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Abstract We investigate scheduling algorithms for distributed transactional
memory systems where transactions residing at nodes of a communication
graph operate on shared, mobile objects. A transaction requests the objects it
needs, executes once those objects have been assembled, and then possibly for-
wards those objects to other waiting transactions. Minimizing execution time
in this model is known to be NP-hard for arbitrary communication graphs, and
also hard to approximate within any factor smaller than the size of the graph.
Nevertheless, networks on chips, multi-core systems, and clusters are not ar-
bitrary. Here, we explore efficient execution schedules in specialized graphs
likely to arise in practice: Clique, Line, Grid, Cluster, Hypercube, Butterfly,
and Star. In most cases, when individual transactions request k objects, we
obtain solutions close to a factor O(k) from optimal, yielding near-optimal
solutions for constant k. These execution times approximate the TSP tour
lengths of the objects in the graph. We show that for general networks, even
for two objects (k = 2), it is impossible to obtain execution time close to the
objects’ optimal TSP tour lengths, which is why it is useful to consider more
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realistic network models. To our knowledge, this is the first attempt to obtain
provably fast schedules for distributed transactional memory.

Keywords Transactional memory · Distributed systems · Execution time ·
Approximation · Data-flow model · Scheduling · Contention

1 Introduction

Concurrent processes (threads) need to synchronize to avoid introducing in-
consistencies in shared data objects. Traditional synchronization mechanisms
such as locks and barriers have well-known limitations and pitfalls, including
deadlock, priority inversion, reliance on programmer conventions, and vulner-
ability to failure or delay. Transactional memory [16,35] (TM) has emerged
as an alternative. Using TM, code is split into transactions, blocks of code
that appear to execute atomically with respect to one another. Transactions
are executed speculatively : synchronization conflicts or failures may cause an
executing transaction to abort : its effects are rolled back and the transaction
is restarted. In the absence of conflicts or failures, a transaction typically com-
mits, causing its effects to become visible.

Several commercial processors provide direct hardware support for TM,
including Intel’s Haswell [19] and IBM’s Blue Gene/Q [14], zEnterprise
EC12 [26], and Power8 [5]. There are proposals for adapting TM to clusters
of GPUs [2,12,24]. Here, we consider distributed TM systems appropriate for
rack-scale or cluster-scale networks of nodes linked by a modern communica-
tion network [17,34,37,2,24].

Transactional memory is beneficial in distributed computing platforms
where the data is spread across the participating nodes. For example, hier-
archical datacenters and GPU clusters can use TM to simplify the burden of
distributed synchronization and provide more reliable and efficient concurrent
program execution while accessing data in possibly remote compute nodes.
The distributed TM designed on top of such systems needs to execute the
transactions effectively by taking into consideration the system’s infrastruc-
ture. Especially, the network structure can play a crucial role in the perfor-
mance of the distributed TM, since the data that the transactions access has
to be reached across the network in a timely manner. Thus, in this work we
address the efficiency of the distributed TM execution with emphasis on the
underlying network infrastructure.

We consider a data-flow of transaction execution [17,34], in which each
transaction executes at a single node, but data objects are mobile. A trans-
action initially requests the objects it needs, and executes only after it has
assembled them. When the transaction commits, it releases its objects, possi-
bly forwarding them to other waiting transactions.

In a distributed TM, execution time is dominated by the costs of moving
objects from one transaction to another. The goal of a transaction scheduling
algorithm (sometimes called contention management) is to minimize delays
caused by data conflicts and data movement.
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Here, we consider scheduling algorithms in a synchronous data-flow model
where time is divided into discrete steps [3]. The network is modeled as a
weighted graph G, where transactions reside at nodes, edges are communi-
cation links, and edge weights are communication delays. At any time step,
a node may perform three actions: (1) it may receive objects from adjacent
nodes, (2) it executes any transaction that has assembled its required objects,
and (3) it may forward objects to adjacent nodes. A transaction’s execution
terminates when it commits. That transaction may have started earlier, but
may have been blocked while assembing the objects it needed.

We provide offline algorithms to compute conflict-free schedules. We con-
sider batch problem instances where transactions and objects initially reside at
different nodes of G. Each node has a single transaction and each object has a
single copy. The objective is to minimize the total execution time (makespan)
until all transactions complete. The schedule determines the time step when
each transaction executes and commits. After a transaction commits, it for-
wards its objects to any next requesting transactions in the execution order.
Typically, an object is sent along a shortest path, implying that the transfer
time depends on the distance in G between the sender and receiver nodes.
Execution time depends on both the objects’ traversal times and on inter-
transaction data dependencies.

It is known [3] through a reduction from vertex coloring that determining
the shortest execution time in arbitrary graphs is NP-hard, and even hard to
approximate within a sub-linear factor of n, the number of nodes in G. For-
tunately, however, networks for rack-scale and cluster-scale computing centers
are not likely to be arbitrary [8]. Here, we focus on the kinds of specialized
networks likely to arise in practice, such as Clique, Line, Grid, Cluster, Hyper-
cube, Butterfly, and Star [6,25,28,11,23]. For example, the clique graph has
implications on the hypercube and butterfly which are typical supercomputer
topologies. The line graph represents bus system architectures, for example
connecting boards in a rack. The grid graph represents systems on chips or
multi-cores (e.g. XMOS architecture, Intel Xeon Phi). The cluster graph is an
abstraction of clusters of computers found in data centers. Star graphs corre-
spond to hubs, multiplexer, concentrators, and switches, which are normally
used on supercomputers, clusters, and data centers.

1.1 Contributions

Suppose we have a set of w shared objects O = {o1, . . . , ow}. We consider
scheduling problems where each node holds a single transaction, and each
transaction requests k objects (out of w). In most of the problems that we
study, a transaction’s set of k objects is chosen arbitrarily. We make two kinds
of contributions.

Lower Bounds A trivial lower bound for the execution time of the transactions
is the longest shortest path that any object has to follow. This path length
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is within a constant factor from the optimal TSP tour length of the object.
Using the probabilistic method, we demonstrate the existence of a scheduling
problem on the grid, with 2 objects per transaction, where every schedule must
have execution time Ω(n1/40/ log n) factor away from the optimal TSP tour
length of any object. The same lower bound holds also for trees. Therefore,
we cannot expect in general to compute schedules that respect the optimal
TSP length of any object. Nevertheless, the specialized graphs and scheduling
problems considered here admit approximations that beat this lower bound.

Upper Bounds We give polynomial time algorithms that compute execution
schedules for a variety of graphs: Clique, Line, Grid, Cluster, Hypercube, But-
terfly, and Star. These are the kinds of graphs one would expect to find in mul-
tiprocessor systems, Networks-on-chip (NoCs), or rack-scale or cluster-scale
distributed systems [8,6,25,28,11,23]. For one transaction per node request-
ing k objects out of w, we obtain the following results:

Clique: In any clique (complete graph) of n nodes there is a schedule which is
within a factor O(k) from optimal.

Line: In any line graph of n nodes there is a schedule which is within a factor
O(1) from optimal (asymptotically optimal).

Grid: In a n×n grid where each transaction requests a random set of k objects,
we show that with high probability there is a schedule which is within a
factor O(k logm) from optimal, where m = max(n,w).

Cluster: We consider a cluster graph which consists of cliques with β nodes
connected to each other through bridge edges of weight γ ≥ β. We show
that there is a schedule which is a factor O(min(kβ, logkc m)), for some
constant c.

In the Hypercube and Butterfly graphs the results are extensions of the
results in cliques scaled by a log n factor, since a shortest path connecting
two nodes has length O(log n), instead of 1 in cliques. We also consider the
Star graph topology where there is a central node that connects rays each
consisting of β nodes. We observe that the analysis of the Star graph has
many similarities with the Cluster and Line graphs and we show that there
is a schedule which is a factor O(log β ·min(kβ, logkc m)) from optimal, for a
constant c.

When k is a constant, in all graph cases we either obtain asymptotically
optimal schedules or we obtain schedules within a poly-log factor from optimal.
In most cases, with the only exception of the Grid, for the input problem we
assume that each transaction holds an arbitrary set of k objects. In the Grid,
a transaction holds a randomly-chosen set of k objects, and the reason for
doing this is that the TSP lower bound on the Grid prohibits good schedules
for arbitrary input problems, even when k = 2.

The main approach for computing the schedules is to appropriately apply
a greedy schedule which colors the dependency graph of the transactions,
where each color represents a different time step. The result in the Clique is a
direct application of the greedy schedule. The result in the Grid is a repeated
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application of the greedy schedule in subgrid graphs carefully chosen such that
the greedy schedule within each of them is efficient. The result in the Cluster
graph is an application of the greedy schedule within the constituent cliques
and also carefully synchronizing the object movements between the cliques. In
all cases the resulting approximation factor compares the execution time to
the TSP object tour lengths.

Our results for the data-flow model also apply to restricted versions of
other models where objects may be replicated or versioned (Section 1.2).

1.2 Related Work

Transaction scheduling problems are widely studied in (tightly-coupled) multi-
core systems. Several scheduling algorithms with provable upper and lower
bounds, and impossibility results are given [1,13,32,33], besides several other
scheduling algorithms that are evaluated only experimentally [36,18]. Drago-
jevic et al. [10], provide some theoretical evaluation of conflict prediction for
online schedulers and also an experimental algorithm. These scheduling algo-
rithms, however, are not suitable for scheduling in distributed TMs as they do
not typically deal with communication cost in accessing shared resources.

Several researchers [2,9,24] present techniques to implement distributed
TMs. However, they either use global lock, serialization lease, or commit-time
broadcasting technique which may not scale well with the size of the network.
Moreover, they do not provide formal analysis of either the execution time or
the communication cost.

Most previous work [17,34,37,21] on the data-flow model of distributed
TMs focused on minimizing only the communication cost – the total distance
traversed by all the objects in G. However, these works studied communication
cost for scheduling problem instances with only a single shared object. Kim
and Ravindran [21] provided communication cost bounds for special workloads
and problem instances with multiple shared objects. The execution time min-
imization is considered by Zhang et al. [37]. However, the graph topology G
they considered is arbitrary, except for the assumption of the known diame-
ter D. Therefore, their result is not suitable for the specialized networks we
study in this paper. Moreover, they do not study lower bounds on execution
time whereas we provide for the first time an execution time lower bound,
improving significantly on the known TSP lower bound, even for the instances
with only two shared objects. Busch et al. [3] considered minimizing both the
execution time and communication cost. They showed that it is impossible
to simultaneously minimize execution time and communication cost, that is,
minimizing execution time implies high communication cost (and vice-versa).

There are distributed TM proposals that employ replication and multi-
versioning [29,24]. In replicated TMs, multiple copies are available for each
shared object, whereas multiple versions of each object are available in multi-
versioning TMs [24]. Kim and Ravindran [20] studied transaction scheduling
in replicated distributed TMs. In the control-flow model [31], objects are im-
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mobile and transactions either move to the network nodes where the required
objects reside, or invoke remote procedure calls. Hendler et al. [15] studied
a lease based hybrid (combining data-flow with control-flow) distributed TM
which dynamically determines whether to migrate transactions to the nodes
that own the leases, or to demand the acquisition of these leases by the
node that originated the transaction. Palmieri et al. [27] present a compar-
ative study of data-flow versus control-flow models for distributed TMs in
partially-replicated environments. Others have studied the speculative trans-
action execution [30] in replicated environments, and transaction scheduling
using consistent snapshots [29,30,24,20] for replicated and multiversioning en-
vironments. These works provide no theoretical analysis of execution time or
communication cost.

1.3 Roadmap

In Section 2 we give the model and preliminaries, including the basic greedy
schedule. Particularly, we discuss in this section (i) the details of the dis-
tributed TM model, (ii) properties of a feasible schedule produced by any
scheduling algorithm, (iii) a definition of an execution time performance bound
for a scheduling algorithm, (iv) formal definitions of Chernoff bounds, and (v) a
basic greedy scheduling algorithm based on coloring of transaction dependency
graph and its approximation guarantee. Starting from Section 3 until Section
7 we discuss how to apply the basic greedy schedule (Section 2.3) to schedule
transactions in the (special) topologies considered in this paper. The separate
treatment of scheduling in different topologies is due to the fact that the con-
sidered topologies demand different techniques for the basic greedy schedule to
provide an efficient approximation guarantee. In fact, our presentation starts
with relatively simpler topologies for transaction scheduling such as Cliques,
Hypercubes, and Butterflies and ends at more complex Star topology.

We present and analyze a scheduling algorithm to schedule transactions on
a complete graph (Cliques) in Section 3, which uses the basic greedy scheduling
algorithm developed in Section 2.3 as is. The ideas developed for a complete
graph are then extended to schedule transactions in the Hypercube, Butterfly,
and other related graphs. In Section 4 we give a scheduling algorithm and
its approximation analysis for the Line graph. The idea behind the algorithm
for the Line graph departs significantly from the ideas used in the schedul-
ing algorithms for Clique, Hypercube, and Butterfly. In Section 5 we give a
scheduling algorithm and its analysis for the Grid graph. The idea is to design
a scheduling approach with the basic greedy algorithm as a subroutine. We
present the result for the Cluster graph in Section 6, which uses either the ba-
sic greedy scheduling algorithm or the more sophisticated algorithm designed
depending on whether the objects are used by only a cluster or more clusters.
The result for the Star graph in Section 7 extends ideas for the Cluster graph
appropriately. We prove our lower bound on execution time based on the TSP



Fast Scheduling in Distributed Transactional Memory 7

object tours in Section 8, showing the difficulty of obtaining execution time
proportional to TSP object tours. Finally, we give our conclusions in Section 9.

2 Model and Preliminaries

2.1 Distributed TM Model

We assume a synchronous communication model: at each time step a node
receives messages, performs a local computation, and then transmits messages
to adjacent nodes. The message size is sufficient to convey the information
about an object over the network, and there is no limit on the number of
messages that may concurrently traverse an edge.

Let O = {o1, . . . , ow} denote w shared memory objects. Each object has
a value which can be read or modified (written). The shared objects reside
at nodes and are mobile, that is, an object can move from node to node in a
message. There is a single copy of each object. A transaction Ti is an atomic
code sequence executed at a node vi which requires a set of objects O(Ti) ⊆ O.
Transaction Ti can finish execution and commit at a specific time step once
all the objects it needs have been gathered at vi. A transaction Ti may modify
some of its objects while others may remain unchanged. Initially, an object is
at an arbitrary node of G.

Consider a set of m transactions T = {T1, T2, . . . , Tm}, where m ≤ n, with
at most one transaction per node. This batch problem setting is similar to
the one usually considered for scheduling in multi-core systems [32,1]. The
transactions are distributed across network nodes and at most n transactions
execute concurrently. Conflicts among transactions in accessing shared objects
are defined in the usual way, where an aborting transaction restarts immedi-
ately. However, note that in our algorithms the executions are conflict-free.

A scheduling algorithmA determines the time step t(Ti) when a transaction
executes. The schedule is feasible if the objects that each transaction requests
have moved to the transaction’s node at time t(Ti). Let E be an execution
schedule based on A.

Definition 1 (Execution Time) For a set of transactions T in graph G, the
time of an execution E is the time elapsed until the last transaction finishes its
execution in E . The execution time of scheduling algorithm A is the maximum
time over all possible executions for T .

2.2 Chernoff Bounds

In our analysis, we use the following Chernoff bounds:

Lemma 1 (Chernoff Bounds) Let X1, . . . , Xn be independent random vari-
ables such that Xi ∈ {0, 1}, for 1 ≤ i ≤ n. Let X =

∑n
i=1Xi and let µ = E[X].
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Then,

Pr(X ≥ (1 + δ)µ) ≤ e−
δ2µ
3 , 0 < δ < 1, (1)

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 , 0 < δ < 1. (2)

2.3 Greedy Schedule

Consider a set of transactions in a graph G. In the dependency graph H each
node corresponds to a transaction, and an edge between two nodes corresponds
a dependency (conflict) that arises when the respective transactions share
one or more objects. The weight of an edge in H represents the distance
between the respective transactions. We can schedule the transactions in G
using a greedy schedule which assigns execution times to transactions based
on a coloring of H. A valid coloring of H assigns a unique positive integer
to each transaction such that two adjacent transactions receive colors which
differ by at least the weight of the incident edge that connects them. The colors
correspond to the distinct time steps where respective transactions execute.

A lower bound for the execution time schedule is the maximum weight
hmax of any edge in H, since some object will require so much time to be
transferred from one node to another in G. Let ∆ be the maximum node
degree in H, which is the maximum number of neighbors of any node in H.
We define the weighted degree of H to be Γ = hmax · ∆. A greedy coloring
scheme assigns colors to the transactions of H one after the other so that H
can be colored with at most Γ + 1 colors in polynomial time. Each node u
in H gets a color kuhmax + 1 ≤ Γ + 1 for some integer 0 ≤ ku ≤ ∆. In this
way, from the pigeonhole principle, for the next node v to be colored by the
greedy algorithm there is kv with 0 ≤ kv ≤ ∆ such that the respective color
kvhmax + 1 ≤ Γ + 1 has not been used by any of the at most ∆ neighbors of
v. This Γ + 1 coloring of H gives a ∆+ 1 factor approximation to the optimal
schedule in G, since the maximum edge weight hmax is a lower bound. The
O(∆) approximation assumes that the objects are initially positioned in the
first transaction in the greedy schedule.

3 Complete Graph

Scheduling Problem Consider a unweighted complete graph (clique) G with n
nodes where every node is connected to every other node with an edge of weight
1. Every node holds one transaction. There are w objects O = {o1, . . . , ow}.
Each transaction uses an arbitrary subset of k objects, where 1 ≤ k ≤ w.

Algorithm and Analysis For the algorithm, we use the greedy schedule of Sec-
tion 2.3. The analysis is as follows.

Theorem 1 (complete graph) In the complete graph the greedy schedule
gives a O(k) approximation to the optimal schedule.
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Proof Let Ai denote the set of transactions that use object oi. Denote `i = |Ai|
and ` = maxi `i. Every transaction uses k objects, and every object is used
by at most ` transactions. Therefore, the maximum weighted degree in the
dependency graph is k`, and hence the dependency graph can be colored with
at most k`+ 1 colors. At the same time, the length of the schedule is at least
`, since an object has to visit every transaction that requests it. Consequently,
the schedule is an O(k) factor approximation of the optimal. ut

3.1 Hypercube and Other Graphs

The result on complete graphs has implications to other graphs as well. In a
hypercube graph [22] with n nodes there is a path of length log n connect-
ing any pair of nodes. Therefore, the hypercube graph can be represented as
a complete graph with n nodes where the weight of any edge is between 1
and log n. Thus, similar to the proof of Theorem 1, the maximum weighted
degree in the dependency graph is k` log n, and hence it can be colored with
with O(k` log n) colors. Since Ω(`) is a lower bound, this gives a O(k log n)
approximation.

Generalizing, in any graph where the maximum distance between any pair
of nodes is d (diameter), the greedy algorithm gives a O(k`d) schedule. For each
object oi let χi denote the shortest path length that connects all transactions in
Ai. Let χ = maxi χi. Clearly, χ is a lower bound on execution time. Since χ ≥ `,
we get a O(kd) approximation for execution time. In Butterfly networks [22]
and log n-dimensional grids [7], d = O(log n) which gives a similar bound to the
hypercube, O(k log n). If for a specific scheduling problem χ is asymptotically
larger than ` then we can get a tighter approximation.

4 Line Graph

Scheduling Problem Consider a line graph L = (V,E) which is a sequence of
n nodes, V = {v1, . . . , vn}, where there is an edge (vi, vi+1) of weight 1 for
any 1 ≤ i < n − 1 (see Figure 1). Assume an orientation of the nodes in L
from left to right, so that v1 is the leftmost while vn is the rightmost. Let O
be a set of shared objects and suppose that each node executes a transaction
which uses an arbitrary subset of O. Assume that each object is initially in a
node with a transaction that requests it.

Algorithm Let ` be the longest shortest walk of any object in O (see Fig-
ure 1). Let Li,z = (Vi,z, Ei,z) denote the subgraph with up to z nodes
Vi,z = {vi, vi+1, . . . , vi+z−1}, where Ei,z ⊆ E consists only of the edges con-
necting nodes in Vi,z. If i + z − 1 > n, then we ignore all the nodes with
subscript higher than n. Let S = {Lx,` : x = y`+ 1, y ≥ 0}, denote a decom-
position of L into consecutive line subgraphs each of size `. Let S1 (S2) denote
the subset of S consisting of the Lx,` with even (odd) index y in the definition
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Fig. 1: A line graph with n = 32 nodes and ` = 8.

of S. Namely, S1 consists of the even subsequence of the line subgraphs of
length `, while S2 consists of the odd subsequence of the line subgraphs. We
schedule the transactions in two phases. (If ` = n then we only have Phase 1.)
In the first phase we execute the transactions in S1 while in the second phase
we execute the transactions in S2.

Phase 1: The first phase consists of two periods:
Period 1: In the first period, each object is positioned to the leftmost node

of a node in S1 that needs it. This period has duration `− 1.
Period 2: In the second period we execute the transactions in S1. Within

each subgraph L′ ∈ S1, the transactions execute from left to right.
This period has duration `. Suppose that L′ = (V ′, E′) ∈ S1 where
V ′ = {vi1 , vi2 , . . . , vi`}. In the first time step of the period we execute
the transaction (if any) in the first node vi1 of L′ and then immediately
all the objects in vi1 which are needed by transactions on the right
move to the second node vi2 . In the second time step we execute the
transaction in vi2 (if any) and then the objects in vi2 move to vi3 (if
needed by transactions on the right). This repeats until the transaction
(if any) in vi` executes.

Phase 2: The second phase consists of two periods:
Period 1: In the first period, each remaining object (still needed by an non-

executed transaction) is positioned to the leftmost node that needs it.
This period has duration `− 1.

Period 2: In the second period we execute the transactions in S2. Within
each subgraph L′ ∈ S2, the transactions execute from left to right,
similar to phase 1, period 2. This period has duration `.

Analysis The reason for having two phases (when ` < n) is to allow a gap of `
nodes between subgraphs of length `. The gap allows to execute in parallel the
transactions in the subgraphs of each phase, since there is no object that will
be needed concurrently by two subgraphs of a phase, since ` is a bound on the
shortest walk of any object. Phase 1, period 1, finishes within `−1 steps since
each object moves to a node in S1 at distance at most `− 1 from its original
position. In phase 1, period 2, no object can be requested simultaneously by
different subgraphs of S1, since the maximum walk length is `. Therefore,
transactions in different subgraphs of S1 can execute in parallel. Since each
subgraph has ` nodes, ` steps suffice to execute all transactions in S1. A similar



Fast Scheduling in Distributed Transactional Memory 11

analysis holds for the second phase. This execution has total duration 4` − 2
steps which is asymptotically optimal (within a factor 4).

Theorem 2 (Line Graph) For the line graph, for any arbitrary input in-
stance there is an execution schedule with asymptotically optimal time.

5 Grid Graph

Scheduling Problem Consider a n× n grid graph G = (V,E) where |V | = n2.
Every node has a coordinate (x, y), 1 ≤ x, y ≤ n, and connects with its
four neighbors (up, down, left, right) with an edge of weight 1. Assume an
orientation of the grid on the plane such that node (1, 1) appears at the top
left. Nodes at the border of the grid connect with three neighbors and the
corner nodes connect to two neighbors. There are w objects O = {o1, . . . , ow}.
Each node holds a transaction that uses a random subset of k objects, where
1 ≤ k ≤ w. Initially, each object is at one of the nodes (if any) that needs it.

Fig. 2: A grid of size 16× 16 with subgrids of size 4× 4. It depicts the path of
an object.

Algorithm Let m = max(n,w) and ξ = (27w lnm)/k. Assume for simplicity
that ξ and

√
ξ are integers (otherwise, we may simply use ceilings which do

not affect the proven asymptotic bounds). If
√
ξ < n, decompose the grid into

subgrids Gi,j of size
√
ξ ×
√
ξ. Assume also for simplicity that

√
ξ divides n,
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since otherwise we obtain partial subgrids at the borders of G that have size
smaller than ξ × ξ, but those can be treated similarly to complete subgrids
without affecting the analysis. The top-left corner of subgrid Gi,j is positioned
at node ((i − 1)

√
ξ + 1, (j − 1)

√
ξ + 1), where 1 ≤ i, j ≤ n/

√
ξ. Note that G

can be divided into n/
√
ξ columns of subgrids, where each column consists of

n/
√
ξ subgrids. If

√
ξ ≥ n, then there is only one subgrid, which is the whole

of G.
The schedule executes the transactions in each subgrid separately, one sub-

grid at a time. The schedule follows a column major order of subgrids, starting
from the leftmost column and ending at the rightmost column of subgrids (see
Figure 2). In the jth column of subgrids the order of subgrids is top to bottom
if j is odd, while the order is bottom to top if j is even. The first subgrid is
G1,1 at the top of the leftmost column. All transactions within G1,1 execute
and once they finish then execution continues with the transactions in subgrid
G2,1 immediately below. When all transactions within G2,1 finish execution,
then the execution continues in subgrid G3,1 immediately below, and so on,
until the last subgrid Gn/

√
ξ,1 (at the bottom) of the first column. Then the

execution continues in the second column starting with the bottom subgrid
Gn/

√
ξ,2 at the bottom, and then it executes the subgrids above in the sec-

ond column in a similar way until the topmost subgrid. The third column
of subgrids is processed top to bottom. The execution continues in a similar
way, alternating the direction in each column of subgrids, and it ends when
all transactions complete at the last subgrid of the rightmost column.

Within a subgrid Gi,j an object may be requested by multiple nodes. We
use the greedy schedule described in Section 2.3 to execute the transactions
within each subgrid. We will refer to this as the internal schedule of each
subgrid. Between the internal schedule of two consecutive subgrids there is a
transition period where objects move from one subgrid to the next. Initially,
before execution in G1,1 starts, all required objects move to G1,1 and position
themselves to the respective first node that needs them in the internal schedule
of G1,1. Once execution in a subgrid finishes then the objects move from the
current subgrid to the next subgrid in the order. Once the next subgrid has all
the objects positioned in the first node of its internal schedule, then execution
begins according to the internal schedule. Whenever objects move from one
node to another they follow a shortest path in G.

Note that there may be the case that some object may not be requested by
the current subgrid in the column order. In this case, the object moves directly
to the immediately next subgrid in the order that contains a transaction that
requests it. The object waits there until the respective subgrid becomes the
current one to execute.

Analysis Suppose for now that ξ ≤ n2. Consider a subgrid Gi,j = (V ′, E′),
with ξ nodes vi1 , . . . , viξ . Consider an object oz ∈ O. Let Xy ∈ {0, 1} denote
an event such that Xy = 1 if object oz is used by a transaction in node ny
in Gi,j , and otherwise Xy = 0. Let X =

∑
vy∈V ′ Xy. Denote L = 9 lnm and

U = 45 lnm.
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Lemma 2 For ξ ≤ n2, Pr(L < X < U) ≥ 1− 2/m4.

Proof There are
(
w
k

)
subsets of k objects. The number of these subsets contain-

ing object oz is
(
w−1
k−1
)
. Therefore, the probability that node ny picks object

oz is
(
w−1
k−1
)
/
(
w
k

)
= k/w, or equivalently, Pr(Xy = 1) = k/w. We have that

E[Xy] = k/w, which implies that

µ = E[X] = E

 ∑
vy∈V ′

Xy

 =
∑
vy∈V ′

E[Xy] =
ξk

w
= 27 lnm.

Let δ = 2/3. Using the Chernoff bound in Equation 1 we get Pr(X ≥ U) =
Pr(X ≥ 45 lnm) ≤ e−4 lnm = 1/m4. Similarly, using the Chernoff bound in
Equation 2 we get Pr(X ≤ L) = Pr(X ≤ 9 lnm) < e−4 lnm = 1/m4. By
combining the two bounds, we get the desired result. ut

Lemma 3 For ξ ≤ n2, with probability at least 1−2/m, each of the w objects
is used by more than L and less than U transactions in each subgrid of G.

Proof From Lemma 2, any specific object oz within a specific subgrid is used
by more than L and less than U transactions with probability at least 1−2/m4.
Considering now all subgrids, which do not exceed n2 ≤ m2, we get that object
oz is used by more than L and less than U transactions with probability at least
1− 2m2/m4 = 1− 2/m2. Considering now all w objects, where w ≤ m, we get
that each of the w objects is used by more than L and less than U transactions
in each subgrid of G, with probability at least 1− 2m/m2 = 1− 2/m. ut

Lemma 4 For ξ ≤ n2/9, any schedule requires at least Ω(n2/
√
ξ) time steps

to execute all the transactions in G, with probability at least 1− 2/m.

Proof From Lemma 3, each object is requested by more than L ≥ 1 transac-
tions within each grid. Thus the object has to visit at least one node in all n2/ξ
subgrids. Consider now the odd subgrids Gi,j , where i and j are odd numbers.
Recall that

√
ξ divides n, hence, there are at least n2/(4ξ) odd subgrids. More-

over, since ξ ≤ n2/9, the number of odd subgrids is at least 9/4 > 2, which
enables the creation of a path of an object between at least two odd subgrids.
The shortest walk to connect the respective nodes within the odd subgrids is
at least (n2/(4ξ)−1)

√
ξ = Ω(n2/

√
ξ) since the shortest walk has to cross even

subgrids between any two odd subgrids with a path of length at least
√
ξ, and

no odd subgrid is repeated in the best case. ut

Lemma 5 For ξ ≤ n2, our algorithm requires O(kn2 logm/
√
ξ) time steps to

execute all the transactions in G, with probability at least 1− 2/m.

Proof The execution time is divided into phases of internal grid execution and
phases of transferring the objects from one subgrid to the next.

From Lemma 3, each object is requested by less than U transactions within
each grid with probability at least 1−2/m (and by more than L transactions).
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The diameter of a subgrid is less than 2
√
ξ, and each transaction uses exactly

k objects. Therefore, the weighted degree of the dependency graph is bounded
by 2
√
ξUk = O(k

√
ξ logm) which is also the time spent in each subgrid for

the internal schedule. Since there are n2/ξ subgrids, the total time spent in
internal executions is O((n2/ξ) · k

√
ξ logm) = O(kn2 logm/

√
ξ).

At most 2n = O(n) steps are needed to move the objects from their original
positions to the transactions that request them in the first subgrid G1,1. Once
execution in the column order starts, the time to move the objects from one
subgrid to the immediately next in the same column, is no more than 3

√
ξ.

This is also the same time to move the objects from the last subgrid of the
current column to the first subgrid of the next column (since these subgrids are
adjacent). Since there are in total n2/ξ subgrids, it takes total time 3

√
ξ(n2/ξ−

1) = O(n2/
√
ξ) time steps to transfer the objects between subgrids. Since

ξ ≤ n2, this bound remains the same even if we consider the additional O(n)
time to initially position the objects in the first subgrid.

Combining the above bounds, we obtain that the total time spent is
O(kn2 logm/

√
ξ). ut

Theorem 3 The grid scheduling algorithm provides an O(k logm) approxi-
mation to the optimal schedule with probability at least 1−Θ(1/m).

Proof For ξ ≤ n2/9, the result follows from Lemma 4 and Lemma 5.
Consider now the case ξ > n2/9. Then, there are no more that 9 subgrids.

The bounds with respect to U in Lemma 2 and Lemma 3 still hold. Therefore,
each object is used by less than U transactions in each subgrid with probability
at least 1−2/m. Consequently, an object is used by less than 9U transactions in
total inG. Thus, the maximum number of other transactions that a transaction
conflicts with is less than 9Uk (with high probability).

We apply the greedy schedule in the whole G. If each object is requested by
at most one transaction, then the execution takes trivially 1 time step, which
is optimal. Suppose now that some object is requested by at least two transac-
tions. Let τ be the maximum distance between any pair of transactions that re-
quest the same object. Since objects are originally positioned at some transac-
tion that needs them, it takes at most τ time steps to position the objects in the
first transaction according to the greedy schedule. In the dependency graph the
maximum weighted degree is bounded by 9Ukτ . Therefore, the total time to
execute the transactions is bounded by τ+9Ukτ+1 = O(Ukτ) = O(τk logm).
Since τ is a lower bound for the execution time, we obtain an O(k logm) ap-
proximation. ut

6 Cluster Graph

Scheduling Problem The communication graph G = (V,E) consists of α sub-
graphs (clusters) C1, . . . , Cα such that each Ci is a complete graph with β
nodes and edge weights 1 (see Figure 3). In each cluster Ci there is a designated
bridge node such that between any pair of clusters there is a bridge edge
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connecting the respective bridge nodes. Each bridge edge has weight γ. We
assume that γ ≥ β, namely, the clusters are far apart from each other. Each
node of G holds one transaction with k arbitrary objects from the set of
transactions O = {o1, . . . , ow}.

Fig. 3: A graph with 5 clusters where each cluster Ci is a complete graph with
6 nodes; links within clusters have weight 1, while links between clusters have
weight γ.

Algorithm Let m = max(n,w), and let σ denote the maximum number of
clusters that any object is requested to. In our algorithm, we use two ap-
proaches. If each object is used only within one cluster, then we can apply
the greedy schedule within each cluster in parallel. In this case, Approach 1
is suitable, which simply invokes the greedy schedule of Section 2.3. On the
other hand, if there are objects used by more than one cluster, then Approach
2 is more suitable. In the second approach, the clusters are scheduled to ex-
ecute their transactions in different phases. Time is divided into O(σ/ logm)
phases, and clusters are randomly assigned to the phases, such that in each
phase O(logm) clusters request an object. Thus, in each phase a small number
of clusters request an object, which allows to efficiently execute the transac-
tions within these clusters using a refined randomized schedule. The details
are given below.

Approach 1: We execute the transactions in G using the greedy schedule of
Section 2.3.

Approach 2: The details of this approach appear in Algorithm 1. The algo-
rithm consists of ψ = dσ/(24 lnm)e phases. We assign each cluster to a
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Algorithm 1: Cluster Schedule (Approach 2)

Input: Graph G with n nodes and clusters C1, . . . , Cα, where each transaction in G
uses k objects in set O = {o1, . . . , ow}

Output: An execution schedule for the transactions
1 Let Zi be the set of clusters that have transactions that use oi;

2 m← max(n,w); σ ← maxi |Zi|; ψ ← dσ/(24 lnm)e; ζ ← 2 · 40kdlnk+1me;
3 //Assign each cluster to a phase
4 for j ← 1 to α do
5 x← random(1, ψ);
6 Φx ← Φx ∪ Cj ; //Φx are the clusters of phase x

7 //Execute the transactions in each phase
8 for phase p← 1 to ψ do
9 for round r ← 1 to ζ do

10 foreach object oi ∈ O do
11 //Ai is the cluster in which object oi activates
12 Ai ← nil;
13 if Zi ∩ Φp 6= ∅ then
14 Ai ← a random uniformly chosen cluster from set Zi ∩ Φp;
15 Move oi to the bridge node of cluster Ai (if Ai 6= nil);

16 E ← ∅; //set of enabled transactions
17 foreach cluster Cy ∈ Φp do
18 foreach transaction T ∈ Cy do
19 if all objects of T have been activated in Cy (Ai = Cy for each

oi ∈ T ) then
20 E ← E ∪ {T};

21 Execute all enabled transactions in E using the greedy schedule of Section
2.3;

uniform randomly chosen phase, and execute all the transactions of the
cluster in that phase. A phase consists of ζ = 2 · 40kdlnk+1me rounds,
where each round has duration β+γ+ 2 time steps. Within each round an
object gets active in some cluster, namely, the object picks uniformly at
random one of the clusters (if any) that has a transaction that needs it at
that phase and the object moves to that cluster. A transaction is enabled
when all its objects are activated (in the analysis we show that a transac-
tion is enabled with a certain probability). In a round, within each cluster,
the enabled transactions execute using the greedy schedule of Section 2.3.
The duration of a round guarantees that there is enough time to execute
the enabled transactions within each cluster.

Analysis If we use Approach 1, then in the dependency graph the maximum
weighted degree is bounded by kσβ(γ + 2), since any pair of transactions in
different clusters are at distance γ+ 2 from each other (through the respective
bridges), and a transaction requests k objects and each object visits at most
σβ transactions.
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Lemma 6 Using Approach 1, the algorithm executes all transaction within
time O(kσβγ) time steps.

Now, consider Approach 2. For any object oi ∈ O, let Zi denote the set
of clusters that have at least one transaction that uses oi. We have that σ =
maxi |Zi|, and hence, |Zi| ≤ σ. Let Φp be the set of clusters which are randomly
assigned in phase p. Let Si,p = Zi ∩ Φp denote the clusters which use object
oi and are assigned in phase p. Let ξ = maxi,p |Si,p| denote the maximum
number of clusters assigned in any phase for any object.

Lemma 7 Pr(ξ > 40 lnm) < 1/m.

Proof Since there are ψ = dσ/(24 lnm)e phases, each cluster in Zi picks phase
ρ with probability 1/ψ. Therefore, the expected number of clusters in Zi that
pick phase j is |Zi|/ψ ≤ σ/ψ ≤ 24 lnm. From the Chernoff bound in Equation
1, by setting δ = 2/3 we obtain Pr(|Si,p| > 40 lnm) < 1/m3. Since the number
of phases is bounded by σ ≤ α ≤ n ≤ m, and the number of objects is bounded
by w ≤ m, the result follows by taking the union bound over all phases and
objects. ut

Consider now some phase p, where 1 ≤ p ≤ ψ. Let Tx denote a transaction
that has not executed yet (in a previous phase) and is in one of the clusters,
say Cy, assigned to phase p (namely, Cy ∈ Φp).

Lemma 8 If ξ ≤ 40 lnm, then with probability at least 1− 1/m2, transaction
Tx will execute in phase p.

Proof Within phase p, transaction Tx will execute in a round that it gets
enabled. Let oz1 , . . . , ozk denote the objects of transaction Tx. Each object ozj
may be needed by up to ξ clusters within phase φ (recall that |Szj ,p| ≤ ξ).
In a round, object ozj becomes active in cluster Cy with probability at least
1/ξ, since the object picks randomly one of the at most ξ available clusters for
it (in Szj ,p). Thus, transaction Tx becomes enabled with probability at least
1/ξk. For the number of rounds ζ, it holds that ζ ≥ 2ξk lnm. Thus, Tx does
not get enabled in phase φ with probability at most(

1− 1

ξk

)ζ
≤
(

1− 1

ξk

)2ξk lnm

≤
(

1

e

)2 lnm

=
1

m2
.

ut

Lemma 9 Using Approach 2, with probability at least 1−2/m, all transactions
execute within time O(σγ40k lnkm).

Proof Each transaction belongs to some assigned cluster of some phase. As-
suming that ξ ≤ 40 lnm, from Lemma 8 each transaction will execute at the
phase its cluster gets assigned with probability at least 1 − 1/m2. Therefore,
all n ≤ m transactions will finish by the end of the last phase, with probability
at least 1−m/m2 = 1−1/m. Combining this with Lemma 7, we get that with
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probability at least 1− 2/m all transactions complete execution by the end of
the last (ψth) phase.

It only remains to establish that a round has enough time steps to execute
the transactions. Clearly, in a round there can be no more than β enabled
transactions within a cluster. It takes γ + 2 steps to transfer objects from one
cluster to another through the respective bridge nodes. Therefore, the duration
of a round, β + γ + 2, suffices to execute all enabled transactions and then
transfer them to the respective cluster that will be used in the next round.
There are ζ rounds, and dσ/(24 lnm)e phases. Consequently, since β ≤ γ, the
total number of time steps is:

dσ/(24 lnm)e · ζ · (β + γ + 2) = O(σγ40k lnkm).

ut

Theorem 4 (cluster graph) With probability at least 1 − Θ(1/m), the
cluster graph algorithm will execute all the transactions in time within
O(min(kβ, 40k lnkm)) factor from optimal.

Proof If each transaction is used in only one cluster, then with the same analy-
sis as in Theorem 1, we obtain an O(k) approximation to the optimal solution.
In any other case, Ω(σγ) is a lower bound, since each object will have to move
to at least σ−1 different clusters after the initial one, and it takes γ+2 steps to
reach a node from one cluster to another through the respective bridge nodes.

If Approach 1 is used, then from Lemma 6 the algorithm executes all
transaction within time O(kσβγ) time steps, which is a O(kβ) factor from
optimal.

If Approach 2 is used, then from Lemma 9 with probability at least 1−2/m,
all transactions execute in time O(σγ40k lnkm), which is a O(40k lnkm) factor
from optimal.

Combining all the approximation factors from the three different cases we
obtain the desired result, as needed. ut

Note that the time bound of Theorem 4 may also be written as
O(min(kβ, logkc m)), where c is a constant such that 40 = 1/ ln c. For con-
stant k, Theorem 4 gives a poly-log approximation for the optimal execution
time.

Corollary 1 For constant k, with high probability the cluster graph algorithm
will execute the transactions in time within a poly-log factor of m from optimal.

7 Star Graph

A star graph G consists of α rays where each ray is a line graph with β nodes
(see Figure 4). There is a center node s which is adjacent to the tip of each ray.
Every edge in the star graph G has weight 1. We consider scheduling problems
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Fig. 4: A star graph with 8 rays, each ray consisting of 7 nodes; the rings
depict the set of segments V1, V2, V3.

where each node holds a transaction that uses k arbitrary objects out of the
object set O = {o1, . . . , ow}.

A star graph can be analyzed similarly to the cluster graph (Section 6) in
combination with the analysis of the line graph (Section 4). We divide each ray
into η = dlog βe segments (log is base 2) of exponentially increasing lengths.
In particular, consider a ray r and assume that it contains nodes v1, . . . , vβ ,
such that v1 is adjacent to the center s, while vβ is the furthest from s. The
ith segment of r, where 1 ≤ i ≤ η, consists of the nodes v2i−1 , . . . , v2i−1. Note
that the last segment may be truncated. The ith segment, i < η, has 2i−1

nodes, while the last segment has no more than β/2 + 1 nodes. Every node of
the ith segment is at distance at least 2i−1 from the center s.

We start the schedule by executing the transaction in the center node s.
We then continue execution with the transactions in the rays. The execution
in the rays is performed in different time periods, one period dedicated for
each segment length. Let Vi denote the set of nodes of G which are in the ith
segment in each ray (see the rings in Figure 4). There are η periods where the
ith period is dedicated to execute the transactions in Vi.

Consider now the ith period. Each ray segment of Vi can be treated as if
it is a cluster. The clusters (segments) communicate through s, with paths of
length 2 · 2i−1 = 2i (from one tip of the segment to the next). This is similar
to directly connecting two nodes of the clusters with a link (bridge edge) of
weight γ = 2i. Since each segment is a line graph, the transactions in it can
execute sequentially in time no more that the length of each segment (see also
Section 4). Let σi denote the maximum number of segments in Vi that an
object has to visit due to transactions requesting it. If σi = 1 (i.e. an object
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visits one segment only), then we can execute the transactions in the segments
in parallel in O(2i) time. So assume that σi > 1.

Using a greedy schedule similar to Approach 1 of the Cluster graph, we
can prove (similar to Lemma 6) that the transactions in Vi can execute in
time O(kσi2

2i) (for size of cluster we have O(2i)). When using the sched-
ule similar to Approach 2 of the Cluster graph, we can prove (similar to
Lemma 9) that with high probability, the transactions in Vi can execute in
time O(σi2

ick lnkm), for some constant c, where m = max{n,w}. Noting that
Ω(σi2

i) is a lower bound for the execution, we obtain that the transactions
in Vi can execute in time which is within factor O(min(k2i, ck lnkm)) from
optimal. Since we have η periods, we get that the approximation factor is
O(ηmaxi min(k2i, ck lnkm)) = O(log β ·min(kβ, ck lnkm)).

Theorem 5 (star graph) There is an execution schedule in the star graph,
which with high probability all transactions execute within time O(log β ·
min(kβ, ck lnkm)) factor from the optimal schedule, for some constant c.

For constant k, Theorem 5 gives a schedule which is within a poly-log factor
from optimal.

Corollary 2 For constant k, there is a schedule in the star graph which with
high probability the transactions execute within time a poly-log factor of β and
m from optimal.

8 A Lower Bound for Execution Time

The shortest walk of an object minimizes the total distance to visit all the
transactions that require the object. The maximum shortest walk of any object
is a lower bound for the execution time. Note that an optimal TSP tour length
of an object is no more than twice its shortest walk length. In other words,
half of the maximum optimal TSP tour length of any object is a lower bound
on the execution time as well.

We use the probabilistic method to prove the existence of scheduling prob-
lem instances on graphs with n nodes, such that the optimal TSP tour length
of any object is O(n4/5) and yet, any possible schedule has execution time
Ω(n4/5+1/40/ log n). The problem instances use two objects per transaction.
We consider two kinds of graphs, grid graphs and tree graphs. We first give
the grid description and then provide the tree description which is a straight-
forward modification based on the grid.

8.1 Lower Bound on Grids

Consider a graph G which is a s × s
√
s grid of nodes, for a total of n = s5/2

nodes (See Figure 5). Divide the grid into s subgraphs (blocks) H1, . . . ,Hs,
each having s rows and

√
s columns. (For simplicity assume that

√
s is an
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Fig. 5: Grid graph

integer.) Within each block, a node is connected to four neighbor nodes (up,
down, left, right) by an edge of weight 1, except for the corner nodes or side
nodes of the block which are connected to two or three neighbors within the
same block, respectively. Adjacent blocks Hi and Hi+1, where 1 ≤ i < s, are
connected to each other through horizontal edges of weight s between two
neighbor nodes.

Each node in Hi holds a transaction, for all 1 ≤ i ≤ s. The set of objects
is O = A∪B, such that A = {a1, . . . , as} and B = {b1, . . . , bs}. Object ai ∈ A
is used by all the transactions in block Hi, for any 1 ≤ i ≤ s. Initially, each
object ai resides in the top left corner node in H1. In each block Hi, each
transaction picks randomly and uniformly one of the objects in B, for any
1 ≤ i ≤ s. Initially, each object bi ∈ B resides in some node of H1 that uses it
(if any, otherwise in an arbitrary node of H1).

We first bound the shortest walks (and hence, TSP tours) for the objects.
Let `i denote the shortest path length (number of edges) for object bi ∈ B.
Let ` = maxi `i. We can prove the following results:

Lemma 10 Pr(` ≤ 5s2) > 1− s2e−
√
s/12.

Proof Let Ψi,j denote the set of transactions that pick object bi ∈ B in block
Hj . A node in Hj picks object bi with probability 1/|B| = 1/s. Therefore, on
expectation, there are µ = s

√
s/s =

√
s nodes that pick object bi in Hj . Hence,

from Equation 1, by setting δ = 1/2, we get Pr(|Ψi,j | ≤ 3
√
s/2) > 1−e−

√
s/12.

Within Hj we can form a path pi,j that connects all the nodes of Ψi,j
through horizontal paths of length at most

√
s− 1, to the leftmost column of
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the block (which has length s − 1). The path has length at most (s − 1) +
|Ψi,j |(

√
s − 1) ≤ (s − 1) + (3

√
s/2)(

√
s − 1) < 5s/2, with probability greater

than 1− e−
√
s/12.

To connect the paths pi,j and pi,j+1 in respective consecutive blocks Hj

and Hj+1, we only need to use a joining path of length at most (
√
s−1) + s <

s +
√
s, that connects the top leftmost nodes from each block. Therefore,

connecting all the paths together gives a joined path pi for bi of length at
most s(5s/2) + (s − 1)(s +

√
s) < 5s2/2 + s2 + s

√
s < 5s2, since there are s

blocks where bi is used by at most 5s/2 transactions in each, and there s− 1
consecutive joining paths between them of length at most s +

√
s each. This

result holds with probability greater than 1 − se−
√
s/12 (union bound for s

blocks). The result follows by taking the union bound for all s objects in B.
ut

Lemma 11 Any set of λ transactions, where s3/8 ≤ λ ≤ s and s ≥ e7·80, that
execute in any block Hi during a period of s time steps, requires at least λ3/5

unique objects of B, with probability at least 1− s−s3/8/161.

Proof Consider a period W of s time steps. Note that during W no object in
B can be used by transactions in two different blocks Hi and Hj , since the
distance of any two nodes from the respective blocks is at least s. Any set of
λ transactions during W in Hi execute sequentially since they all share the
common object ai ∈ A. Therefore, 1 ≤ λ ≤ s.

During period W the common object ai may follow a path consisting of at
most s nodes in Hi, out of which λ nodes contain transactions which execute
in W . The number of possible such paths are at most

s
√
s ·
(
s+ λ

λ

)
2λ ·

(√
s+ λ

λ

)
2λ

≤ s
3
2

(
e(s+ λ)

λ

)λ(
e(
√
s+ λ)

λ

)λ
4λ

≤ s
3
2

(
8e2s(

√
s+ λ)

λ2

)λ
. (3)

since there are s
√
s starting nodes, and the total possible vertical displacements

(vertical offsets) between consecutive λ nodes is at most
(
s+λ
λ

)
and the signs

of the displacements (positive or negative) is 2λ. In the horizontal dimension,

the number of displacements is at most
(√

s+λ
λ

)
, since the block has at most√

s columns.
Consider an arbitrary set Q of λ = |Q| transactions in Hi. We will give

an upper bound on the probability that the transactions in Q use less than ξ
different objects of B, where 1 ≤ ξ ≤ s. This is equivalent to bounding the
probability that the transactions in Q do not use at all more than s−ξ objects
of B.

Each node in p picks one of the s objects in B with probability 1/s. The
probability that in any specific subset B′ ⊆ B, such that s−j = |B′|, no object
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is picked at all by some specific transaction in Q is j/s. Thus, no transaction
in Q picks none of the objects in B′ with probability (j/s)|Q| = (j/s)λ, since
different transactions pick objects independent of each other.

Hence, in the
(
s
s−j
)

possible subsets of B with s−j objects, the probability

that none of the s− j objects are picked at all is
(
s
s−j
)
(j/s)λ. Considering now

all subsets of B with j < ξ, we obtain that the probability that Q does not
use at all more than s− ξ objects is at most

ξ−1∑
j=0

(
s

s− j

)(
j

s

)λ
≤ ξ

(
s

s− ξ

)(
ξ

s

)λ

≤ ξ

(
s

ξ

)(
ξ

s

)λ
≤ ξ

(
es

ξ

)ξ (
ξ

s

)λ
. (4)

Combining Equations 3 and 4 we get that the probability that any set of
λ nodes uses less than ξ unique objects of B is at most:

ξ

(
es

ξ

)ξ (
ξ

s

)λ
· s 3

2

(
8e2s(

√
s+ λ)

λ2

)λ
≤ e6λξλsξ+

3
2 (
√
s+ λ)λλ−2λ.

By Setting ξ = λ3/5, this bound becomes:

e6λλ
3λ
5 sλ

3/5+ 3
2 (
√
s+ λ)λλ−2λ = e6λsλ

3/5+ 3
2 (
√
s+ λ)λλ−

7λ
5 .

For the case
√
s ≤ λ ≤ s, and s ≥ e2·5·7 we obtain that the probability is at

most

e6λλ2(λ
3/5+ 3

2 )(2λ)λλ−
7λ
5 ≤ e7λλ2λ

3/5+3− 2λ
5

≤ λ
λ
5 λ2λ

3/5+3− 2λ
5

≤ λ−
λ
10+3

≤ s−
√
s

10 +3.

For the case s3/8 ≤ λ <
√
s, and s ≥ e7·80 we obtain that the probability is at

most

e6λsλ
3/5+ 3

2 (2
√
s)λ
(
s

3
8

)− 7λ
5 ≤ s

λ
80 s

λ
2 +λ3/5+ 3

2 s−
21λ
40

≤ sλ
3/5+ 3

2−
λ
80

≤ s−
λ

160+
3
2

≤ s−
s
3
8

160+
3
2 .

Considering now the union bound for all s blocks, this probability becomes at

most ss−
s
3
8

160+
3
2 ≤ s− s

3
8

161 . ut
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The union probability of Lemmas 10 and 11 is fast reaching 1. Therefore,
these two lemmas imply that for any large enough s there is a problem instance
Is such that the maximum path length of any object in B is bounded by 5s2.
Since objects in A have shortest path length in their blocks of length at most
s
√
s, the bound of 5s2 applies for all objects in O. Moreover, in any period of

s time steps, sets of λ executed transactions use at least λ3/5 different objects
of B. Therefore, we have the following result:

Corollary 3 For any s ≥ e7·80, there is a problem instance Is on the grid
graph such that:

– the shortest path length of any object is at most 5s2, and
– any set of λ transactions within any block Hi, where s3/8 ≤ λ ≤ s, which

execute during a period of s time steps, use at least λ3/5 distinct objects of
B.

The following theorem applies to problem instances Is as given by Corollary
3.

Theorem 6 (Execution Time Lower Bound) There are problem in-
stances on the grid graph with two objects per transaction, such that every
execution schedule has duration Ω(s33/16/ log s) = Ω(n4/5+1/40/ log n), and
every object has TSP tour length at most O(s2) = O(n4/5).

Proof Let Is be a problem as given by Corollary 3. Consider an arbitrary time
window W of s time steps. It suffices to prove that it is impossible to execute
q = 2s23/16(1 + log s) transactions or more during W (where log is base 2).

For the sake of contradiction suppose that at least q transactions execute
during W . We divide the set of transactions which execute in W into sets
Q1, . . . , Qs, such that set Qi consists of all transactions which execute in block
Hi. Clearly,

∑s
i=1 |Qi| ≥ q.

Any two pairs of sets Qi and Qj , i 6= j, cannot share any object during
period W , since the minimum distance in G between any two nodes in the
respective blocks Hi and Hj is at least s, and since the duration of W is s
there is not enough time to transfer any object between the two blocks.

Let Ri denote the set consisting of all Qj such that |Qj | ∈ [2i−1, 2i). Denote
ρi =

∑
Qj∈Ri |Qj |. We have that

∑
i ρi ≥ q. No more than s transactions can

execute in any Qj within period W , since all transactions in Qj share the
internal object aj ∈ A in Hj ; therefore, |Qj | ≤ s. Thus, the number of non-
empty Ri is at most 1 + log s.

There is a Ry, 1 ≤ y ≤ 1 + log s, such that ρy ≥ q/(1 + log s), since
otherwise,

∑
i ρi < (q/(1 + log s))(1 + log s) = q. Since |Ry|2y > ρy, it holds

|Ry| > (q/(1 + log s))/2y = q/(2y(1 + log s)).
Note that it has to be that 2y−1 ≥ s3/8, since otherwise, ρy < 2|Ry|2y−1 <

2ss3/8 = 2s11/8 < q/(1 + log s). Therefore, for each Qj ∈ Ry, |Qj | ≥ 2y−1 ≥
s3/8. Hence, from Corollary 3, each set Qj ∈ Ry requires at least |Qj |3/5 unique
objects of set B to be used in block Hj . Since objects from different sets in
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Ry are disjoint, the total number of different objects in B used during W is
at least

∑
Qj∈Ry

|Qj |3/5 ≥
∑

Qj∈Ry

2
3(y−1)

5

= |Ry|2
3(y−1)

5

>
q · 2

3(y−1)
5

2y(1 + log s)

=
q

2
2y+3

5 (1 + log s)

≥ q

2
2(1+log s)+3

5 (1 + log s)

=
2s23/16(1 + log s)

2s2/5(1 + log s)

= s83/80

> s.

This is a contradiction since |B| = s. ut

8.2 Lower Bound on Trees

The lower bound construction of graph G for trees is very similar to the lower
bound construction on grids. The main difference is in the structure of the
blocks H1, . . . ,Hs (see Figure 6). Each block is a tree such that the leftmost
column is connected, and each row is connected and attached to the leftmost
column. The weights of the edges within the block are equal to 1. The trees of
the adjacent blocks are connected through the topmost row, where the edge
weight between two blocks is s.

All the results for the grid graph hold also verbatim for the tree graph.
Particularly, in Lemma 10 the nodes for the objects within each block are
assumed to get connected trough a path with the leftmost vertical path, which
is still feasible in the tree block, and across blocks the path is formed from
the top row which is also still feasible from the top row. Thus, Lemma 10 still
applies for the tree. Similarly, the assumptions for the paths in the proof of
Lemma 11 remain identical for the tree as well.

Therefore, similar to Theorem 6, we obtain that there are problem in-
stances on the tree graph with two objects per transaction such that every
execution schedule has duration Ω(n4/5+1/40/ log n) and every object has TSP
tour length O(n4/5).
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Fig. 6: Tree graph

9 Conclusion

We presented a comprehensive set of upper bounds for various specialized
network topologies. We also provided a lower bound analysis which shows
that it is impossible to optimize the execution time by simply following a
schedule in length proportional to the TSP tours for the objects. The lower
bound applies to grids and trees and depicts the difficulty of the scheduling
problem. Note that the lower bound does not contradict the upper bounds of
the specialized graphs and scheduling problems we considered in this work.

If the system is not completely synchronous, then our bounds are affected
by the synchronicity factor (maximum delay divided by minimum delay).
There are some open questions, which we state as follows.

– It would be interesting to extend the results to the online setting, where
the set of transactions to be executed are not known ahead of time, and
are continuously executed over time.

– It would be also interesting to examine the impact of network congestion,
where network links have bounded capacity.

– Finally, it would be interesting to establish an execution time lower bound
for special topologies beyond trees and grids. Particularly, it would be inter-
esting to start with whether Ω(k) lower bound can be shown for scheduling
in a complete graph. This would show that the schedule provided by Theo-
rem 1 is asymptotically optimal (w.r.t. execution time). The goal will then
be to extend to other graphs.
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