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can modify its value. The ownership may change by moving the object from one node to
another in response to move requests. The value of an object can be read by other nodes
with lookup requests. The distinctive feature of LB-SPIRAL is that it balances the processing
load on nodes in addition to minimizing the communication cost in general network

gf{twrifffe‘d systems topologies. In contrast, the existing distributed directory protocols for general network
Directories topologies only minimize the communication cost. In particular, LB-SPIRAL achieves poly-
Hierarchical clustering log approximation for both load and communication cost in general networks with respect
Stretch to the problem parameters. Simulation results show that the established theoretical results
Congestion translate well in practice.

Processing load © 2021 Elsevier Inc. All rights reserved.

Load balancing
Approximation

1. Introduction

Distributed directories are data structures that enable access to shared objects in a network. They support three basic
operations: (i) publish, allowing a shared object to be inserted in the directory so that other nodes can find it; (ii) lookup,
providing a read-only copy of the object to the requesting node; and (iii) move, allowing the requesting node to write the
object locally after getting it.

Distributed directories are suitable for distributed systems where shared objects are moved to those nodes that need
them [2]. Tasks operate on local shared objects and if remote shared objects are required, a task must communicate through
the directory to the remote nodes. In the distributed setting, cache-coherence for the shared objects ensures that writing to
an object automatically locates and invalidates other cached copies of that object. A distributed directory protocol (DDP) [3] is
a distributed directory implementation which realizes a coherence mechanism. Any DDP guarantees each lookup and move
operation to the shared object in a distributed directory is individually atomic.

DDPs have a long history of research. They have widely been used in distributed shared memory implementations in
multi-cache systems [3-5]. DDPs have also been used to implement fundamental problems in distributed systems, including
distributed queues [6], mobile object tracking [7], and distributed mutual exclusion [8]. Very recently, DDPs have been
studied for implementing transactional memory [9,10] in large-scale distributed systems [2,11-14].
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In the literature, the performance of a DDP was typically evaluated with respect to the communication cost, the total
distance traversed by all the messages in the network. The ratio of the actual communication cost to the optimal cost
provides an approximation ratio known as stretch. The goal is to guarantee stretch as small as possible. Existing DDPs such
as ARROW [6], RELAY [12], CoMBINE [11], BALLISTIC [2], and SPIRAL [13] focus only on minimizing the stretch, while several
other proposed DDPs [3-5] do not even have stretch analysis.

Processing load can also significantly affect the DDP performance. Processing load is measured as the worst node uti-
lization, namely, the maximum number of times operations for objects use a node in the distributed directory. Load
minimization is very important because it allows to evenly utilize available network resources (processing power, energy,
etc.), avoiding the chance to create bottlenecks due to some “hotspot” resources [2]. Here, we present a novel DDP for
general network topologies that simultaneously balances the processing load (minimizes maximum processing load) and
minimizes the communication cost (minimizes stretch). The only previously known DDP that controls load and stretch
simultaneously is MULTIBEND [14], which however is only suitable for the restricted case of mesh (grid) topologies. Further-
more, most of the techniques developed for MULTIBEND [14] to achieve such guarantees do not extend to general network
topologies.

1.1. Problem statement

We describe the problem with respect to a single shared object, since for each object we can apply the same DDP
solution. Consider a network and a set £ = {rg,r1,...,r¢} of operations to the shared object (¢ does not need to be known
and the bounds are independent of ¢). The initial operation ry is to publish the shared object in the directory while the
remaining, r1, 12, ..., ¢ are move operations for the object. The objective is to design a DDP that arranges the operations r;,
i>0, in a total order (or a “distributed queue”) [6]. Each operation r;, i > 0, has a source node s;, denoting the previous
owner node, and a destination node t; that issues r; which will become the new object owner. The destination node of an
operation rj, is the source node of another operation ry, in the total order, where the total order is a permutation of the
requests in £ that preserves the real time ordering. For every request r;j, the distributed directory provides a path p; from s;
to t; along which the object is transferred. Ideally, the collection of the paths minimize the load and the stretch. Formally,

e Load balancing: Minimize the maximum node processing load PL = max, |{i : v € p;}|. The processing load PL can be
compared to the optimal processing load PL* that is attainable by any DDP to provide a (processing load) approximation
ratio.

e Stretch: Minimize total communication cost A(E) = Zf;l |pil, where |pj| is the total length of the path p;. A(£) can be
compared to the optimal cost A*(£) from the optimal algorithm OPT that has complete knowledge about £ to provide
a request ordering with minimal stretch A(E)/A*(E). We are interested to minimize maxg A(E)/A*(E).

1.2. Contributions

Let G = (V, E,w) be a network with nodes V, edge set E, and weight function to on the edges in E (formal definition
in Section 2) and Z a distributed directory built on it. Previously known DDPs can be classified into three categories,
depending on the distributed directory Z on which they run. ARROw [6] and REeLAY [12] run on top of a spanning tree built
from the graph G as a directory Z. BaLLIsTIC [2] and COMBINE [11] run on top of an overlay tree constructed modifying
the spanning tree of G as a directory Z. SPIRAL [13] and MULTIBEND [14] run on top of a hierarchy of clusters based overlay
constructed using leaders of the clusters of some hierarchical clustering of G as a directory Z. Therefore, a node participates
on the directory Z in each of the three categories discussed above if it is one of the nodes on the spanning tree, overlay
tree, or a leader node of a cluster in the hierarchy of clusters based overlay.

It is easy to see that the processing load of a node in all the aforementioned DDPs is O (¢) in the worst-case, with the
exception of MULTIBEND [14] which minimizes simultaneously both stretch and processing load but only on mesh network
topologies. This is because once the directory Z (spanning, overlay, or hierarchical overlay) is constructed, the participating
nodes on the directory always process the requests.

We present LB-SPIRAL, a new DDP for shared objects, that is suitable for general networks, and is load balanced and
at the same time maintains low stretch. LB-SPIRAL is based on a hierarchy of clusters based overlay as a directory Z.
We build Z based upon the distributed directory Z we used in the our previous DDP, SPIRAL [13]. The difference is that
SPIRAL minimizes only the stretch, while LB-SPIRAL minimizes both the stretch and the processing load. Both the load and
stretch guarantees hold in any arbitrary execution, meaning that an initial publish operation can be followed by a sequence
of move requests that may be initiated at arbitrary moments of time. This dual optimization needs non-trivial changes in
the directory Z used in SPIRAL. We prove the following result.

Theorem 1. LB-SPIRAL guarantees O (log3 n - log D) amortized stretch and O (logn - log D) approximation of the processing load on
any node in any general network G for any arbitrary execution, where n is the number of nodes and D is the diameter of G.

Theorem 1 states that the processing load approximation is independent of the number of operations ¢. This is in sharp
contrast to the existing DDPs in general networks where processing load of some nodes is linearly dependent on ¢, in

© 00 N O O b~ WON =

-
-

39

43

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61



© 00 N O O b~ W N =

O O o g g g g oo a b D B B DS B DB BB DB W W W OOOWWWWOWWNDNDMNDNDNDMNDMNMNMNDDN=S = = <4 24 a4 a4 g
- O © 00 N O O & WN = O © 0N O G A~ WONMN =+ O O© 0N O GG A ON =+ O © ©NO UG B ON-=- O © 0N O B WN = O

JID:YINCO AID:104700 /FLA [m3G; v1.297] P.3(1-40)
S. Rai, G. Sharma, C. Busch et al. Information and Computation eee (eeee) seeeee

the worst-case. This is due to the fact the nodes in the higher levels of the directory Z process almost all the requests
issued by the graph nodes for the shared object. Therefore, for some nodes, the processing load is €2(¢) in the worst-
case, making it a hotspot resource. At the same time, the stretch approximation is remained independent of ¢. It was
not known in the literature whether the stretch approximation remains independent of ¢ when the processing load is
considered simultaneously with stretch. Therefore, to our knowledge, this is the first DDP which achieves this simultaneous
dual performance characteristic.

Looking into how significant the guarantees provided by LB-SPIRAL are, the stretch of LB-SPIRAL is optimal within a
poly-log factor compared to the Q(logn/loglogn) lower bound of Alon et al. [15] for the sequential execution scenario
of move operations. The universal TSP lower bounds, such as Q(,/logn/loglogn) by Jia et al. [16] for Euclidean metrics,
Q(Jlogn/loglogn) by Hajiaghayi et al. [17] for n x n grid, and Q(logn) by Gorodezky et al. [18] for Ramanujan graphs,
apply to the communication cost of concurrent execution scenarios of move operations. For the processing load, if a node
issues k requests then its minimum processing load is at least «. Our result shows that irrespective of whether a node
issues requests or not and how many requests other nodes issue, its load is no more than O (logD - logn) factor of the
minimum processing load.

LB-SPIRAL also provides guarantees for lookup operations. For any individual lookup operation, it guarantees O (log®n)
stretch! which is in contrast to the move stretch that is obtained combining the costs of a set of move operations. This lookup
stretch guarantee is particularly useful for read-dominated workloads. In the analysis, we do not consider the processing
load for lookup operations as they do not update the directory Z. However, if needed, for balancing processing load for
lookup accesses we can use the same techniques as for move operations. The publish cost in LB-SPIRAL is proportional to the
diameter of the network and it is a fixed initial cost which is only considered once and compensated by the costs of the
move operations issued thereafter. The same approach has been used in previous DDPs [2,11-14] for publish operations.

For special network topologies that satisfy bounded doubling dimension properties [2,19] we obtain improved theoretical
bounds, where we can show that LB-SPIRAL has both amortized move stretch and processing load of O (log D) in arbitrary
executions. Furthermore, the stretch for a lookup operation is only O (1). The benefit here is that the polylog(n) factors in
the stretch and load bounds of general topologies are avoided while moving to doubling dimension topologies.

The theoretical results developed are tested through simulation experiments to see how well they translate in practice.
The findings show that LB-SPIRAL performs well in practice for both stretch and processing load. We implemented and
experimented LB-SPIRAL in random networks of different sizes that are generated using the Erdds-Rényi model [20].

1.3. Relation between processing load and network congestion

Traditionally, load balancing in networks has been studied through network congestion which is measured as the worst
edge utilization and corresponds to the maximum number of times the object requests use any actual edge in the network.
The DDP MULTIBEND [14] has been shown to control edge congestion in addition to stretch, albeit only for the restricted
case of mesh network topologies (i.e., d-dimensional grids, d > 2). The processing load we studied in this paper relates to
node congestion. Processing load deals with minimizing the number of times an overlay node of G is accessed as part of
the overlay structure which runs on top of G. On the other hand, edge congestion deals with minimizing the number of
times any actual edge of G, overlay or not, is serving on the actual paths in G realizing requests between two subsequent
nodes of the overlay structure Z.

It is well-known that simultaneous minimization of stretch and edge congestion is impossible in general network topolo-
gies (this is folklore knowledge and an example supporting this knowledge is provided in Busch et al. [21]). Therefore, stretch
and edge congestion were studied independently in the existing research for general network topologies [22]. For DDPs, typ-
ically only stretch is considered for minimization in general network topologies [13,11,23,24], and Racke [22] gave the first
algorithm to minimize edge congestion on general networks (ignoring stretch minimization). Our result shows that simultane-
ous minimization of the processing load and stretch is the best possible we could do towards making DDPs load balanced and possibly
many other problems on general networks, circumventing the impossibility barrier on simultaneous minimization of stretch and edge
congestion.

1.4. Techniques

The idea in LB-SPIRAL is to use an hierarchy of clusters based overlay as a directory Z. We borrow the directory Z used
in our previous DDP SPIRAL [13] but modify it in a novel way so that processing load is minimized as well as stretch (SPIRAL
only minimizes stretch). Consider the directory Z used in SPIRAL. There are h + 1 = O(log D) levels of clusters in Z such
that cluster diameters increase exponentially with respect to the level. In each cluster, one node is chosen to act as a leader.
The leader node of a cluster in a level is connected through a shortest path to the leader node of a cluster in immediate
upper level and also the immediate lower level. In other words, the leader node of a cluster at level 0 is connected to a
leader node of a cluster at level 1, the leader node of a cluster at level 1 is connected to a leader node of a cluster at level 2,
and so on. This connection of the leader nodes (of two subsequent levels) provides an overlay on the hierarchy of clusters Z

1 This lookup stretch guarantee is obtained through the use of special-parent node concept, without which it can be 0 (D »log3 n.
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Fig. 1. An illustration of LB-SPIRAL for a move request issued by node u. Only leader nodes at respective clusters are shown. a: the creator node v issues a
publish operation forming the initial downward directory path (based on the spiral path from v); b: node u issues a move request which follows a spiral
path from u to the root, adjusting the pointers in subsequent levels to point towards u; c: the move request finds the downward directory path; d: the
move request starts its down phase, deleting the old pointers of the directory path; e: the move request reaches previous owner node v; f: the object is
moved from v to u making u the new owner node.

and is used to forward messages to different level clusters. Each node participates at all levels of the hierarchy, i.e., in each
of the h + 1 levels, there is at least a cluster each node u € G belongs to. This guarantees an existence of an overlay path
from each node in level O up to the root node in level h + 1. At the bottom level 0 each cluster consists of an individual
node in G which is by default a leader. At the top level h + 1 there is a single cluster for the whole graph G with a special
leader node called root. At any intermediate level a node may belong to several clusters of that level. Only the bottom level
nodes can issue publish, lookup, or move requests for the shared objects. The nodes in higher levels (which are also the
graph nodes) implement the overlay structure and used to propagate the requests in the graph G. To minimize the load in
addition to stretch in LB-SPIRAL, this directory Z is modified such that the leader is changed appropriately while serving
a request so that the processing load of a node can be balanced at all times, irrespective of the number of operations Z
serves. This leader change process only decides which node in a cluster becomes a new leader; the clusters connected in
each level remain the same and they will never be changed. Therefore, the question is which node to of a cluster to make
a new leader after change. Without this leader change, it can be shown that the processing load at some node in Z can be
Q(¢), in the worst-case, where ¢ is the number of requests served by Z.

Fig. 1 depicts how LB-SPIRAL works for a move operation. LB-SPIRAL maintains at all times a directory path which is
directed from the root of Z to the bottom-level node of Z that owns the shared object. Particularly, this directory path
points from level h leader to level h — 1 leader, level h — 1 leader to level h — 2 leader, and so on. It ends at level 0 where
level 1 leader points to it. The directory path is initialized by the first publish operation. The pointers are set when publish
operation goes from the bottom level to the root level. After that, the directory path is updated whenever the object moves
(changes ownership) from one node to another. To access the object, each bottom level node uses a spiral path to find and
intersect the directory path. The spiral path of a bottom-level node u € Z visits upward the leader nodes in all the clusters
that it belongs to (note that u belongs at least a cluster in each level of Z). While going up, the spiral path sets pointers
to point to the immediate lower level leader from the current level leader. (The spiral path in G grows outwards from the
origin as the level increases which gives the perception of a spiral formation.) It is guaranteed that a spiral path and the
directory path intersect at some level of Z (in the worst-case at the highest level). Once they meet, a move operation forces
the directory path to divert at the intersection point toward the new owner node (the origin of the spiral path). The existing
directory path from the (met) level to the bottom-level node is now deleted. Thus, the directory path is maintained using
the combinations of spiral path segments of publish and move operations. In fact, as soon as the object is created by some
bottom level node, it publishes the object by following its spiral path towards the root, making each parent leader (we call
this parent leader the parent node when we describe our algorithm in Section 4) pointing to its child leader (we call this
child leader the child node in Section 4) and hence forming the initial directory path from root to a leaf node. The initial
directory path is built on the spiral path from the creator node to the root. Fig. 1a shows the leaders in the cluster hierarchy
after the successful publish operation of v with directory path from the root u3 to v. When some node u issues a move
request, the request goes upward following u’s spiral path until it intersects the directory path to v (Figs. 1b-1c). While
going up, the move request also sets downward links toward u. The move request resets the directory path it follows while
descending towards the owner v (Figs. 1d-1e); the directory path now points to u. As soon as the move request reaches
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v, the object is forwarded to u along some shortest path (Fig. 1f). A lookup operation is served similar to move without
modifying the existing directory path.

For balancing the processing load, a node that initiates a move operation will become the leader of all the clusters it visits
in the hierarchy until it intersects the directory path. That is, the leader of a cluster is changed to the node of that cluster
that issued the request. Each affected cluster (in a level) is required to inform children and parent leaders, in immediate
lower and higher levels, respectively, about the change on the leader node in the cluster and also transferring the directory
path information from the old leader to the new leader, which we call update overhead. To bound the update overhead
(which can be as much as O(n) in the worst-case), the hierarchical clustering in the original SPIRAL protocol is modified
appropriately so that in LB-SPIRAL a binary tree of clusters is formed between two subsequent levels of the hierarchy Z. This
helps to control the number of cluster leaders that need to be updated about the change on the cluster leader at any level.
Particularly, informing only one child leader and only one parent leader will be enough. The new ideas on load balancing
together with the approach of SPIRAL for stretch makes LB-SPIRAL to satisfy Theorem 1.

Although the techniques discussed above (leader change and binary tree of clusters to control update overhead) minimize
move stretch and processing load, they may not be enough in minimizing the stretch for lookup operations. That means, the
stretch for a lookup operation may still range from O(log3 n) (in the best case) to O(D - log3 n) (in the worst case). We use
a notion of special-parent node in the spiral path so that keeping the pointers on the special-parents while performing the
move operations helps in guaranteeing lookup stretch of O(log6 n) at all times. In other words, the factor of D is reduced to
0 (log® n) through the use of a spiral-parent. This lookup stretch is better when D > log> n. If D < log®n, then lookup can be
executed without using special-parent concept to still guarantee O (log®n) stretch.

1.5. Related work

As mentioned earlier, the closest related works to ours are the previously known DDPs such as ARRow [6], RELAY [12],
CoMBINE [11], BALLISTIC [2], SPIRAL [13], MULTIBEND [14], and many other directory algorithms [3-5]. Although these DDPs
use some kind of overlay structures, their constructions, except MULTIBEND, are useful to minimize just the stretch. Although
MULTIBEND simultaneously controls (edge) congestion and stretch, it is only tailored for mesh topologies.

Minimizing processing load is along the lines of research on distributed hash table protocols (DHTs) [25-28], where the
load is minimized only for the nodes of G that participate as DHT protocol nodes. However, DHTs are different since they
store key-value pairs by statically assigning keys (or objects) to nodes, whereas in DDPs objects are mobile.

The concept of LB-SPIRAL (also of BALLISTIC [2] and SPIRAL [13]) is similar to the approaches to locate nearest neighbors,
tracking mobile users, compact routing, and related problems (e.g., [7,29-32]). However, these approaches provide efficient
techniques only to locate copies and when the objects move autonomously (without being requested). The DDPs provide
mechanisms that can make moving, looking up, and republishing of objects efficient and also avoid race conditions that
might occur while synchronizing concurrent requests in distributed shared memory systems [2,13].

Finally, our study of minimizing processing load is different from existing studies where local memory overhead is consid-
ered for minimization in addition to stretch [29]. The memory overhead is minimized by distributing the storage of objects
from the leader node to the other nodes in the cluster and later search them through embedding a De Bruijn graph in each
cluster. It was shown [29] that the memory overhead can be just polylog(n) times the optimal. However, in these techniques,
the worst processing load of a node (i.e., leader) is still linearly dependent on the total number of operations.

1.6. Paper organization

The rest of the paper is organized as follows. We describe the network model in Section 2. We describe the hierarchical
clustering we use for LB-SPIRAL in Section 3. We then detail LB-SPIRAL in Section 4 and analyze it in Section 5. We discuss
extensions to doubling-dimension graphs in Section 6 and simulation results in Section 7. Finally, we conclude in Section 8
with a short discussion.

2. Network model

We represent a distributed network as a weighted graph G = (V, E, tv), with nodes (network machines) V, where |V| =
n, edges (interconnection links between machines) E C V x V, and edge weight function w : E — RT. We assume that
to(u,u) =0 for any u € V. A path p in G is a sequence of nodes, with respective sequence of edges connecting the nodes,
such that |p| = Zeep to(e). For convenience, we will treat paths as walks, which may possible visit a node multiple times.
A sub-path of p is any subsequence of consecutive nodes in p; we may also refer to a sub-path as a fragment of p. We
assume that G is connected, i.e., there is a path in G between any pair of nodes. Let dist(u, v) denote the shortest path
length (distance) between nodes u and v in G. The k-neighborhood of a node v € G is the set of nodes which are within
distance at most k from v (including v). The k-neighborhood essentially describes a circle with center v and radius k. The
diameter D is the maximum shortest path distance over all pairs of nodes in G.

We assume that G represents a network in which nodes do not crash, it implements FIFO communication between nodes
(i.e. no overtaking of messages occurs), and messages are not lost. The previous DDPs [2,6,12-14] (except COMBINE [11]) have
the FIFO assumption. We also assume that, upon receiving a message, a node is able to perform a local computation and
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Table 1
Commonly used notations.

Symbol Meaning

G,V,E, 1w Graph, nodes, edges, edge weight function

D Diameter of G; i.e., diam(G)

p A path in G

dist(u, v) The distance between two nodes u, v € G

s(u,v) The distance between two nodes u, v € G that is shortest

X A (node) cluster in G

diam(X) The diameter of cluster X

h [logD]+1

Z(u) The set of clusters that u € G belongs to

Z={X1,..., Xk} A cover cluster set where each node u € G belongs to at least one
cluster X;, 1 <i<k, ie, |Z(u)|>1

1% The locality parameter

Z=A{Zo,...,Zp} A (o, x)-labeled cover hierarchy with h + 1 levels built from Z

X The cluster labeling parameter

£ The shared object

T publish, move, or lookup operation on &

& Set of publish, move or lookup operations

S Previous owner node of &

ti New owner node of &

) The height of “dummy” tree T

(h, 1) The highest level in Z

0, x) The lowest level in Z

sub-level (i, j) Level i and label j

next(i, j) sub-level immediately higher than (i, j) (i.e., sub-level (i, j + 1)
or (i+1,1))

prev(i, j) sub-level immediately lower than (i, j) (sub-level (i, j — 1) or
i—1,%))

Xij(u) € Zi(u)
Xi y+5—1(u) € Zi(u)

A cluster at sub-level (i, j) that u belongs to
The highest sub-labeled cluster at level i that u belongs to

Xi1(u) € Zi(u) The lowest sub-labeled cluster at level i that u belongs to
L(X) the leader node of cluster X
p(u) Spiral path of node u

parent; j) (x)

sparent; ;(x)

If x is a leader node of a sub-level (i, j) cluster, then parent;; ;) (x)
is the leader node of sub-level next(i, j) cluster
If x is a leader node of a sub-level (i, j) cluster, then

sparent;; ) (x) is the leader node of a cluster at level i + ¢ (the
value of ¢ is given in Section 4.6)

send a message in a single atomic step. LB-SPIRAL can be extended to accommodate non-FIFO communication and tolerate
unreliable communication links (i.e., message losses) by adapting techniques used in COMBINE [11].

3. Hierarchical clustering

We describe a hierarchy of clusters based overlay built on top of G to run our load balanced DDP LB-SPIRAL which we
present in Section 4. We also define spiral and directory paths that will be useful in LB-SpPIRAL. Fig. 2 provides an illustration
of the ideas used and developed in the construction. We first discuss the labeled cover hierarchy we built for our previous
DDP SpirAL. We then discuss why it is not suitable to optimize the processing load and the modifications we introduce to
be able to balance the processing load. This section is heavy in definitions and terminologies. Therefore, the terminologies
commonly used are summarized in Table 1.

3.1. Labeled cover hierarchy build for SPIRAL

We describe here the labeled cover hierarchy we built for our previous DDP SPIRAL [33]. A cluster is any set of nodes
X C V. Particularly, a cluster X may have one or more nodes of G. The diameter of a cluster X is the maximum distance
between any two nodes in X, i.e., diam(X) = maxy vex dist(u, v), where distances are w.r.t. G. Some of the concepts are
shown in Fig. 2. We define the cover cluster set as follows.

Definition 1 (cover cluster set). Consider a set of clusters Z = {Xq, X, ..., Xy}. If Z satisfies the condition that u € V is in at
least one cluster in Z, then we call Z the cover cluster set of G.

The diameter of the cover cluster set Z is the maximum diameter of its clusters: diam(Z) = maxy;ez diam(X;). Let Z(u)
denote the set of clusters in the cover set Z that u belongs to. We have that |Z(u)| > 1. We define the locality of the cover
cluster set Z as follows.
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canonical path g, — spiral paths p(g) and p(c)
0(2! log3n) Iength upto level i from level 0

o@©@0®o®mm

@@ééggmu
@*.\Q @ & @ Level 0

Fig. 2. Illustration of an example labeled cover hierarchy Z built on a graph G as well as the spiral and full and partial canonical paths. For simplicity, the
construction considers 8 nodes a-h on a line. We assume that the distance between two consecutive nodes is 1. In level 0, each node is a cluster and a
leader itself (nodes double circled) on that cluster. In level i, the nodes in the radius of 2!~ are in a cluster. The clusters in each level are labeled (see the
number of the oval shape representing a cluster with its labeling). A spiral path p(g) is shown for node g from level 0 to level h such that it visits all the
clusters in all the levels it belongs to in the increasing order of their labels. Particularly, p(g) visits clusters 2’, 3’ (in level 1), 3 and 4 (in level 2), and 1 in
level h. The (full) canonical path q, for node a visits cluster 1 in all levels 1 to h. Node ¢ has a partial canonical path with g, from level h to level 1 and
then spiral path p(c) from level 1 to level 0. The length of the (canonical and spiral) paths is O (2" - log®n) from level 0 up to level i. Two concepts are
not shown in this figure: (i) The shortest paths that are used to connect leader nodes of two consecutive clusters in the paths, and (ii) The binary tree of
clusters between to consecutive levels.

Definition 2 (cover locality). We say that the cover cluster set Z has locality y if for a node u € G there is some cluster
X € Z(u) such that u belongs to X and X contains the y-neighborhood of u, i.e., X contains all the nodes in G that are at
distance <y from u.

A x-labeling of the cover cluster set Z, for some positive integer x, is an assignment of integer labels to its clusters,
AM(Xi) €{1,2,..., x}. We define validity of the x-labeling of Z as follows.

Definition 3 (valid labeling). A x-labeling of Z is valid if for each node u € V every cluster X € Z(u) that contains u has a
different label, that is, if X;, Xj € Z(u), i # j, then A(X;) # A(X)).

Fig. 2 shows an example of a valid labeling so that no two clusters in Z(u) at a level receive the same label. Labels are
useful later in the DPP LB-SPIRAL to route the requests, particularly which cluster to pick (when there are multiple clusters
to choose from) to forward the request from the current cluster.

Definition 4 (labeled cover). Z is a (o, X, y)-labeled cover if Z is a cover cluster set with locality y, diam(Z) <oy, and
accepts a valid y -labeling.

Consider the cover cluster set Z defined above. We define cover cluster set hierarchy Z = {Zo,..., Zy}, h=[logD] + 1,
with cover locality y; =2/=',1 <i <h. We call Z; € Z the level i cover (i.e., cover cluster set Z for level i), and any cluster
X € Z; a level i cluster. We call Z labeled cover cluster hierarchy if each level i cover cluster set Z; has a valid y-labeling.
Formally,

Definition 5 (labeled cover hierarchy). Z = {Zy, Zy, ..., Zy} is a (0, x)-labeled cover hierarchy for G when each Z;, 1 <
i<h,is a (o, x,y)-labeled cover cluster set with locality y; = 2~1, where Zo = V (each node in V is a cluster) and
h=TlogD]+1.

We built a (O (logn), O (logn))-labeled cover hierarchy Z for our previous DDP SPIRAL, i.e., 0 = O (logn) and x = O (logn)
in Definition 5.

The construction of (O (logn), O (logn))-labeled cover hierarchy Z uses the concept of laminar partition hierarchies
defined as follows. A partition of G is a cover consisting of disjoint clusters of nodes. A laminar partition hierarchy
P ={Pyg, P1,..., Py}, where h' = [log D], has the following properties:
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(i) Py is a single cluster that consists of all nodes in V;
(ii) each P; is a partition with cluster diameter at most 2';
(iii) each cluster in P; is completely contained in some cluster in Pjyq, for 0 <i<h'—1.

Node v € V is called a-padded w.r.t. P if a2i-neighborhood of v is included in a cluster of P; in every level i, where
0 <i <h. There exists a family of | = O(logn) laminar partition hierarchies F = {P', P2, ..., P!}, such that every node
v eV is Q(1/logn)-padded in at least one of the partition hierarchies in F [34].

The (O (logn), O (logn))- labeled cover hierarchy we built transformed the family of laminar partition hierarchies F to an
appropriate (o, x)-labeled cover hierarchy Z. The cover cluster set for level i, Z; € Z, is obtained from the union of all the
level j; =i+ [log(clogn)] partitions, namely, Z; = Jp. 7 Pj;, for 1 <i <h; in case j; > I’, then, we use Z;j = Jp.r Pr. We
set Zop =V, namely every node in level 0 is a cluster. Note that the padding of F we use in this construction is 1/(clogn)
for some constant c.

The locality of the cover cluster set Z; is a2)i =2=1.clogn/clogn = y;, since a-padding implies that there is a cluster
C in partition level j; that includes a node u and its o2/ neighborhood, and this cluster C appears in level i of Z. Note
that according to the definition of the partition, diam(Z;) < 2/i <2 clogn < 2cy;logn. Therefore, we can set o = 2clogn.

We can get a x -labeling of each cover Z; as follows. If a cluster X € Z; came from partition hierarchy ¥ then it obtains
label A(X) = k. This implies that we will have x =1 = O(logn) labels. The resulting labeling is valid, since for each level
Z; € Z, each cluster is obtained from a different partition hierarchy in F, and thus we can not have any two clusters in
Zi(u) with the same label. After all this, we perform normalization so that the resulting (O (logn), O (logn))-labeled cover
hierarchy Z satisfies the following properties.

1. At level 0 each node in V belongs to exactly one cluster consisting of only itself.

2. Cover Zj (highest level) consists of x = O(logn) copies of a cluster that contains all nodes V, where each copy is
obtained from a different partition hierarchy in F. We keep only one copy and remove the rest so that there is only
one cluster at level h of the hierarchy.

3. In any level i, 1 <i<h —1, of Z each node u € V belongs to exactly y = O(logn) clusters (one cluster from each
partition hierarchy of F); that is, |Z;(u)| = x. (Some clusters could be identical.) Repeated clusters will be treated as
different and will be assigned a different label.

4. Each cluster at level i, 0 <i < h, is completely contained by a cluster at level i 4+ 1. This is due to the laminar decom-
position property used in the construction.

3.2. Problems of the labeled cover hierarchy of SPIRAL for load balancing and modifications

As discussed in Section 1.4, to balance the processing load, a node that initiates a move operation becomes a leader in
all the clusters of Z it visits following its spiral path until its spiral path intersects the directory path. This means that the
old leaders of all the affected clusters have to be notified of this leader change. At a level, this needs informing all child
and parent clusters in immediate lower and upper levels from that level about the change on the leader node and also
transferring the directory path information from the old leader to the new leader. Minimizing this update overhead requires
a small bound on the number of clusters (and respective leaders) that need to be informed. The (O (logn), O (logn))-labeled
cover hierarchy Z construction used in SPIRAL discussed in Section 3.1 is not suitable for this as it does not bound the
number of clusters in the cover cluster set Z; 1 (for level i — 1) that are completely contained inside each cluster in the
cover cluster set Z; (for level i). We achieve the small bound on the number of clusters by forming a binary tree of clusters
between two subsequent levels of Z so that only a constant number of clusters (in fact at most 2 each, parent cluster and
child cluster) need to be informed about the leader change in the immediate upper and lower levels. Within a level, clusters
are visited in the order of the sub-levels, and hence the binary tree not needed.

We now discuss how the binary tree of clusters is constructed (see Fig. 3) and Z is modified. Let CL; be a cluster in
the level i cover cluster set Zj € Z. Let W = {CL}il, CL?il, e CL}f"q} be the clusters in the level i — 1 cover cluster set

Zi_1 € Z so that each cluster CL’J.fl,l <Il=<w, is completely contained inside CL;. We organize the clusters in W in a

“dummy” binary tree T of clusters as follows. CL; acts as the root cluster of T. Each cluster in CL’]._1 € W acts as a leaf
cluster of T, i.e., there will be w leaf clusters in T. In every level m > 1 of T merge two children clusters at level m — 1
to obtain the parent cluster at level m. According to this construction, if there are A clusters at any level m — 1 of T, then
at level m of T, there will be at most [A/2] clusters. Fig. 3 illustrates the binary tree T construction of clusters in the set
Zi_1 € Z that are completely contained inside a cluster in the set Z; € Z.

Lemma 1. If there are w clusters in the set Z;_1 € Z completely contained inside a cluster CL; in the set Z; € Z, then a binary tree T
can be embedded between levels i — 1 and i with root of T being the cluster CL; such that T has O (log w) levels.

Proof. We have that w <n, T is a binary tree, and in each level m of the tree T, two children clusters at level m — 1 are
merged to form a cluster at level m. Therefore, there will be at most O (logw) levels in T. O
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Fig. 3. An illustration of a binary tree embedded between a cluster CL; at level i and the clusters at level i — 1 that are completely contained inside CL;.

Consider a level i — 1 cluster X;_1(u) that a node u € G belongs to. In the tree T of clusters we built above, node u
belongs to all the clusters in the path of tree T from X;_1(u) to the root cluster X; at level i. This is because since Xj_1(u)
is completely contained inside X; (due to the laminar construction that we use), u belongs to X; and the clusters in each
level of T are formed merging two clusters in the lower levels.

3.3. Overlay tree structure on the labeled cover hierarchy

We describe here how the labeled cover hierarchy is organized as an overlay tree structure. Let Z = {Z, Z1,...,Zy} be a
(0, x)-labeled cover hierarchy. We need some definitions. Let X; j(u) € Z;(u) € Z; denote the cluster at level i, 1 <i <h—1,
that u belongs to and has label j; note that Z;(u) denotes all the clusters in the cover cluster set Z; that u belongs to. We
will refer to level i, label j, as the sub-level (i, j). Note that level i consists of x sub-levels (i, 1), (i,2),..., (i, x), for
1<i<h-—1.Levels 0 and h are special cases which consist of a single sub-level each which for convenience we denote
as (0, x) and (h, 1), respectively. We can order the sub-levels lexicographically so that (i, j) < (', j/) if i <i’, or i =i’ and
j < j'. We define the function next(i, j) (resp. prev(i, j)) to return the sub-level immediately higher (resp. lower) than (i, j).

This ordering can be extended also to the clusters that are organized in a binary tree T (Lemma 1) between two
subsequent levels i and i+ 1. Let Xj, (u) € Z;j(u) be a cluster at level i that u belongs to and has label x and let
Xiy1,1(u) € Zi;1(u) be a cluster at level i + 1 that u belongs to and has label 1. We assign levels to the clusters in the
respective binary tree T in a path from X; , (u) (a leaf of T) to X1 1(u) (the root of T) from (i, x +1) to (i, x +8 — 1),
where 6§ < [logn] is the maximum height of T (Lemma 1). Since X; , (u) is a leaf cluster in tree T, and it is merged with
some other cluster to form a cluster in the next level, u belongs to each cluster in the path of T from the leaf cluster
Xi,x (u) up to the root cluster X;,1 1(u). Note also that according to the laminar construction we use, X; , (u) is completely
contained inside Xj 1 1(u). Therefore, there will be x 4+ & — 1 sub-levels in each level i, summing the x sub-levels of level i
and the § new levels introduced due to tree T. There may be the case the different trees T have different heights. We can
normalize all such binary trees in the hierarchy Z to have the same height § by repeating the root cluster if necessary.

In every cluster X we choose a designated leader node ¢(X) arbitrary initially and changed later appropriately to balance
the processing load. Denote the leader of cluster X; j(u) as ¢; j(u) = £(X; j(u)). Since Z; consists of a single sub-level it has
a unique leader which we denote ¢ 1 (u) =r. Trivially, every node u € V is a leader of its own cluster at level 0, £g , (u) =u.
For any pair of nodes u, v € V, let s(u, v) denote a shortest path from u to v.

We construct the overlay structure on Z as follows: for each node u € G, connect the leader node £(X; j(u)) of sub-level
(i, j) cluster X; j(u) to the leader node £(Xnext(,j)(1)) of sub-level next(i, j) cluster Xnex,j) (1) using the shortest path
S((Xi, jW)), £(Xnextd, )W), 1<i<h—-1,1<j<x.

3.4. Construction time and information that nodes keep

This construction of Z is a one time process, which happens prior to LB-SPIRAL starts serving (shared) object requests.
The modification on the construction during execution is only on which nodes act as leader nodes of the clusters. The leader
change does not modify Z itself as the clusters, their localities, and their sub-labelings remain unchanged. The only change
is which node in a cluster takes charge on processing the requests (i.e., becomes a leader). Furthermore, the construction
time of Z is polynomial as labeled cover partitioning used in the construction in each level (of some locality) can be
performed in polynomial time and there are O (log D) levels.

After the construction, each node maintains information related to Z and related to LB-SPIRAL. We discuss here what
information a node maintains about Z. We will discuss later in Section 4.7 what information a node maintains related to
LB-SPIRAL, additionally to the information it maintains about Z. Let u € G be a node in sub-level (i, j) cluster X. Node u
maintains information on which nodes of G belong to X and how to reach to those nodes (i.e., the shortest paths from u
to each other node in X). If u is a leader node in X, it additionally maintains information on which are the leader nodes
of the next(i, j) cluster Xpex and the prev(i, j) cluster Xprey and how to reach to them (this is the information u needs for
the spiral path and canonical paths discussed next). It is assumed that leader nodes know how to reach to the leader nodes
of the next(i, j) cluster Xpext and the prev(i, j) cluster Xprey. In fact, we assume that, each node in a cluster at level (i, j)
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knows the shortest path to reach to any node in the next(i, j) cluster X,exx and any node in the prev(i, j) cluster Xprey.
Therefore, when a leader node is changed in those clusters, the leader in the level (i, j) cluster immediately knows how to
forward requests to those leaders. This information only has impact on the memory requirement (one time computation in
the construction process), which we do not focus in this paper. In the algorithm description, for a leader node in level (i, j)
cluster X; j, we use “parent” notion to denote the leader node of next(i, j) cluster Xpext and “child” notion to denote the
leader node of prev(i, j) cluster Xprey. Formal definition is given in Section 4. Furthermore, node u stores the information
about its special-parent node (the details on which node acts as the special-parent of u and how u finds it becomes clear
in Section 4.6).

3.5. Spiral paths

Let Z ={Zo,Z1,...,Zp} be a (o, x)-labeled cover hierarchy with an overlay structure constructed by connecting the
consecutive sub-level leaders. The spiral path p(u) for each node u € V is built by visiting designated leader nodes in all
the clusters that u belongs to starting from level O up to level h in Z. Particularly, the spiral path visits the consecutive
leader nodes in Z, i.e., within each level, the clusters are visited according to the order of their labels, and between the
levels, the clusters are visited based on the clusters in the binary tree, starting from leaf level going to the root. From an
abstract point of view, the path forms a spiral which slowly unwinds outwards while it visits cluster leaders of higher levels
which are possibly further away from u.

For any set of nodes uq,us,...,u, €V, let s(uq,uy,...,ur) denote the concatenation of shortest paths s(uq,us),
s(up, us), ..., s(ug_1, u). The spiral path p(u) is formed by taking the concatenation of the shortest paths that connect
the ascending sequence of leaders starting from node u (sub-level (0, x)) up to node r (sub-level (h, 1)). Formally,

Definition 6 (spiral path). The spiral path of node u is:

pWw) =s@, 11, ..., 0,y W, b1, yr1W), ..., €1 yrs—1(W), L2, 1 (W), ..., L2y (U), ...,

level 1 between level 1 and 2 level 2
o1, e lh1 (W), Cho1, 1 (W), -yl x15—1 (1), T).
level h — 1 between level h — 1 and h

We say that two paths intersect if they have a common node. We also say that two spiral paths intersect at level i if
they visit the same leader at level i.

Lemma 2. For any two nodes u, v € V, their spiral paths p(u) and p(v) intersect at level min{h, [log(dist(u, v))] + 1}.

Proof. It is trivial to see that p(u) and p(v) intersect on level h at node r. Suppose ¢ = [log(dist(u, v))] + 1 < h. From the
definition of Z from Section 3.1, the clusters at level ¢ have locality y, =2~ > dist(u, v). Thus, some cluster X € Z,(u) will
contain v. Therefore, the paths p(u) and p(v) intersect at leader node £(X). O

In the analysis of LB-SPIRAL, the directory path is obtained from fragments of spiral paths obtained from move operations.
Such a fragmented path is actually a concatenation of shortest paths connecting leaders at successive sub-levels whose
clusters share a common node. We will refer to such kind of path as canonical.

Definition 7 (canonical path). A canonical path q up to sub-level (k,t) < (h,1) is:

q=S(X0,x,X1,15---» X1, > X1, 141> - - -» X1, x+6—1,X2,1» - - » X2, x»
level 1 between level 1 and 2 level 2
X2, X415 v s X2 x+8—1s oo s Kk 1o oo Xl )
between level 2 and 3 level k

such that for any two consecutive nodes x; ; and Xpext(i, j),» Where (0, x) < (i, j) < (k,t), there is a node y e V with x; j =
£ij(y) and Xnext(i, j) = Lnextd, j) (V)-

We will refer to X 5 and X, as the bottom and top nodes of g, respectively. The bottom node is always at level 0. A
canonical path can be either partial when the top node is below level h (the root level) or full when the top node is the
root r. A spiral path p(u) is a full canonical path, and any prefix of it is a partial canonical path. Fig. 2 depicts some of these
ideas.
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Lemma 3. For any canonical path q up to level k (and any sub-level (k, 1)) in Z, length(q) < c32¢+2 log> n, for some constant c3.

Proof. We first consider only the cost in traversing the sub-levels . Consider two consecutive nodes X; j, Xnext(, j) € G-
where (0, x) < (i, j) < (k, t). From the definition of canonical paths, there is a node y € V with x; j = £; j(y) and Xpext(i, j) =
Lnextdi, j) (¥). Therefore,

dist(X;, j, Xnext(i, j)) = dist(€; j(¥), €nextd, jy (V)
<dist(y, £, j(¥)) + dist(y, €next(i,j) (V)
< diam(X; ;(y)) + diam(Xnexe(, j) (¥))

There are two cases:

i. next(i, j) = (i, j + 1): clusters X; j(y) and Xpext(i,j(¥) are at the same level i. We have diam(X; ;j(y)) <oy; and
diam(Xnext(i, jy(¥)) < 0y Since o = O(logn), and y; =2/, we get oy; < c12'"!'logn, for some constant c;. Thus,
dist(xi,j, Xnext(i, j)) < 12! logn.

ii. next(i, j) = (i + 1,1): clusters X; ;j(y) and Xpexti,j(¥) are at levels i and i 4 1, respectively. We have that
diam(X; j(y)) < oy < c12i=1logn and diam(Xnext(i, jy (V) < 0V¥it1 < c12logn. Which gives dist(X; j, Xnext(i,j)) <
c1(2i=1 + 21 logn < 121t logn.

We define the following subpaths of g:

qi =S(Xi—1,%, Xi,1, Xi,2, ..., Xi y), for1<i<k
Ak = S(Xk—1,5> Xk, 1> Xk, 25 -+ -5 Xkyt)

When we apply case ii for the first two nodes in g; and case i for the remaining pairs of nodes, we obtain length(qi) <
xc12ilogn. Since x = O(logn), we have that x < cylogn, for some constant c. Therefore, length(q;) < cicp2i+! log,r2 n.
Similarly, length(qy) < c1c22%t! log? n. Finally, we obtain:

k k

length(q) = Z length(q;) < cic (log2 n) Z 2it1
i=1 i=1

<1622 log? n < c32¢ % log?n,

for some constant c3 = cqc3.

Consider now the cost in traversing the § levels in the tree T. Note that the cluster X;_q (1) and X; 1(u) have diame-
ters such that diam(Xi_1,, (1)) <0y <127 logn and diam(X;1(1)) < 0yi41 < c12'logn. Which gives dist(xi_1 y,xi1) <
c1(21=1 + 21) logn < ¢12'*! logn. Since we have from Lemma 1 that T has O(logn) levels, length(q) increases by at most a
factor of cs5 - logn due to the embedding of T between the clusters at two subsequent levels, where c5 is some constant.
Therefore, length(q) < c32k+2 log3 n, for some constant c3 =c4-c5. O

4. LB-SPIRAL Algorithm

We now present LB-SPIRAL, which is a load balanced DDP. We describe LB-SPIRAL for one shared object as it is typical in
the DDP literature; multiple objects can be supported replicating the hierarchy for each object.

4.1. Overview of LB-SPIRAL

Consider some shared object &. LB-SPIRAL guarantees that at any time only one node holds the shared object &, which is
the owner of the object. The owner is the only node that can modify (i.e., write) the object; the other nodes can only access
the object for read.

LB-SPIRAL is implemented on the (O (logn), O (logn))-labeled cover hierarchy Z discussed in Section 3. Only the bottom
level nodes of Z can issue requests (publish, lookup, and move) for &, while nodes in higher levels of Z are used to propagate
the requests in G. The basic objective of LB-SPIRAL is to maintain a directory path in Z as in SPIRAL which is directed from
the root node r to the bottom-level node that is the current owner of &. The directory path is updated whenever & moves
from one node to another. Initially, the directory path is formed from the spiral path p(v) of the object creator node v.
As soon as the object & is created, v publishes & by visiting the leaders in its spiral path p(v) towards the root r, making
each parent leader node pointing to its child leader (Fig. 1a). These leader downward pointers correspond to path segments
between consecutive leaders and the concatenation of these path segments from the root r down to v forms the initial
directory path.
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Algorithm 1: LB-SPIRAL.

1 When y receives m = (v, up, publish) from x: // publish
2 execute publish algorithm (Algorithm 2);

3 When y receives m = (u, phase, lookup) from x: // lookup
4 execute lookup algorithm (Algorithm 3);

5 When node y receives m = (u, phase, move) from node x: // move
6 execute move algorithm (Algorithm 4);

A move request from a node u of G for the object & at the owner node v of G is served by following upwards leader
ancestors in its spiral path p(u) (up phase), setting downward links towards u until p(u) intersects at x the directory path
to the owner node v (Figs. 1b and 1c, where x = u3). Then the move request follows a downward trajectory (down phase)
deleting the links of the directory path while descending towards the owner node v (Figs. 1d and 1e); the directory path
now points to the requesting node u. As soon as the move request reaches the owner node v, the object is forwarded
from the previous owner node along some (shortest) path in the graph G (Fig. 1f). This process has resulted to a canonical
directory path that consists of two spiral path fragments, a fragment of v’s spiral path p(v) between r and the intersection
point x, and a fragment of u’s spiral path p(u) between x and u. Subsequent move operations may further fragment the
directory path into multiple spiral path segments, but at all times a canonical directory path is maintained.

A lookup operation is served similar to a move operation but without modifying (adding or removing pointers) the
directory path. A lookup operation fetches a copy of the shared & object from the current owner v to u. If a move operation
later invalidates & from v, then the local copy of & at u is also invalidated.

The processing load is balanced by changing the leader of the clusters that the move request visits while it is in its up
phase. Specifically, the originating node of the move request is selected as a leader in all the clusters it visits in its up phase.
For the down phase, this is done only for lookup requests. Since the source node of a lookup request may not be in the
clusters of the directory path in the down phase of a lookup request, we choose a node uniformly in random among the
nodes in the cluster to act as a leader.

Concurrent lookup and move requests may be served through partial downward paths instead of the directory path.
These requests are queued while the new directory path is being formed. For example, consider the scenario where a
lookup operation is issued by a node w concurrently with the move operation of v. Suppose also that the lookup and move
requests intersect in their up phase paths before their requests reach the directory path to u. Then the lookup request will
descend down to v through a partial downward path while the move request ascends to x. The lookup will request the
read-only copy of the object & from v. However, v may not have the copy of & yet. In this case, w’s request is queued in v
and it will be served when v receives &.

In the scenario where w’s operation was a move, then two partial downward paths would coexist at the same time with
the directory path until the up phases of u and v intersect. After that again two partial paths can coexist until the down
phase of w reaches v and before the up phase of v reaches x. The result is that the move request from w will be queued
after v. Similarly, multiple concurrent move operations temporarily lead to the formation of multiple partial downward
paths to the origins of the requests. The move operations get queued in the origin nodes forming a distributed queue of
move operations. Eventually, every move operation will be served by passing the object from the current owner at the head
of the queue to the next node in the queue.

Finally, we would like to note that after several move operations the directory path may become highly fragmented. In
such cases a lookup request may not find immediately the directory path to the shared object &, even if the lookup originates
near &. In order to avoid this situation and guarantee efficiency, we introduce the notion of a special parent node, such that
whenever a downward link is formed at a node z the special parent of z is also informed about z holding a downward
pointer. The special parent is selected in such a way that any nearby lookup, close to z will either reach z or its special
parent. The details will be provided in Section 4.6.

4.2. Detailed description of LB-SPIRAL

We now discuss LB-SPIRAL in detail. The pseudocode of LB-SPIRAL is given in Algorithm 1. We define the notion of parent
node before giving details of lookup and move operations. We denote a parent node y of a node x in the spiral path p(u) as
y = parent j(x), i.e,, if y is the sub-level (i, j) cluster leader in p(u) then x is the leader of the immediate lower sub-level
cluster leader in p(u) (i.e., x is the leader of the sub-level prev(i, j) cluster). Note that the leader of a level O cluster is the
node itself, since there is only one node in the level O cluster.

We formally detail how publish, lookup, and move operations are served in LB-SPIRAL separately below. We defer the
discussion on leader change process used for load balancing to the next section (Section 4.3).

publish. The publish(¢) operation issued by the creator node v of the object & assigns downward pointers along the
edges of its spiral path p(v), starting from v up to the root r and the pointers are directed toward v (Algorithm 2). After
the operation finishes, there is a directed path from root r to v, with pointers from the leader in a cluster at sub-level (i, j)
pointing to a leader in a cluster at sub-level prev(i, j), which is the initial directory path.

move. The move(&¢) operation issued by a node u is implemented in two phases: up and down (Algorithm 4). In the up
phase, move(¢) is sent from u upward in the hierarchy Z along the spiral path p(u) towards the root r until it intersects

12

© 00 N O O b~ WON =

-
-

37



0 N O oA W N =

O O o g g g g oo a b D B B DS B DB BB DB W W W OOOWWWWOWWNDNDMNDNDNDMNDMNMNMNDDN=S = = <4 24 a4 a4 g
- O © 00 N O O & WN =+ O © 0N O OGO A WONM -+ O O© 0N O GG B ON = O © ©®NO U B ON-=- O © 0N O b OWNM = O ©

JID:YINCO AID:104700 /FLA
S. Rai, G. Sharma, C. Busch et al.

[m3G; v1.297] P13 (1-40)
Information and Computation eee (eeee) seeeee

Algorithm 2: publish.

1
2
3
4
5
6

set y.link =x;
if y is not a leader node in the root cluster then
w <« parent node of y in the spiral path p(v);
CL;j < cluster that w belongs to in the spiral path p(v);
select v as a leader of CL;;
send m to v in CL;;

Algorithm 3: lookup.

-
-0 WO NOU A WN =

12
13
14
15
16
17
18
19
20
21
22
23
24

if m = (u, up, lookup) then
if y.link = L then
if y.slink list is empty then
w <« parent node of y in the spiral path p(u);
CL;j < cluster that w belongs to in the spiral path p(u);
select u as a leader of CL;;
send m to u in CL;;
else
w <« node that first pointer of y.slink list points to;
CL; <« cluster that w belongs to in the spiral path p(w);
select a random node z € CL; as a leader of CL;;
send (u,down,lookup) to z in CL;;
else
w <« node that pointer y.link points to;
CL; < cluster that w belongs to in the spiral path p(w);
select a random node z € CL; as a leader of CL;;
send (u,down,lookup) to z in CL;;
if m = (u, down, lookup) then
if y is a leaf node then send the read-only copy of £ to u and remember u;
else
w <« node that pointer y.link points to;
CL; < cluster that w belongs to in the spiral path p(w);
select a random node z € CL; as a leader of CL;;
send m to z in CL;;

// lookup up phase

// lookup down phase

Algorithm 4: move.

-
-0 VN A WN=

—
s W N

if m = (u, up, move) then
assign oldlink < y.link and set y.link =x;
add y in slink list of y’s special parent;
if oldlink = L then
w <« parent node of y in the spiral path p(u);
CL; < cluster that w belongs to in the spiral path p(u);
select u as a leader of CL;;
send m to u in CL;;
else send (u, down, move) to oldlink;
if m = (u, down, move) then
if y isin the slink list in the special parent of y then erase y from slink;
if y is not a leaf node then oldlink < y.link; y.link < L; send m to oldlink;
else send the writable copy of & to u;
invalidate(¢) at node y and the read-only copies at other nodes;

// move up phase

// move down phase

Algorithm 5: Leader change on LB-SPIRAL.

1
2
3

select node u as the leader in CL;;
copy information at old leader z to new leader u;
inform the parent and child of z about the new leader u;

at a node, say x, with the directory path. In the down phase, move(¢) follows the directory path from node x to the object

owner v (the directory path leads the move request to the owner v). The owner node v then sends the object & to the
requesting node u along some shortest path in G. In the up phase, the move operation sets the directions of the edges in
the fragment of p(u) between u and x to point towards u. In the down phase, it deletes the downward pointers in the
fragment of the directory path from x to v, making the new directory path point towards u. Through this process, when

the move(&) operation from u reaches v in its down phase, u obtains a writable copy of £ from v invalidating the old copy

of & at v and modifying the directory path.

13

lookup. The lookup(&) operation issued by a node u is served similarly as of move(¢) described above, but downward
pointers are not added and existing downward pointers are not deleted in Z, hence not modifying the existing directory
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CL,

Fig. 4. An illustration of how a leader is selected in each cluster to balance the processing load. A move request from node w makes w the leader in each
cluster it visits in its up phase and transfers the information from the old leader z to w.

path (Algorithm 3). Through this process, when the lookup(&) operation from u reaches v in its down phase, u obtains a
read-only copy of £ from v without invalidating & from v and without modifying the existing directory path. The object &
is replicated to nodes u and v. If a move operation later invalidates & from v, then the copy of & at u is also invalidated.

4.3. Balancing the processing load in LB-SPIRAL

The description of LB-SPIRAL so far does not consider balancing the processing load of the nodes in G, i.e., the technique
discussed above only minimizes the communication cost. Therefore, the technique above is same as in SPIRAL. We use
the following technique to balance the processing load on the nodes of G. We describe separately below how we use the
balancing technique to serve publish, lookup, and move requests.

publish. The publish(&) operation issued by the creator node v sets v as a leader in all the clusters in its spiral path p(v)
while going to the root cluster (including the root cluster) in Z. Note that since the leaders are selected arbitrarily during
the construction of Z, the node v may not be the leader in all the clusters in the spiral path p(v). If v is already a leader
in some cluster in the spiral path p(v), then leader change is not needed for that cluster. In each cluster in the spiral path
p(v), the downward pointers point from leader v in sub-level (i, j) cluster to leader v in sub-level prev(i, j) cluster.

move: The move(&) operation issued by a node u is served as follows. The node u sets itself as the leader in all the
clusters in its spiral path p(u) in its up phase until p(u) intersects the directory path pointing to the owner v. In other
words, the downward pointers point toward u in all the levels. This requires moving the information at the old leader z to
the new leader u in all the clusters that go leader change. We discuss how this is done and the cost involved immediately
after we describe lookup operations. Fig. 4 illustrates these ideas. The down phase needs no change and the exiting path is
used.

lookup: The lookup(&) operation needs no leader change as it does not add or remove information in the directory Z.
However, if balancing is needed, then a lookup issued by a node u can set u as the leader in all the clusters similar as
of move(¢) in the up phase. In the down phase, it can pick a node uniformly at random in each cluster it visits in its
down phase. Our analysis in Section 5 focuses on proving the processing load of the nodes of G considering only the move
operations.

4.4. Overlead due to leader change

The use of leader selection procedure incurs extra cost to the actual cost of the move and lookup operations. This is
because this procedure requires message exchanges between the old leader and the new leader within a cluster, and also
with the parent and child clusters of the old leader to inform them about the new leader. The message exchange cost be-
tween the new and old leader is bounded by the diameter of the cluster they belong to, because these leaders communicate
through the shortest path between them. Recall that we assume in the construction that each node in a cluster at any level
knows the shortest paths to each node on its previous and next level clusters, which allows to immediately inform about
the leader change in the leader nodes of those clusters. The cost to inform the parent and child clusters of the old leader
is also bounded by the diameter of the cluster, in the worst-case, as the parent cluster is only 2 times large in diameter
compared to the current cluster. Therefore, this message exchange only adds a constant factor increase in the costs of oper-
ations we account in the analysis given in Section 5. This is also observed in the simulation results presented in Section 7
as well. However the benefit of this additional overhead is that this step facilitates to control the processing load, since the
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processing load on a leader node is always proportional to the number of requests that visit that leader. A leader selection
approach we use in the spiral path plays major role in controlling processing load because it minimizes the overutilization
of a node in serving the requests. Through our approach, a node in a cluster becomes a leader of that cluster if and only if
the request (move, lookup, or publish) is issued by that node.

4.5. Handling concurrent executions

We observe that at any time a request updates information on three leader nodes, at levels prev(i, j), (i, j), and next(i, j),
along the spiral path (or a directory path for the lookup operation). This is not a problem when the operations are sequential,
i.e., a new operation (lookup or move) is issued only after the current operation finishes. However, in concurrent situations
of lookup and move requests this might be a problem. Therefore, in the concurrent execution of move requests, we use
the notion of a conflict graph for each level such that neighbors in the conflict graph cannot perform the leader change
at the same time (that is, the leader change process is sequentialized for the affected clusters). That is, only the maximal
independent set of leader nodes can perform the leader change concurrently. This sequentialization process does not hamper
asymptotically the stretch and processing load bounds. The main reason is that the communication cost increase is within
a factor of the length of the shortest paths between those leaders and processing load is measured with respect to how
many requests are processed by a node. Again, this will increase the path lengths in the analysis only by a constant factor.
Finally, note that the special parent node does not need to be locked because only one specific slink pointer value needs to
be updated at any time.

4.6. Bounding the lookup cost in LB-SPIRAL

The ideal scenario for a lookup operation issued by a node w would be to find the directory path to the object owner
node v at level log[(dist(w, v))] + 1 leader node of Z. In this case, compared to the shortest path distance dist(w, v) in
G, the cost through the directory would be O (dist(w, v) - log®n) (Lemma 3), giving O (log>n) competitive ratio for a lookup
operation. However, a lookup request from any node w € G for the object £ at the owner node v € G may not find the
directory path to v at level log[(dist(w, v))] + 1 leader node of Z where the spiral paths p(w) and p(v) intersect. This is
because, after several move operations, the directory path may become highly fragmented and hence the directory path does
not pass through the leader node at level log[(dist(w, v))] + 1. Everything is not lost even in this case. This is because the
construction of Z guarantees that a lookup operation from a node w always finds the directory path to the object owner
node at the leader r on the highest level h. The impact of this is that the lookup cost using the directory is O (D - log> n).
Compared this cost to the minimum cost dist(w, v) may give the competitive ratio O(D - log3 n) for dist(w, v) << D and
competitive ratio O (log>n) for dist(w, v) = O(D). The question is how to remove the dependence of lookup competitive
ratio on D in all arbitrary situations.

The notion of a special-parent node helps to reduce the factor D in lookup competitive ratio to O(log>n), so that irre-
spective of dist(w, v), the lookup competitive ratio becomes O (log®n) (this proof is in the lookup cost analysis given in
Theorem 3). Whenever a downward link is formed at a node z the special parent of z is also informed about z holding a
downward pointer. The pointer information is stored in (removed from) a special-parent node in the up (down) phase of
a move operation. Essentially, if y is a level i leader node in the spiral path p(u) of node u € G, the special-parent node
for y is some ancestor leader node of y at level n =i+ ¢ in the spiral path p(u) (the definition below quantifies that
¢ =4+ 3loglogn + logcs) and the proof of why this value of ¢ is enough is given in Lemma 4. The special-parent node
definition takes into account how much locality y; is needed for any level n leader node to include the node that issues a
lookup request and the level i leader node in the canonical directory path q towards the owner node.

Fig. 5 depicts how a special-parent provides efficient lookup. Node 5 is the current owner of the object & (denoted
by bold star in the figure) and the directory path q to the current owner node 5 is g5 = s(r, ..., ug, U3, V2, w1, 5) which
is shown in bold solid lines between the leaders in the hierarchy. Assume that the ownership change is in the order of
6 — 1 — 4 — 5. Therefore, the initial directory path was qg =s(r, ..., u4, W3, Wy, X1,6) and 6 was the initial owner (that
issued publish operation for &). The directory path to 1 was qq =s(r, ..., us, us, us, uq, 1) when move operation from 1
arrived to 6 first. The directory path qi is the concatenation of the fragment of the spiral path p(6) of 6 from r to ug4
and the spiral path p(1) of 1 from u4 to 1. Similarly, when a move operation from 4 reached to 1 first, the directory path
qa =s(r, ..., ug,us, v2, wq,4), which is the concatenation of the spiral path p(6) of 6 from r to u4, the spiral path p(1)
of 1 from uy4 to us, and the spiral path p(4) of 4 from us to 4. Similarly, the directory path qs =s(r, ..., u4, us, vy, wq,5)
which is the concatenation of four spiral paths: the spiral path p(6) of 6 from r to u4, the spiral path p(1) of 1 from u4 to
us, the spiral path p(4) of 4 from us to wy, and the spiral path p(5) of 5 from wq to 5. The initial directory path gg which
was a full spiral path, is now become the directory path gs that is the combination of the spiral path fragments as new
move requests are processed. Assume that the spiral path p(7) of node 7 is p(7) =s(7, X1, W2, X3, Wy, ..., 1) and of node 5
is p(5) =s(5, w1, Wy, X3, Wy, ..., 1). Assuming node 7 issues a lookup operation, it does not find the directory path at w
which is the common leader for 5 and 7 in their spiral paths p(5) and p(7).

In this paper, we assume that nodes know who their special-parents are. This allows the nodes to write (remove) the
information directly. If the nodes do not know their special-parents, they could find using their spiral paths but that will
increase the move stretch by a polylog(n) factor.
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Fig. 5. lllustration of how a special-parent provides efficient lookups.

Definition 8 (special-parent). A special-parent node of a sub-level (i, j) leader node y in the spiral path p(u), denoted as
sparent; ;(y), is some leader node x in the spiral path p(u) at level n =i+ ¢, where ¢ =4 + 3loglogn + logcs.

According to the definition above, for any level i > h — ¢, n > h. Therefore, for the leader node y in any of the level
i > h — ¢, either the root (leader) node can be made its special-parent or the special-parent is not assigned at all. This
way, the lookup will find the downward path at root r. Since each leader node y in any cluster of Z (except the root level
cluster leader) is assigned a special-parent, y knows its special parent. The special-parent node of y maintains a special
downward pointer, slink, to y. LB-SPIRAL maintains a list of slink pointers if one node is the special parent for the leaders
of several clusters which, according to our Z construction, can happen. These special downward pointers are set (removed)
when move operations are in the up (down) phase. The slink information is only set (and removed) for the nodes that are
the special-parent of the nodes that are in the directory path towards the current owner of the object.

4.7. Information about LB-SPIRAL in each node

We discussed in Section 3.4 what information each node in G maintains about Z. We discuss here what information
each node maintains to successfully run LB-SPIRAL, in addition to the information they keep to maintain the directory
information. Each leader node u of a sub-level (i, j) cluster in Z maintains data structure variables link and slink. Node u
also maintains the leader information on prev(i, j) and next(i, j) clusters and the object & (when u is the current owner
node for &). Since u may be a leader in all the clusters up to the root level starting from the bottom level, in the worst-case,
it has O(logD - logn) copies of such variables, one copy for each sub-level.

5. Analysis of LB-SPIRAL

We give both the stretch and processing load analysis of LB-SPIRAL for sequential, concurrent (one-shot), and dynamic
executions. However, the correctness proof of LB-SPIRAL is not discussed here as it can be easily proven by extending the
correctness proofs of DDPs BALLISTIC [2], COMBINE [11], SPIRAL [13], and MULTIBEND [14].

5.1. Performance in sequential executions

In a sequential execution scenario the next request is initiated only after the current request completes. We first provide
performance bounds for the communication costs of publish, lookup and move operations, and then we give the approxima-
tion of processing load of any node of G.

Theorem 2 (publish cost). The publish operation in LB-SPIRAL has communication cost O (D - log3 n.
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Fig. 6. [llustration of the proof of Lemma 4. The special-parent at level n should include level i leader node in the canonical path to the object and the
lookup issuing node.

Proof. The theorem immediately follows from Lemma 3, by noticing that the number of levels in the hierarchy Z is h =
[log D] + 1, and that a spiral path is trivially a canonical path. O

The next lemma will be useful when we prove lookup stretch in Theorem 3.

Lemma 4. If a node w issues a lookup request for the shared object & currently owned by a node v which is at distance 21-1 <
dist(w, v) < 2! far from w, the spiral path p(w) is guaranteed to either intersect with the directory path to v at level below n =
i+ 4+ 3loglogn + logcs, or find a slink to the directory path for the object at level at most n =i + 4 + 3loglogn + logcs, where
n<h=TlogD]+1.

Proof. We prove this lemma for the second case of finding a slink to the directory path. The first case of intersecting with
the directory path can be subsumed in the second case, since if the paths do not intersect up to level n then the second
case becomes true. We use Fig. 6 for the ideas needed in this proof for the second case. Assume that v; is the level i leader
node in the canonical directory path q towards the owner node v of & and g; is ¢’s fragment up to level i. Assume also that
wy = £(X) is the leader of the cluster X at level n =i+ 4+ 3loglogn + logcs, which has a slink information to v; (set by
some move request following Algorithm 4). For a lookup request issued by node w to find the slink to v;, X must include v;,
since the spiral path p(w) of w visits the leaders of all clusters that contain it. It suffices to show that the locality y, = 2n-1
of X is at least the distance dist(v;, w) between v; and w to guarantee that X contains w. As length(g;) < c32!*2 log3n
(Lemma 3) and dist(w, v) < 2/, dist(v;, w) is bounded by:

dist(v;, w) < length(q;) + dist(w, v)
<322 1ogdn + 2!
<323 . log’n
< ploges  9i+3  yloglog’n
; 2i+3+loglog3 n+logcs
; 9i+3+3loglogn+logcs
<21 =y,
with n =i+ 4+ 3loglogn + logcs. Therefore, the 1 level leader node we picked as a special-parent is guaranteed to find
the directory path to the object £&. O

Theorem 3 (lookup stretch). The lookup stretch in LB-SPIRAL is O (log6 n) in sequential executions.

Proof. Suppose a node w € G issues a lookup(&) request r; for a shared object & currently at an owner node v € G which is
at distance 211 < dist(w, v) < 2! in G. We have from Lemma 4 that the spiral path p(w) is guaranteed to either intersect
with the directory path to v or find a slink to the directory path to v at level n <i+ 4+ 3loglogn + logcs. Therefore, we
consider two cases: (i) p(w) intersects directory path to v at level at most 1 and (ii) p(w) find a slink to the directory path
to v at level 7. In the first case, the total cost of LB-SPIRAL, denoted as A(ry) for the lookup request r; is the sum of the
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length of the spiral path p(w) up to level 1, denoted as p;(w), from w in the bottom level and the length of the directory
path g up to level n from node v, denoted as q;. That is,
A(rp) = length(p,(w)) + length(q,)
<2-length(qy)
<2.¢32"2og*n
=2c3- 2i+4+3 loglogn+logc3+2 log3 n
<128-(c3)% 2 -logbn,
using Lemma 3.
In the second case, we have that
A(ry) = length(p,(w)) + dist(x, v;) + length(q;)
< 3-length(qy)
<3.¢32"2%og’n
<3.c3- 2i+4+3 loglogn+logcs+2 log3 n
<192 (c3)% 2" - logbn,

again using Lemma 3, where dist(x, v;) is the distance from the leader node at level k to a node at level i to which slink at
level k points to.

We have that the optimal communication cost A*(r;) > 2i~1 as dist(w, v) < 2'. Therefore, the stretch for the lookup
operation is

2 i 6
A(ry) < 192 - (c3) '-2 -log’n _ O(log6n). 5
A*(TL) 2i—1

We now give an amortized stretch analysis of LB-SPIRAL for move operations in sequential executions. As move requests
are non-overlapping in sequential executions, the system attains quiescent configuration after a move request is served and
until a next move request is issued. Define a sequential execution of a set £ of ¢ + 1 requests £ = {ro,r1,...,r¢} for the
object &, where rq is the initial publish request and the rest are the subsequent move requests (we do not include lookups
in £ since they do not add or remove links in the directory Z, and hence do not impact the performance of other move or
lookup operations).

For the amortized stretch analysis define a two-dimensional array B of size (k+ 1) x (£ + 1), where k+ 1 and ¢ + 1 are
the number of rows and columns of B, respectively. The (k + 1) rows of B can be denoted as {rowg,rowq,...,rowy}, and
the £ + 1 columns of B can be denoted as {colg, coly, ..., colg}. Each location [i, j] of the array B is initially L. We fix that
[0, 0] be the lower left corner element and [k, £] be the upper right corner element in B. The levels visited by each request
r; in the hierarchy Z while searching for the object & are registered in the rows of column col;. The maximum level reached
by r; before it finds the downward pointer in Z is called the peak level for r;. We have that h = k. The peak level reached
by ro (the publish request) is always h, the maximum level in Z. Notice that rg is registered in all the locations of coly from
0 to k.

Our goal is to bound the stretch maxg A(E)/A*(E), where A(E) denotes the total communication cost of serving requests
in £ using LB-SPIRAL and A*(£) denotes the optimal cost for serving requests in £ through an optimal offline algorithm. We
prove the following theorem for stretch maxg A(£)/A*(E) using array B.

Theorem 4 (move stretch). The move stretch in LB-SPIRAL is O (log3 n - log D) in sequential executions.

Proof. Consider only the cost due to the up phase of each move request. The consideration of the down phase increases

the cost by only a factor of 2. For any c¢,d,0 <c <d < ¢, a valid pair W(fc d of two non-empty entries in row;, 0 < j <h,
is defined as W(]C 0= (rowj[c],row[d]), such that row[c] # L and row;[d] # L, and if d —c > 1, then Ve,c+1<e <
d—1,rowjle] = L. That is, W(’C 0 is a pair of two subsequent non-empty entries in a row. Denote by S; the total count of

the number of entries row;[i],0 <i < ¢, such that row;[i] # L, and by W; the total number of valid pairs W(jC d) in it. We
have that W;=S5; — 1.

18
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We have from [13] that A*(€) > maxy<p<(Sp — 1)2"~1. Similar to [13], we have that A(£) < Y K_, c3(Sp — 1)2"+2log’ n.
Since the execution £ is arbitrary, k = [log D] + 1, c3 is a constant, and

k
ZCg(Sh —1)2"2log*n <k-c3 max (Sp — 12" 1og?n,
he1 1<h<k

we have that the move stretch is

AE)  k-c3maxq<p<k(Sp — 122 1og3n
max < ==
g A*(E) maxi<p<k(Sp — ‘1)2}'71
= O(10g3n -log D).

Note that the update overhead cost due to leader change while serving each move and lookup operation is not considered
in the bound above. Nevertheless, the update overhead cost is within a constant factor of A(€) and it does not change the
move and lookup stretches asymptotically even if we include it in the lookup and move costs of LB-SPIRAL. The theorem
follows. O

We now analyze the processing load of a node in LB-SPIRAL in sequential executions. We relate the processing load
PL(x) of a node x € G in LB-SPIRAL to the optimal load PL*(x) of that node to provide the approximation ratio. We prove
the following theorem for processing load of any node of G for the sequential execution of move operations; we omit the
lookup operations while computing processing load as they do not add or remove pointer information on the directory
hierarchy Z. The processing load for lookup operations can be established similarly as of move operations.

Theorem 5 (processing load). The processing load approximation in LB-SPIRAL is O (logn - log D) for any node of G.

Proof. Recall that every move request from its source node to its destination node is routed by LB-SPIRAL by selecting some
paths. Specifically, these paths are spiral paths and they connect the leaders of the subsequent clusters in the hierarchy Z
via shortest paths. Let x be any node in the graph G and PL(x) be the load on x (the maximum number of times node x is
used as a leader node of a cluster in the hierarchy Z). Particularly, we bound the number of times a spiral path of a move
operation passes through x, when x is a leader of some cluster in the hierarchy Z.

Consider now the up phase of the move operations. We will deal with their down phase later. There are two possible
scenarios:

e A move request issued by x: In this case, node x will become the leader of all the clusters in the spiral path p(x) from
the bottom level O to the peak level of that move operation.

e A move request not issued by x: In this case, node x does not become the leader of any cluster in the spiral path of that
move operation.

Notice that there are O (logn) clusters in each level of the directory hierarchy Z and O (logn) levels of clusters in each
binary tree embedded between any two levels. Moreover, there are O (log D) levels in the directory hierarchy Z. This gives
total O(logn -log D) clusters in the spiral path of any node in G from the bottom level to the top level of Z. Therefore, for
a move request issued by a node x € G, x becomes the leader of O (logn -logD) clusters, in the worst-case, in the up phase.
For a move request not issued by x, x does not become leader in any of the clusters in Z.

Among ¢ requests in &, suppose k of them were issued by x. In this case, PL*(x) >k, as k move requests have to reach
to x to get a copy of x. According to the argument above on the number of clusters in a spiral path, in LB-SPIRAL, the load
of node x in the up phase is PL(x) <k- O(logn - log D).

Consider now the down phase. Let g be a directory path from the top level to the bottom level. Each leader node on
each cluster on this directory path q is visited only once. This is because, the downward pointer at that node is deleted in
the down phase of a move operation passing through that node and that node does not become a leader again until it is a
node that issued a move operation. Therefore, considering the down phase, the processing load PL(x) increases only by a
factor of 2. Since x is an arbitrary node in G, the processing load of a node of G in LB-SPIRAL is

PL(x) _ k-0O(logn -logD)
PL*(x) — k

=0(logn-logD). O

5.2. Performance in one-shot executions
The performance analysis of LB-SPIRAL given in Section 5.1 does not apply to concurrent executions because the adver-
sary is not allowed to gain by ordering the requests in a smarter way, i.e., the orderings provided by both LB-SPIRAL and

OPT are the same. Concurrent executions can change the order of the requests in execution and hence affect the overall
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Fig. 7. Time windows at different levels used in the analysis of LB-SPIRAL for one-shot and dynamic executions.

performance of LB-SPIRAL. In one-shot executions, all requests come concurrently (at the same time) in the system. We
study the following one-shot instance of concurrent execution. At time t as soon as a publish operation finished execution,
R C V nodes issue a move request each concurrently and no further requests occur. We calculate the total communication
cost of all the requests including the publish operation (similar as of sequential execution) to provide the competitive ratio
in one-shot situation.

For the performance analysis we assume that the network model is synchronous (LB-SPIRAL does not require synchrony
for correctness), in addition to the assumptions of Section 2. We assume that a time unit is of duration required for a
message sent by a node to reach a destination node that is a unit distance far from it. We define for level i window of time
duration ®(i) = 4c32'log>n, 0 <i <h for some constant c3 (Lemma 3), i.e., the longest distance traversed in level i (includ-
ing sub-levels) following the canonical (or spiral) path. An example given in Fig. 7 shows the windows in different levels.
At each level i a window represents the time that a node needs to reach and modify the pointers of all the leader nodes in
level i. Thus, the division of time into fixed duration windows allows us to obtain upper bounds for the communication cost
and also respective lower bounds. Moreover, ®(.)’s are aligned in such a way that ®(i) and ®(i — 1) start at the same time,
i.e., two windows of duration ®(i — 1) can be perfectly accommodated at a level i window ®(i). We assume also that all
requests proceed in rounds. A round is of duration ®(h), where h = [log D] + 1, and it has h overlapping aligned windows.
According to this definition, in a round, there is 1 window for level h, 2 windows for level h — 1, 4 windows for level h — 2,
and so on, so that there are 2"% windows for level k. In a window, each leader node in the canonical path (or spiral path)
can exchange a message with each of its neighbors (parents or children). A leader node w; ,4s_1 of the highest sub-level
cluster at level i in a spiral path p(w) forwards the request to a leader node w;;1,; of the lowest sub-level cluster at level
i+ 1 at the end of its window ®(i). Similarly, any request that arrives to a leader w; j of a sub-level j cluster at level i is
processed during ®(i) and sent to higher sub-level cluster towards wi y4s—1.

The above assumption that the forwarding of requests to parent and child levels from the current level is done at the
end of the window to make sure that the requests can reach and modify the pointers of all the leader nodes (O (logn)
leaders one per cluster among O (logn) clusters) in the current level. In other words, the time windows impose a restriction
to the protocol in the sense that they control when to forward requests to higher and lower levels from the current level.
Therefore, time windows may add some additional delay in the upper bound cost but they do not affect the lower bound
because lower bound computation can be done without such restriction.

Let us discuss briefly the execution of concurrent requests: At time zero, a node issues a publish operation ry. As soon as
the publish operation r( finishes at time t, | nodes issue one move request each concurrently, namely £ = {rg,r1,12,...,1}.
All the [ move requests are forwarded to their parent nodes at level 1 at the end of window ®(0), following their spiral
paths. When level 1 cluster leaders in the respective spiral paths of the requesting nodes receive one request each, they
simply forward it to the parent node at level 2 at the end of window ®(1); if two requests are received at level 1, one
will be forwarded to the parent node at level 2 following the spiral path of the forwarded request, while the other request
will be “deflected” down to level 0 along the directory path formed by the previous request that was forwarded to level
2. For more than 2 requests, the above scenario occurs repetitively. There may be the case that current window ®(k + 1)
is not yet expired when the requests in the window ®(k) are ready to be sent (because ®(k) expired). In this situation,
we impose a restriction in message exchange between levels such that the messages from level k will be delayed until the
current window at level k 4+ 1 (or level k — 1 in the down phase) expires. Hence, the requests that need to be sent to level
k+1 (or level k — 1) from level k are sent as soon as a new window starts at level k 4+ 1 (or level k — 1).

Denote by A*(£) the total communication cost of the optimal algorithm to serve all the requests in £, and by A(E)
the total communication cost of the LB-SPIRAL to serve those requests, in concurrent executions. We will bound the stretch
maxg A(E)/A*(E). For simplicity, we consider only the cost incurred by the up phase of each request; if we consider also the
cost incurred by the down phase, the competitive ratio increases by a factor of 2 only. Moreover, similar to the sequential
analysis, lets say Qg, 0 <k <h, where h = [log D]+ 1, are the total number of requests in £ (including the publish operation
o) that reach level k, following their spiral paths, while searching for the directory path towards the shared object.

Lemma 5. In one-shot concurrent execution &, for the Qj requests that reach level k in the hierarchy Z, A*(£) > maxj<k<n |Qk —
1] - 2k=1 where h = [log D] + 1.
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Proof. The proof is in two steps. In the first step, we show that the optimal ordering of the one-shot concurrent requests
that reach any level k in the hierarchy Z is related to the Steiner tree problem [35] of the move requests that reach that
level. In the second step, we provide a lower bound for A*(€) based on the minimum Steiner tree cost to connect the
source nodes of the Qj requests that reach level k.

For the first step, assume that there are only Qj requests in £ issued by Qy different nodes and all of them reach level k.
Since all Qj requests reached level k, we need to order the requests in Qj one after another in a distributed queue with the
minimum communication cost. As destination nodes are not known for requests beforehand, these nodes need to be found
online while in execution. Therefore, in any algorithm, the source node of one request becomes the destination node of
other request and the transactions that are currently executing in requesting nodes get the shared object one after another
according to the distributed queue order. The minimum communication cost by any protocol to provide a distributed order
is to connect them through a minimum Steiner tree. This is because the source nodes of Qj requests in G are known in the
beginning of execution and any connected subgraph T of G that connects those source nodes minimizing the sum of the
lengths of T’s edges is the optimal solution for the distributed order in any algorithm. There exist algorithms for the Steiner
tree problem with the approximation less than 2 on the ratio of the cost of T returned by an algorithm and the cost of the
optimal solution over all problem instances, e.g., [35].

We now bound the minimum possible cost for the Steiner tree T of Qj requests. For any two requests r;, r;j issued,
respectively, by source nodes u, v and reached level k of the hierarchy Z in one-shot execution &, dist(u, v) > 2¢=1. This
is because every request r; follows the spiral path of its source node until it meets some other request r; at some level [,
and if spiral paths of two nodes u, v meet at level [ then, from Lemma 2, dist(u, v) > 2!=1. Moreover, according to our time
periods and the restriction imposed in forwarding the requests to parent and child levels from the current level, if they
were at dist(u, v) < 271, then they would have reached only to levels | — 1 or lower. Therefore, as we assumed that Qy
requests reach level k of Z (at the same time), the cost of the minimum Steiner tree to connect all Qj requests is at least
|Qx — 1| - 2¥=1. Moreover, we argue that this cost also holds when || > |Q| because all the requests follow their spiral
paths until they meet other requests, and hence, Lemma 2 also applies in this case. Considering all the levels from 1 to h, it
is safe to say that the optimal communication cost of any algorithm is at least bounded by the maximum cost of the Steiner
tree at some level, i.e.,

A*(€) = max |Qx—1]- 2871,
1<k<h
where h=[logD]1+1. O

Lemma 6. In one-shot concurrent execution £, LB-SPIRAL has the communication cost A(E) < 2221 c3-]Q) — 1] - 2k+2 log3 n, where
c3 is a constant, Qy is the requests in & that reach level k in the hierarchy Z, and h = [log D] + 1.

Proof. The total communication cost for each request that reaches level k of Z in LB-SPIRAL is bounded by c3 - 2¥t2log>n
(Lemma 3). Therefore, for Qy requests that reach level k, the cost is < |Qx — 1| - c32¢2log®n (note that one of them is
always the publish request rg; if it is not included in analysis, we can say |Q| and the analysis follow). For all the levels
from 1 to h, we can immediately have that

h
AE) < ZC3 Q= 1]-2%210g®n. o
k=1

Theorem 6. The move stretch in LB-SPIRAL is O (log> n - log D) in concurrent (one-shot) executions. It achieves O (logn - log D) ap-
proximation on processing load on any node of G. Moreover, the publish operation has O (D - log3 n) cost and any lookup operation in
LB-SPIRAL has O (log® n) stretch.

Proof. The move stretch of O(log3n -log D) is now immediate comparing the costs A*(£) and A(E) from Lemmas 5 and
6, respectively as in Theorem 4. The processing load is O(logn - log D) which again follows similarly as in Theorem 5. The
publish cost is also O(Dlog>n) as in Theorem 2. The lookup stretch is also O(log®n) as the concurrent execution has no
adverse impact on execution of the lookup operation. O

5.3. Performance in dynamic executions

The analysis in Sections 5.1 and 5.2 for LB-SPIRAL is for two extreme execution scenarios: (i) no two requests are execut-
ing simultaneously and (ii) all the requests are executing simultaneously. The performance of LB-SPIRAL can also be analyzed
for requests that are initiated in arbitrary moments of time (i.e., dynamic executions), that is, this analysis can capture the
execution scenarios where requests are neither completely sequential as considered in Section 5.1 nor completely concur-
rent as considered in Section 5.2. Furthermore, this analysis subsumes the sequential and one-shot cases. The idea here is
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to use the dynamic analysis framework presented in [23]. We briefly describe that framework and argue why it works for
LB-SPIRAL.

We identify a move request r; by the tuple r; = (u, t) to capture a dynamic execution, where u is the leaf node in Z that
initiates r; and t > 0 is the time r; is initiated. We denote by & = {ro = (vo, tg),r1 = (v1,t1), ...} the arbitrary finite set of
move requests (except that ro is a publish request) with each request r; indexed according to its initiation time, i.e., i < j
implies t; <t;. To bound the competitive ratio of LB-SPIRAL due to the arbitrary set of move requests, we define for level k
the time window ®(k) as in the one-shot execution analysis and the requests are forwarded to the upper and lower levels
at the end of the time window. In each level k, there are a consecutive set of windows with duration ®(k). We name those
windows WQ, W}, W2, ... Fig. 7 depicts the time windows at different levels of Z.

Suppose a request r; = (vj, t;) reaches level k of Z during time window Wlf and rj = (v, t;) reaches level k of Z during
time window W,‘j . In the analysis, we need to bound their initiation time difference. Particularly,

Lemma 7. Let r; = (v;, t;) and rj = (v}, tj) be two requests that reach level k in the respective time windows W,f and W,f, then
ti—ti>(q—p—2) ok).

The proof of Lemma 7 looks at what will be the maximum (time) delay for a request to reach level k after it is initiated.
Since the request is forwarded to the next level at the end of the time window at the current level, the maximum delay
can be shown as at most two time windows ®(k) to reach level k after a request is initiated at time t.

In the analysis, we also need to bound the distance dist(v;, vj) in G between the nodes v;, v; of two requests r; = (v;, t;)
and r; = (v, t;) that reach level k. The next lemma bounds dist(v;, v;) for the case of ri,r; reaching to level k — 1 and k

inside the same time windows W¢ . and Wf.

k—1

Lemma 8. Suppose r; = (v;, t;) and rj = (v}, t;) are two requests that reach level k. If ;, r; fall inside the same window W}*_, at level
k — 1 and also inside the same window Wf at level k, then dist(v;, vj) > 2k=2,

The proof intuition is as follows. As both requests fall inside the same window at level k — 1 and then continue to the
same window at level k, they must not have met each other at level k — 1 (or lower). In other words, one request did not
see the downward pointers previously set by another request, otherwise one request would have been diverted behind the
another one following downward pointers. Moreover, in LB-SPIRAL, two requests can not follow each other after they see
the downward pointers previously set. Therefore, these two requests must have been initiated from the nodes that are at
distance at least dist(v;, vj) > 2k=2 from each other in G so that they do not have a common leader at level k — 1.

Suppose two requests r; = (v;, t;),rj = (vj,t;) reach level k when dist(v;, v;) < 2k=1 then the following lemma shows
the existence of a third request r; = (v, ;) that initiated between the initiation times of r;,r; satisfying certain distance
property between either v; or v; from v;.

Lemma 9. Suppose r; = (v, t;) and rj = (v}, t;) are two requests that reach level k. If dist(v;, vj) < 2k=1 " then there must exist a
third request r; = (vy, t;) such that t; < t; < t; and either dist(v;, v|) > 2k=4 or dist(v,, vj) > 2k=4,

The proof intuition is as follows. If dist(v;, vj) < 2k=1 then r; must meet r; at level k—1, if the downward pointers set by
r; are not modified by any other request. However, if r; meets r; at level k, then r; must have missed the downward pointers
toward r; in all the levels up to k — 1. Thus, there must exist a third request r; = (v, t;), which was initiated between the
time r; was initiated and the time r; was initiated, which has deleted the downward pointers set by r;. Suppose now that all
requests with initiation time between the time r; was initiated and the time r; was initiated are at distance less than 2k—4
from r;. All these intermediate requests are within distance less than 2 - 2¥~4 < 2¥=3 from each other and they must meet
each other at level k — 2. Which implies that no request will reach level k — 1. Therefore, r; would not exist, a contradiction.
Similarly, it cannot be that all the intermediate requests are within distance less than 2~ from r;.

Lemma 9 provides a guarantee needed later in the lower bound analysis that if y requests reach level k within the same
time window, then at least y/2 requests are initiated by the nodes with (pairwise) distance between them in G is at least
2k=4_This is because, for every three requests in the same window, at least two of them satisfy this criteria.

With these basic results for time windows, we can proceed with the analysis. Denote by S,ﬂ the total number of requests
in £ that reach level k in Z inside some window W,{. We divide time windows into two categories, depending on S,{.
We call the level k windows that have S,]; > 3 the dense windows and the rest with S,{ < 3 the sparse windows. The reason
behind considering the windows with S,{ >3 and Sf; < 3 separately is that we always need in the analysis at least fS{;/Z} >2
requests inside any window that are at distance > 2¥—2 far from each other in graph G (Lemma 9). This helps in establishing
a non-trivial lower bound for the communication cost. For 5,1( < 3, the goal is to transform those windows into dense

windows and apply a similar analysis. Particularly, we perform a transformation such that there are exactly two requests in
each window and the graph nodes that initiate them are at least 2¢~! far in G.
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We divide the analysis into bounding the costs of serving the requests that fall into dense windows and sparse windows,
respectively. Therefore, the total communication cost of LB-SPIRAL is the sum A(E) = Ap(E) + As(E), where Ap(E) (As(E))
is the cost of LB-SPIRAL in serving the requests in dense (sparse) windows. Given Lemmas 7-9, this cost analysis is easy for
the dense windows. Particularly, for a dense window W,ﬁ, the communication cost of LB-SPIRAL is < - Si - 2k+2 log3n for

some constant c. The optimal communication cost for any algorithm for the requests in W,ﬁ is at least ((S,J< —1)/2]-2k2
(Lemma 9). After the cost analysis for individual dense time windows, the goal is to combine the costs of all the time dense
windows. Observe that for any two requests that fall in two subsequent dense windows at level k, their initiation time
difference t, — tg > ¢ - 2¥t2log® n, for some constant c. Therefore, we can easily combine the upper bound costs of dense
windows in any level k.

Extending the lower bound cost for a single dense window at level k to the combination of the dense windows is non-
trivial. Nevertheless, we argue that the minimum cost of the dense window sequence of level k is at least the cost due
to the minimum cost Hamiltonian path that visits each vertex of the dense sequence at that level exactly once. To provide
intuition on why this argument is true, we use a notion of directed dependency graph in computing such Hamiltonian path.

Let &' ={rq,r2,...} C € be a subset of requests in £. The directed dependency graph for the requests in &', denoted as
H(E) = (V', E’, "), has requests as vertices V', i.e, |V'| =[], a directed edge from any r; € V' to any other rj € V' such
that both (v, vj) € E' and (v}, v;) € E’, and edge weight function w’: E’ — R™*. Note that H(£’) is a (bidirectional) directed
complete graph - there are two directed edges between every pair of vertices. The edge weights are assigned such that

Vi, j,w'(vi, vj) = max{dist(vi, v), t; — tj}.

The edge weights can be asymmetric, i.e,, w’(v;, vj) may be different than w’(v;, v;). The time parameter included in the
edge weight computation in H(E’) plays a crucial role in the lower bound analysis since sometimes the time difference in
w’(vi, vj) translates to the communication cost (not the distance in G) as there is always a request that is searching for the
predecessor node as soon as it is initiated.

It is easy to see from the construction of H(E’) that each possible ordering for the requests in £ is given by a directed
Hamiltonian path that visits each vertex of H(E’) exactly once. This is because, irrespective of the algorithm used, it has to
order the requests in a queue one after another, which a Hamiltonian path does by visiting the nodes of H(E’) exactly once.
Out of the possible orderings, the order which minimizes the ordering cost is the lowest cost directed Hamiltonian graph
and any algorithm for the ordering must have cost at least the lowest cost Hamiltonian path. The existence of a Hamiltonian
path in H(E’) can be guaranteed at all times, since H(E’) is a directed complete graph.

To establish the lower bound, the question that remains to answer is what would be the minimum length of a directed
Hamiltonian path in H(E’). For simplicity, we consider the directed dependency graph of the requests in all the dense
windows at level k, denoted as H(E’). We divide the vertices of Hy(£') into ny groups H;j, 1 <i < ny, each coming from a
distinct dense window of level k. We order the group according to time from left to right. If we look at a particular group
H;, there are some directed edges between the vertices inside H;, some directed edges going out to the other groups on
the left and right sides of H;, and some directed edges coming into H; from the other groups on its left and right side.
Without loss of generality, we can consider a sub-graph of H; such that for any two vertices u, v € Hj, dist(u, v) > 2k=2,
As in Lemma 9, there will be at least [S;(/Z] vertices in each group H; satisfying such criteria since we are considering
the dense windows and there at least three requests inside each dense window satisfying the requirements of Lemma 9.
Denote by P some directed Hamiltonian path on the sub-graph H(£’) and by P* the lowest cost Hamiltonian path among
all P. According to our construction, some edges of P are between the vertices of a particular group H; and some edges
are between the vertices of groups H;, Hj, j # i. Therefore, the cost of P, denoted as A(P), is the cost A(Pj,) of the edges
between the vertices in H; and the cost A(Pex) of the edges between two different groups. A(Pey) can further be divided
into A(Pextlefr) and A(Pext right), Where A(Pexe jef) is the cost due to the edges coming into H; from (and going out from
H; to) the groups in the left of H; and A(Pext righe) is the cost due to the edges coming into H; from (and going out from
H; to) the groups in the right of H;.

Represent by

A(P*) z A(P;knt) + A(Pth,left) + A(P:xt,right)

the cost of the minimum cost Hamiltonian path P* in any ordering. We can assign A(ijt.right) > 0, therefore

A(P*) = A(P) + APy o)

Now let W, be the set of all dense windows at level k. Pick every third window in W to make a set W,f so that the
requests in any two subsequent windows in Wlf do not overtake each other (This is due to Lemma 7, which guarantees that
for any two windows W{, W,’< € Wf if [ > j, then the requests in W,{ have initiation time smaller than all the requests in
W,’(). According to this definition, there will be exactly three such sets (i.e., 1 < ¢ < 3), and for the lower bound A(P*) we
can consider only one set W,f. Let
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the total sum of the number of requests in all the windows in the dense window set W,f. After some further analysis, it
can be shown that

A(P) = A(Pie) + APy jefe)
>1/4-M; - 2573,
We now bound the total cost of LB-SPIRAL in serving the requests in the dense windows in all the levels. Since there are
3 dense subsequences at level k, the total number of requests that reached level k inside dense windows is

3
ZM,i < 3. max M,f.
po 1<¢<3

Therefore, the total cost for all the levels is

h 3

Ap@©) <> | D M |-k
k=1 \¢=1

IA

h
> 3. <1max3 My ) - D (k)
k=1

={=

IA
=

3. <max M,f) 322 log n.
P 1<¢<3

The optimal communication cost for all the requests inside dense windows of all the levels is

A%(E) > 1/4- max <max M,{) k=3,
1<k<h \1<¢<3

using the cost A(P*) of for any level 1 <k <h.

We now focus on bounding the costs As(£) and A%(E) for executing the requests in the sparse windows in all the
levels. Due to S,]{ < 3 requests inside each sparse window, it may not always be the case that these (at most) 2 requests
satisfy the requirements for the lower bound derivation performed for dense windows. Therefore, the goal is to transform
the sparse window scenario into a dense window case such that there are exactly two requests in each sparse window that
are at least 2~ far in G. Note that in dense windows the distance lower bound was 2¥~2; here however it becomes 2k—*
(Lemma 9). The transformation given in [19] essentially defines another pair for each sparse window in level k for requests
with distance dist(v;, vj) < 2k=1 such that every two requests will have dist(v;, Vi) > 2k=1_ After that the upper and lower
bound costs similar to the dense window case will apply to the case of sparse windows. Finally, we have that the stretch of
LB-SPIRAL is bounded by

A(g): Ap(&) + As(E)
A*(€)  max{A}(£), ALE)}

2. Zﬁ:] 3. (max1§;§3 M,f) . c32k+2 log3 n
<

1/4 - maxy<k<h (max15;53 M,f) . 2k=3

2-h-maxj<<p (max1§§§3 M,f) 32k 2Jog3n
<

1/4 - maxy <<p (max15;53 M,f) . 2k=3

= O(log3n-h)
= O(log3 n-logD).

Having the ratio A(£)/A*(E) above, we have the follow guarantees of LB-SPIRAL in dynamic executions.
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Theorem 7. The move stretch in LB-SPIRAL is O (log n - log D) in dynamic executions. The processing load on any node of G is O (logn -
log D). Moreover, the publish operation has O (D - log> n) cost and any lookup operation has O (log® n) stretch.

Proof. The move stretch of O(log3n -log D) is immediate from the analysis of the costs Ap(E), As(E), A} (E), and A%(E)
above and their comparison since the ratio ;“‘%@) also applies to maxg % due to our consideration of arbitrary £ in
establishing the ratio. The processing load is O (logn -log D) which again follows similarly as in Theorem 5. The publish cost
is also O(D log3 n) as in Theorem 2. The lookup stretch is also O(log6 n) as the lookups can run concurrently with move

operations. O

Proof of Theorem 1. Theorems 2-7 collectively prove Theorem 1 for LB-SPIRAL in any arbitrary (sequential, concurrent one-
shot, or dynamic) execution. O

6. Improved results for constant doubling dimension graphs

If the metric of the underlying graph G has a constant doubling dimension (see [2,19]), we can improve both stretch
and processing load for LB-SPIRAL. In particular, we can remove polylog(n) factors from the bounds. The doubling dimension
graph is defined as follows: Let the space with radius § of a point be called the ball centered at that point. A point set
has doubling dimension p if any set of points that are covered by a ball of radius § can be covered by 2° balls of radius
8/2. We say that a metric is doubling and has a low dimension if p is bounded by a small constant. The idea is to use
the directory hierarchy Z suitable for doubling graphs. It was shown in [16,34] that (O (1), O(1))-labeled cover hierarchy is
possible for small doubling graphs. In this section, we provide an alternative construction that essentially provides the same
(0(1), 0(1))-labeled cover hierarchy as in [16,34].

We perform the construction through the use of a maximal independent set algorithm, e.g., [36]. Formally, we define
a sequence of connectivity graphs I := {lp = (Vo, Eo), I1 = (V1,E1),...,In = (Vy, Ep)}, where 0 is the lowest level and h <
[log D7 + 1 is the highest level. At level 0, all nodes of G are in Iy, i.e.,, Vo = V. Define E; to be the set of all edges in V,
such that for each pair of nodes u, v in V, dist(u, v) < 2¢t1. We define V, to be a maximal independent subset of V,_;.
Vi, contains exactly one node, which is the root node r and Ej is the empty set.

We define the default parent and update parent set for each level £ node w € I,. The default parent of w € I, is a node
w’ € Iy, that is closest to w. Note that w’ is within distance 2¢*! away from w. The update parent set of w € I, is a
subset of nodes in I,y that are within distance 4 -2¢*1 of w (including the default parent).

The directory Z is a layered node structure on I with the (overlay) edges between (default) parent-child pairs in every
two consecutive level connectivity graphs I, and I;11. The (overlay) edge between two parent-child pairs may be a single
edge or a path in G that connects those parent-child nodes in the original graph G (pick a shortest path if multiple such
paths exist).

Consider node x in the bottom-level connectivity graph Iy. Denote by default’(x) the level-¢ default parent of x.
default®(x) is a recursive definition such that default®(x) = x, and default®(x) is the default parent of default!~!(x). Denote
by updateparentt(x) the update parent set of default’=1(x).

Lemma 10. In constant-doubling networks, there are at most 23”7 number of update parent nodes in Z at level £ + 1 for any node at
level 2,1 <¢ <h.

Proof. Pick a level ¢ node x in Z. According to the construction of Z, all the update parent sets of x in level ¢ 4+ 1 are
within distance 4 -2¢*1 from x. According to the definition of doubling dimension, all the nodes within distance 2¢+1 are
covered by 2° balls of radius 2¢. Which also means that all the nodes within distance 2 - 2¢*1 are covered by 2 balls of
radius 2 - 2¢. Therefore, all the nodes within distance 2 - 2¢+1 are covered by (2°)2 = 22° balls of radius 2¢, since each ball
of radius 2 - 2¢ is covered by 2” balls of radius 2¢. Extending this definition recursively, the update parent sets of x in level
£+1 are covered by (2°)3 =23 balls of radius 2¢, since they are within distance 4-2¢*! from x. Moreover, any two nodes
in the update parent set at level £ + 1 are at least distance 2¢*! from each other since they are maximal independent sets
at level ¢. Therefore, x cannot have more that 23° level ¢ 4+ 1 update parents. O

We now define spiral path p(u) for each node u € V. p(u) is formed by connecting the ascending sequence of update
parent sets of node u starting from updateparent®(u) = u at level 0 to updateparent"(u) =r at the root level h (note that
default® (u) € updateparent®(u) and hence p(u) visits default’(u) in each level ¢). Nodes in updateparent®(u) in each level ¢
are visited according to their node IDs in the increasing order. Thus, the highest ID node in updateparent®(u) is connected to
the smallest ID node in updateparent’*!(u). This ordered visit of the nodes in each level resembles labeling of the clusters
we used in Section 3.
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Lemma 11. For any two nodes u, v € V, their spiral paths p(u) and p(v) intersect at level [log(dist(u, v))] + 1.
The directory (or canonical) path can also be defined similarly as in Section 3.
Lemma 12. For any canonical path q up to level k in Z, length(q) < 2k+30+6,

Proof. The distance between any level ¢ node and any level £+ 1 node is 2 - 4-2¢*1. The distance between any two nodes
in level £+ 1 is also 2 -4 - 2¢+1, Moreover, from Lemma 10, there are at most 237 nodes in the update parent set at level
£ + 1. Therefore, the cost of traversing from the last node in ¢ to the last node in level £ 41 is

52_4.2[-5-] _}_23/)_(2_4.25—}—1)52.23/)_2.4'26-&-] 523,0.2K+5.
Combining the one level cost from level 0 up to level k, we have that,

k
length(q) < ) "(2%7-24%) < 244306,
£=0

since length(q) is the sum of the distances that increase by a factor 2 between two consecutive levels. O

The goal is now to run the operations of LB-SPIRAL on the directory Z developed analogously to Section 4. Therefore, in
the small doubling graph G, we obtain the following theorem.

Theorem 8. If the underlying topology G is a small doubling graph, the move stretch in LB-SPIRAL is O (log D) in any arbitrary (se-
quential, one-shot, or dynamic) execution. It achieves O (log D) approximation on processing load on any node of G. Moreover, the
publish operation has O (D) cost and any lookup operation has O (1) stretch.

Proof. The publish cost is O(D) as the spiral path is now of length 0(2¥) for any level k and hence for the highest level
h=TlogD]+1 the length becomes 0(2") = 0 (2°¢P1+1y = 0 (D).

For the lookup stretch, Lemma 4 can be modified such that the spiral path p(w) of a lookup issuing node w is guaranteed
to either intersect with the directory path to the object owner node v that is at distance dist(w, v) <2 or find a slink to
the directory path for the object at level at most n =i + ¢, where ¢ =3p + 8. Let v; be the level i leader node. As in
Lemma 4, we need

dist(v;, w) < length(q;) + dist(w, v) < 273,68 4 of < 2IF3p+7 —on=1

with n =i+ 3p + 8 for the 1 level leader node to have the slink information to v; for the directory path to & at v. Therefore,
the lookup cost is A(r;) <3 -length(q;) as in Theorem 3. Which means,

A(rp) <3.2113016 < 3. i3pH8130%6 < 3. 96014 i,
The optimal cost A*(r;) > 2{~1, Therefore, the stretch for the lookup operation is

A(ry) _3-2%+14.2
Ay — 20T

=0(),

for a constant p.
For the move stretch, following the analysis as in Theorem 4, we have that

A(€)  h-maxq<g<p (S — 1)2k+30+6
ma < —

X = 0(log D),
€ A*(E) T maxq<k<p(Sk — 1)2k-1 (log D)

since p is a constant. For the one-shot and dynamic executions, the same stretch bound holds adapting the analysis.

For the processing load we can reduce the O (logn) factor to O(1) since in each level there are only 0(23°) sub-levels
to visit instead of O(logn) sub-levels in the general topology. Therefore, the processing load approximation of a node of
doubling graph G in LB-SPIRAL is
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Fig. 8. The communication cost results of LB-SPIRAL and SPIRAL in executing 10-10,000 move operations in random networks of 128 nodes: (top) log scale
and (bottom) non-log scale. Lower is better.

PL®) _k-O(logD)
PL*(x) — k

=0(logD). O

7. Simulation results

Given nice theoretical performance guarantees of LB-SPIRAL in minimizing both stretch and processing load, we aim here
to investigate how these properties translate in real world through experimental evaluation.” For the evaluation, we use the
Erdoés-Rényi model [20] and generate random graphs of different sizes, ranging from 64 nodes to 1,024 nodes. Particularly,
we use the G(n, p) variant of the Erdés-Rényi model [20] where a graph G is constructed connecting nodes randomly such
that each edge is included in G with probability 0 < p < 1, independent from every other edge. The graphs we use in
the experiments are generated setting o = 0.1. The weight of each edge is also chosen independently from the weight of
every other edge at random from 1 to 10. The results are presented and analyzed only for move operations on a single
shared object. The move operations are generated uniformly at random among the available nodes of the graph every time
a request is issued. We implement LB-SPIRAL in sequential executions ranging from 10 to 10,000 move operations. The main
goal is to see how LB-SPIRAL does in terms of processing load and communication overhead since communication cost has
already been evaluated for SPIRAL in [13]. The directory Z built is initialized by creating a downward path from the root to
a bottom level node that currently owns the object through a publish operation. The results are compared with the state-of-
the-art algorithm SpIRAL that does not balance the processing load (only minimizes the stretch). The results presented are
the average of 10 experimental runs. The data points plotted also show the deviation (from average) on the measurements.

2 The implementation is available in Github through the following link: https://github.com/shishirrraic/LB-Spiral.
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Fig. 9. The communication cost results of LB-SPIRAL and SPIRAL in executing 10-10,000 move operations in random networks of 512 nodes: (top) log scale
and (bottom) non-log scale. Lower is better.

The performance of the protocols is measured with respect to (a) the communication cost, (b) the communication over-
head, and (c) the processing load. The communication cost is measured through the sum of the weights of the edges the
requests traverse following the protocol. The processing load of a node is measured through the number of times that node
is used while serving the requests following the protocol. The communication overhead is measured summing the extra
distance the requests need to traverse in the leader change process in LB-SPIRAL; SPIRAL does not incur this cost as leaders
are pre-selected and they never change. We then compare the total communication cost (the total processing load) with
the optimal communication cost (the optimal processing load) and present the results in terms of the ratio (stretch and
processing load ratio). We assume that the execution proceeds in steps such that every node can receive, process, and send
a message in each step.

7.1. Communication cost results

We are now ready to present the communication cost (stretch) and overhead results. We start with the communication
cost results varying the number of move operations in a network of fixed size. Figs. 8-10 show the communication cost
results of LB-SPIRAL and SPIRAL in executing 10-10,000 move operations in random networks of 128, 512, and 1024 nodes,
respectively. The results show that SPIRAL performs better in terms of communication cost which is in line of the theoretical
results since the stretch of LB-SPIRAL is O (logn) factor worse compared to SPIRAL. However, the performance of LB-SPIRAL is
within a factor of 4 compared to SPIRAL in all our experiments. The observation here is that the O(logn) does not always
appear in the communication cost.
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Fig. 10. The communication cost results of LB-SPIRAL and SPIRAL in executing 10-10,000 move operations in random networks of 1024 nodes: (top) log scale
and (bottom) non-log scale. Lower is better.

We are now interested to see how the performance of LB-SPIRAL compares with the performance of SPIRAL in executing
the fixed set of move operations while varying the network size. Figs. 11 and 12 show the communication cost results of
LB-SPIRAL and SPIRAL in executing 1,000 and 10,000 move operations in random networks consisting of 64, 128, 256, 512,
and 1,024 nodes, respectively. The results show the consistent difference on performance between LB-SPIRAL and SPIRAL.
This consistency is due to the denseness of the graphs with more nodes and substantial decrease in diameter.

Figs. 13 and 14 show the overhead cost results of LB-SPIRAL in executing 1,000 and 10,000 move operations in random
networks consisting of 64, 128, 256, 512, and 1,024 nodes, respectively. Note that since the leaders in each cluster is pre-
selected at the directory Z construction time in SPIRAL, there is no overhead communication cost for SPIRAL. The overhead
cost in LB-SPIRAL is the cost involved in informing the leaders of the parent and child clusters about the leader change in
the current cluster in the spiral path. The results show the overhead in LB-SPIRAL is within a small constant factor of the
communication cost of SPIRAL which has no overhead.

7.2. Processing load results

We now present the processing load results of LB-SPIRAL and SPIRAL in executing 1,000 and 10,000 move operations
in random networks consisting of 128, 512, ans 1,024 nodes, respectively. The results are in Fig. 15-20. The results show
that LB-SPIRAL balances the processing load better compared to SPIRAL. Results also show that the processing load increases
proportionally with network size.
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Fig. 11. The communication cost results of LB-SPIRAL and SPIRAL in executing 1,000 move operations in random networks consisting of 64, 128, 256, 512,
and 1024 nodes: (top) log scale and (bottom) non-log scale. Lower is better.

8. Concluding remarks

We have presented a DDP LB-SPIRAL for shared objects for supporting shared memory implementations in distributed
systems working following general network topologies. The distinctive feature of LB-SPIRAL is that it is the first DDP for
general network topologies that is (processing) load balanced simultaneously with low stretch. Previous DDPs for general
network topologies only minimized stretch. The move stretch of LB-SPIRAL can be improved to O(log3n -min{logn, log D})
(to O (minf{logn,logD}) for constant doubling graphs) using the analysis technique of [19]. The simulation results showed
the usefulness of LB-SPIRAL in practical scenarios in balancing the processing load compared to the state-of-the-art protocol
SPIRAL [13], without much increasing the stretch. For future work, it would be interesting to extend LB-SPIRAL for dynamic
networks where nodes enter and leave at any time and make it fault-tolerant.

Declaration of competing interest
None declared.
Acknowledgments

This work is supported by The National Science Foundation grant CCF-1936450.

30

0 N O oA W N =

A B B B W W WW W W W WWWNDNNDNNDNMNMNMNDDN=S =2 = 2 a o o a2 O
W N - O O© 0N OO K~ DN - O O© 0 NGO H» ODNM - O O© 0N OGO » W N - O

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61



0 N O oA W N =

ABR A B D D DWW WL WWWWWNNNNNNNNDNRNDRN S o4 4 2
O R OV T OO0 OISR ORN IS O©OIOO 0 R ON 20 © ® N0 A N =2 O ©

46

JID:YINCO AID:104700 /FLA
S. Rai, G. Sharma, C. Busch et al.

Communication cost

Communication cost (Log Scale)
S

x 10°

10

[m3G; v1.297] P.31 (1-40)

Information and Computation eee (eeee) seeeee

® Optimal A Spiral LB-Spiral x Stretch(Spiral) @ Stretch (LB-Spiral)

1l

 Hl

e

o

———————————F
A s——————

64 128 256 512 1024
Number of nodes

® Optimal 4 Spiral LB-Spiral x Stretch(Spiral) @ Stretch(LB-Spiral)
e
8
1 = &
iz & =
\
64 128 256 512 1024

Number of Nodes

Fig. 12. The communication cost results of LB-SPIRAL and SPIRAL in executing 10,000 move operations in random networks consisting of 64, 128, 256, 512,
and 1,024 nodes: (top) log scale and (bottom) non-log scale. Lower is better.
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Fig. 14. The overhead cost results of LB-SPIRAL in executing 10,000 move operations in random networks consisting of 64, 128, 256, 512, and 1,024 nodes:

(top) log scale and (bottom) non-log scale. Lower is better.
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Fig. 15. The processing load results of LB-SPIRAL and SPIRAL in executing 1,000 move operations in random networks of 128 nodes: (top) log scale and
(bottom) non-log scale. Lower is better. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 16. The processing load results of LB-SPIRAL and SPIRAL in executing 10,000 move operations in random networks of 128 nodes: (top) log scale and

(bottom) non-log scale. Lower is better.
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Fig. 17. The processing load results of LB-SPIRAL and SPIRAL in executing 1,000 move operations in random networks of 512 nodes: (top) log scale and

(bottom) non-log scale. Lower is better.
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Fig. 18. The processing load results of LB-SPIRAL and SPIRAL in executing 10,000 move operations in random networks of 512 nodes: (top) log scale and

(bottom) non-log scale. Lower is better.
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Fig. 19. The processing load results of LB-SPIRAL and SPIRAL in executing 1,000 move operations in random networks of 1024 nodes: (top) log scale and
(bottom) non-log scale. Lower is better.

38

0 N O s~ W N =

A B B B B DWW W W OWOWWWWWNNMNDNDNDNDMNDNMNDN =S = = 22 a a4 d a2 O
a bh O - O © 0N OO~ ON -+ O © 0N T A~ XN -+ O © 0N o p» N =+ O

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61



0 N O oA W N =

AR A B B D D QMWW MWW W WNNNNNNNRNMNDIN 2 4 oo
S O RN OISO OIOONRE ONASO0OND0 R ON 20 ©®NOO0 kRN 2O ©

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

JID:YINCO AID:104700 /FLA
S. Rai, G. Sharma, C. Busch et al.

1000

Processina load (Loa Scale)

Processing Load

0.1

8000

6000

S
o
o
o

2000

== Optimal == Spiral - LB:

200

0 600
Node ID

[M3G; v1.297] P.39 (1-40)

Information and Computation eee (eeee) seeeee

-Spiral

800

== Optimal == Spiral = LB-Spiral

1000

L

Node ID

TR

1000

Fig. 20. The processing load results of LB-SPIRAL and SPIRAL in executing 10,000 move operations in random networks of 1024 nodes: (top) log scale and

(bottom) non-log scale. Lower is better.

39

0 N O s~ W N =

. 4 a4 a a4 a4 ©
© 00 N O o~ WN = O

20
21
22
23
24
25

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61



JID:YINCO AID:104700 /FLA [m3G; v1.297] P.40 (1-40)
S. Rai, G. Sharma, C. Busch et al. Information and Computation eee (eeee) seeeee

References

[1] S. Rai, G. Sharma, C. Busch, M. Herlihy, Load balanced distributed directories, in: SSS, 2018, pp. 221-238.
[2] M. Herlihy, Y. Sun, Distributed transactional memory for metric-space networks, Distrib. Comput. 20 (3) (2007) 195-208.
[3] D. Chaiken, C. Fields, K. Kurihara, A. Agarwal, Directory-based cache coherence in large-scale multiprocessors, Computer 23 (6) (1990) 49-58.
[4] LM. Censier, P. Feautrier, A new solution to coherence problems in multicache systems, IEEE Trans. Comput. 27 (12) (1978) 1112-1118.
[5] A. Agarwal, D. Chaiken, D. Kranz, ]. Kubiatowicz, K. Kurihara, G. Maa, D. Nussbaum, M. Parkin, D. Yeung, The mit alewife machine: a large-scale
distributed-memory multiprocessor, in: Workshop on Scalable Shared Memory Multiprocessors, 1991, pp. 239-261.
[6] MJ. Demmer, M. Herlihy, The arrow distributed directory protocol, in: DISC, 1998, pp. 119-133.
[7] B. Awerbuch, D. Peleg, Concurrent online tracking of mobile users, SSIGCOMM Comput. Commun. Rev. 21 (4) (1991) 221-233.
[8] K. Raymond, A tree-based algorithm for distributed mutual exclusion, ACM Trans. Comput. Syst. 7 (1) (1989) 61-77.
[9] N. Shavit, D. Touitou, Software transactional memory, Distrib. Comput. 10 (2) (1997) 99-116.
[10] M. Herlihy, J.E.B. Moss, Transactional memory: architectural support for lock-free data structures, in: ISCA, 1993, pp. 289-300.
[11] H. Attiya, V. Gramoli, A. Milani, Directory protocols for distributed transactional memory, in: Transactional Memory. Foundations, Algorithms, Tools,
and Applications - COST Action Euro-TM IC1001, Springer, 2015, pp. 367-391.
[12] B. Zhang, B. Ravindran, Brief announcement: Relay: a cache-coherence protocol for distributed transactional memory, in: OPODIS, 2009, pp. 48-53.
[13] G. Sharma, C. Busch, Distributed transactional memory for general networks, Distrib. Comput. 27 (5) (2014) 329-362.
[14] G. Sharma, C. Busch, A load balanced directory for distributed shared memory objects, ]. Parallel Distrib. Comput. 78 (2015) 6-24.
[15] N. Alon, G. Kalai, M. Ricklin, LJ. Stockmeyer, Lower bounds on the competitive ratio for mobile user tracking and distributed job scheduling, Theor.
Comput. Sci. 130 (1) (1994) 175-201.
[16] L. Jia, G. Lin, G. Noubir, R. Rajaraman, R. Sundaram, Universal approximations for tsp, steiner tree, and set cover, in: STOC, 2005, pp. 386-395.
[17] M.T. Hajiaghayi, R. Kleinberg, T. Leighton, Improved lower and upper bounds for universal tsp in planar metrics, in: SODA, 2006, pp. 649-658.
[18] I. Gorodezky, R.D. Kleinberg, D.B. Shmoys, G. Spencer, Improved lower bounds for the universal and a priori tsp, in: APPROX/RANDOM, 2010,
pp. 178-191.
[19] G. Sharma, C. Busch, Optimal nearest neighbor queries in sensor networks, Theor. Comput. Sci. 608 (2015) 146-165.
[20] P. Erdés, A. Rényi, On random graphs i, Publ. Math. (Debr.) 6 (1959) 290.
[21] C. Busch, M. Magdon-Ismail, J. Xi, Optimal oblivious path selection on the mesh, IEEE Trans. Comput. 57 (5) (2008) 660-671.
[22] H. Rdcke, Minimizing congestion in general networks, in: FOCS, 2002, pp. 43-52.
[23] G. Sharma, C. Busch, An analysis framework for distributed hierarchical directories, Algorithmica 71 (2) (2015) 377-408.
[24] A. Ghodselahi, F. Kuhn, Dynamic analysis of the arrow distributed directory protocol in general networks, in: DISC, 2017, pp. 22:1-22:16.
[25] L Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan Chord, A scalable peer-to-peer lookup service for internet applications, SIGCOMM Comput.
Commun. Rev. 31 (4) (2001) 149-160.
[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-addressable network, SIGCOMM Comput. Commun. Rev. 31 (4) (2001)
161-172.
[27] ALT. Rowstron, P. Druschel, Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer systems, in: Middleware, 2001,
pp. 329-350.
[28] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, ].D. Kubiatowicz, Tapestry: a resilient global-scale overlay for service deployment, IEEE ]. Sel.
Areas Commun. 22 (1) (2006) 41-53.
[29] R. Rajaraman, A.W. Richa, B. Vocking, G. Vuppuluri, A data tracking scheme for general networks, in: SPAA, 2001, pp. 247-254.
[30] C.G. Plaxton, R. Rajaraman, A.W. Richa, Accessing nearby copies of replicated objects in a distributed environment, in: SPAA, 1997, pp. 311-320.
[31] K. Talwar, Bypassing the embedding: algorithms for low dimensional metrics, in: STOC, 2004, pp. 281-290.
[32] R. Krauthgamer, J.R. Lee, Navigating nets: simple algorithms for proximity search, in: SODA, 2004, pp. 798-807.
[33] G. Sharma, C. Busch, Distributed transactional memory for general networks, Distrib. Comput. 27 (5) (2014) 329-362.
[34] A. Gupta, M.T. Hajiaghayi, H. Rdcke, Oblivious network design, in: SODA, 2006, pp. 970-979.
[35] G. Robins, A. Zelikovsky, Improved steiner tree approximation in graphs, in: SODA, 2000, pp. 770-779.
[36] M. Luby, A simple parallel algorithm for the maximal independent set problem, in: STOC, 1985, pp. 1-10.

40

0 N O oA W N =

O O g o g a0 o o0 oo o a b~ BB B B BB BB BB DWW W WOoWOWOWWWNNNDNDNDDNDDNDNDNDN =S = =2 2 da s aa O
- O © O N O g H» WN =2 O O 0N OO Hh ONM - O O 0O NO OGO K ON -+ O O©C NGO D ON -+ O © 0N O WOWNM = O



0 N O oA W N =

O O o g g g g oo a D BB B DS BN DB BB DB W W W oOOWWWWWWNDNDMNDNDNDMNDNMNMNMNDDN= = = <4 2 a4 a4 g
- O © 00 N O O & WN =+ O © 0N O G A WOWNM - O O© 0N O GG A ON = O O© ©®NO U B ON-—- O © 0N OO b OWNM = O ©

JID:YINCO AID:104700 /FLA

Sponsor names

Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.

The National Science Foundation, country=United States, grants=CCF-1936450

[m3G; v1.297] P.41 (1-40)

0 N O O s W N =

O O g o g a0 o o0 oo o a b~ BB B B BB BB BB DWW W OOoWOWOWWWNDNNDNDNDDNDDMNDNMNDN =S =4 =2 24 ddaaa O
- O © O N O g &» WN = O O© 0N OO K ONM - O O© 0N OG K ON -+ O O© NGO D ON -+ O © 0N O B OWNM = O



	Load balanced distributed directories
	1 Introduction
	1.1 Problem statement
	1.2 Contributions
	1.3 Relation between processing load and network congestion
	1.4 Techniques
	1.5 Related work
	1.6 Paper organization

	2 Network model
	3 Hierarchical clustering
	3.1 Labeled cover hierarchy build for Spiral
	3.2 Problems of the labeled cover hierarchy of Spiral for load balancing and modifications
	3.3 Overlay tree structure on the labeled cover hierarchy
	3.4 Construction time and information that nodes keep
	3.5 Spiral paths

	4 LB-SPIRAL Algorithm
	4.1 Overview of LB-Spiral
	4.2 Detailed description of LB-Spiral
	4.3 Balancing the processing load in LB-Spiral
	4.4 Overlead due to leader change
	4.5 Handling concurrent executions
	4.6 Bounding the lookup cost in LB-Spiral
	4.7 Information about LB-Spiral in each node

	5 Analysis of LB-SPIRAL
	5.1 Performance in sequential executions
	5.2 Performance in one-shot executions
	5.3 Performance in dynamic executions

	6 Improved results for constant doubling dimension graphs
	7 Simulation results
	7.1 Communication cost results
	7.2 Processing load results

	8 Concluding remarks
	Declaration of competing interest
	Acknowledgments
	References


