achieves execution time and communication cost within a
O(log2 n) factor from optimal, i.e., Off-Eff isO(log2 n)-competitive
in both metrics. On special graphs, it becomes O(1)-competitive.
High Level Idea Behind Off-Eff. The idea is to use the direc-
tory protocols developed for synchronizing access to shared objects
distributed over a network, for example, [2, 9, 15, 28], so that the
communication cost in moving the objects to the mapped nodes
can be controlled forming a distributed object tour per object based
on transactions that request that object. We then control execution
time by forming a distributed transaction queue of transactions in
T . We achieve the following two properties for both the queues:

(i) Construction of a distributed transaction queue satisfying
predefined order of transactions in T mapped initially to
the nodes of G. The commit messages are then sent to the
successor transactions following the paths in their respective
transaction tours.

(ii) Construction of a distributed object tour for each object Sj ∈

S, satisfying the predefined order of the transactions that
access that object. The objects are then forwarded to the
transactions accessing them following the paths in their
respective object tours.

We will show that executing transactions following the dis-
tributed transaction tour controls the execution time of (executing
and) committing all the transactions. We will also show that when
a transactionT (vi ,aдei ) receives a commit message from the previ-
ous transaction, all the objects in the set S(T (vi ,aдei )) are already

assembled at vi . These ideas altogether make Off-Eff simultane-
ously execution time and communication cost efficient.

We discuss in the next three subsections a notion of overlay tree
OT construction and the construction of distributed transaction
queue and object tours on top of OT . We will then finally describe
the details of algorithm Off-Eff and present its analysis.

4.1 Overlay Tree Construction
There are two different well-known approaches in constructing
overlay tree OT on the graph G: (i) use a spanning tree of G or (ii)
use a hierarchy of clusters onG . The spanning-tree-based approach
was used in directory protocols [2, 9] and the hierarchy-of-clusters-
based approach was used in directory protocols [15, 28, 29].

Both of these approaches work for Off-Eff. One major dis-
tinction is that hierarchy-of-clusters-based overlay trees are more
suitable to control communication costs (and hence the execution
time) compared to the spanning-tree-based overlay trees. There-
fore, we discuss the construction of hierarchy-of-clusters-based
overlay tree OT as follows. In a high level, divide the graphG into
a hierarchy of clusters with H1 = ⌈logD⌉ + 1 layers such that the
clusters sizes grow exponentially. A cluster is a subset of nodes,
and its diameter is the maximum distance between any two nodes.
The diameter of each cluster at layer ℓ, where 0 ≤ ℓ < H1, is no
more than f (ℓ), for some function f , and each node participates
in no more than д(ℓ) clusters at layer ℓ, for some other function д.
Moreover, for each node u in G, there is a cluster at layer ℓ such
that the (2ℓ − 1)-neighborhood of u is contained in that cluster.

There are known cluster hierarchy construction algorithms, such
as a hierarchical sparse cover of G that gives a cluster hierarchy Z

withH1 layers with f (ℓ) = O(ℓ logn) and д(ℓ) = O(logn). This con-
struction was used in the Spiral directory protocol due to Sharma
et al. [28] in which each layer ℓ is decomposed into H2 = O(logn)
sub-layers of clusters, such that a node participates in all the sub-
layers of a layer but in a different cluster within each sub-layer,
i.e., at each layer ℓ a node u participates in д(ℓ) = O(logn) clusters.
In the construction of [28], a node in each cluster is designated
as the leader of the cluster. Connecting the leaders of the clusters
in the subsequent levels gives OT . An upward path p(u) for each
node u ∈ G is built by visiting leader nodes in all the clusters that
u belongs to starting from layer 0 (the bottom layer in Z) up to
layer H1 (the top layer in Z). Within each layer, H2 sub-layers are
visited by p(u) according to the order of their sub-layer labels. In
fact [28] already constructs upward paths to be able to run their
algorithm Spiral. The upward path p(u) visits two subsequent lead-
ers using shortest paths in G between them. Lets say two paths
intersect if they have a common node. Using this definition, two
upward paths intersect at layer i if they visit the same leader at
layer i . The lemmas below are satisfied in the construction of [28].

Lemma 4.1. For any two nodes u,v ∈ G, their upward paths p(u)
and p(v) intersect at layer min{H1, ⌈log(dist(u,v))⌉ + 1}.

Lemma 4.2. For any upward path p(u) for any node u ∈ G
from the bottom layer upto layer ℓ (and any sub-layer in layer ℓ),
length(p(u)) ≤ O(2ℓ log2 n).
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Figure 2: Illustration of construction of DistTransQueue(T ).
The message f indTrans(T (v3, 3)) from node v3 meets
f indTrans(T (v4, 4)) from node v4 at layer 2 cluster C2,1 (de-
noted as red|blue). Similarly, f indTrans(T (v2, 2)) from node
v2 meets f indTrans(T (v3, 3)) from node v3 at layer 3 cluster
C3 (denoted as red|green). Now, transaction T (v3, 3) knows
the previous (T (v2, 2)) and next (T (v4, 4)) transactions.T (v3, 3)
executes after receiving commit message from T (v2, 2) and
it sends a commit message to T (v4, 4) as soon as it commits.

4.2 Distributed Transaction Queue
Construction

Denote the distributed transaction queue by DistTransQueue(T )

for the transactions in T . The goal is to order the
transactions in DistTransQueue(T ) so that they sat-
isfy the predefined order. Let the transactions in T

in the increasing order of age are denoted as T :=
{T (v1,aдe1),T (v2,aдe2), . . . ,T (vi−1,aдei−1),T (vi ,aдei ), . . .}.
Consider transaction T (vi ,aдei ) ∈ T . Transaction T (vi ,aдei )
sends f indTrans(T (vi ,aдei )) message in its upward path p(vi )
in OT . The goal of sending the f indTrans(T (vi ,aдei )) mes-
sage is to find the messages f indTrans(T (vi−1,aдei−1)) and
f indTrans(T (vi+1,aдei+1)) at some leader node at some level in
OT . If f indTrans(T (vi ,aдei )) meets f indTrans(T (vi−1,aдei−1))
at some layer ℓ but not f indTrans(T (vi+1,aдei+1)), it continues
moving upward in p(vi ) until it meets f indTrans(T (vi+1,aдei+1))
at some layer ℓ′ ≥ ℓ and vice-versa. After it meets both
f indTrans(T (vi−1,aдei−1)) and f indTrans(T (vi+1,aдei+1)),
then f indTrans(T (vi ,aдei )) stops. After such meeting happens
for all f indTrans(T (vi−1,aдei−1)), f indTrans(T (vi ,aдei )), and
f indTrans(T (vi+1,aдei+1)), 2 ≤ i ≤ n − 1, the construction of
DistTransQueue(T ) is essentially finished. Fig. 2 illustrates the
construction of DistTransQueue(T ) on top of the overlay tree OT

constructed in the previous subsection.

4.3 Distributed Object Tour Construction
A distributed object tour, denoted as DistObjTour (Sj ), is con-
structed for each object Sj ∈ S, i.e., there will be totalw different
object tours for w shared objects in S. DistObjTour (Sj ) is
constructed as follows. Let T(Sj ) ⊆ T be the set of transactions in
T that access object Sj (for read/write). Each of the graph nodes
(with transactions) accessing Sj send f indObj(T (vi ,aдei ), Sj )
message in OT following the upward path p(vi ). As in
f indTrans(T (vi ,aдei )), the goal of f indObj(T (vi ,aдei ), Sj )
is to find messages f indObj(T (vprev(Sj ),aдeprev(Sj )), Sj )

and f indObj(T (vnext (Sj ),aдenext (Sj )), Sj ), where
T (vprev(Sj ),aдeprev(Sj ) and T (vnext (Sj ),aдenext (Sj ) are
the transactions in T(Sj ) such that they are ordered

immediately before and after Ti in T(Sj ) in the age
order. Message f indObj(T (vi ,aдei ), Sj ) stops as soon
as it meets both f indObj(T (vprev(Sj ),aдeprev(Sj )), Sj )

and f indObj(T (vnext (Sj ),aдenext (Sj )), Sj ) at some
layer ℓ in OT . After the meeting happens for
f indObj(T (vprev(Sj ),aдeprev(Sj )), Sj ), f indObj(T (vi ,aдei ), Sj ),
and f indObj(T (vnext (Sj ),aдenext (Sj )), Sj ), DistObjTour (Sj ) is
essentially constructed by vi for Sj .

Let vκ be the leader node at layer
κ where f indObj(T (vi ,aдei ), Sj ) met
f indObj(T (vprev(Sj ),aдeprev(Sj )), Sj ). Object Sj can be for-
warded to T (vi ,aдei ) by T (vprev(Sj ),aдeprev(Sj )) by first sending
the object upward in p(vprev(Sj )) up to vκ and then sending the
object downward in p(vi ) from vκ up to node vi .

There is one last thing to consider while constructing
DistObjTour (Sj ). There is a special case while constructing
DistObjTour (Sj ), such that owner (Sj ) may not be at the mapped
node v1 of the lowest aged transaction T (v1,aдe1). In this case,
node owner (Sj ) sends a special f ind(T (v1,aдe1), Sj ) message fol-
lowing p(owner (Sj )). Message f ind(T (v1,aдe1), Sj ) stops as soon
as it meets message f indObj(T (v1,aдe1), Sj ).

4.4 Algorithm Off-Eff and Its Analysis
Off-Eff works on top of OT . Off-Eff first constructs distributed
transaction queue and distributed object tours,DistTransQueue(T )

and DistObjTour (Sj ), respectively. When the queue/tour construc-
tion finishes, there will be a single queue DistTransQueue(T ) and
w tours DistObjTour (Sj ) forw objects in S.

After that, the lowest aged transaction T (v1,aдe1) executes and
commits as soon as all the shared objects in S(T (v1,aдe1)) are
gathered at v1. Each object Sj ∈ S(T (v1,aдe1)) not already at
v1 move to v1 following its DistObjTour (Sj ) from its owner (Sj ).
Suppose T (v1,aдe1) commits at time step t1. T (v1,aдe1) sends
commit(T (v1,aдe1)) message and each object Sj ∈ S(T (v1,aдe1))
in the upward path p(v1) in OT . The commit message and objects
in S(T (v1,aдe1) required by T (v2,aдe2) reach node v2 following
their paths in OT . As soon as T (v2,aдe2) executes and commits
at time step t2 > t1, then commit(T (v2,aдe2)) is sent to T (v3,aдe3)
and objects in S(T (v2,aдe2)) move to the next nodes following
their individual DistObjTour (.). Off-Eff terminates as soon as the
highest aged transaction T (vh ,aдeh ) ∈ T executes and commits at
some time step th .

We now analyze Off-Eff for correctness, execution time, and
communication cost bounds.

Lemma 4.3. Consider two consecutive transactions
T (vi−1,aдei−1), T (vi ,aдei ) ∈ T in the age order. If
dist(vi−1,vi ) ≤ 2ℓ , then messages f indTrans(T (vi ,aдei ))
and f indTrans(T (vi−1,aдei−1)) meet at layer ℓ of OT .

We have the similar lemma for f indObj(., .) messages.

Lemma 4.4. If dist(vi ,vj ) ≤ 2ℓ for any two consecu-
tive transactions T (vprev(Sj ),aдeprev(Sj )),T (vi ,aдei ) ∈ T

in the age order in accessing an object Sj ∈ S, then
the messages f indObj(T (vprev(Sj ),aдeprev(Sj )), Sj ) and
f indObj(T (vi ,aдei ), Sj ) meet at layer ℓ of OT .

The following observation is also immediate.
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Observation 1. After the meeting of the messages
f indTrans(T (vi ,aдei )) and f indTrans(T (vi+1,aдei+1)) in some
layer ℓ ≤ H1, transactionT (vi ,aдei ) knows how to reach the mapped
node vi+1 of transaction T (vi+1,aдei+1), following the upward path
p(vi ) up to layer 0 ≤ ℓ ≤ H1 and then the upward path p(vi+1) in
opposite direction from layer ℓ to layer 0.

A similar observation applies to f indObj(T (vi ,aдei ), Sj ) mes-
sages so that the object Sj can move to vnext (Sj ) following upward
path p(vi ) up to layer ℓ and then upward path p(vnext (Sj )) in op-
posite direction from layer ℓ to layer 0.

Now, we provide following lemma that is crucial for execution
in Off-Eff.

Lemma 4.5. If a transaction T (vi ,aдei ) ∈ T receives
commit(T (vi−1,aдei−1)message at time step ti−1, then all the objects
in S(T (vi ,aдei )) ⊆ S are gathered at vi by time step ti − 1.

Lemma 4.6. Off-Eff is O(log2 n)-competitive in execution time.

Proof. We have from Lemma 4.3 that if two consecutive trans-
actions T (vi−1,aдei−1),T (vi ,aдei ) ∈ T in the age order are
dist(vi−1,vi ) ≤ 2ℓ apart in G, then f indTrans(T (vi−1,aдei−1))
and f indTrans(T (vi ,aдei )) messages meet at layer ℓ in OT

following the upward paths p(vi−1),p(vi ). The length of the
paths p(vi−1),p(vi ) up to layer ℓ is c · 2ℓ · log2 n (Lemma
4.2). Therefore, after T (vi−1,aдei−1) commits at time step ti−1,
commit(T (vi−1,aдei−1)) reaches T (vi ,aдei ) (following the upward
path p(vi−1) up to layer ℓ and following the upward path p(vi ) in
the opposite direction from layer ℓ up to later 0 at time step

t ′i = ti−1 + 2 · c · 2ℓ log2 n = ti−1 + 2 · c · dist(vi−1,vi ) log2 n.

Wehave from Lemma 4.5 that all the shared objects inS(T (vi ,aдei ))
are already gathered at vi by time step t ′i . Therefore, transaction
T (vi ,aдei ) can execute and commit at time step ti = t ′i +1. This pro-
cess repeats in Off-Eff for each consecutive pairs of transactions
in T . Therefore, the total execution time in Off-Eff is bounded by

tALG ≤ max
Sj ∈S(T (v1,aдe1))

2 · c · dist(v1,owner (Sj )) log2 n

+

|T |∑
i=2

2 · c · dist(vi−1,vi ) log2 n,

where dist(v1,owner (Sj )) is the shortest path distance between the
mapped node v1 of transaction T (v1,aдe1) and the owner of object
Sj ∈ S(T (v1,aдe1)).

We now establish lower bound on execution time. A transaction
T (vi ,aдei ) cannot execute until it receives the commit message
from transaction T (vi−1,aдei−1). Therefore, the optimal execution
time must be at least ≥

∑ |T |

i=2 dist(vi−1,vi ). Moreover, the lowest
aged transaction T (v1,aдe1) cannot commit until it receives all the
objects in S(T (v1,aдe1)) from their owner nodes. The time for this
is at least

≥ max
Sj ∈S(T (v1,aдe1))

dist(v1,owner (Sj )).

Therefore, the optimal execution time tOPT is at least

tOPT ≥ max
Sj ∈S(T (v1,aдe1))

dist(v1,owner (Sj )) +
|T |∑
i=2

dist(vi−1,vi ).

Thus, the competitive ratio of Off-Eff in execution time is
bounded by tALG

tOPT
≤ 2c log2 n = O(log2 n). □

Lemma 4.7. Off-Eff is O(log2 n)-competitive in communication
cost.

Theorem 4.8. Off-Eff computes the execution schedule in poly-
nomial time.

Proof. The overlay treeOT construction takes polynomial time
[28]. The upward paths can then be computed in polynomial time.
Furthermore, the construction of transaction and object queues
takes polynomial time. □

Remark: Bounds on Special Graphs. Off-Eff can achieve bet-
ter execution time and communication cost bounds for doubling
dimension metrics, including both constant-dimensional Euclidean
and growth-restricted metrics. Particularly, for doubling-dimension
graphs, we can use the overlay tree OT construction of [15], where
it is guaranteed that length(p(u)) ≤ O(2ℓ) for any upward path
p(u) of nodeu until layer ℓ in OT (the improvement is anO(log2 n)
factor compared to Lemma 4.2). Everything else remains the same.

Theorem 4.9. In doubling dimension metrics, including constant-
dimensional Euclidean and growth-restricted metrics, Off-Eff is
O(1)-competitive in both execution time and communication cost.

5 DYNAMIC SCHEDULING
We study here dynamic PredOrderScheduling with no a priori
knowledge on transactions (including age and the objects they ac-
cess) and the initial positions of objects. A transaction only knows
its aдe and the objects it needs when it arrives. In contrast to offline
PredOrderScheduling where all transactions in T arrive before
execution starts, in the dynamic PredOrderScheduling transac-
tions in T may arrive over time. The arrival may be arbitrary in
the sense that at any time, there may be zero, one, or more transac-
tions arriving to the system. We present an algorithm Dyn that is
O(D)-competitive in both execution time and communication cost.
Algorithm Dyn. Dyn works on top of a spanning tree-based over-
lay tree, which we denote as OT ST . The reason of using OT ST
instead of the hierarchy of clusters-based overlay tree OT used in
Section 4 is that OT ST helps to reduce the competitive ratio bounds
by anO(log2 n) factor compared to the ratio bounds obtained using
OT , i.e., using OT , Dyn can achieveO(D log2 n) competitive ratio,
whereas with OT ST , it achieves O(D) competitive ratio.

Let vroot be the root node of OT ST ; vroot is in fact the root
node of the spanning tree ST used as OT ST . The upward path
p(v) can be defined in OT ST connecting the parent nodes in
ST from node v up to the root vroot . As soon as the execution
starts, each shared object Sj ∈ S moves to the vroot follow-
ing the upward path p(owner (Sj )) from its initial position. Fur-
thermore, as soon as a transaction T (vi ,aдei ) arrives, it sends
f indTrans(T (vi ,aдei )) message to the root vroot following the
upward path p(vi ). T (vi ,aдei ) also sends f indObj(T (vi ,aдei ), Sj )
message tovroot for each Sj ∈ S(T (vi ,aдei )) that it accesses, again
following the upward path p(vi ).

At any time step t , the root nodevroot has a set of pending trans-
actions Tt (vroot ) as follows. Suppose T (vi ,aдei ) arrives at node vi
at time step t ′′i . Whenvroot receives f indTrans(T (vi ,aдei )) at time
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Figure 3: Illustration of pending transactions Tt (vroot ) at
vroot at any time step t ≥ 0 in Algorithm Dyn. At t = 2
and t = 3, f indTrans(∗) messages from transactions T (v1, 1)
andT (v5, 5) (denoted asT1 andT5, respectively) reach the root
nodev4.T1,T5 will be added toTt (v4) at time step tarr ival+D =
0+3 = 3.T4 will be added to Tt (v4) at time step 5+D = 5+3 = 8.
Similarly,T2,T3 will be added at time steps 14, 10, respectively.
T1 executes and commits at t = 6. v4 receives commit mes-
sage from T1 at t = 8 and by that time, T4 has already been
added to Tt (v4), then T4 executes and commits at t = 9. T5
executes at t = 10 and so on.

troot ≥ t ′′i , then it includes T (vi ,aдei ) at time step t ′′′ = t ′′i + D,
where D is the diameter of graph G. It might be the case that
T (vi ,aдei ) arrives at time step < t ′′i + D. In this case, T (vi ,aдei )
simply waits at vroot to be included in Tt (vroot ). At any time
step t , vroot makes scheduling decision among the transactions
in Tt (vroot ) as follows. Let St (vroot ) ⊆ S be the set of objects
that are at vroot at time step t . Let Tt (vs ,aдes ) ∈ Tt (vroot ) be
the lowest aged transaction in Tt (vroot ) at time t . If all the ob-
jects in S(Tt (vs ,aдes )) are on vroot at time t , vroot will send all
the objects to go to node vs following p(vs ) in the opposite direc-
tion from vroot to vs . Suppose the objects in S(Tt (vs ,aдes )) reach
vs at time t ′s > t . Tt (vs ,aдes ) executes and commits at time step
ts = t ′s +1. After the commit,vs sends the objects inS(Tt (vs ,aдes ))
back to vroot following the upward path p(vs ). Node vs also sends
commit(Tt (vs ,aдes )) message to vroot following p(vs ). As soon as
vroot receives commit(Tt (vs ,aдes )), it can then schedule the small-
est aged transaction among the ones now in Tt (vroot ) (which does
not include Tt (vs ,aдes )). Fig. 3 illustrates the ideas behind Dyn.
Analysis of Dyn.We analyze Dyn considering two cases: (i) trans-
action arriving at time step t has age smaller than any transaction
arriving at time step t ′ > t and (ii) transaction arriving at time step
t might not have age smaller than any transaction arriving at time
step t ′ > t . Interestingly, in both the cases, the competitive ratio
bounds remain the same. The only difference is on the guarantees
on the commit order of transactions. We first analyze case (i).

Lemma 5.1. Take any time step t . Suppose the transaction priorities
depend on their arrival time. Let T (vj ,aдej ) be a transaction that
arrives at t . Consider a transaction T (vi ,aдei ) that arrives at time
step ti < t . Dyn commits T (vi ,aдei ) before T (vj ,aдej ).

Theorem 5.2. Dyn is O(D)-competitive in execution time.

Proof. Consider any transaction T (vi ,aдei ) ∈ T . Consider the
time step ti−1 in which the previous transaction (in the age order)
in T commits. By ti−1 +D time steps, vroot receives all the objects

used by that transaction plus the commit message. After that, the
objects in S(T (vi ,aдei )) can reach node vi from vroot in at most
ti−1 + 2D time steps. T (vi ,aдei ) can then execute and commit at
time step ti = ti−1 + 2D + 1. The lowest aged transaction takes at
most t1 = 2D + 1 time steps to commit since it needs to get the
objects from their owner nodes; the objects first reach to vroot
and then to the transactions’ mapped node. Therefore, total time
in Dyn to commit all the transactions in T is (|T | − 1) · (2D + 1).
The optimal time to commit all the transactions in T is |T | time
steps since they have to commit in the age order. Therefore, Dyn is
O(D)-competitive in execution time. □

Theorem 5.3. Dyn is O(D)-competitive in communication cost.

Proof. We prove that Dyn is O(D)-competitive for any ob-
ject Sj ∈ S. This immediately applies that it is in over-
all O(D)-competitive in communication cost considering the
collective costs due to all w objects. Consider T(Sj ) :=
{T (v1(Sj ),aдe1(Sj )),T (v2(Sj ),aдe2(Sj )), . . .} ⊆ T be the transac-
tions that use Sj listed in the increasing order of their ages. Sj
needs to traverse starting from owner (Sj ) to all the transactions
in T(Sj ). After reaching one transaction, it will go back to vroot
before going to the next transaction in T(Sj ). Therefore, the com-
munication cost for Sj is |T (Sj )| · 2D. Since Sj has to be reached
to |T (Sj )| different nodes of G, the optimal cost is at least |T (Sj )|.
Therefore, Dyn is O(D)-competitive in communication cost. □

We now analyze case (ii). It is easy to see that the time and
communication bounds remain the same as in case (i). Therefore,
we prove the following guarantee on the commit order.

Lemma 5.4. Suppose the transaction priorities do not depend on
their arrival time. Dyn commits transactions in the increasing age
order of Tt (vroot ), the set of transactions at vroot at t .

Proof. Since ages of transactions are unique, at any time t , there
can be an ordering of the transactions in T(vroot ). Among those
transactions, at time step t , vroot picks among them the lowest
aged one to execute and commit within next D + 1 time steps. □

6 EXTENSION: RELAXED SCHEDULING
The relaxed PredOrderScheduling problem can be defined as fol-
lows: Transactions can commit out of order if they do not conflict
with any lower aged transactions. This is in contrast to PredOrder-
Scheduling, where even if a transaction does not conflict with any
lower aged transaction, it has to wait until all lower aged transac-
tions commit. Therefore, relaxed PredOrderScheduling achieves
better concurrency compared to PredOrderScheduling.
Relaxed Off-Opt. We study offline relaxed PredOrderSchedul-
ing as in Section 3. We present a polynomial-time algorithm R-
Off-Opt extending (the polynomial-time) algorithm Off-Opt and
achieve optimal execution time and communication cost.

Algorithm R-Off-Opt is as follows. Use the notations and con-
cepts as in algorithm Off-Opt. For each transaction T(vi ,aдei ) ∈
T , compute t ′i , and execute and commit T(vi ,aдei ) at time step
ti = t ′i + 1. Each object Sj ∈ S(T (vi ,aдei )) starts traversing its
respective object tourObject_Tour (Sj ) at the end of time step ti to
reach to the next transaction that uses it.
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Theorem 6.1. Algorithm R-Off-Opt correctly solves offline re-
laxed PredOrderScheduling, and achieves optimal execution time
and communication cost.

Relaxed Off-Eff. We study here offline relaxed PredOrder-
Scheduling as in Section 4. We present a polynomial-time algo-
rithm R-Off-Eff extending the polynomial-time algorithmOff-Eff
and achieve O(log2 n)-competitiveness on both execution time and
communication cost.

R-Off-Eff modifies Off-Eff as follows. R-Off-Eff does not
need to rely on the transaction queue DistTransQueue(T ) and
hence f indTrans(T (vi ,aдei )) messages are not needed. Further-
more, commit(T (vi ,aдei )) message are not needed. Therefore, R-
Off-Eff works based only on DistObjTour (Sj ) for each object
Sj ∈ S. The construction of DistObjTour (Sj ) for each Sj ∈ S

is similar to Off-Eff.
Consider a transaction T (vi ,aдei ) that requires objects

S(T (vi ,aдei )) ⊆ S. Let t ′i be the time step at which all the objects
in S(T (vi ,aдei )) are assembled at node vi . Transaction T (vi ,aдei )
executes and commits at time step ti = t ′i + 1. The objects in
S(T (vi ,aдei )) are then forwarded to their next transactions follow-
ing their respective queues at the end of time step ti .

Theorem 6.2. R-Off-Eff correctly solves offline relaxed Pre-
dOrderScheduling, and is O(log2 n)-competitive in both execution
time and communication cost.

Relaxed Dyn. We study here dynamic relaxed PredOrder-
Scheduling. We present an algorithm R-Dyn that achieves O(D)-
competitiveness on both execution time and communication cost.
R-Dyn is a modified version of Dyn (Section 5). Consider algorithm
Dyn. Let Tt (vroot ) be the set of pending transactions at vroot at
time step t . Nodevroot asks all the transactions in Tt (vroot ) that do
not share the objects to execute and commit, if all the shared objects
needed by those transactions are available to vroot . We again have
two cases as in Section 5. For case (i), we have the following.

Lemma 6.3. Take any time step t . Suppose the transaction priorities
depend on their arrival time. Let T (vj ,aдej ) be a transaction that
arrives at t that uses object Sj . Consider a transaction T (vi ,aдei )
that arrives at time step ti < t that uses Sj . Dyn commits T (vi ,aдei )
before T (vj ,aдej ).

We prove the following guarantee of R-Dyn for case (ii).

Lemma 6.4. Suppose the transaction priorities do not depend on
their arrival time. R-Dyn commits transactions in the increasing age
order of DistObjTour (Sj ) at any time step t .

7 EVALUATION
We have implemented Off-Opt, Off-Eff, and Dyn and evaluated
them using a set of micro- and complex benchmarks. The imple-
mentation was done in Java. The experiments were performed on
an Intel Core i7-7700K processor with 32 GB RAM, simulating two
different communication graphs, namely random and grid. The total
number of nodes are varied from 64 to 1024 for each graph. The
total number of shared objects, transactions, and the transaction
sizes vary based on a benchmark. The results presented are the
average of 10 runs.

Figure 4: Time and communication of the algorithms (log
scale) against three micro-benchmarks on random graphs.

Figure 5: Time and communication of the algorithms (log
scale) against three micro-benchmarks on grid graphs.

In the experiments, execution time is measured as the number
of time steps taken to execute all the transactions. Communication
cost is measured as the total distance the objects (and commit
notifications) traverse in the respective communication graphs.
Results onMicro-benchmarks.We experimented Off-Opt, Off-
Eff, and Dyn against three micro-benchmarks bank, linked list, and
skip list. Figs. 4 and 5 provide the results in random and grid graphs,
respectively.
Results on STAMP benchmarks. We experimented the algo-
rithms against intruder, genome, and vacation out of 8 benchmarks
available in the STAMP benchmark suite [20]. Figs. 6 and 7 provide
the results in random and grid graphs, respectively.
Result Discussion. Both the execution time and communication
cost results for Off-Opt are the minimum possible. Therefore, the
results of Off-Eff and Dyn can be compared with the Off-Opt
results. The results for Off-Eff are substantially better than the
theoretical O(log2 n) factor compared to the time and communica-
tion in Off-Eff. The trend can also be seen when we compare Dyn
results with Off-Opt results. The results for Dyn are again orders
of magnitude better than the theoretical O(D) factor compared to
the time and communication in Off-Opt. Moreover, Dyn has less
execution time and less communication cost than the Off-Eff. This
is because of D < log2 n in the experiment. Therefore, the experi-
mental results validate the efficacy of our algorithms for solving
PredOrderScheduling in real application setting.
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Figure 6: Time and communication of the algorithms (log
scale) against three STAMP benchmarks on random graphs.

Figure 7: Time and communication of the algorithms (log
scale) against three STAMP benchmarks on grid graphs.

8 CONCLUDING REMARKS
In this paper, we have studied for the very first time the predefined
order scheduling problem of committing transactions according to
their priorities in the data-flow model of transaction execution in
distributed systems, minimizing simultaneously two fundamental
performance metrics, namely execution time and communication
cost. This problem finds applications in many areas, such as loop
parallelization and state-machine-based distributed computing. We
have provided a range of algorithms considering this problem in
the offline and dynamic online settings as well as considering the
relaxed version of the problem. Our results (for both relaxed and
non-relaxed versions) are optimal in the offline setting with com-
plete knowledge to poly-log competitive in the offline setting with
partial knowledge to diameter competitive in the dynamic online
setting. The experimental results validated the efficacy of the so-
lutions in a set of simple micro-benchmarks and complex STAMP
benchmarks. In future, it will be interesting to deploy the algorithms
in real distributed system(s) and measure the wall clock results.
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