Cyclic and convolutional codes with locality

Zitan Chen

Abstract—Locally recoverable (LRC) codes and their variants
have been extensively studied in recent years. In this paper
we focus on cyclic constructions of LRC codes and derive
conditions on the zeros of the code that support the property
of hierarchical locality. As a result, we obtain a general family
of hierarchical LRC codes for a new range of code parameters.
We also observe that our approach enables one to represent
an LRC code in quasicyclic form, and use this representation
to construct tail-biting convolutional LRC codes with locality.
Among other results, we extend the general approach to cyclic
codes with locality to multidimensional cyclic codes, yielding new
families of LRC codes with availability, and construct a family
of g-ary cyclic hierarchical LRC codes of unbounded length.

Index Terms—Hierarchical locality, tail-biting codes, sliding
window repair, bi-cyclic codes.

I. INTRODUCTION
A. The locality problem: main definitions

Locally recoverable (LRC) codes form a family of erasure
codes, motivated by applications in distributed storage, that
support repair of a failed storage node by contacting a small
number of other nodes in the cluster. LRC codes can be
constructed in a number of ways. A connection between LRC
codes and the well-studied family of Reed-Solomon (RS)
codes was put forward in [B3], where codes with large distance
were constructed as certain subcodes of RS codes. The results
of [B3] paved the way for using powerful algebraic techniques
of coding theory for constructing other families of LRC codes
including algebraic geometric codes [3], [23], [24]. In [33] it
was observed that a particular class of the codes in [B3] can
be represented in cyclic form, and the distance and locality
properties of cyclic LRC codes were described in terms of
the zeros of the code. This established a framework for cyclic
LRC codes that was advanced in a number of ways in several
recent works [&], [2], [I5], [24].

In this paper we focus on several aspects of cyclic LRC
codes that have not been previously addressed in the literature.
The first of these is codes with hierarchical locality (H-LRC
codes), defined in [B1], which assume that the code can correct
one or more erasures by using a subset whose size depends on
the number of erased locations, increasing progressively with
their count. In addition to defining the problem and deriving a
bound on the parameters of H-LRC codes, the authors of [31]]
extended the construction of [33] to the hierarchical case. Their
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construction was further generalized to algebraic geometric
codes in [0].

Another general problem related to cyclic codes that we
study addresses construction of LRC convolutional codes. This
class of erasure codes was considered in several previous
works [B], [[4], [40] before being thoroughly analyzed in
a recent paper [Z¥]. Here we exploit a classic link between
quasicyclic codes and convolutional codes [B7] to construct
LRC convolutional codes with a particular type of locality
whose parameters are controlled by the set of zeros of the
underlying (quasi)cyclic code.

We also address the problem of maximum length of optimal
LRC codes [I4], wherein the main question is constructing
such codes of length larger than the size of the code alphabet.
This problem has been the subject of a number of recent papers
including [Z], [8], [24], and we study this question in the
hierarchical case. Our techniques here combine the approach
to cyclic H-LRC codes developed in this paper with the ideas
of [71] aimed at constructing long LRC codes.

We describe the known and the new results in more details
after giving the basic definitions. In coding-theoretic terms,
the central problem addressed by LRC codes is correcting one
or several erasures in the codeword based on the contents of
a small number of other coordinates. This problem was first
isolated in [I2], and it has been actively studied in the last
decade.

Definition 1 (LRC CODES). A linear code C < Fy is locally
recoverable with locality r if for every i € {1,2,...,n} there
exists an r-element subset I; — {1,2,... ,n}\{i} and a linear
function ¢; : Fy — ¥y such that for every codeword c € C we
have ¢; = ¢;(cjy,...,cj.), where j1 < jo < --- < j, are the
elements of I;.

The coordinates in I; are called the recovering set of i, and
the set {¢} U I; is called a repair group. Below we refer to
a linear LRC code of length n, dimension k, and locality r
as an (n, k,r) LRC code. Since the code is occasionally used
to correct a large number of erasures (such as in the event
of massive system failure), another parameter of interest is
the maximum number of erasures that it can tolerate. This
is controlled by the minimum distance d(C) of the code, for
which there are several bounds known in the literature. We
will be interested in the generalized Singleton bound of [I7]
which states that for any LRC code C,
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While in most situations repairing a single failed node
restores the system to the functional state, occasionally there
may be a need to recover the data from several concurrent node
failures. The following extension of the previous definition is



due to [20].

Definition 2 ((r,d) LOCALITY). For any § > 2 we say that
a linear code C has (r,d) locality if every coordinate i €
{1,...,n} is contained in a subset J;  {1,...,n} of size at
most r + 6 — 1 such that the restriction Cj, to the coordinates
in J; forms a code of distance at least 9.

Note that in the case of 6 = 2 the codes defined here are
exactly the codes of Def. [l above.

An intermediate situation arises when the code is designed
to correct a single erasure by contacting a small number r; of
helper nodes, while at the same time supporting local recovery
of multiple erasures. Extending this idea to multiple levels of
local protection, the authors of [3T] introduced the concept
of hierarchical LRC (H-LRC) codes, which are defined as
follows.

Definition 3 (H-LRC CODES). Let h > 1, 0 < 1r; <19 <

< rp <k and 1 < 6, < ... < 0, < d be integers.
A linear code C < Fy is said to have h-level hierarchical
locality (11,01),...,(rn,0n) if for every 1 < i < h and every
coordinate of the code @ there is a punctured code C") such
that the coordinate is in the support of € and

(a) dim(€®) < 7y,

(b) d(CD) > 4

(c) the i-th local code C") has (i — 1)-level hierarchical
locality (T‘l, 51), ey (’f‘,;l, 51'71)-

The authors of [B1] proved the following extension of the
bound (0): The minimum distance of an h-level H-LRC code
with locality satisfies the inequality

h

k
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where dp = 1. In particular, for h = 1 this gives a version of

the bound (0) for the distance of an (n,k) code with (r,d)

locality:

d<n7k+57[§](571). 3)

We call an H-LRC code optimal if its distance attains the
bound (P). Note that it is possible that the code is optimal
while its local codes (%) for some or even all i < h — 1 are
not. We say that an H-LRC code C is strongly optimal if in
every level ¢,1 < ¢ < h, the i-th local codes are optimal H-
LRC codes with ¢ — 1 levels. For h = 1 the distance of the
optimal code with (r,d) locality attains the bound (B) with
equality.

B. Earlier results and our contributions

As noted above, the starting point of our constructions is a
cyclic version of the RS-like codes with locality designed in
[33]. RS codes over F,; can be alternatively described in terms
of polynomial evaluation and (in the case that the code length
n divides ¢ — 1) as cyclic codes of the BCH type. While [33]
adopted the former approach, the authors of [335] studied the
cyclic case, finding a condition on the zeros of the code that
support the locality property.

The approach of [BS] was later advanced in a number of
ways. In particular, the authors of [] extended the main

construction of [B3] to codes with (r,d) locality, designing a
cyclic representation of the polynomial evaluation codes from
[33] for the general case of § > 2.

Our main results relate to constructions of cyclic LRC codes
with hierarchy. Several recent studies presented families of
codes with multiple levels of erasure correction [I0], [I3],
[3Y], not necessarily within the framework of the above defi-
nition. As far as H-LRC codes are concerned, the only general
family of optimal H-LRC codes that we are aware of was
presented in [[], [BT]. This construction essentially followed
the approach of [33], relying on multivariate polynomials that
are constant on the blocks that form the support of the code
€ in Def. B. The codes of [@], [31] form a family of strongly
optimal H-LRC codes which can be constructed for any code
length n < ¢, dimension k, and any values of r;,7 = 1,...,h
as long as 7;|r;41,7 = 1,...,h — 1 and r,|k. The divisibility
constraint is essential for the constructions discussed, and it
limits the possible choices of the code parameters.

In this paper we derive conditions on the zeros of a cyclic
code that support several levels of hierarchy. As a result, we
construct families of cyclic H-LRC codes that do not rely on
the divisibility assumptions, which yields a new range of code
parameters. We also derive conditions that are sufficient for
our codes to be strongly optimal and give examples of such
codes. These results are presented in Sec. [I=Al

These results also enable us to connect the construction
of LRC cyclic codes and convolutional codes with locality.
The recent work [28] focused on the so-called sliding window
repair property of convolutional codes. The authors of [2¥]
further observed that certain families of convolutional codes,
notably the so-called codes with the maximum distance profile
[IT], [BZ], suggest an approach to constructing codes with
locality. They also presented a family of LRC convolutional
codes with sliding window repair for the case of column
locality, and they suggested that there may be a connection
between H-LRC codes and LRC convolutional codes. We show
that this connection indeed leads to fruitful results, designing
LRC convolutional codes for the case of row locality defined
herein. The lower bounds on the column distance of the
codes constructed here and in [28] are the same; however the
alphabet size of our codes is much smaller than in [Z8]. We
also derive an upper bound on the column distance of LRC
convolutional codes (with either type of locality); however,
our construction falls short of attaining it. The method that
we use relies on the characterization of zeros of cyclic block
H-LRC codes described above. We observe that several levels
of hierarchy enable one to put our cyclic LRC codes in
quasicyclic form, and then use a classic connection between
quasicyclic codes and convolutional codes [37] to construct
convolutional codes with locality; see Sec. .

We also examine two other problems for LRC codes that
benefit from the cyclic code construction. The first of them
is the problem of maximum length of optimal LRC codes
put forward in [I4]. Answering the challenge of constructing
optimal LRC codes of length larger than ¢, the authors of [&],
[6], [M4], [27] constructed several families of optimal cyclic
codes of large, and in some cases even unbounded length,
and [H] extended these results to the case of several erasures.



Here we follow the lead of [Z7] and construct an infinite
family of H-LRC codes over a given finite field and establish
conditions for their optimality in terms of the bound (D).
Finally, we consider the problem of availability which calls for
constructing LRC codes with several disjoint recovering sets
for each code coordinate (see the definition in Sec. [M). We
note that multidimensional cyclic codes naturally yield several
recovering sets for the coordinates. We use a description of
bi-cyclic codes in terms of their zeros together with a special
version of code concatenation [BU] to construct codes with
availability and rate higher than the rate of product codes.
We note that the known bounds on the code parameters for
multiple recovering sets [Z1], [29], [34], [B¥] do not support
a conclusive picture, and we are not aware of general families
of codes with availability whose distance attains one of the
known upper limits. Our construction in this paper also falls
in the same category.

Although we do not pursue this direction here, let us note
that the methods of this paper enable one to construct codes
with both hierarchical locality and availability. We remark that
constructions of LRC codes that have both properties were
presented in [[I], where the main tools were fiber products and
covering maps of algebraic curves.

C. Optimal cyclic LRC codes

Let C be a cyclic code of length n with generator polynomial
g(x) and check polynomial h(z) = zg"(;)l. The dual code €’
has generator polynomial ge:(z) = z4°5(*=)h(z 1), and the
code €’ generated by h(z) is obtained from C’ by inverting the
order of the coordinates. A codeword a(z) € €’ of weight 7+1
defines a repair group of the code €, and so does the reversed
codeword a(x) € €. For this reason below in this section
we argue about the code €' rather than €', which makes the
writing more compact without affecting the conclusions.

Let us recall a connection between cyclic codes and LRC
codes of [B3], which we present in the form close to the
earlier works [8], [274]. The following lemma underlies con-
structions of cyclic LRC codes in this paper and elsewhere,
and it represents a mild extension of Lemma 3.3 in [35]. In
the statement as well as elsewhere in the paper we do not
distinguish between zeros of the code and their exponents in
terms of some fixed primitive nth root of unity in IFy.

Lemma 1. Let C be a cyclic code over Fy of length n|(q—1)
and let o be a primitive nth root of unity in F,. Suppose that

n = vm for some integers v, m. Then the code C' contains a
vector

m—1
b(a) = > aamTIT e o, m—1} @)
i=0
if and only if the set L = {u+im,i = 0,1,...,v — 1} is

among the zeros of C.

Proof: Notice that the polynomial b(x) can be equiva-

: iy
lently written as b(z) = ——=, where
v—1 )
¥ — o’ = n(x — bt 5)

is the annihilator polynomial of the set £. Thus, b(a’) # 0
for all t € £. If b(x) € €/, this implies that £ is a subset of
the set of zeros of C.
Conversely, let g(z) = (z
polynomial of C. Then

(D )pa) = 2L~ ba) e &.

9(@) w7 —a

Y — a’*)p(x) be the generator

|
This lemma immediately yields the cyclic codes from [BY]
(the cyclic case of the codes from [33]).
Theorem 2 ([33]). Let (r + 1)|n,r|k,n|(¢ — 1). Let o € F,
be a primitive n-th root of unity, and let C be an (n, k) cyclic
code with zeros of,i € Z := L U D, where

L={1+1(r+1),0=0,..., 15 —1}

k
.,n—;(r+1)+1}.

6
D=1{1,2,.. ©

Then C is an (n,k,r) optimal LRC code.
Proof: Since £ < Z, Lemma [ implies that

b(z) = Z o g
i=0

is a codeword in €'. This codeword is of weight 7 + 1, and
n

its cyclic shifts give 77 disjoint repair groups, supporting the
locality claim. At the same time, the BCH bound implies that
d(C) =n — E(r+1) + 2, so the code is optimal by () once
one observes |Z| =n —k and dim(C) = n — |Z| = k. |

This construction extends without difficulty to codes with
(r,0) locality for any § > 2. A family of optimal codes in the
sense of the bound (B) was constructed in [33], Construction
8 (see also [7]). The codes in this family are constructed
as certain subcodes of Reed-Solomon codes that rely on
piecewise-constant polynomials over IF,,. In the particular case
that the code length n divides ¢ — 1 it is possible to represent
these codes in cyclic form. For this, we assume that r|k, take

m =1+ J — 1, and take the zeros of the code to be
L={i+Im|l=0,...,v—1,i=1,...,0 — 1}
D={1,2,....n—k—((k/r)—1)(6 — 1)}.

As will be apparent from the proof of Lemma B, the condition
about zeros given by the set £ translates into conditions on

the dual code that support the locality claim. The distance of
the code C clearly meets the bound (B) with equality.

(7

D. Cyclic codes with locality

In the next lemma we present a slightly more general view
of the method in Theorem D that will be instrumental in the
code constructions below in this work. The main element of
the construction is code C(©) defined in (B), which isolates a
repair group in the code € and supports local correction of
several erasures.

Lemma 3. Let n|(q — 1),n = vm. Let « be a primitive n-th
root of unity in F, and fix 6 € {2,...,m}. Let Z be a subset
of size Z such that

{1,....,0—1}c2c{0,....m—1}



and let L = U:;S(Z + sm). Consider a cyclic code C =

{g(x)) of length n, where
g(x) = p(x) | [(x — o),
tel

and p(x) € Fy[z] is some polynomial. Let

e = {(coscuy-vsCmony) | (cor- -y cn1) €CL (8)

Then dim(C0) < m — Z, d(€®)) = §, and thus, the code
C is an LRC code with (m — Z,0) locality.

Further, if for every u € {0,...,m — 1}\Z there exists s €
{0,1,...,v — 1} such that g(a"+*™) # 0, then dim(€(®)) =
m—Z.

Proof: We proceed similarly to Theorem . Let

n H )= nlz(f)
5=014eZ €2

—a¥t. Let h(x) =
subset of Z codewords of € given by

bi(x) = h(z)p(x) [ L)
JEZ\Gi)

z+sm

where [;(z) := ¥ 2°—1 and consider a
g(x)

i€ Z.

A codeword b; has the form
m—1
= Z a
j=0

Hamming weight m, and contains v — 1 zero coordinates after
every nonzero entry.

To prove the statement about locality, let us form a Z x
m matrix H obtained by inverting the order of coordinates
in the codewords b;,7 € Z, writing the resulting vectors as
rows, and discarding all the zero columns. By construction,
every row of H is a parity-check equation of the code €(©).
Any submatrix of § — 1 columns of H has rank § — 1 (its
first § — 1 rows form a Vandermonde determinant), and thus,
d(C) = §. Since the rows of H give Z independent parity-
check equations for the code €(9), we also have dim(C(®)) <
m — Z. This argument exhibits a local code in the coordinates
that are integer multiples of v, and by cyclic shifts we can
partition the set {0, 1,...,n—1} into supports of disjoint local
codes of length m and distance at least §. Furthermore, we
note that the punctured code C(¥) is itself a cyclic code of
length m|n. Let go(x) be its generator polynomial. Since each
row of H is a parity-check equation for the code (¥, we
have go(a®™) = 0 for every i € Z and thus deg(go(x)) > Z.
Together these arguments prove the claim about (m — Z,J)
locality of the code C.

Next we show that if deg(go(z)) > Z, then necessarily there
exists w € {0,...,m — 1}\Z such that g(a***™) = 0 for all
s =0,...,v— 1. Suppose that there exists u € {0,...,m —
1}\Z such that go(a™) = 0. By Eq. (B) in the proof Lemma m

there exists a codeword b, € € given by

n
(m,—l—j)il/xjy,

bi(z) =

m—1

Z a]uu (m—=1—j)v _

xl/ — aV’LL

On the other hand, € = (h(zx)), so h(zx)|b,(z) and therefore
(z¥ —a*)|g(x). Noticing that z¥ —a** = [[/Z} (z —a®*tsm)
(cf. (B)), we conclude that g(z) is divisible by z — a“+s™ for
all s =0,...,v—1. Hence, if for every v € {0,...,m—1}1\Z
there exists 0 < s < v — 1 such that (x — a*™*™) { g(z), i.e.,
g(a¥+sm) # 0, then deg(go(z)) = Z, and thus dim(C(®)) =
m—Z. [ ]

II. CODES WITH HIERARCHICAL LOCALITY
A. Optimal cyclic codes with hierarchy

In this section we construct a family of H-LRC cyclic codes
with h > 1 levels of hierarchy and derive sufficient conditions
for their optimality. Suppose that % is fixed and we are given
the local dimension r; (the dimension of the first, innermost
local code), and the designed local distances 1 = §y < 01 <

. < 0p < Opy1, where §p,41 is the designed distance of the
overall code C.

We will assume that the first local code is MDS and thus its
length is ny =11 + 01 — 1. For 1 <i < h, let n;41 = v;n; be
the length of the code in the (¢ + 1)st level of hierarchy, where
v; > 1 is an integer. Let IF, be a finite field and suppose that
np+1f(g —1).

We construct a cyclic H-LRC code € over [Fy of length n =
npy1 and designed (local) distances 61, ...,0,41 as follows.
Let o € ¥, be a primitive n-th root of unity. The code C
will be given by its defining set of zeros Z which we specify
via a recursive procedure. Consider the set of exponents Dy =
{1,...,01—1} of the primitive element «. Further, let £; = &
and

Zl = Ll U Dl. (9)
Having (B) in mind, for 1 < i < h let
v;—1
Liy1= U (Zit+sni), Dipr={1,...,0i11 — 1}, (10)
s=0

Ziv1 = Liv1 U Dij1.

Finally, put Z = Zp41.
The generator polynomial of the cyclic code € of length n
is given by

g(z) = [ J(z = o). (11

teZ
The parameters of the code C are estimated as follows.

Proposition 4. (i) The dimension of the code C is n— |Z| and
the distance d = 6py1. (ii) The code C is an h-level H-LRC
code with locality (n; —|Z;],8;),a =1,...,h.

Proof: (i) The value of the dimension is clear from the
construction, and the estimate for the distance comes from the
BCH bound.

(7i) The statement about the locality parameters follows
by Lemma B once we observe that g(z) is divisible by
]_[teun/nﬁl(Z +omi )( at) for every i = 1,..., h. [

Next we examine the conditions that suffice for the distance
of € to meet the bound (B) with equality. We build up the
optimality of our code in an incremental manner in the sense
that we first ensure that the first local codes are optimal (i.e.,
MDS codes), and relying on these optimal local codes we



make sure that the second local codes are optimal (i.e., optimal
LRC codes), and so forth until we reach the outermost code.

Let ry < 1o < ...<7rp <rpy1 = dim(C) be the chosen
values of the dimensions of the local codes. As before, we
set ny =1y +0; —dp and let n;1qy = vmn; for 1 < i < h
where the integer number v; satisfies v; > [r;y1/r;]. Note
that this assumption does not entail a loss of generality since,
assuming the ith and (i + 1)st local codes are optimal, by (I0)
we have |L1j+1| = (nz |Z’i+1| <
N1 — |Li+1| = TilV;.

To show optimality, we connect the target values of the local
distances 03,63, . .., 0p4+1 with the dimension values through
several auxiliary parameters. For 1 < ¢ < h, let us write
—b; where 0 < b; < r;. Further, let bgb) = b, and
2, let

— i)V, and 7 = nipq —

Tit1 = ;T4
for j=4,1—1,...,

b‘g‘i) _Ug)lrj 1+by 15 Ogby—)l <Ti-1

Put b(()o) =0and for 1 <i<hlet

} o | () | pli=1)
b5 = (465 ) mod 1, ul = r’ltbo| . (12)
1

Finally, for 1 < ¢ < h, let

5,;+1 = (Vv—aqv)m + 5

+ 2 u; nj + uO ‘ny + béi) - b((f*l). (13)

The high-level ideas behind these parameters are as follows.
By Lemma B, the quantities d1, . .., dp+1 control the distances
via the BCH bound and we would like to make these quantities
as large as possible given the target dimensions. We need to
make sure that the 7th local code has a run of consecutive
zeros of length §; — 1, and our budget of creating such a run
is limited by the dimension. Therefore, we seek to rely on the
already present runs of zeros of the jth local codes, j < 14,
and spend the budget frugally on the way to optimality. The
quantities b serve the purpose bridging the “distance gap”

(the gaps between runs of zeros) between the local codes in
levels j and j + 1 on the way to ensure the distance of the ith
code.

As for the dimensions of the local codes, by Lemma B they
are determined by Z;,1 < ¢ < h + 1. The cardinality of Z; is
established in the next claim.
< h+1, we have |Z;| = n; — 7.

The proof of this proposition proceeds by induction and is
given in Appendix [A. An examination of the proof also gives a
better understanding of the parameters a;, b; introduced above.

On account of Proposition B, the locality parameters of the
code C are (r;,9;),1 < i < h. Furthermore, dim (C) = rp41,
and by the BCH bound d(C) = dp,41.

Sufficient conditions for optimality of the code C are given
in the following lemma whose proof is given in Appendix B.

Proposition 5. For 1 <

Lemma 6. Suppose that for i = 2 and 2 < s <

conditions are satisfied:

Ts Ts Ts s s = s Ty
][]
Ts+1 Ts Ts+1 |
| s R R !
(14)

Jj=l+1
where the first condition holds for s = 2 and the second for
2<1<s—1.Then for 1 <1< h, we have

[w} (01 — 01—1).

T

1 the following

3

Ojt1 = Njgp1 — Tip1 + 05 — Z

I1=1

It follows from Lemma B, Lemma B, and the bound (D)

that the code C is an (n = np41,k = rp41) optimal H-LRC

code with local parameters (r;,0;),1 < ¢ < h. Clearly, when

h = 0 our construction gives an (ny,71) MDS code and when

h = 1, it gives an (ng,r2) optimal LRC code of [35]. For
h = 2, conditions (Id) take a simpler form:

-T2 252

We note that the condition of [31, Theorem 2.6] is easily seen
to be equivalent to (I3). Another known case of optimality, the
divisibility conditions r;|r;+1,7 = 1,..., h, is also covered by
Lemma B (in this case both the left-hand sides and the right-
hand sides of (I4) are zero).

Let us give a general example of the choice of parameters
that ensures optimality. Suppose that 71 > 2" and r;.; =
2r; — 1 for 1 < ¢ < h. Then conditions (I[d) are satisfied.
Indeed, we have r; = 2¢°4(ry — 1) + 1 for 1 < i < h+ 1.
Therefore, for 1 < 7 <i < h+ 1 we have

il Cfgia o 20 i
> 2(ry — 1) + 1 :

where the last equality follows because 1 > 2". It follows
that the left-hand sides of conditions (I4) are zero. On the
other hand, we have b; = 1 for all 1 <4 < h. Since r, > 2",
we have u) =0 forall 1<s<hand0<l!<s—1,and
thus, the right-hand sides are also zero, which confirms the
optimality claim.

15)

Proposition 7. Suppose that the conditions () are satisfied,
then the code C is a strongly optimal H-LRC code in the sense
of Sec. A

Proof: Tt suffices to show that the dimension of the ¢-th
local code equals r; for all i.
By assumption, we have ;.1 > r; and thus a; > 2 for
1 < i < h. It is not difficult to verify from (I3) that §; 1 <
(vi —a; + 1)n; < njp1 —n; for all 1 <4 < h. We claim that
g(an—mitti) £ 0 for every t; € T;,1 < i < h where

T, ={n}tu({1,...,n;, — 1\Z; + n — n;).

Then by the second part of Lemma B the dimension of the

i-th local code equals r; and the strong optimality follows.
Now let us show n — n; + t; ¢ Z. Observe that the set Z

contains n/n; copies of Z; and the set T; is the complement



to the last one of those copies with respect to {1,...,n;}.
Indeed, we have n—n; +t; = t;+ (n/n; —1)n; ¢ {n}u (Z;+
(n/n; — 1)n;). Now consider the last copy of Z;,1 contained
in Z. Obviously, it contains the last copy of Z;. To establish
n—n; +t; ¢ Z, it remains to show n —n; +t; is not in the last
copy of D; 1, namely, n —n; +t; ¢ D; 11 +n —n;41. Since
d;+1 < mjy1 —n; as we observed above and n; 1 —n; +t; =
ni+1 —n; + 0;, we have n;.1 —n; +t; ¢ D;1 1. It follows that
n—n; +t; ¢ Diy1 +n —n;4q1. Therefore, n —n; +t; ¢ 2
and g(a"~™itt) £ 0 for every ¢; € T;,1 < i < h.

In the case that r;;; = r; for some 1 < ¢ < h (although
we rule out this trivial case in Definition B), the code C is still
strongly optimal if the optimality conditions are satisfied. In
fact, if 7;41 = r; then from (I3) we have §;11 = (v; —a;)n; +
0; = niy1 —n; + 0; ¢ D;yq. By similar arguments as above,
we have n —n; +t; ¢ Z for every t; € T;,1 < ¢ < h, and thus
establish the strong optimality of the code. ]

We conclude with a numerical example that shows that the
assumptions on the parameters can be simultaneously satisfied
for moderate values of the length and alphabet size.

Example 1. Consider the case h = 3. Let 11 = 2 and 61 =
2. Then ny = 3. Let (na,7r2) = (9,3), (n3,r3) = (27,5),
and (na,r4) = (81,7). Then our construction (with designed
distances found from (3)) gives rise to a strongly optimal H-
LRC code of length n = ny and dimension k = r4 with local
distances 6o = 6,03 = 17 and distance d = 54 = 53 over
a finite field F, where 81|(q¢ — 1) (for example, we can take
q = 163).

B. Hierarchical cyclic codes of unbounded length

In this section we construct a family of H-LRC codes with
distance d = 0, + 1,h > 1 and unbounded length. The
construction combines the idea of [27] with H-LRC codes of
the previous section.

Let 1 <r; <re <...<rp beintegers. Let 1 = §p < &
and let 0,03, ...,60, be as in (I3). Again, we put ny = r; +
01 — 6o and let n;o1 = vn; for 1 < i < h — 1, where
v; = [rig1/r;] is an integer. Let Fgm,m > 1 be a finite field
and let ny|(¢ — 1). Let n = ¢"™ — 1 and observe that np|n.
Let v € Fym be a primitive n-th root of unity. Let Z; be
constructed by the procedure in (d) and (). Finally, define

n/np—1
L= |J @n+sm), 2=L0{0} (16)
s=0
Consider a cyclic code € with generator polynomial
g(x) = H(m —ah). (17

teZ

As is easily seen, g(z) € Fy[x]. Indeed,

g(@) = (@ -1 [ J@@—-a’)

tel
n/np—1
=(z—1) H H (x — ")
s=0 teZy
=(x—1) n (ac"/”’l — a"t/"h).
teZy,

For the last equality we note that z™/"» — o™/mn =
]_[Zi"h_l(x — o™ Ft). Observe that for ¢t € Z; we have
(oz”t})"h)q_1 = 1 since ny,|(g —1). It follows that o™/ € T,
for ¢t € Zj, and thus g(z) € Fy[z].
Proposition 8. Let C = {g(x)) € Fy[z]/(z™ — 1) be a cyclic
code. Then dim(C) = nr,/n, — 1, d(C) = 6, + 1, and the
locality parameters are (r;,0;) for 1 <i < h.
Proof: The dimension of € is found as
_|Zn|n

—n— —n—1 -
k=mn—deg(g(z)) =n - -

nrp
— 1

where the last equality follows by Proposition B. The distance
of the code C is d > 4y, + 1 since g(x) has consecutive roots
at,t=0,...,6, — 1.

The locality parameters of the code C follow immediately
by Lemma B and Proposition B. |

The next lemma provides the conditions when the code C is
optimal. Its proof amounts to a calculation based on Lemma B
and Proposition B.

Lemma 9. Suppose that for 1 < ¢ < h — 1, conditions (I4)
are satisfied. Further, suppose that

”Pﬂ—yﬂ 1<l<h-1. (18)
np | 1 T
Then the code C is optimal.
Proof: By Lemma B, we have
Oop =np —rp + 6p—1 — hil [rﬂ (01 — 0y—1)- (19)
T

=1

By Proposition B, we have k = nry, /n, —1. Using the bound
(@), the distance of the code cannot exceed

n—k:+(5h—zh:[fj 0y — 81—1)

=1

=n—w+1+5h—£(5h—5h,1)
np np

h—1 k
- [W (61— 61-1) (20)
=117
—1+94 +"h21[ﬂ(5—5 )
h nn ~ T l -1
h—1 k
- [w (61 — 01-1) 21
=1 17
=1+, (22)

where (Z) follows since rp, > 1 implies [k/ry] = n/ny, in
(2T) we used (I9), and (Z2) follows by (IH). Hence, the code

C has the largest possible distance d = §p, + 1. [ |
In particular, the conditions in Lemma B are satisfied when
TZ‘|TZ‘+1,’L' = ].7 ey h —1 and Th|k.

As in Sec. [I=A], the code € constructed above in this section
has the strong optimality property if the optimality conditions
in Lemma B are satisfied. Specifically, the main difference
between the construction in this section and the one in the
previous section is in the final step of constructing the defining
set Z, which also includes element 0 (i.e., o). By an argument



similar to Sec. [I=Al, one can show n —n; + ¢; ¢ Z for every
t;e ({0,...,n;, —1\Z;) + (n —n;),1 < i < h and so strong
optimality follows.

Example 2. Consider the case h = 3. Let v = 2 and 61 = 2.
Then ny = 3. Let (ng,r2) = (9,3) and (ns3,r3) = (27,5).
Let m > 1 be an arbitrary integer and q = 163. Then
our construction (with designed local distances given by
(3)) gives rise to a strongly optimal H-LRC code of length
n = 163™ — 1 and dimension k = 2(163™ — 1)/9 with local
distances 63 = 6,93 = 17 and distance d = 18 over F,.

Recall that [@] shows that the length of an optimal LRC
code in the general case cannot be greater than a certain
power of the alphabet size ¢. Using similar arguments, it
might be possible to derive upper bounds on the length of
optimal H-LRC codes in the general case; however already in
the case of (r,d) locality addressed in [H] (with just a single
level of hierarchy), following this route requires cumbersome
calculations.

III. CONVOLUTIONAL CODES WITH LOCALITY

It has been recognized a long while ago that quasi-cyclic
codes can be encoded convolutionally, and multiple papers
constructed families of convolutional codes from their quasi-
cyclic counterparts [9], [T9], [B6]. In this section, we present
a family of convolutional codes with locality by relying on the
tailbiting version of convolutional codes [32]. We single out
this approach because it enables us to establish the locality
properties of convolutional codes based on the properties of
cyclic H-LRC codes constructed above in this paper.

We begin with a brief reminder of the basic notions for
convolutional codes [IX]. Let D be an indeterminate and
let F,(D) be the field of rational functions of one variable
over F,. A g-ary (n,k) convolutional code C is a linear k-
dimensional subspace of F,(D)™. A generator matrix G(D) =
(gi5(D)) of the code C is a k x n matrix with entries in Fy (D)
whose rows form a basis of C. Thus, the code € is a linear
space {u(D)G(D) | u(D) € F,(D)*}. The matrix G(D) can
be transformed to the polynomial form by multiplying every
element by the least common denominator of its entries. The
transformed matrix generates the same code €, and so in the
sequel we will consider only polynomial generator matrices.
Below we will assume that the generator matrix G(D) is a
k x n matrix with entries in F,[D], where F,[D] is the ring
of polynomials over IF,.

For 1 < i < k, the degree m; of the i-th row of G(D)
is the maximum degree of the entries in row %, namely,
m; = Mmaxi<;<n deg(g; ;(D)). As with linear block codes,
the encoding of a convolutional code depends on the choice of
a generator matrix. The maximum degree M := max;j<;<r My
is called the memory of the encoder. The generator matrix of
the code C can also be written in the form

Go G1 G]u
G Go G

Gu . ()

where each Gj is a k x n matrix over IF;. The codeword of the
code C is obtained as a product u(G, where w is a semi-infinite
input sequence of symbols of F,,.

With a given convolutional code C one can associate a
multitude of distance measures. In direct analogy with block
codes, one defines the free distance of the code C as the
minimum Hamming weight of the Laurent expansions of the
nonzero codewords.

Another distance measure of interest is the so-called column
distance of the code [IX, p.162]. To define it, let G[O}j] be the
truncated code of C at the j-th time instant, j > 0, namely,

J

Co = {C[O,ﬂ (D)= Y eiD' | e(D) = Y e:D' e e}.

i=0 i=0

This is a linear block code of length n(j + 1), and by (Z3)
its generator matrix can be written in the form

Go G ... G,
Go ... Gj—l

e = _ 24)
Go

where we put G; = 0 for [ > M. Clearly, the code Cg ;; is
obtained by truncating the code € to its first j + 1 entries.
A codeword of Cfq ;7 has the form (co, c1,...,c;j), where for
j<Mandeachl=0,1,...,j

!
a =Y G,
i=0

where ¢; = (cl(l) cl(")) for each .
We assume throughout that G has full rank, so the mapping

(25)

P

F¥ < F7 given by ugGo — ¢y is injective.
Definition 4. For j > 0 the j-th column distance of C is given
by

dj = min{wt(cio,;)(D)) | ¢f0,57(D) € Cpo 5, co # O}

Clearly, the value of dj is at least the minimum distance
of the truncated code Cpy ;. This follows because for the
column distance we seek the minimum of pairwise distances
of codewords that differ in the first coordinate, while the
standard minimum distance computation does not involve
this assumption. In many cases the column distance is in
fact strictly greater. This remark is important for the sliding
window repair which enables one to correct more erasures than
would be possible for block codes relying on their minimum
distance.

Convolutional codes support several forms of erasure repair.
One of them, called the sliding window repair [P8], [B7], is
based on the column distance and is used to correct erasures
in streaming applications [37]. We illustrate the idea of sliding
window repair in Fig. [, representing a code sequence of the
code C as a semi-infinite matrix whose columns are length n
vectors ¢;,1 = 0, and whose row ¢ i =1,...,n represents
the stream formed by the ¢th coordinates of the symbols ¢;,l =
0,1,.... We begin with fixing j based on the value of the
column distance dj of the code. The box in the figure shown
with dashed lines represents the window of length j + 1 that



contains the truncated code at time [ > j. The erasures within
the sliding window can clearly be repaired as long as their
number at no point exceeds dj — 1.

Having in mind streaming applications, one may argue that
a more efficient way of repairing erasures is to rely either
on the symbols at a fixed time instant, or on a small group
of symbols contained within the same stream 7. Accordingly,
in the next two subsections we define two types of locality
for convolutional codes, calling them the column and row
localities.

A. Convolutional codes with column locality

Column locality was introduced in [28]. First let us define
the ith column code C;,i = 0 of a convolutional code C as a
block code of length n given by

Gi = {Ci ‘ C(D) € G}

We say that a convolutional code € has (r,d) column locality
if for all ¢ the codes C; have the (r,0) locality property.

The results in [28] are based on a version of this definition
that requires that only the code Cj; support (r,d) locality.
This restriction may seem too narrow until one realizes that if
locality is present in the code Cj;, then every code C;,7 > 0
has the (r, ) locality property. This follows immediately from
(@) and the definition of C; because C; = Cp; for i > M
and C; forms a linear subcode of Cj; otherwise. The only
difference between this definition and the one given above is
that under the approach of [28], every code C; has similarly
aligned repair groups which are propagated from the repair
groups of €, while our definition allows differently aligned
repair groups for different values of <.

To enable local repair, we simply assume that every column
of the codeword forms a block code with (r,d) locality. An
example is given in Fig D, demonstrating sliding window repair
combined with column locality.

B. Convolutional codes with row locality

In this section we introduce and study another notion of
locality for convolutional codes. Given a convolutional code
C, define the ith row code GEO) ] 1 <4 < n truncated at jth
time instant, j > 0, as follows:

(2)
€l = {cfo =

Deﬁnltlon 5. We say that G has (r,0) row locality if for all

> 0 the codes GEIL)H 1 < i < n have the (r,0) locality

property, where j = 0 is fixed.

=(c,....dMy | cee) (26)

In the case of tailbiting codes, it is more convenient to give
this definition in the following form, which will also be used
in our constructions below.

Definition 6. Let j > 0 be fixed. A convolutional code C has
(r,0) row locality at time j if every code GES)J], 1<i<n
has (r,9) locality.

We give two examples of repair with row locality. Namely,
Figure B illustrates Def. B while Figure 8 applies to the case of
tailbiting codes and Def. B. Let us stress that whenever local

repair by rows is not possible, we fall back on sliding window
repair relying on the column distance of the truncated code.
The problem that we address is to construct convolutional
codes with locality and large column distance. This is similar
to the problem studied in [28] and also to the case of block
codes with locality and large minimum distance. We begin
with deriving an upper bound on the column distance of the
truncated code with either column or row locality property.

Proposition 10. (a) Let C be an (n, k) convolutional code with
(r,0) (column or row) locality. Then for any j > 0, the j-th
column distance satisfies

k
i <(n—k)(G+1)+0— Lw (6 —1). (27)
(b) Equality in () implies that for all © < j, the i-th
column distance satisfies
d=m-ni+y+i-[Ee-n. e
r

The proof is given in Appendix O.

Part (b) of this proposition is similar to the propagation of
the column distance optimality property in the case of general
convolutional codes proved in [II]. Namely, the Singleton
bound implies that the column distance for all j satisfies

dj <(n—k)(Gj+1)+1, (29)
and equality for a given j implies that all the other distances
d$,1 < j also attain their versions of the Singleton bound with
equality.

C. Comvolutional codes and quasicyclic codes

A transformation between these two code families was
constructed in [B2], and it has led to a broader family of
convolutional codes and trellises now known as tailbiting
codes (tailbiting trellises) [IR]. An (n(m + 1),k(m + 1))
quasicyclic code can be defined by a generator matrix

G=(Gij),i=0,....k—1,j=0,....n—1
where each G;; is an (m + 1) x (m + 1) circulant matrix.
With a given matrix G;; we associate a polynomial g;;(D) =
Yito gDt where (go, ..., gm) is the first row of the matrix.
Then the k x n generator matrix G(D) = (g;;(D)) defines an
(n, k) convolutional code. The authors of [B2] showed that if
one takes the input sequences of the convolutional code in the

form

u(D) = 2 w D! such that u_, = w1
I=—M
fors=1,...,M, (30)

then the convolutional code is equivalent to the quasicyclic
code defined above. In other words, the quasicyclic code
can be encoded convolutionally, and the convolutional code
with “symmetric” input sequences as in (B0) is exactly the
quasicyclic code.
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Fig. 1: SLIDING WINDOW REPAIR. Suppose C is an (3,2) convolutional code with d§ = 4. Let (c(1),c(?),c(3)) € € be a codeword, where the crosses
denote erasures. At time instant [ = 2, there are two erasures in the window of length three (dashed box in the left figure), which is less than the 2nd column
distance. However, neither of the two erasures are in the first column of the window, and thus their recovery is postponed until later. At time ! = 3 (right
figure), the sliding window contains 3 erasures, of which one is in the first column. This erasure can be recovered from the other symbols in the window.

The remaining erasures are corrected in the next steps as long as the number of erasures in the window does not exceed d§ — 1.
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Fig. 2: SLIDING WINDOW REPAIR WITH COLUMN LOCALITY. Suppose C is a (4,2) convolutional code with (1,2) column locality and d§
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= 6. Let

(c(l)7 @ B3] 0(4)) € C be a codeword, where the crosses denote erasures, and different repair groups in the columns are shown in different colors. At

time ! = 2, the window of length j + 1 = 3 contains 4 erasures. Of these, the symbols c
| = 3 the window contains 5 erasures, of which two in the first column can be repaired from the other symbols in the window, while the symbol cgl

be recovered locally.

D. A family of tailbiting convolutional codes with row locality

We come to the main result of this section, which is a
construction of a family of convolutional codes with (r,d)
row locality. This family of codes has the largest possible
minimum distance for the truncated code Cp j}, however we
stop short of showing that the j-th column distance attains
() with equality. The construction is achieved by exploiting
the connection between quasi-cyclic codes and convolutional
codes discussed above. In high-level terms, our plan is to
construct a cyclic code from its set of zeros chosen according
to the procedure in Sec. [, writing it in a quasicyclic form (via
a circulant generator matrix) and to construct a convolutional
code using the technique discussed above. We note that the
lower bounds on the column distance of the codes constructed
here and in [28] coincide. At the same time, the field size
needed for our construction is linear in the output length n of
the code at each time instant whereas the construction in [28]
requires exponentially sized alphabet.

Let us first construct an (n(j + 1),k(j + 1)) cyclic LRC
codes with (r, d) locality. We proceed similarly to Sec. [T=Al.
We will need a few assumptions regarding the parameters of
the code. Let j > 0 be such that £ < j + 1 < n and that

84), céQ) can be recovered within their repair groups. Then for

)

can

j+1=(r+¢—1)v where v > 1. Let F,; be a finite field
such that n(j+1) | (¢—1) and let a € F; be a primitive root
of unity of order n(j + 1) in F,,.

The set of zeros of the code is obtained as follows. let
Z1 = {1,...,0 — 1}. Using (@) and setting Dy = Z;, we
have
v—1
@i +1(r+5-1)).
1=0

Zy = €1y

Further, let £3 = [J/Z, (2o + I(j + 1)) and let Dy =

{1,...,03 — 1}, where

k(j+1)

53:(nk)(j+1)+5[ -

} (6-1). (32

Finally, put Z = £3 U D3 and let B be the cyclic code with
generator polynomial g¢(z) = [[,.. (z —a"). Note for future
use that the complement of the set Ds in the set of exponents
of « has cardinality

|Ds| =n(j +1) — (65 — 1)
—k(j+1)+ ([@] ~1)E-1. 63
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Fig. 3: SLIDING WINDOW REPAIR WITH ROW LOCALITY. Suppose € is a (4, 2) convolutional code with (1, 2) row locality d = 8. Let (c(), c(2),¢(3) (1)) €
C be a codeword, where the crosses denote erasures, and different repair groups in the rows are shown in different colors. At time [ = 3, by row locality, the
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symbols ¢,

)

,C5 ~ can be recovered from the other symbols in their respective repair groups. At time [ = 4 there are four erasures in the window

of length four, which is smaller than dg, so they are recoverable. Thereafter the two remaining erasures can be recovered relying on row locality.

Sliding window starting from time [ = 0

Sliding window starting from time [ = 2

wix] Ix] Ix] Ix] ol T ix] [ ] [x]
@iIxX | X X | X| i i X X
oiX | x| x| x| e X X
3 X X X | X | | >< X

Fig. 4: SLIDING WINDOW REPAIR WITH ROW LOCALITY FOR TAILBITING CODES. Suppose C is a (4, 2) unit memory tailbiting convolutional code with (1, 2)
row locality and d$ = 16. Let (c(l)7 @ ()] c(4>) € C be a codeword, where the crosses denote erasures, and different repair groups in the rows are shown

in different colors. There are a total of 16 erasures. First we engage row locality to repair symbols c(()2), cgz), c,
the sliding window starting from time [ = 0, the remaining two erasures in the first column can be recovered. After that, ¢

(()4), cg4), whereupon 12 erasures remain. In
51 n (3

,c, ~ can be recovered locally.

Next, we move the sliding window to start at time [ = 2. (Note that the window is wrapped around.) The erasures in the first column of this window
can be recovered since the number of erasures is smaller than the column distance, and after that the remaining erasures can be recovered relying on row

locality.

In the next theorem we give an explicit representation of the
code B in quasicyclic form, and we also specify its locality
properties.

Theorem 11. (a) The code B is an (n(j+1),k(j+1)) optimal
LRC code with (r,0) locality, and the punctured codes
- Cleng) | (co, -

Bl = {(cl7cl+na-- '7cn(j+l)—l) E%}7

1=0,....,n—1,

,n

are LRC codes of length j + 1 with (r,0) locality.
(b) Furthermore, if k|n, then the code B is equivalent to a
code with generator matrix G given by

G=(Gy)i=0,....k—1,1=0,...n—1,

where every G is a (j + 1) x (j + 1) circulant matrix. For

every i =0,1,...,k — 1 the matrices G;; satisfy
Gy — Ij+1 lfl:’én/k‘
TTl0 ifte{on/k, ... n —n/k}\{in/k}.

Proof: (a) We note that the set of zeros of the code B
is partitioned into segments of length » + § — 1, i.e., has the

structure of the set £ in (@). In other words, the generator
polynomial of B satisfies

nv—1
n(x —al)|gs(z), where £ = U (Z1 +s(r+d0—1)).
tel s=0

Therefore, Lemma B implies that the code B has (r, §) locality.
To compute the dimension of the code B we count the
number of its nonzeros. They are all located in Ds. This
is a consecutive segment of exponents, and by (B1l), within
each whole subsegment of length » + 6 — 1 in it there
are r nonzeros. Once all such segments are accounted for,
there may be an incomplete segment left, which contains
min(|D3| — [T‘ga’_llj(r + 8 —1),r) zeros. As easily checked,
the total number of nonzeros in either case is k(j + 1), which
is therefore the dimension of the code B. The distance of B is
at least d3, and the bound (B) implies that the code B has the
largest possible distance for the chosen locality parameters.
Examining the structure of zeros of the punctured codes By,
we observe that they satisfy the assumptions of Lemma B, and
thus the punctured codes B; also have (r,d) locality. Indeed,




let | = 0. By Lemma B, Eq. (B), the code B(?) given by

B(O) = {(007 Cnus - - vc(r+§f2)nu) | (COv R Cn(j+1)71) € B}

has dimension at most r and minimum distance at least . This
implies that the coordinates that are multiples of nv isolate a
repair group of the code By. By shifting this set of coordinates
to the right by n positions, we obtain another repair group of
B, which is disjoint from the first one. After several more
shifts we will reach the set of coordinates {n(v — 1),n(v —
1)+nv,...,n(v—1) + (r+ ¢ — 2)nv}. The collection of the
sets constructed along the way forms a partition of the support
of By into disjoint repair groups. The same argument works
for every code B;,1 < I < n — 1 whose repair groups are
formed by shifting the repair groups of B to the right by [
positions. This concludes the proof of Part (a).

Let us prove Part (b). Recalling the discussion in the
beginning of Sec. [0, it is possible to represent the generator
matrix G of the code to have rows of the form

1),
tef{0,...,n(j +1)—1}\2,

((O[t)n(jﬂ)q7 (O[t)n(jJrl)fZ? B

(34)

(note the inverse order of the exponents). Let
J={0,n/k,...,n(j+1)—n/k}

be a subset of coordinates. As before, we label the columns of
G by the exponents of « from 0 to n(j+1)—1 and consider a
square k(j+1) xk(j+1) submatrix Gy formed of the columns
with indices in J. We claim that Gy is invertible. Indeed, the
rows of (G5 have the form

aft((atn/k)k(jﬁq)’ (atn/k)k(j#l)fl’ B atn/k)7

)

tef0,...,n(j +1) — 1\Z,

and thus it forms a Vandermonde matrix generated by the set
(a*™/*) for all t outside the set of zeros Z. We will assume that
the submatrix G5 = Ij,(j41) (the identity matrix) and continue
to use the notation G for the resulting generator matrix of the
code.

Let gi0,9i1s- -5 Yin(j+1)—1 be the ith row of G, where i €
{0,...,k—1}. With an outlook of constructing convolutional
codes later in this section, define the polynomials

n(j+1)—1

9:(D) = Z

s=0

gi,sDS

J
gia(D) = . gimssiD', 1=0,1,....n—1.  (35)
s=0

Then we have

n—1 J n—1
gi(D) = >, D' ginsti D™ = Y D'gi (D),
=0 s=0 =0

Since Gy is the identity matrix, we have g; ;,,/(D) = 1 and
gi1(D) =0 forl e {0,n/k,...,n—n/k}\{in/k}.

To write the generator matrix in the circulant form given
in the statement, we need to form the matrices G;;. This is
accomplished by writing the coefficients of g; ; (D) as the first
row of G and filling the rest of this matrix by consecutive

cyclic shifts to the right. This yields the following (j + 1) x
n(j + 1) matrix
(Gi,o Gia Gi,n—l) .

Note that each row in this matrix is a codeword of the code
(equivalent to) B. Finally, the matrix

(36)

Goo Go1 Gon—1
G1,0 G1,1 G1n-1
G= ) . : (37)
Gi—10 Gr-1:1 Gr—1,n—1
formed of the rows (B8) for ¢ = 0,...,k — 1 generates a code
equivalent to the code B. [ ]

This theorem gives an explicit representation of B as a qua-
sicyclic code, and we can use this representation to construct
a convolutional code following the method in Sec. II=Cl. Let
G(D) = (9;,1(D)) be a k x n generator matrix where g; ;(D)
is defined in (B3). Since deg(g;;(D)) < j, we conclude that
the memory of the generator matrix G(D) is M < j. Having
(B0) in mind, define an (n, k) tailbiting convolutional code
over C = Cjg ;) € F,[D] as a set of sequences

€= {c(D) | (D) = u(D)G(D);u(D) = ), u,D*%
s=—M

Uog = Ujp1-s,5 = 1,..., M}

Here j,k — 1 < j < n —1 is any integer such that (r + 0 —
1)|(j + 1) and k|n.

The next theorem states the main properties our construc-
tion.
Theorem 12. The code C has (r,0) row locality. When viewed
as a block code, the minimum distance of C attains the bound

B).

Proof: For Il =0,...,n — 1, we have
k=1
(D) = > ul(D)gi.(D).
i=0
Furthermore, since u_, = u;11—, for s =1,..., M, we have

the following relation
k=1 _
(D) = > u(D)g; (D) mod (D/' —1).
i=0

In other words, we have
(0(0)0(1) ... c(”_l)) = (u(o)u(l) .. .u(k_l)) G,

where the matrix G is defined in (B2). This implies that the
codes € are exactly the codes B; defined in Theorem [i(a),
viz., @) = B, for | = 0,...,n — 1. Since the code B; has
(r,9) locality for I = 0,...,n — 1, we conclude that the code
C has (r,d) row locality. Concluding, we have established that
the convolutional code € has (r,d) row locality.

As ablock code, € is equivalent to the code B, which proves
the last claim of the theorem. [ ]

The large minimum distance of the code C is related to the
performance of the (hard decision) Viterbi decoding of the
code C, and is therefore of interest in applications.



As remarked earlier, the constructed codes stop short of
attaining the bound (7), and thus cannot be claimed to be
optimal. Of course, as observed after Def. B, the jth column
distance of the code € is at least the minimum distance of the
code B, given by (B2), but a more precise estimate remains an
open question. Nevertheless, we believe that extension of the
basic construction of LRC codes to the case of convolutional
codes carries potential for future research into their structure.
In particular, the algebraic machinery of quasicyclic codes of
[22], [25] could lead to new constructions, and it may also
be possible to further extend these studies to codes over ring
alphabets [26].

IV. BI-CYCLIC CODES WITH AVAILABILITY

The H-LRC codes constructed in Sec. O rely on h em-
bedded recovering sets for each code coordinate, which are
not disjoint. In this section we consider LRC codes with ¢
disjoint recovering sets for each code coordinate, i.e., LRC
codes with availability ¢ (here we do not pursue a hierarchy
of locality). This arises when the data is simultaneously
requested by a large number of users, which suggests that the
erased coordinate afford recovery from several nonoverlaping
recovering sets in order to increase data availability. LRC
codes with this property are defined as follows [29], [3S].

Definition 7 (LRC CODES WITH AVAILABILITY). Let t > 1
and (r1,01),...,(r¢,0t) be integers. A code C < Fy is said
to have availability t with locality (r1,01),...,(r¢,0t) if for
every coordinate j,1 < j < n of the code C there are t
punctured codes €1 < i <t such that j € supp(€?),i =
1,...,t and

(a) dim(CW) < ry,

(b) d(C) = 4,

(c) ﬂ§:1 supp(C) = {j}.

Below we limit ourselves to the case ¢t = 2. We say
that two partitions Py, P, of the coordinates of the code
are orthogonal (or transversal) if |P; n P»| < 1 for any
P, € Py, P, € P5 and every coordinate is contained in a pair of
subsets X € P1,Y € P,. Orthogonal partitions enable multiple
disjoint recovering sets and were used in [B3] to construct
codes with availability. A simple observation made in [33] is
that product codes naturally yield orthogonal partitions, and
it is possible to use products of one-dimensional cyclic codes
to support this structure. A drawback of this approach is that
product codes result in rather poor parameters of LRC codes
with availability, in particular the rate of the resulting codes
is low (although the alphabet is small compared to the code
length [06], [33]). It is well known that the rate of product
codes can be increased with no loss to the distance by passing
to generalized concatenations of codes [S]. In this section we
use a particular case of this construction given in [B0] and
sometimes called hyperbolic codes. The resulting LRC codes
with availability have the same distance guarantee as simple
product codes while having a much higher rate. As above, our
starting point is the general method of Theorem O, and we
proceed similarly to Eq. ().

We start with a finite field F, and assume that the code
length n divides ¢ — 1. We further choose the size of the

repair groups to be 1,79 and suppose that 0 < r; < r9 and
(r1 + 1)|n and (r2 + 1)|n. Further, let vy = n/(r; + 1) and
vy = n/(ro+1). Let a € F, be a primitive n-th root of unity.
To simplify the expressions below, we will construct codes
with 6; = d2 = 2. To construct the defining set Z of our code,
let

Ll = @, Dl = {(0,0)}, Zl = Ll ) Dl. (38)

Let us fix the designed distance of the code C to be ¢ = 2.
Define

vi—1ln—1

Lo = U U (Z1 + (l1(r1 + 1), 7)),
1,=0 j=0
n—1 Dgfl

L272 = U (Zl +(i,l2(7‘2+1))),
1=0 l2=0

Lo =Ly1ULos,

fDQ = {(Zaj) | (Z + 1)(] + 1) < 6}; Zo = Lo u fDZ-
Note that zeros are now indexed by pairs of exponents, and
pairs are added element-wise. Finally, put Z = Zs.

Consider a two-dimensional cyclic code € = {g(x,y)) of
length n2, where

gwy) = [] (@—a)y—a)).

(i,)€Z

(39)

Lemma 13. The code C has two disjoint recovering sets of
size r1 and ro for every coordinate.

Proof: The proof relies on Lemma B. For ¢ € C, let us
write ¢ = (¢;,;) where 0 < i <n—1,0 < j < n—1.Fix j and
let G(l) = {(COJ,CMJ‘, . 7Crlyl7j) ‘ Cc € G} and let ,Czjzl =

;/11;01(2,1 +(I1(r1+1),4)). The generator polynomial for the
punctured code {(cg j,c1,j,.-.,¢n-1,5) | ¢ € C} is given by
¥ 11 jyez (x—a’), which is divisible by [igecs, (x—ab).
Then, by arguments similar to Lemma B we conclude that the
code C() has dimension at most 7, and distance at least 2.
Since the code is cyclic in both dimensions, we also claim
that every symbol of the code € has a recovering set of size
at most r; for one erasure.

Repeating the above arguments for a fixed index ¢, we
isolate another recovering of size r, for every coordinate. Fur-
thermore, the two recovering sets are disjoint by construction.

|

To estimate the distance, recall the following result about
bicyclic codes.

Lemma 14 (HYPERBOLIC BOUND [BU]). Suppose that the
defining set of zeros of an n x n bicyclic code contains a
subset given by Z = {(i,j) : (i + 1)(j + 1) < d}. Then the
distance of the code is at least d.

Thus, the distance of the code € constructed above is at
least 4, and its dimension dim(€) = n? —|Z|. Let us estimate
the dimension from below. We have



<0(1+In(d-1)).
Therefore, we have

n® —|Z] = n® = [La| — | Dy
=n?—(ri+ro+ Dy —6(1+1In (5 — 1))
. 77,27"1 T2
(i) (re + 1)
To compare this estimate of the dimension with product
codes, let €’ be a direct product of two cyclic LRC codes of
length n with locality r and distance v/6. The defining set of
this code are given by 2/ = £’ U D’, where

L'={(i,7) | i,j = 1 mod (r + 1)},
D ={(i,§) |i,j=1,...,v/6 —1}.

Choosing 71 = 79 = 7 in our construction, we have Lo +
(1,1) = L. It is also easy to see that |Z| < |Z/| and thus,
dim(C) = dim(€’).

Let us write out an estimate for the rate of the constructed
codes. Putting vy = ro = r in (E), we obtain for the rate
of the code C the following estimate in terms of the relative
distance = §/n?:

—§(1+In(6—1)).  (40)

2 N 1
r+1 (r+1)2
The best known upper bound on the rate of LRC codes with

locality r, availability ¢, and relative distance 6 [Z1] has the
form

R>1 —0(1+1In(5 —1)).

Rgr—l

(1—6) —o(1).

The gap between this bound and the lower estimate implied
by our construction is roughly O(% +61nd).

Example 3. Let vy = 2, ro = 6, and § = 9. Our construction
gives rise to an LRC code with availability two, of length n? =
441, dimension k = 246, and distance d = 9, over a finite field
F, such that 21|(q — 1) (for example, we can take q = 64).
To compare these codes with the product construction, let us
choose the column codes and row codes of length 21 and
distance 3, and let us take the maximum dimension of codes
as given by the bound () for locality 2 and 6. This gives
k1 = 13, ko = 17 and the overall dimension k = 221, lower
than above.

An extension of the construction in this section to the case
of ¢ > 2 can be easily obtained via ¢-dimensional cyclic codes
and the general hyperbolic bound. Furthermore, using proce-
dures similar to those used in (d) and (), our construction
can be generalized to h > 2 levels of hierarchy such that the
local codes in each of the h levels have availability ¢ > 2.

APPENDIX A
PROOF OF PROPOSITION B

Let us first prove a technical claim.
Claim 15. For 1 < i < h+1, we have §; = (4; —bgil)) mod
ni.
Proof: We prove the claim by induction. Clearly, for 7 = 1
we have §; = (61 — b(()o)) mod n;. Next suppose that for a

given 4,1 < i < h+1 we have §; = (6¢—béi71)) mod nj. Re-

ducing (I3) modulo n;, we obtain the equality (d; — bé’fl)) =
(0541 — bgL)) mod n;. Thus also 61 = (641 — bgL)) mod nq,
and this completes the proof. [ ]

Now we are ready to prove Proposition B. Clearly, for ¢ = 1
we have |Z1] = d1 — 1 = ny — 1. Suppose for 1 < ¢’ < i we
have |Z;| = ny — ry, where 1 <4 < h + 1. Let us establish
the induction step.

By the definition of Z;,1 and (I3), we have |Z;1]| = (v; —
a;)n;. Consider the set

Ai+1 = (l/i — ai)ni + {51 — béi_l) — 01 + 1,
0; — b(()i_l) — 01 +2,...,ni}
formed by adding (v; — a;)n; to every element of the subset

above, and let B;;q = A;11 N D;y1. Since Ul”;g“i‘l(zi +
In;) € D;y1, we have

|Zi1] = (i — ai)ni + [Big i \(Zi + (v — ag)ny)]
v;—1

+‘ U (Z; + In;)

l=v;—a;

Next, we would like to determine the cardinality of the set
B/L+1\(Z/L + (I/i — ai)ni). By Claim I3, we have 01 = ((5z —
b5 ") mod n;. Therefore, [A;1| is divisible by n1. Note that

Bir1 € A;+1. Moreover, among the first ul@lm_l elements

of A;,1 there are ug?lri,l — bé’;l) elements that are in B, 1

but not in Z; + (v; — a;)n;. For the next ul?

i
i_oMi—2 €lements
in A;,1 there are ul(-i)zri_g elements that are in B;,; but not

in Z; + (v; — a;)ny, and so forth. Hence, we have

[Bir1\(Zi + (vi — ai)ng)|

i—1
= Z ug»i)rj + u(()i)rl + b(()i) — béi_l)
j=1
= bz
It follows that
vi—1
Zis1] = (vi — as)ni + bi + ‘ U @i+
l=v;—a;

= (Vi — ai)ni +b; + ai\Zi|
= Ni+1 — Q3N + bz + ai(ni — 7’1')

=n;41 — (a;mi — b;)

(41)

=Ni4+1 — Tit+1,

where (ED) uses |Z;| = n; — r;, which is the induction
hypothesis. This completes the proof.

APPENDIX B
PROOF OF LEMMA B

We again argue by induction on ¢. For ¢ = 1, by (I3) we
have

02 = (11 —a1)ny + 61 + uél)nl + bél) — b(()o)

=ng —aini + 01 + uél)(nl —7r1) + b
=ng —ay(ry + 61 — &) + 1 +uél)

42)
(’Ill — 7“1) + b



_712—7‘24-51—@1((51—50)-"-11,0 ((51—(50)

=ng — 79 + 01 — (al—uo )(61—(50)

=n2—7‘2+51—[“
1

where (E2) follows from ny

a1r1 = ro+b1, and the last equality follows from a4

(51 - 60)7

and u§” = (1" + by /r1] = 0.

For the induction step, let us fix 7,1 <

that

(43)

= nyvp and (I2), in (E3) we used

[r2/r1]

< i < h and suppose

.
Sig1 =it — g1+ 0 — Y, [Hw (6 —d1—1), (44

=T

provided that conditions (I[4) are satisfied. Observe that

Jita = (Vit1 — Qig1)Nig1 + 0ig1

+ Z u;iﬂ)n] + u((f+ )nl + b(()iﬂ) — b((f)

= Myy2 — Qip1Niq1 + 0ig1

+Zul+ -

ri)+ u(()“r )

Substituting n;41 from (E4), we obtain

Aip1Mip1 = Qg1 (TH-l + 6iy1 — 05

+ 121 [”;1](51 - 51,1)). (46)

In addition, also by the induction hypothesis, we have

u(()iH)(nl —r) = u(()Hrl
u g —ry) =

(81 — 60),
)(5 —6j-1)

(711 — 7‘1) + bi+1

(45)

Z z+1)[7“a1 (8 — 81_1),

Therefore,

1<7<

Pl g =)+ ulf TV (=)

ST R [ TR

Jj=l+1
+ul (8, — 80).
Substituting (E6) and (E2) into (EY), we obtain

Jj=1

Oiva = Niyo — Tiyo + 0ip1 — air1(dip1 — 04)

+Z< (z+1)+ Z (z+1)“:ﬂ

- CLHJ

n (u(()i-H)

J=l+1

-
(z+1 +Z z+1)[

Jj=2

Ty
T1

|

(47)

— a1 [rzl ]) (81 — o).

Thus, if the corresponding conditions of (I4) are satisfied, then
we have
{aa g )
Siya = Niga — Tig2 + 01 — ) [7” W(5i+1 —0;).
= T

This completes the induction step.

APPENDIX C
PROOF OF PROPOSITION [

Part (a): The generator matrix of the truncated code Cpg ;) is
given in (Z4), where rank(Gg) = k.

Since G has full rank, by Definition B, the j-th column
distance of C is equal to

d; = min{wt(u[OJ]G;) | up # 0},

where upg ;] = (uo,-..,u;) € F];(jH) is an input sequence
truncated at the j-th time instant. Obviously,

d; < min{wt(u[o,j]Gﬁ) |
ug # 0,u1 = uo = ... = U; :0}. (48)

Consider the k x n(j + 1) submatrix [Go, G1,...,G;] that
forms the first & rows of Gf. By elementary row operations
it is possible to make some, say first, k£ columns of G; be
all-zero, and the same is true for some k columns of the
matrices G;,i = 2,...,j. (Note that to accomplish this,
we use all the rows of G§ and not just the rows of the
submatrix [Gy, G4, ..., G,].) As a result, the vector b(ug) :=
uo[Go, G, ..., G,] will contain at least kj zero coordinates
for any choice of ug € ]F’; , and so the effective length of the
set of vectors {b(ug)} is n(j + 1) — kj. The set of vectors
{b(ug) | uo € F%} is a subset of the code Cg ;) and it forms
a linear code X of effective length n(j + 1) — kj with (r,9)
locality if the original convolutional code € has (column or
row) (r, ) locality. The distance of the code X gives an upper
bound on d5, and is itself bounded above as in (B). Substituting
the parameters of the code K, we obtain the bound () for
the distance d; Part (a) is proved.

Remark: Without the locality assumption the above argu-
ment proves the Singleton bound (Z9) for the column distance
of the code C.

Part (b): Recall the following observation (e.g., [I1]):

Proposition 16. Ler j > 0. Let H be the parity check matrix
Jor the truncated convolutional code C[q ;). Then the following
properties are equivalent:
1) dj=d
2) none of the first n columns of H is contained in the span
of any other d—2 columns and one of the first n columns
of H5 is in the span of some other d —1 columns of Hj.
Now suppose that d; attains () with equality while dj_; <
(n—k)j+6—[%] (6 —1). By Proposition [, there exists a
column among the first n columns of H7_; such that it is in



the span of some other dj_; — 1 columns of H7_;. Note that

C

j_

1 1s a submatrix of H. Specifically, we have

0

HE — Hf_4 2
J O
H; Hj_, H, H,

where H;,1 < i < j are (n—k) x n matrices and rank(Hy) =
n—k. Because of this, there exists a column among the first n
columns of H7 such that it is in the span of some other dj_; —
1+n—Fk <dj—1 columns of H7, which by Proposition I8
contradicts our assumption about d; Hence, it follows that the
optimality of the j-th column distance implies the optimality
of the ¢-th column distance for all 7 < j for convolutional
codes with (column or row) locality.
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