
Byzantine Geoconsensus

Joseph Oglio, Kendric Hood, Gokarna Sharma, and Mikhail Nesterenko(B)

Department of Computer Science, Kent State University, Kent, OH 44242, USA
{joglio,khood5}@kent.edu, {sharma,mikhail}@cs.kent.edu

Abstract. We define and investigate consensus for a set of N processes embed-
ded in the d-dimensional plane, d ≥ 2, which we call theGeoconsensus Problem.
The processes have unique coordinates and can communicate with each other
through oral messages. Faulty processes are covered by a finite-size convex fault
area F . The correct processes know the fault area size but not its location. We
prove that the geoconsensus is impossible if all processes may be covered by at
most three areas the size of the fault area.

On the constructive side, for M ≥ 1 fault areas F of arbitrary shape
with diameter D, we present a consensus algorithm BASIC that tolerates f ≤
N − (2M + 1) Byzantine processes provided that there are 9M + 3 processes
with pairwise distance between them greater than D. We present another consen-
sus algorithm GENERIC that lifts this distance requirement. For square F with
side �, GENERIC tolerates f ≤ N − 15M Byzantine processes given that all
processes are covered by at least 22M axis aligned squares of the same size as
F . For a circular F of diameter �, GENERIC tolerates f ≤ N − 57M Byzantine
processes if all processes are covered by at least 85M circles. We then estimate
the tolerance of GENERIC for various size combinations of fault and non-fault
areas as well as d-dimensional process embeddings, where d ≥ 3.

1 Introduction

The problem of Byzantine consensus [17,24] has been attracting extensive attention
from researchers and engineers in distributed systems since its initial statement. The
problem has applications in distributed storage [1,2,5,6,16], secure communication [8],
safety-critical systems [26], blockchain [21,27,29], and Internet of Things (IoT) [18].

Pease et al. [24] defined the problem as follows. Consider a set of N processes with
unique identifiers. The processes communicate in synchronous rounds. Each process
can communicate with all other processes. Some number f < N of these processes
are faulty. The fault is Byzantine which means that the faulty process may behave arbi-
trarily. The correct processes know the number of the faults f but not the identifiers
of the faulty processes. The Byzantine Consensus Problem requires all N − f correct
processes to agree on a single value.

Pease et al. proved that the maximum number of faults f that can be tolerated by a
deterministic algorithm depends on the communication assumptions. Unauthenticated
oral messagesmay be modified upon retransmission. If only oral messages are allowed,
Pease et al. showed that a consensus algorithm may tolerate up f < N/3 faults. In
case of unforgeable authenticated written messages, the consensus is solvable with an
arbitrary number of faults f ≤ N [24]. It is shown that Byzantine consensus requires
c© Springer Nature Switzerland AG 2021
K. Echihabi and R. Meyer (Eds.): NETYS 2021, LNCS 12754, pp. 19–35, 2021.
https://doi.org/10.1007/978-3-030-91014-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91014-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-91014-3_2

20 J. Oglio et al.

at least f rounds of communication [10] and O(N2) messages [12]. Faster and more
efficient solutions are possible if randomized algorithms are allowed [3,14,20].

The original Byzantine Consensus Problem requires the processes to have unique
identifiers but does not restrict their location. One way to add some location infor-
mation to the system is by limiting process communication. In the original problem
statement, any pair of processes may communicate directly. Therefore, the commu-
nication topology is a complete graph, i.e. a clique. A number of studies relax this
connectivity assumption and investigate the problem in arbitrary graphs [24,28] and
wireless networks [22]. Several papers study a related problem of Byzantine broadcast
in incomplete graphs [15,25].

Recently, Lao et al. [18] proposed a Byzantine consensus protocol for IoT and
blockchain applications, called Geographic-PBFT or simply G-PBFT, which extends
a well-known PBFT algorithm [5] to geographic setting. They considered the case of
fixed IoT devices embedded in geographic locations for data collection and process-
ing. The location data for these IoT devices can be recorded at deployment, obtained
using low-cost GPS receivers or through location estimation algorithms [4,13]. They
argued that the fixed IoT devices have more computational power than other mobile
IoT devices (e.g., mobile phones and sensors) and are less likely to exhibit Byzantine
behavior. Therefore, they exploited the geographical location information of fixed IoT
devices to reach consensus. They argued that G-PBFT avoids Sybil attacks [9], reduces
the overhead for validating and recording transactions, achieves consensus with high
efficiency and low traffic intensity. However, no formal analysis of G-PBFT is given
and it is only experimentally validated. Yet, we believe that these developments warrant
a study of Byzantine consensus in devices that are aware of their locations.

Our Contribution. In this paper, we formally define and investigate the problem of
reaching consensus among processes in fixed geographical locations. We call this vari-
ant the Byzantine Geoconsensus Problem. We retain all other parameters of the original
problem statement. However, if fault locations are not constrained, Geoconsensus dif-
fers little from the classic Byzantine consensus: the geographic location of each process
can serve as its identifier. Hence, we consider a variant where the faults are constrained
geometrically. Specifically, they are limited to a fixed-size fault area F . This limita-
tion allows more effective solutions and makes Geoconsensus an interesting problem
to study. We are not aware of prior work in Byzantine consensus where processes are
embedded in a geometric plane while faulty processes are located in a fixed area.

Let us enumerate the contributions of this paper. Denote by N the number of pro-
cesses, M the number of fault areas F , D the diameter of F , and f the number of
faulty processes. In other words, f is the number of processes covered by fault areas
F . Assume that each process can communicate with all other N − 1 processes and the
communication is through oral messages only. Assume that any process covered by a
faulty area F may be Byzantine. The correct processes know the size of each faulty
area, such as its diameter, number of edges, etc. but do not know their exact locations.
In this paper, we make the following five major contributions:

(i) We prove that Geoconsensus is not solvable deterministically if all N processes
may be covered by 3 equal size areas F and one of them may be the fault area.
This extends to the case of N processes being covered by 3M areas F with M

Byzantine Geoconsensus 21

areas being faulty. This is done by adapting the impossibility proof of Pease et
al. [24] to Geoconsensus.

(ii) We present algorithm BASIC that solves Geoconsensus tolerating f ≤ N −(2M+
1) Byzantine processes, provided that there are 9M + 3 processes with pairwise
distance between them greater than D. The idea is for each process to determin-
istically select a leader in each independent coverage area. Once the leaders are
selected, any generic Byzantine consensus algorithm can be run. We use the clas-
sic algorithm by Pease et al. [24]. Non-leader processes accept the result chosen
by the leaders.

(iii) We present algorithm GENERIC that removes the pairwise distance assumption of
BASIC and solves Geoconsensus tolerating f ≤ N − 15M Byzantine processes,
provided that all N processes are covered by 22M axis-aligned squares of the
same size as the fault area F . For GENERIC, we start with covering processes
by axis-aligned squares and studying how these squares may intersect with fault
areas of various shapes and sizes. We show that determining optimal axis-aligned
square coverage is NP-hard and provide constant-ratio approximation algorithms.

(iv) We extend GENERIC to circular F tolerating f ≤ N − 57M Byzantine processes
if all N processes are covered by 85M circles of same size as F .

(v) We further extend results of (iii) and (iv) to various shape and alignment combina-
tions of fault and non-fault areas and to d-dimensional process embeddings, d ≥ 3.

Notice that we considered only square and circular fault areas. However, our results
can be immediately extended to more complex shapes as they can be inscribed into
simple ones. Providing better bounds on more sophisticated analysis of complex shapes
beyond simple inscription is left for future research.

Geoconsensus vs. Generic Byzantine Consensus. Let us contrast the results obtained
for Geoconsensus to those of the original Byzantine Consensus Problem. The Geocon-
sensus provides potentially tighter bounds on the number of faults. The original problem
establishes the relationship only between N and f , while Geoconsensus also factors the
number of fault areas M . Thus, in the original problem, at most f < N/3 faulty pro-
cesses may be tolerated, whereas our results show that as many as f ≤ N − αM
faults can be tolerated provided that the processes are placed such that at most βM
areas (same size as F) are needed to cover them. Here, α and β are both integers with
β ≥ c · α for some constant c.

Geoconsensus also allows to increase the speed and reduce message complexity of
the solution. The original consensus requires at least f consecutive rounds of message
exchanges and O(f · N2) messages. The algorithms presented in this paper rely on the
selection of a single leader per coverage area. Since each process knows the location of
all other processes, this selection is done without message exchanges. Then, the leaders
communicate to achieve consensus. Let N processes be covered by X areas of the
same size as fault area F . Then, in one round, at most O(X2) messages need to be
exchanged. To reach consensus the algorithm runs for O(M). Thus, in the worst case,
at most O(M · X2) < O(f · N2) messages are exchanged.

Pease et al. [24] showed that it is impossible to solve consensus through oral mes-
sages when N = 3f but provided a solution for N ≥ 3f + 1. That is, their impossibil-
ity bound is tight. In this paper, however, we were able to show that it is impossible to
solve consensus if all N processes are covered by 3M areas that are the same size as

22 J. Oglio et al.

Table 1. Notation used throughout the paper.

Symbol Description

N ; P ; (xi, yi) Number of processes; {p1, . . . , pN}; planar coordinates of process pi
F ;D; F Fault area; diameter of F ; a set of fault areas F with |F| = M

f Number of faulty processes

PD Processes in P such that pairwise distance between them is more thanD

A (or Aj(Ri)); A Cover area that is of same shape and size as F ; a set of cover areas A

n(F) Number of cover areas A ∈ A that a fault area F overlaps

F . Yet, for the axis-aligned squares case, the provide the solution where N processes
are covered by at least 22M areas. Narrowing the gap between the impossible and the
achievable is left for further research.

2 Notation, Problem Definition, and Impossibility

Processes. A computer system consists of a set P = {p1, . . . , pN} of N processes.
Every process pi is embedded in the 2-dimensional plane and has unique planar coor-
dinates (xi, yi). Each process is aware of coordinates of all the other processes of P
and is capable of sending a message to any of them. The sender of the message may
not be spoofed. The communication between processes is through unauthenticated oral
messages. This communication is synchronous.

Byzantine Faults. Every process is either permanently correct or faulty. The fault is
Byzantine. A faulty process may behave arbitrarily. To simplify the presentation, we
assume that all faulty processes are controlled by a unique adversary trying to prevent
the system from achieving its task.

Fault Area. The adversary controls the processes as follows. Let the fault area F be
a finite-size convex area in the plane. Let D be the diameter of F , i.e. the maximum
distance between any two points of F . The adversary may place F in any location on
the plane. A process pi is covered by F if the coordinates (xi, yi) of pi is either in the
interior or on the boundary of F . Any process covered by F may be faulty.

A fault area set or just fault set is the setF of identical fault areas F . The size of this
set is M , i.e., |F| = M . The adversary controls the placement of all areas in F . Correct
processes know the shape and size of the fault areas F . However, correct processes
do not know the precise placement of the fault areas F . For example, if F contains 4
square fault areas F with the side �, then correct processes know that each fault area is
of square with side � but do not know where they are located. Table 1 summarizes the
notation used in this paper.

Byzantine Geoconsensus. Consider the binary consensus where every correct process
is input a value v ∈ {0, 1} and must output an irrevocable decision with the following
three properties.

agreement – no two correct processes decide differently;
validity – every correct process outputs a value input to some correct process;
termination – every correct process eventually decides.

Byzantine Geoconsensus 23

Definition 1. An algorithm solves the Byzantine Geoconsensus Problem (or Geocon-
sensus for short) for fault area set F , if every computation produced by this algorithm
satisfies the three consensus properties.

Impossibility of Geoconsensus. Given a certain set of embedded processes P and sin-
gle area F , the coverage number k of P by F is the minimum number of such areas
required to cover each process of P . We show that Geoconsensus is not solvable if the
coverage number k is less than 4. When the coverage number is 3 or less, the problem
is reducible to the classic consensus with 3 sets of peers where one of the sets is faulty.
Pease et al. [24] proved the solution for the latter problem to be impossible. The intu-
ition is that a group of correct processes may not be able to distinguish which of the
other two groups is Byzantine and which one is correct. Hence, the correct groups may
not reach consensus.

Theorem 1 (Impossibility of Geoconsensus). Given a set P of N ≥ 3 processes and
an area F , there exists no algorithm that solves the Byzantine Geoconsensus Problem
if the coverage number k of P by F is less than 4.

Proof. Set N = 3 · κ, for some positive integer κ ≥ 1. Place three areas A on the
plane in arbitrary locations. To embed processes in P , consider a bijective placement
function f : P → A such that κ processes are covered by each area A. Let v and v′ be
two distinct input values 0 and 1. Suppose one area A is fault area, meaning that all κ
processes in that area are faulty.

This construction reduces the Byzantine Goeconsensus Problem to the impossibil-
ity construction for the classic Byzantine consensus problem given in the theorem in
Section 4 of Pease et al. [24] for the 3κ processes out of which κ are Byzantine. ��

3 Geoconsensus Algorithm BASIC

In this section, we present the algorithm we call BASIC that solves Geoconsensus for
up to f < N − (2M + 1),M ≥ 1 faulty processes located in fault area set F of size
|F| = M provided that P contains at least 9M + 3 processes such that the pairwise
distance between them is greater than the diameter D of the fault areas F ∈ F .

The pseudocode of BASIC is shown in Algorithm 1. It contains two parts: the leaders
selection and the consensus procedure. Let us discuss the selection of leaders. If the
distance between two processes is less than the D, they may be covered by a single
fault area F . Therefore, the leaders need to be selected such that, pairwise, they are at
least D away from each other. Finding the largest set of such leaders is equivalent to
computing the maximum independent set in a unit disk graph. This problem is known
to be NP-hard [7]. We, therefore, employ a greedy heuristic.

Denote by Is(G) a distance D maximal independent set of a planar graph G . It
is defined as a subset of processes of G such that the distance between any pair of
processes of Is is more than D, and every process of G that does not belong to Is is at
most D away from a process in Is . That is, pi ∈ Is(G) if ∀pj 	= pi ∈ Is, d(pi, pj) >
D and ∀pk ∈ G \ Is , ∃pm ∈ Is such that d(pk, pm) ≤ D. Denote by Nb(pi,D),
the distance D neighborhood of process pi. That is, pj ∈ Nb(pi,D) if d(pi, pj) ≤
D. It is known [19, Lemma 3.3] that in every distance D planar graph, there exists a
neighborhood whose induced subgraph contains an independent set of size at most 3.

24 J. Oglio et al.

Algorithm 1: Geoconsensus algorithm BASIC.

1 Setting: A set P of N processes positioned at distinct coordinates. Each process can
communicate with all other processes and knows their coordinates. There are M ≥ 1
identical fault areas F . The diameter of a fault area is D. The locations of any area F is
not known to correct processes. Each process covered by any F is Byzantine.

2 Input: Each process has initial value either 0 or 1.
3 Output: Each correct process outputs decision subject to Geoconsensus.
4 Procedure for process pk ∈ P
5 // leaders selection
6 Let PD ← ∅, PC ← P;
7 while PC �= ∅ do
8 let P3 ⊂ PD be a set of processes such that ∀pj ∈ P3, Nb(pj , D) has distance D

independent set of at most 3;
9 let pi ∈ P3, located in (xi, yi) be the lexicographically smallest process in P3, i.e.

∀pj �= pi ∈ P3 : located in (xj , yj) either xi < xj or xi = xj and yi < yj ;
10 add pi to PD;
11 remove pi from PC ;
12 ∀pj ∈ Nb(pi, D) remove pj from PC ;

13 // consensus
14 if pk ∈ PD then
15 run PSL algorithm, achieve decision v, broadcast v, output v;
16 else
17 wait for messages with identical decision v from at least 2M + 1 processes from PD ,

output v;

The set of leaders PD ⊂ P selection procedure operates as follows. A set PC

of leader candidates is iteratively processed. At first, all processes are candidates. All
processes whose distance D neighborhood induces a subgraph with an independent set
no more than 3 are found. Among those, the process pi with lexicographically smallest
coordinates, i.e. the process in the bottom left corner, is added to the leader set PD.
Then, all processes in Nb(pi,D) are removed from the leader candidate set PC . This
procedure repeats until PC is exhausted.

The second part of BASIC relies on the classic consensus algorithm of Pease et
al. [24]. We denote this algorithm as PSL. The input of PSL is the set of 3f + 1 pro-
cesses such that at most f of them are faulty as well as the initial value 1 or 0 for each
process. As output, the correct processes provide the decision value subject to the three
properties of the solution to consensus. PSL requires f + 1 communication rounds.

The complete BASIC operates as follows. All processes select leaders in PD. Then,
the leaders run PSL and broadcast their decision. The rest of the correct processes, if
any, adopt this decision.

Analysis of BASIC. The observation below is immediate since all processes run exactly
the same deterministic leaders selection procedure.

Observation 1. For any two processes pi, pj ∈ P , set PD computed by pi is the same
as set PD computed by pj .

Byzantine Geoconsensus 25

Lemma 1. If P contains at least 3x processes such that the distance between any pair
of such processes is greater than D, then the size of PD computed by processes in
BASIC is at least x.

Proof. In [19, Theorem 4.7], it is proven that the heuristic we use for the leaders selec-
tion provides a distance D independent set PD whose size is no less than a third of
optimal size. Thus, x ≤ |PD|. The lemma follows. ��
Lemma 2. Consider a fault area F with diameter D. No two processes in PD are
covered by F .

Proof. For any two processes pi, pj ∈ PD, d(pi, pj) > D. Since any area F has diam-
eter D, no two processes > D away can be covered by F simultaneously. ��
Theorem 2. Algorithm BASIC solves the Byzantine Geoconsensus Problem for a fault
area set F , the size of M ≥ 1 with fault areas F with diameter D for N processes in P
tolerating f ≤ N −(2M+1) Byzantine faults provided that P contains at least 9M+3
processes such that their pairwise distance is more than D. The solution is achieved in
M + 2 communication rounds.

Proof. If P contains at least 9M + 3 processes whose pairwise distance is more than
D, then, according to Lemma 1, each process in BASIC selects PD such that |PD| ≥
3M +1. We have M ≥ 1 fault areas, i.e., |F| = M . From Lemma 2, a process p ∈ PD

can be covered by at most one fault area F . Therefore, if |PD| ≥ 3M + 1, then it is
guaranteed that even if M processes in PD are Byzantine, 2M +1 correct processes in
PD can reach consensus using PSL algorithm.

In the worst case, the adversary may position fault areas of F such that all but
2M + 1 processes in P are covered. Hence, BASIC tolerates N − (2M + 1) faults.

Let us address the number of rounds that BASIC requires to achieve Geoconsensus.
It has two components executed sequentially: leaders selection and PSL. Leaders selec-
tion is done independently by all processes and requires no communication. PSL takes
M + 1 rounds for the 2M + 1 leaders to arrive at the decision. It takes another round
for the leaders to broadcast their decision. Hence, the total number of rounds is M + 2.

��

4 Covering Processes

In this section, in preparation for describing the GENERIC Geoconsensus algorithm,
we discuss techniques of covering processes by axis-aligned squares and circles. These
techniques vary depending on the shape and alignment of the fault area F .

Covering by Squares. The algorithm we describe below covers the processes by square
areas A of size � × �, assuming that the fault areas F are also squares of the same size.
Although F may not be axis-aligned, we use axis-aligned areas A to cover processes.
Later, we determine the maximum number of such areas A, that non-axis-aligned F
may overlap.

Let A be positioned on the plane such that the coordinate of its bottom left cor-
ner is (x1, y1). The coordinates of its top left, top right, and bottom right corners are

26 J. Oglio et al.

respectively (x1, y1 + �), (x1 + �, y1 + �), and (x1 + �, y1). Let process pi be at coor-
dinate (xi, yi). We say that pi is covered by A if and only if x1 ≤ xi ≤ x1 + � and
y1 ≤ yi ≤ y1 + �. We assume that A is closed, i.e., process pi is assumed to be covered
by A even if pi is positioned on the boundary of A.

Let us formally define the problem of covering processes by square areas, which
we denote by SQUARE-COVER. Denote by A a set of square areas A. We say that A
completely covers allN processes if each pi ∈P is covered by at least one squareA∈ A.

Definition 2 (The SQUARE-COVER problem). SupposeN processes are embedded
into a 2d-plane such that the coordinates of each process are unique. Given a number
k ≥ 1, is there a set A of cardinality k composed of identical square areas A = � × �
that completely covers these N processes?

Theorem 3. SQUARE-COVER is NP-Complete.

Proof. To prove the theorem, we demonstrate that SQUARE-COVER is reducible to
the BOX-COVER problem which was shown to be NP-Complete by Fowler et al. [11].
BOX-COVER is defined as follows: There is a set of N points on the plane such that
each point has unique integer coordinates. A closed box (rigid but relocatable) is set
to be a square with side 2 and is axis-aligned. The problem is to decide whether a set
of k ≥ 1 identical axis-aligned closed boxes are enough to completely cover all N
points. Fowler et al. provided a polynomial-time reduction of 3-SAT to BOX-COVER
such that k boxes will suffice if and only if the 3-SAT formula is satisfiable. In this
setting, SQUARE-COVER reduces to BOX-COVER for � = 2. Therefore, the NP-
Completeness of BOX-COVER extends to SQUARE-COVER. ��

A Greedy Square Cover Algorithm. Since SQUARE-COVER is NP-Complete, we
use an efficient greedy approximation algorithm to find a set A of kgreedy axis-aligned
square areas A = � × � that completely cover all N processes in P . We prove that
kgreedy ≤ 2·kopt, where kopt is the optimal number of axis-aligned squares in any algo-
rithm to cover those N processes. That is, our heuristic is a 2-approximation of the opti-
mal algorithm. We call this algorithm GSQUARE. Each process pi can run GSQUARE
independently, because pi knows all required input parameters for GSQUARE.

GSQUARE operates as follows. Suppose the coordinates of process pi ∈ P are
(xi, yi). Let xmin = min1≤i≤N xi, xmax = max1≤i≤N xi, ymin = min1≤i≤N yi,
and ymax = max1≤i≤N yi. Let R be an axis-aligned rectangle with the bottom left
corner at (xmin, ymin) and the top right corner at (xmax, ymax). It is immediate that
R is the smallest axis-aligned rectangle that covers all N processes. The width of R is
width(R) = xmax − xmin and the height is height(R) = ymax − ymin. See Fig. 1 for
illustration.

Cover rectangle R by a set R of m slabs R = {R1, R2, . . . , Rm}. The height of
each slab Ri is �, except for possibly the last slab Rm whose height may be less than �.
The width of each slab is width(R). That is this width is the same is the width of R.

This slab-covering is done as follows. Place slab R1 at the bottom of R such
that its bottom side aligns with the bottom of R and left and right sides align with
the corresponding sides of R. Slide R1 up so that the bottom-most process pmin =
(xmin, ymin) ∈ P is on the bottom side of R1. See Fig. 1 for illustration. Now consider

Byzantine Geoconsensus 27

Fig. 1. Selection of axis-aligned smallest enclosing rectangleR covering allN processes inP and
coverage of R by axis-aligned slabs Ri of height � and width width(R). The slabs are selected
such that the at least one process is positioned on the bottom side of each slab.

Fig. 2. Selection of axis-aligned areas Aj(R2) (shown in red) to cover the processes in the slab
R2 of Fig. 1. At least one process is positioned on the left side of each area. (Color figure online)

only the processes in R that are not covered by R1. Denote this process set by P ′. Con-
sider the bottom-most process ymin′ of P ′. Slide the next slab R2 up so that pmin′ is
on its bottom side. Continue placing slabs over R in this manner until all processes of
P are covered.

We now cover each such slab by axis-aligned square areas A = � × �. See Fig. 2
for illustration. This square-covering is done similar to slab-covering. Let Ri be a slab
to cover. Place the first area A, call it A1(Ri), on Ri such that the top left corner of A
overlaps with the top left corner of slab Ri. Slide A1(Ri) horizontally to the right until
the left-most process in Ri is positioned on the left side of A1(Ri). Now consider only
the processes in Ri not covered by A1(Ri). Slide the next area A, called A2(Ri), such
that the left-most process in Ri is positioned on the left side of A. Note that there are
no uncovered processes between A1(Ri) and A2(Ri). Continue to cover all the points
in Ri in this manner. The last square may extend past the right side of the slab. Repeat
this procedure for every slab of R.

Lemma 3. Consider any two slabs Ri, Rj ∈ R produced by GSQUARE. Ri and Rj

do not overlap, i.e., if some process p ∈ Ri, then p /∈ Rj .

Proof. It is sufficient to prove this lemma for adjacent slabs. Suppose slabs Ri and Rj

are adjacent, i.e., j = i+1. According to algorithm GSQUARE, after the location of Ri

is selected, only processes that are not covered by the slabs so far are considered for the
selection of Rj . The first such process lies above the top (horizontal) side of Ri. Hence,
there is a non-empty gap between the top side of Ri and the bottom side of Rj . ��

28 J. Oglio et al.

Lemma 4. Consider any two square areas Aj(Ri) and Ak(Ri) selected by GSQUARE
in slab Ri ∈ R. Aj(Ri) and Ak(Ri) do not overlap, i.e., if some process p ∈ Aj(Ri),
then p /∈ Ak(Ri).

See [23] for the proof of the lemma.

Lemma 5. Consider slab Ri ∈ R. Let k(Ri) be the number of squares Aj(Ri) to
cover all the processes in Ri using GSQUARE. There is no algorithm that can cover the
processes in Ri with k′(Ri) number of squares Aj(Ri) such that k′(Ri) < k(Ri).

Proof. Assume the opposite: there exists an algorithm X that can cover processes in Ri

with a set of squares whose cardinality k′ is less than k used by GSQUARE. GSQUARE
operates such that it places each square A so that some process p lies on the left side
of this square. Consider a sequence of such processes: σ ≡ 〈p1 · · · pu, pu+1 · · · pj〉.
Consider any pair of subsequent processes pu and pu+1 in σ with respective coordinates
(xu, yu) and (xu+1, yu+1). GSQUARE covers them with non-overlapping squares with
side �. Therefore, xu + � < xu+1. That is, the distance between consequent processes
in σ is greater than �. Any pair of such processes may not be covered by a single square.
Therefore, the number of squares required by the posited algorithm X is at least as large
as the number of processes in σ. Since the number of squares placed by GSQUARE in
slab Ri is k, the number of processes in σ is also k. Therefore, the number of squares
required by X is no less than k. This contradicts our initial assumption. ��

Let kopt(R) be the number of axis-aligned square areas A = � × � to cover all
N processes in R in the optimal cover algorithm. We now show that kgreedy(R) ≤
2 · kopt(R), i.e., GSQUARE provides 2-approximation. We divide the slabs in the set R
into two sets Rodd and Reven. For 1 ≤ i ≤ m, let

Rodd := {Ri, imod 2 	= 0} andReven := {Ri, imod 2 = 0}.

Lemma 6. Let k(Rodd) and k(Reven) be the total number of (axis-aligned) square
areas A = � × � to cover the processes in the sets Rodd and Reven, respectively. Let
kopt(R) be the optimal number of axis-aligned squares A = � × � to cover all the
processes in R. kopt(R) ≥ max{k(Rodd), k(Reven)}.

Proof. Consider two slabs Ri and Ri+2 for i ≥ 1. Consider a square Aj(Ri) placed
by GSQUARE. Consider also two processes p ∈ Ri and p′ ∈ Ri+2, respectively. The
distance between p and p′ is d(p, p′) > �. Therefore, if Aj(Ri) covers p, then it cannot
cover p′ ∈ Ri+2. Hence, no algorithm can produce the number of squares kopt(R) less
than the maximum between k(Rodd) and k(Reven). ��
Lemma 7. kgreedy(R) ≤ 2 · kopt(R).

Proof. From Lemma 5, we obtain that GSQUARE is optimal for each slab Ri. From
Lemma 6, we get that for any algorithm kopt(R) ≥ max{k(Rodd), k(Reven)}. More-
over, the GSQUARE produces the total number of squares kgreedy(R) = k(Rodd) +
k(Reven). Comparing kgreedy(R) with kopt(R), we get

kgreedy(R)
kopt(R)

≤ k(Rodd) + k(Reven)
max{k(Rodd), k(Reven)} ≤ 2 · max{k(Rodd), k(Reven)}

max{k(Rodd), k(Reven)} ≤ 2.

��

Byzantine Geoconsensus 29

Fig. 3. The maximum overlap of an axis-aligned fault area F with the identical axis-aligned cover
squares A of same size.

Covering by Circles. Let A be the set of identical circles of diameter �. We say that A
completely covers all the processes if every process pi ∈ P is covered by at least one of
the circles in A. The problem CIRCLE-COVER of completely covering processes by
A may be formally stated similar to SQUARE-COVER in Definition 2. The following
theorem, in turn, can be proven similar to Theorem 3 for SQUARE-COVER.

Theorem 4. CIRCLE-COVER is NP-Complete.

A Greedy Circle Cover Algorithm. We call this algorithm GCIRCLE. Select the
square cover set A as produced by GSQUARE. Consider an individual square A ∈ A.
For each side of A, find a midpoint and place a circle of diameter � there. Observe that
thus placed four circles completely cover the area of the square A.

Lemma 8. Let kC
greedy(R) be the number of circles C of diameter � needed to cover all

the processes in P by algorithm GCIRCLE. Let also kC
opt(R) be the minimum number

of such circles used by any algorithm. Then, kC
greedy(R) ≤ 8 · kC

opt(R).

See [23] for the proof of the lemma.

Overlapping Fault Area. The adversary may place the fault area F in any loca-
tion in the plane. This means that F may not necessarily be axis-aligned. Algorithms
GSQUARE and GCIRCLE produce a cover set A of axis-aligned squares and circles,
respectively. The algorithm we present in the next section needs to know how many
areas in A, fault area F overlaps. We now compute the bound for this number. The
bound considers both square and circle areas A under various size combinations of
fault and non-fault areas. The lemma below is for each A ∈ A and F being either
squares of side � or circles of diameter �.

Lemma 9. For the processes of P , consider the cover set A consisting of the axis-
aligned square areas A = � × �. Place a relocatable square area F = � × � in any
orientation (not necessarily axis-aligned). F overlaps no more than 7 squares A. If the
cover set consists of circles C ∈ A of diameter � and F is a circle of diameter �, then
F overlaps no more than 28 circles C.

Proof. Suppose F is axis-aligned. F may overlap at most two squares A horizontally.
Indeed, the total width covered by two squares in A is > 2� since the squares do not
overlap. Meanwhile, the total width of F is �. Similarly, F may overlap at most two
squares vertically. Thus, F may overlap at most 4 distinct axis-aligned areas A. See
Fig. 3 for illustration.

30 J. Oglio et al.

Fig. 4. The maximum overlap of a non-axis-aligned fault area F with the identical axis-aligned
cover squares A of the same size.

Consider now that F is not axis-aligned. F can span at most
√
2� horizontally and√

2� vertically. Therefore, horizontally, F can overlap at most three areas A. Vertically,
F can overlap three areas as well. However, not all three areas on the top and bottom
rows can be overlapped at once. Specifically, not axis-aligned F can only overlap 2
squares in the top row and 2 in the bottom row. Therefore, in total, F may overlap at
most 7 distinct axis-aligned areas. Figure 4 provides an illustration.

Let us consider circular F of size �. It can be inscribed in a square of side �. The
square may overlap at most 7 square areas A of side �. Therefore, a circular F can also
overlap at most 7 squares. One square area A can be completely covered by 4 circles
C. Hence, the circular F may overlap at most 7 × 4 = 28 circles C. ��

The first lemma below is for each A being an axis-aligned square of side � or a circle
of diameter � while F being either a square of side �/

√
2 or a circle of diameter �/

√
2.

The second lemma below considers circular fault area F of diameter
√
2�.

Lemma 10. For the processes in P , consider the cover set A consisting of the axis-
aligned squares A = � × �. Place a relocatable square area F = �/

√
2 × �/

√
2 in

any orientation (not necessarily axis-aligned). F overlaps no more than 4 squares A. If
the cover set A consists of circles C of diameter � each, and F is a circle of diameter
�/

√
2, then F overlaps no more than 16 circles C.

See [23] for the proof of the lemma.

Lemma 11. For the processes in P , consider the cover set A consisting of the axis-
aligned square areas A = � × �. Place a relocatable circular fault area F of diameter√
2�. F overlaps no more than 8 squares A. If A consists of circles C of diameter �,

then circular F of diameter
√
2� overlaps no more than 32 circles C.

See [23] for the proof of the lemma.

5 Geoconsensus Algorithm GENERIC

We are now ready to present an algorithm for solving Geoconsensus that we call
GENERIC. GENEREC follows the same logic as BASIC but uses the GSQUARE or
GCIRCLE algorithms, described in the previous section, to obtain the coverage of

Byzantine Geoconsensus 31

Algorithm 2: Geoconsensus algorithm GENERIC.

1 Setting: A set P of N processes positioned at distinct planar coordinates. Each process
can communicate with all other processes and knows the coordinates of all other
processes. The processes covered by a fault area F at unknown location may be
Byzantine. There are M ≥ 1 of identical fault areas F and processes know M .

2 Input: Each process has initial value either 0 or 1.
3 Output: Each correct process outputs decision subject to Geoconsensus
4 Procedure for process pk

5 // leaders selection
6 compute the set A of covers Aj(Ri) using either GSQUARE or GCIRCLE;
7 for every cover Aj(Ri) ∈ A do
8 Pmin ← a set of processes with minimum y-coordinate among covered by Aj(Ri);

9 if |Pmin| = 1 then
10 lj(Aj(Ri)) ← the only process in Pmin;

11 else
12 lj(Aj(Ri)) ← the process in Pmin with minimum x-coordinate;

13 // consensus
14 Let PL be the set of leaders, one for each Aj(Ri) ∈ A;
15 if pk ∈ PL then
16 run PSL algorithm, achieve decision v, broadcast v, output v
17 else
18 wait for messages with identical decision v from at least 2M + 1 processes from PL,

output v

processes in P by a set A. A is a set of axis-aligned squares separated such that at
most a bounded number of them can be covered by a fault area. A single process per
square then participates in the classic consensus.

The pseudocode for GENERIC is given in Algorithm 2. The algorithm operates as
follows. Each process pk computes a set A of covers Aj(Ri) that are of same size as
F . Then pk determines the leader lj(Aj(Ri)) in each cover Aj(Ri). The process in
Aj(Ri) with smallest y-coordinate is selected as a leader. If there exist two processes
with the same smallest y-coordinate, then the process with the smaller x-coordinate
between them is picked. If pk is selected leader, it participates in running PSL [24]
(or any other Byzantine consensus algorithm). The leaders run PSL then broadcast the
achieved decision. The non-leader processes adopt it.

Analysis of GENERIC. Let us discuss the correctness and fault-tolerance guarantees
of GENERIC. In all theorems of this section, GENERIC achieves the solution in M +2
communication rounds. The proof for this claim is similar to that for BASIC in Theo-
rem 2. Let the fault area F = � × � be a, not necessarily axis-aligned, square.

Theorem 5. Given a set P of N processes and one square area F positioned at an
unknown location such that any process ofP covered by F may be Byzantine. Algorithm
GENERIC solves Geoconsensus with the following guarantees:

32 J. Oglio et al.

– If F = � × � and not axis-aligned and A = � × �, f ≤ N − 15 faulty processes can
be tolerated given that |A| ≥ 22.

– If F = � × � and axis-aligned and A = � × �, f ≤ N − 9 faulty processes can be
tolerated given that |A| ≥ 13.

– If F = �/
√
2 × �/

√
2 but A = � × �, then even if F is not axis aligned, f ≤ N − 9

faulty processes can be tolerated given that |A| ≥ 13.

Proof. We start by proving the first case.GSQUARE produces the cover setA of at least
|A| = 22 areas. From Lemma 9, we obtain that a square fault area F = �×�, regardless
of orientation and location, can overlap at most n(F) = 7 axis-aligned squares A =
� × �. GENERIC runs PSL algorithm using the single leader process in each area A.
For its correct operation, PSL requires the number of correct processes to be more than
twice the number of faulty ones. This is guaranteed since at least 2 · |A|/3 + 1 =
2 · 22/3 + 1 ≥ 2 · n(F) + 1 = 2 · 7 + 1 leader processes are correct and they can reach
consensus using PSL.

Let us address the second case. An axis-aligned square F can overlap at most
n(F) = 4 axis-aligned squares A. Therefore, when |A| ≥ 13, we have that |A| − 9 ≥
2 · n(F) + 1 leader processes are correct and they can reach consensus. In this case,
f ≤ N − 9 processes can be covered by F and still they all can be tolerated.

Let us now address the third case, when F = �/
√
2 × �/

√
2 but A = � × �.

Regardless of its orientation, F can overlap at most n(F) = 4 squares A. Therefore,
|A| ≥ 13 is sufficient for consensus and total f ≤ N − 9 processes can be tolerated. ��

For the set F of multiple fault areas F with |F| = M , Theorem 5 extends as
follows.

Theorem 6. Given a set P of N processes and a set of M ≥ 1 of square areas F
positioned at unknown locations such that any process of P covered by any F may be
Byzantine. Algorithm GENERIC solves Geoconsensus with the following guarantees:

– If each F = � × � and not axis-aligned and A = � × �, f ≤ N − 15M faulty
processes can be tolerated given that |A| ≥ 22M .

– If each F = � × � and axis-aligned and A = � × �, f ≤ N − 9M faulty processes
can be tolerated given that |A| ≥ 13M .

– If each F = �/
√
2 × �/

√
2 but A = � × �, then even if F is not axis-aligned,

f ≤ N − 9M faulty processes can be tolerated given that |A| ≥ 13M .

Proof. The proof for the case of M = 1 extends to the case of M > 1 as follows.
Theorem 5 gives the bounds f ≤ N −γ and |A| ≥ δ for one fault area for some positive
integers γ, δ. For M fault areas, M separate |A| sets are needed, with each set tolerating
a single fault area F . Therefore, the bounds of Theorem 5 extend to multiple fault areas
with a factor of M , i.e., GENERIC needs M · δ covers and f ≤ N − M · γ faulty
processes can be tolerated. Using the appropriate numbers from Theorem 5 provides
the claimed bounds. ��

We have the following theorem for the case of circular fault set F , |F| = M ≥ 1.

Byzantine Geoconsensus 33

Theorem 7. Given a set P of N processes and a set of M ≥ 1 circles F positioned at
unknown locations such that any process of P covered by F may be Byzantine. Algo-
rithm GENERIC solves Geoconsensus with the following guarantees:

– If each F and A are circles of diameter �, f ≤ N − 57M faulty processes can be
tolerated given that |A| ≥ 85M .

– If each F is a circle of diameter
√
2� and A is a circle of diameter �, f ≤ N − 65M

faulty processes can be tolerated given that |A| ≥ 97M .
– If each F is a circle of diameter �/

√
2 and A is a circle of diameter �, f ≤ N −33M

faulty processes can be tolerated given that |A| ≥ 49M .

See [23] for the proof of the theorem.

6 Extensions to Higher Dimensions

Our approach can be extended to solve Geoconsensus in d-dimensions, d ≥ 3. BASIC
extends as is. GENERIC runs correctly so long as we determine (i) the cover set A
of appropriate dimension and (ii) the overlap bound – the maximum number of d-
dimensional covers A that the fault area F may overlap. The bound on f then depends
on M and the cover set size |A|. In what follows, we discuss 3-dimensional space. The
still higher dimensions can be treated similarly.

If d = 3, the objective is to cover the embedded processes of P by cubes of size
� × � × � or spheres of diameter �. It can be shown that the greedy cube (sphere) cover
algorithm, let us call it GCUBE (GSPHERE), provides 2d−1 = 4 (16) approximation
of the optimal cover. The idea is to appropriately extend the 2-dimensional slab-based
division and axis-aligned square-based covers discussed in Sect. 4 to 3-dimensions with
rectangular cuboids and cube-based covers. See [23] for detailed discussion. We sum-
marize the results for cubic covers and cubic fault areas in Theorem 8.

Theorem 8. Given a set P of N processes embedded in 3-d space and a set of M ≥ 1
of cubic areas F at unknown locations, such that any process of P covered by F may be
Byzantine. Algorithm GENERIC solves Geoconsensus with the following guarantees:

– If F is a cube of side � and not axis-aligned and A is also a cube of side �, f ≤
N − 55M faulty processes can be tolerated given that the cover set |A| ≥ 82M .

– If F is a cube of side � and axis-aligned andA is also a cube of side �, f ≤ N−17M
faulty processes can be tolerated given that |A| ≥ 25M .

– If F is a sphere of diameter � and A is a sphere of diameter �, f ≤ N −433M faulty
processes can be tolerated given that |A| ≥ 649M .

7 Concluding Remarks

In light of the recent development of location-based consensus protocols, such as G-
PBFT [18], we have formally defined and studied the consensus problem of processes
that are embedded in a d-dimensional plane, d ≥ 2, on fixed locations known to every
other process. We have explored both the possibility as well bounds for a solution to this

34 J. Oglio et al.

Geoconsensus. Our results establish trade-offs between the three parameters N,M, and
f , in contrast to the trade-off between only two parameters N and f in the Byzantine
consensus literature. Our results also show the dependency of the tolerance guarantees
on the shapes and alignment of the fault areas.

Acknowledgement. This research was supported in part by National Science Foundation under
Grants No. CCF-1936450 and CAREER CNS-2045597.

References

1. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-scalable
Byzantine fault-tolerant services. ACM SIGOPS Oper. Syst. Rev. 39(5), 59–74 (2005)

2. Adya, A., et al.: Farsite: federated, available, and reliable storage for an incompletely trusted
environment. ACM SIGOPS Oper. Syst. Rev. 36(SI), 1–14 (2002)

3. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal
resilience. In: Proceedings of the Thirteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 183–192 (1994)

4. Bulusu, N., Heidemann, J., Estrin, D., Tran, T.: Self-configuring localization systems: design
and experimental evaluation. ACM Trans. Embed. Comput. Syst. (TECS) 3(1), 24–60 (2004)

5. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst. (TOCS) 20(4), 398–461 (2002)

6. Castro, M., Rodrigues, R., Liskov, B.: Base: using abstraction to improve fault tolerance.
ACM Trans. Comput. Syst. (TOCS) 21(3), 236–269 (2003)

7. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1–3), 165–
177 (1990)

8. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority
election scheme. Eur. Trans. Telecommun. 8(5), 481–490 (1997)

9. Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45748-8 24

10. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency. Inf.
Process. Lett. 14(4), 183–186 (1982)

11. Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the plane are
NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

12. Hadzilacos, V., Halpern, J.Y.: Message-optimal protocols for Byzantine agreement. Math.
Syst. Theory 26(1), 41–102 (1993)

13. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 34(8),
57–66 (2001)

14. King, V., Saia, J.: Breaking the O(n2) bit barrier: scalable Byzantine agreement with an
adaptive adversary. J. ACM (JACM) 58(4), 1–24 (2011)

15. Koo, C.Y.: Broadcast in radio networks tolerating Byzantine adversarial behavior. In: PODC,
pp. 275–282 (2004)

16. Kubiatowicz, J., et al.: OceanStore: an architecture for global-scale persistent storage. ACM
SIGOPS Oper. Syst. Rev. 34(5), 190–201 (2000)

17. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program.
Lang. Syst. 4(3), 382–401 (1982)

18. Lao, L., Dai, X., Xiao, B., Guo, S.: G-PBFT: a location-based and scalable consensus proto-
col for IoT-blockchain applications. In: IPDPS, pp. 664–673 (2020)

https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24

Byzantine Geoconsensus 35

19. Marathe, M.V., Breu, H., Hunt, H.B., III., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics
for unit disk graphs. Networks 25(2), 59–68 (1995)

20. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Trans. Dependable Secure Comput.
3(3), 202–215 (2006)

21. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 31–42 (2016)

22. Moniz, H., Neves, N.F., Correia, M.: Byzantine fault-tolerant consensus in wireless ad hoc
networks. IEEE Trans. Mob. Comput. 12(12), 2441–2454 (2012)

23. Oglio, J., Hood, K., Sharma, G., Nesterenko, M.: Byzantine geoconsensus. Technical report.
2010.02436 [cs.DC], arXiv, October 2020. http://arxiv.org/abs/2010.02436

24. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM
27(2), 228–234 (1980). https://doi.org/10.1145/322186.322188

25. Pelc, A., Peleg, D.: Broadcasting with locally bounded Byzantine faults. Inf. Process. Lett.
93(3), 109–115 (2005). https://doi.org/10.1145/322186.322188

26. Rushby, J.: Bus architectures for safety-critical embedded systems. In: Henzinger, T.A.,
Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 306–323. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45449-7 22

27. Sousa, J., Bessani, A., Vukolic, M.: A Byzantine fault-tolerant ordering service for the hyper-
ledger fabric blockchain platform. In: DSN, pp. 51–58. IEEE (2018)

28. Vaidya, N.H., Tseng, L., Liang, G.: Iterative approximate Byzantine consensus in arbitrary
directed graphs. In: PODC, pp. 365–374 (2012)

29. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full sharding.
In: CCS, pp. 931–948 (2018)

http://arxiv.org/abs/2010.02436
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.1007/3-540-45449-7_22

	Byzantine Geoconsensus
	1 Introduction
	2 Notation, Problem Definition, and Impossibility
	3 Geoconsensus Algorithm BASIC
	4 Covering Processes
	5 Geoconsensus Algorithm GENERIC
	6 Extensions to Higher Dimensions
	7 Concluding Remarks
	References

