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Cyclic and convolutional codes with locality
Zitan Chen Alexander Barg

Abstract—Locally recoverable (LRC) codes and their variants
have been extensively studied in recent years. In this paper
we focus on cyclic constructions of LRC codes and derive
conditions on the zeros of the code that support the property
of hierarchical locality. As a result, we obtain a general family
of hierarchical LRC codes for a new range of code parameters.
We also observe that our approach enables one to represent
an LRC code in quasicyclic form, and use this representation
to construct tail-biting convolutional LRC codes with locality.
Among other results, we extend the general approach to cyclic
codes with locality to multidimensional cyclic codes, yielding new
families of LRC codes with availability, and construct a family
of q-ary cyclic hierarchical LRC codes of unbounded length.

Index Terms—Hierarchical locality, tail-biting codes, sliding
window repair, bi-cyclic codes.

I. INTRODUCTION

A. The locality problem: main definitions

Locally recoverable (LRC) codes form a family of erasure
codes, motivated by applications in distributed storage, that
support repair of a failed storage node by contacting a small
number of other nodes in the cluster. LRC codes can be
constructed in a number of ways. A connection between LRC
codes and the well-studied family of Reed-Solomon (RS)
codes was put forward in [33], where codes with large distance
were constructed as certain subcodes of RS codes. The results
of [33] paved the way for using powerful algebraic techniques
of coding theory for constructing other families of LRC codes
including algebraic geometric codes [3], [23], [24]. In [35] it
was observed that a particular class of the codes in [33] can
be represented in cyclic form, and the distance and locality
properties of cyclic LRC codes were described in terms of
the zeros of the code. This established a framework for cyclic
LRC codes that was advanced in a number of ways in several
recent works [4], [7], [15], [27].

In this paper we focus on several aspects of cyclic LRC
codes that have not been previously addressed in the literature.
The first of these is codes with hierarchical locality (H-LRC
codes), defined in [31], which assume that the code can correct
one or more erasures by using a subset whose size depends on
the number of erased locations, increasing progressively with
their count. In addition to defining the problem and deriving a
bound on the parameters of H-LRC codes, the authors of [31]
extended the construction of [33] to the hierarchical case. Their
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construction was further generalized to algebraic geometric
codes in [1].

Another general problem related to cyclic codes that we
study addresses construction of LRC convolutional codes. This
class of erasure codes was considered in several previous
works [8], [17], [40] before being thoroughly analyzed in
a recent paper [28]. Here we exploit a classic link between
quasicyclic codes and convolutional codes [32] to construct
LRC convolutional codes with a particular type of locality
whose parameters are controlled by the set of zeros of the
underlying (quasi)cyclic code.

We also address the problem of maximum length of optimal
LRC codes [14], wherein the main question is constructing
such codes of length larger than the size of the code alphabet.
This problem has been the subject of a number of recent papers
including [2], [4], [24], and we study this question in the
hierarchical case. Our techniques here combine the approach
to cyclic H-LRC codes developed in this paper with the ideas
of [27] aimed at constructing long LRC codes.

We describe the known and the new results in more details
after giving the basic definitions. In coding-theoretic terms,
the central problem addressed by LRC codes is correcting one
or several erasures in the codeword based on the contents of
a small number of other coordinates. This problem was first
isolated in [12], and it has been actively studied in the last
decade.
Definition 1 (LRC CODES). A linear code C Ă Fn

q is locally
recoverable with locality r if for every i P t1, 2, . . . , nu there
exists an r-element subset Ii Ă t1, 2, . . . , nuztiu and a linear
function ϕi : Fr

q Ñ Fq such that for every codeword c P C we
have ci “ ϕipcj1 , . . . , cjr q, where j1 ă j2 ă ¨ ¨ ¨ ă jr are the
elements of Ii.

The coordinates in Ii are called the recovering set of i, and
the set tiu Y Ii is called a repair group. Below we refer to
a linear LRC code of length n, dimension k, and locality r
as an pn, k, rq LRC code. Since the code is occasionally used
to correct a large number of erasures (such as in the event
of massive system failure), another parameter of interest is
the maximum number of erasures that it can tolerate. This
is controlled by the minimum distance dpCq of the code, for
which there are several bounds known in the literature. We
will be interested in the generalized Singleton bound of [12]
which states that for any LRC code C,

dpCq ď n ´ k ´

R

k

r

V

` 2. (1)

While in most situations repairing a single failed node
restores the system to the functional state, occasionally there
may be a need to recover the data from several concurrent node
failures. The following extension of the previous definition is
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due to [20].
Definition 2 (pr, δq LOCALITY). For any δ ě 2 we say that
a linear code C has pr, δq locality if every coordinate i P

t1, . . . , nu is contained in a subset Ji Ă t1, . . . , nu of size at
most r` δ ´ 1 such that the restriction CJi to the coordinates
in Ji forms a code of distance at least δ.

Note that in the case of δ “ 2 the codes defined here are
exactly the codes of Def. 1 above.

An intermediate situation arises when the code is designed
to correct a single erasure by contacting a small number r1 of
helper nodes, while at the same time supporting local recovery
of multiple erasures. Extending this idea to multiple levels of
local protection, the authors of [31] introduced the concept
of hierarchical LRC (H-LRC) codes, which are defined as
follows.
Definition 3 (H-LRC CODES). Let h ě 1, 0 ă r1 ă r2 ă

. . . ă rh ă k, and 1 ă δ1 ď . . . ď δh ď d be integers.
A linear code C Ă Fn

q is said to have h-level hierarchical
locality pr1, δ1q, . . . , prh, δhq if for every 1 ď i ď h and every
coordinate of the code C there is a punctured code Cpiq such
that the coordinate is in the support of Cpiq and

(a) dimpCpiqq ď ri,
(b) dpCpiqq ě δi,
(c) the i-th local code Cpiq has pi ´ 1q-level hierarchical

locality pr1, δ1q, . . . , pri´1, δi´1q.

The authors of [31] proved the following extension of the
bound (1): The minimum distance of an h-level H-LRC code
with locality satisfies the inequality

d ď n ´ k ` δh ´

h
ÿ

i“1

R

k

ri

V

pδi ´ δi´1q, (2)

where δ0 “ 1. In particular, for h “ 1 this gives a version of
the bound (1) for the distance of an pn, kq code with pr, δq

locality:

d ď n ´ k ` δ ´

Qk

r

U

pδ ´ 1q. (3)

We call an H-LRC code optimal if its distance attains the
bound (2). Note that it is possible that the code is optimal
while its local codes Cpiq for some or even all i ď h ´ 1 are
not. We say that an H-LRC code C is strongly optimal if in
every level i, 1 ď i ď h, the i-th local codes are optimal H-
LRC codes with i ´ 1 levels. For h “ 1 the distance of the
optimal code with pr, δq locality attains the bound (3) with
equality.

B. Earlier results and our contributions

As noted above, the starting point of our constructions is a
cyclic version of the RS-like codes with locality designed in
[33]. RS codes over Fq can be alternatively described in terms
of polynomial evaluation and (in the case that the code length
n divides q ´ 1) as cyclic codes of the BCH type. While [33]
adopted the former approach, the authors of [35] studied the
cyclic case, finding a condition on the zeros of the code that
support the locality property.

The approach of [35] was later advanced in a number of
ways. In particular, the authors of [7] extended the main

construction of [35] to codes with pr, δq locality, designing a
cyclic representation of the polynomial evaluation codes from
[33] for the general case of δ ě 2.

Our main results relate to constructions of cyclic LRC codes
with hierarchy. Several recent studies presented families of
codes with multiple levels of erasure correction [10], [13],
[39], not necessarily within the framework of the above defi-
nition. As far as H-LRC codes are concerned, the only general
family of optimal H-LRC codes that we are aware of was
presented in [1], [31]. This construction essentially followed
the approach of [33], relying on multivariate polynomials that
are constant on the blocks that form the support of the code
Cpiq in Def. 3. The codes of [1], [31] form a family of strongly
optimal H-LRC codes which can be constructed for any code
length n ď q, dimension k, and any values of ri, i “ 1, . . . , h
as long as ri|ri`1, i “ 1, . . . , h ´ 1 and rh|k. The divisibility
constraint is essential for the constructions discussed, and it
limits the possible choices of the code parameters.

In this paper we derive conditions on the zeros of a cyclic
code that support several levels of hierarchy. As a result, we
construct families of cyclic H-LRC codes that do not rely on
the divisibility assumptions, which yields a new range of code
parameters. We also derive conditions that are sufficient for
our codes to be strongly optimal and give examples of such
codes. These results are presented in Sec. II-A.

These results also enable us to connect the construction
of LRC cyclic codes and convolutional codes with locality.
The recent work [28] focused on the so-called sliding window
repair property of convolutional codes. The authors of [28]
further observed that certain families of convolutional codes,
notably the so-called codes with the maximum distance profile
[11], [37], suggest an approach to constructing codes with
locality. They also presented a family of LRC convolutional
codes with sliding window repair for the case of column
locality, and they suggested that there may be a connection
between H-LRC codes and LRC convolutional codes. We show
that this connection indeed leads to fruitful results, designing
LRC convolutional codes for the case of row locality defined
herein. The lower bounds on the column distance of the
codes constructed here and in [28] are the same; however the
alphabet size of our codes is much smaller than in [28]. We
also derive an upper bound on the column distance of LRC
convolutional codes (with either type of locality); however,
our construction falls short of attaining it. The method that
we use relies on the characterization of zeros of cyclic block
H-LRC codes described above. We observe that several levels
of hierarchy enable one to put our cyclic LRC codes in
quasicyclic form, and then use a classic connection between
quasicyclic codes and convolutional codes [32] to construct
convolutional codes with locality; see Sec. III.

We also examine two other problems for LRC codes that
benefit from the cyclic code construction. The first of them
is the problem of maximum length of optimal LRC codes
put forward in [14]. Answering the challenge of constructing
optimal LRC codes of length larger than q, the authors of [4],
[6], [14], [27] constructed several families of optimal cyclic
codes of large, and in some cases even unbounded length,
and [6] extended these results to the case of several erasures.
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Here we follow the lead of [27] and construct an infinite
family of H-LRC codes over a given finite field and establish
conditions for their optimality in terms of the bound (2).
Finally, we consider the problem of availability which calls for
constructing LRC codes with several disjoint recovering sets
for each code coordinate (see the definition in Sec. IV). We
note that multidimensional cyclic codes naturally yield several
recovering sets for the coordinates. We use a description of
bi-cyclic codes in terms of their zeros together with a special
version of code concatenation [30] to construct codes with
availability and rate higher than the rate of product codes.
We note that the known bounds on the code parameters for
multiple recovering sets [21], [29], [34], [38] do not support
a conclusive picture, and we are not aware of general families
of codes with availability whose distance attains one of the
known upper limits. Our construction in this paper also falls
in the same category.

Although we do not pursue this direction here, let us note
that the methods of this paper enable one to construct codes
with both hierarchical locality and availability. We remark that
constructions of LRC codes that have both properties were
presented in [1], where the main tools were fiber products and
covering maps of algebraic curves.

C. Optimal cyclic LRC codes

Let C be a cyclic code of length n with generator polynomial
gpxq and check polynomial hpxq “ xn´1

gpxq
. The dual code C1

has generator polynomial gC1 pxq “ xdegphpxqqhpx´1q, and the
code ⃗C1 generated by hpxq is obtained from C1 by inverting the
order of the coordinates. A codeword apxq P C1 of weight r`1
defines a repair group of the code C, and so does the reversed
codeword ⃗apxq P ⃗C1. For this reason below in this section
we argue about the code ⃗C1 rather than C1, which makes the
writing more compact without affecting the conclusions.

Let us recall a connection between cyclic codes and LRC
codes of [35], which we present in the form close to the
earlier works [4], [27]. The following lemma underlies con-
structions of cyclic LRC codes in this paper and elsewhere,
and it represents a mild extension of Lemma 3.3 in [35]. In
the statement as well as elsewhere in the paper we do not
distinguish between zeros of the code and their exponents in
terms of some fixed primitive nth root of unity in Fq .
Lemma 1. Let C be a cyclic code over Fq of length n|pq ´ 1q

and let α be a primitive nth root of unity in Fq. Suppose that
n “ νm for some integers ν,m. Then the code ⃗C1 contains a
vector

bpxq “

m´1
ÿ

i“0

xiναpm´1´iqνu, u P t0, . . . ,m ´ 1u (4)

if and only if the set L “ tu ` im, i “ 0, 1, . . . , ν ´ 1u is
among the zeros of C.

Proof: Notice that the polynomial bpxq can be equiva-
lently written as bpxq “ xn´1

xν´ανu , where

xν ´ ανu “

ν´1
ź

i“0

px ´ αu`imq (5)

is the annihilator polynomial of the set L. Thus, bpαtq ‰ 0

for all t P L. If bpxq P ⃗C1, this implies that L is a subset of
the set of zeros of C.

Conversely, let gpxq “ pxν ´ ανuqppxq be the generator
polynomial of C. Then

´xn ´ 1

gpxq

¯

ppxq “
xn ´ 1

xν ´ ανu
“ bpxq P ⃗C1.

This lemma immediately yields the cyclic codes from [35]
(the cyclic case of the codes from [33]).
Theorem 2 ([35]). Let pr ` 1q|n, r|k, n|pq ´ 1q. Let α P Fq

be a primitive n-th root of unity, and let C be an pn, kq cyclic
code with zeros αi, i P Z :“ L Y D, where

L “ t1 ` lpr ` 1q, l “ 0, . . . , n
r`1 ´ 1u

D “ t1, 2, . . . , n ´
k

r
pr ` 1q ` 1u.

(6)

Then C is an pn, k, rq optimal LRC code.

Proof: Since L Ă Z, Lemma 1 implies that

bpxq “

r
ÿ

i“0

αi n
r`1xpr´iq n

r`1

is a codeword in ⃗C1. This codeword is of weight r ` 1, and
its cyclic shifts give n

r`1 disjoint repair groups, supporting the
locality claim. At the same time, the BCH bound implies that
dpCq ě n ´ k

r pr ` 1q ` 2, so the code is optimal by (1) once
one observes |Z| “ n ´ k and dimpCq “ n ´ |Z| “ k.

This construction extends without difficulty to codes with
pr, δq locality for any δ ě 2. A family of optimal codes in the
sense of the bound (3) was constructed in [33], Construction
8 (see also [7]). The codes in this family are constructed
as certain subcodes of Reed-Solomon codes that rely on
piecewise-constant polynomials over Fq. In the particular case
that the code length n divides q ´ 1 it is possible to represent
these codes in cyclic form. For this, we assume that r|k, take
m “ r ` δ ´ 1, and take the zeros of the code to be

L “ ti ` lm | l “ 0, . . . , ν ´ 1, i “ 1, . . . , δ ´ 1u

D “ t1, 2, . . . , n ´ k ´ ppk{rq ´ 1qpδ ´ 1qu.
(7)

As will be apparent from the proof of Lemma 3, the condition
about zeros given by the set L translates into conditions on
the dual code that support the locality claim. The distance of
the code C clearly meets the bound (3) with equality.

D. Cyclic codes with locality

In the next lemma we present a slightly more general view
of the method in Theorem 2 that will be instrumental in the
code constructions below in this work. The main element of
the construction is code Cp0q defined in (8), which isolates a
repair group in the code C and supports local correction of
several erasures.
Lemma 3. Let n|pq ´ 1q, n “ νm. Let α be a primitive n-th
root of unity in Fq , and fix δ P t2, . . . ,mu. Let Z be a subset
of size Z such that

t1, . . . , δ ´ 1u Ă Z Ă t0, . . . ,m ´ 1u
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and let L “
Ťν´1

s“0 pZ ` smq. Consider a cyclic code C “

xgpxqy of length n, where

gpxq “ ppxq
ź

tPL

px ´ αtq,

and ppxq P Fqrxs is some polynomial. Let

Cp0q “ tpc0, cν , . . . , cpm´1qνq | pc0, . . . , cn´1q P Cu. (8)

Then dimpCp0qq ď m ´ Z, dpCp0qq ě δ, and thus, the code
C is an LRC code with pm ´ Z, δq locality.

Further, if for every u P t0, . . . ,m ´ 1uzZ there exists s P

t0, 1, . . . , ν ´ 1u such that gpαu`smq ‰ 0, then dimpCp0qq “

m ´ Z.

Proof: We proceed similarly to Theorem 2. Let

lpxq “
ź

tPL

px ´ αtq “

ν´1
ź

s“0

ź

iPZ

px ´ αi`smq “
ź

iPZ

lipxq

where lipxq :“ xν ´ ανi. Let hpxq “ xn´1
gpxq

and consider a

subset of Z codewords of ⃗C
1

given by

bipxq :“ hpxqppxq
ź

jPZztiu

ljpxq, i P Z.

A codeword bi has the form

bipxq “
xn ´ 1

lipxq
“

m´1
ÿ

j“0

αpm´1´jqiνxjν ,

Hamming weight m, and contains ν´1 zero coordinates after
every nonzero entry.

To prove the statement about locality, let us form a Z ˆ

m matrix H obtained by inverting the order of coordinates
in the codewords bi, i P Z, writing the resulting vectors as
rows, and discarding all the zero columns. By construction,
every row of H is a parity-check equation of the code Cp0q.
Any submatrix of δ ´ 1 columns of H has rank δ ´ 1 (its
first δ ´ 1 rows form a Vandermonde determinant), and thus,
dpCp0qq ě δ. Since the rows of H give Z independent parity-
check equations for the code Cp0q, we also have dimpCp0qq ď

m´Z. This argument exhibits a local code in the coordinates
that are integer multiples of ν, and by cyclic shifts we can
partition the set t0, 1, . . . , n´1u into supports of disjoint local
codes of length m and distance at least δ. Furthermore, we
note that the punctured code Cp0q is itself a cyclic code of
length m|n. Let g0pxq be its generator polynomial. Since each
row of H is a parity-check equation for the code Cp0q, we
have g0pαiνq “ 0 for every i P Z and thus degpg0pxqq ě Z.
Together these arguments prove the claim about pm ´ Z, δq

locality of the code C.
Next we show that if degpg0pxqq ą Z, then necessarily there

exists u P t0, . . . ,m ´ 1uzZ such that gpαu`smq “ 0 for all
s “ 0, . . . , ν ´ 1. Suppose that there exists u P t0, . . . ,m ´

1uzZ such that g0pαuνq “ 0. By Eq. (5) in the proof Lemma 1
there exists a codeword bu P ⃗C

1
given by

bupxq “

m´1
ÿ

j“0

αjuνxpm´1´jqν “
xn ´ 1

xν ´ ανu
.

On the other hand, ⃗C
1

“ xhpxqy, so hpxq|bupxq and therefore
pxν ´ανuq|gpxq. Noticing that xν ´ανu “

śν´1
s“0 px´αu`smq

(cf. (5)), we conclude that gpxq is divisible by x´αu`sm for
all s “ 0, . . . , ν ´1. Hence, if for every u P t0, . . . ,m´1uzZ

there exists 0 ď s ď ν ´ 1 such that px´αu`smq ∤ gpxq, i.e.,
gpαu`smq ‰ 0, then degpg0pxqq “ Z, and thus dimpCp0qq “

m ´ Z.

II. CODES WITH HIERARCHICAL LOCALITY

A. Optimal cyclic codes with hierarchy

In this section we construct a family of H-LRC cyclic codes
with h ě 1 levels of hierarchy and derive sufficient conditions
for their optimality. Suppose that h is fixed and we are given
the local dimension r1 (the dimension of the first, innermost
local code), and the designed local distances 1 “ δ0 ď δ1 ď

. . . ď δh ď δh`1, where δh`1 is the designed distance of the
overall code C.

We will assume that the first local code is MDS and thus its
length is n1 “ r1 ` δ1 ´ 1. For 1 ď i ď h, let ni`1 “ νini be
the length of the code in the pi`1qst level of hierarchy, where
νi ą 1 is an integer. Let Fq be a finite field and suppose that
nh`1|pq ´ 1q.

We construct a cyclic H-LRC code C over Fq of length n “

nh`1 and designed (local) distances δ1, . . . , δh`1 as follows.
Let α P Fq be a primitive n-th root of unity. The code C

will be given by its defining set of zeros Z which we specify
via a recursive procedure. Consider the set of exponents D1 “

t1, . . . , δ1´1u of the primitive element α. Further, let L1 “ H

and

Z1 “ L1 Y D1. (9)

Having (6) in mind, for 1 ď i ď h let

Li`1 “

νi´1
ď

s“0

pZi`sniq, Di`1 “ t1, . . . , δi`1 ´ 1u,

Zi`1 “ Li`1 Y Di`1.

(10)

Finally, put Z “ Zh`1.
The generator polynomial of the cyclic code C of length n

is given by

gpxq “
ź

tPZ

px ´ αtq. (11)

The parameters of the code C are estimated as follows.
Proposition 4. (i) The dimension of the code C is n´ |Z| and
the distance d ě δh`1. (ii) The code C is an h-level H-LRC
code with locality pni ´ |Zi|, δiq, i “ 1, . . . , h.

Proof: piq The value of the dimension is clear from the
construction, and the estimate for the distance comes from the
BCH bound.

piiq The statement about the locality parameters follows
by Lemma 3 once we observe that gpxq is divisible by
ś

tP
Ťn{ni´1

s“0 pZi`sniq
px ´ αtq for every i “ 1, . . . , h.

Next we examine the conditions that suffice for the distance
of C to meet the bound (2) with equality. We build up the
optimality of our code in an incremental manner in the sense
that we first ensure that the first local codes are optimal (i.e.,
MDS codes), and relying on these optimal local codes we
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make sure that the second local codes are optimal (i.e., optimal
LRC codes), and so forth until we reach the outermost code.

Let r1 ă r2 ă . . . ă rh ă rh`1 “ dimpCq be the chosen
values of the dimensions of the local codes. As before, we
set n1 “ r1 ` δ1 ´ δ0 and let ni`1 “ νini for 1 ď i ď h
where the integer number νi satisfies νi ě rri`1{ris. Note
that this assumption does not entail a loss of generality since,
assuming the ith and pi`1qst local codes are optimal, by (10)
we have |Li`1| “ pni ´ riqνi, and ri`1 “ ni`1 ´ |Zi`1| ď

ni`1 ´ |Li`1| “ riνi.
To show optimality, we connect the target values of the local

distances δ2, δ3, . . . , δh`1 with the dimension values through
several auxiliary parameters. For 1 ď i ď h, let us write
ri`1 “ airi ´ bi where 0 ď bi ă ri. Further, let bpiq

i “ bi and
for j “ i, i ´ 1, . . . , 2, let

b
piq
j “ u

piq
j´1rj´1 ` b

piq
j´1, 0 ď b

piq
j´1 ă rj´1.

Put bp0q
0 “ 0 and for 1 ď i ď h let

b
piq
0 “ pb

piq
1 `b

pi´1q
0 q mod r1, u

piq
0 “

[

b
piq
1 ` b

pi´1q
0

r1

_

. (12)

Finally, for 1 ď i ď h, let

δi`1 “ pνi´aiqni ` δi

`

i´1
ÿ

j“1

u
piq
j nj ` u

piq
0 n1 ` b

piq
0 ´ b

pi´1q
0 . (13)

The high-level ideas behind these parameters are as follows.
By Lemma 3, the quantities δ1, . . . , δh`1 control the distances
via the BCH bound and we would like to make these quantities
as large as possible given the target dimensions. We need to
make sure that the ith local code has a run of consecutive
zeros of length δi ´ 1, and our budget of creating such a run
is limited by the dimension. Therefore, we seek to rely on the
already present runs of zeros of the jth local codes, j ă i,
and spend the budget frugally on the way to optimality. The
quantities b

piq
j serve the purpose bridging the “distance gap”

(the gaps between runs of zeros) between the local codes in
levels j and j `1 on the way to ensure the distance of the ith
code.

As for the dimensions of the local codes, by Lemma 3 they
are determined by Zi, 1 ď i ď h ` 1. The cardinality of Zi is
established in the next claim.
Proposition 5. For 1 ď i ď h ` 1, we have |Zi| “ ni ´ ri.

The proof of this proposition proceeds by induction and is
given in Appendix A. An examination of the proof also gives a
better understanding of the parameters ai, bi introduced above.

On account of Proposition 5, the locality parameters of the
code C are pri, δiq, 1 ď i ď h. Furthermore, dim pCq “ rh`1,
and by the BCH bound dpCq ě δh`1.

Sufficient conditions for optimality of the code C are given
in the following lemma whose proof is given in Appendix B.

Lemma 6. Suppose that for i ě 2 and 2 ď s ď i the following
conditions are satisfied:

R

rs`1

rs

V R

rs
r1

V

´

R

rs`1

r1

V

“ u
psq
0 ` u

psq
1 `

s´1
ÿ

j“2

u
psq
j

R

rj
r1

V

R

rs`1

rs

V R

rs
rl

V

´

R

rs`1

rl

V

“ u
psq

l `

s´1
ÿ

j“l`1

u
psq
j

R

rj
rl

V

,

(14)
where the first condition holds for s ě 2 and the second for
2 ď l ď s ´ 1. Then for 1 ď i ď h, we have

δi`1 “ ni`1 ´ ri`1 ` δi ´

i
ÿ

l“1

R

ri`1

rl

V

pδl ´ δl´1q.

It follows from Lemma 3, Lemma 6, and the bound (2)
that the code C is an pn “ nh`1, k “ rh`1q optimal H-LRC
code with local parameters pri, δiq, 1 ď i ď h. Clearly, when
h “ 0 our construction gives an pn1, r1q MDS code and when
h “ 1, it gives an pn2, r2q optimal LRC code of [35]. For
h “ 2, conditions (14) take a simpler form:

R

r3
r2

V R

r2
r1

V

´

R

r3
r1

V

“

Z

b1 ` b2
r1

^

. (15)

We note that the condition of [31, Theorem 2.6] is easily seen
to be equivalent to (15). Another known case of optimality, the
divisibility conditions ri|ri`1, i “ 1, . . . , h, is also covered by
Lemma 6 (in this case both the left-hand sides and the right-
hand sides of (14) are zero).

Let us give a general example of the choice of parameters
that ensures optimality. Suppose that r1 ě 2h and ri`1 “

2ri ´ 1 for 1 ď i ď h. Then conditions (14) are satisfied.
Indeed, we have ri “ 2i´1pr1 ´ 1q ` 1 for 1 ď i ď h ` 1.
Therefore, for 1 ď j ď i ď h ` 1 we have

R

ri
rj

V

“

R

2i´j ´
2i´j ´ 1

2jpr1 ´ 1q ` 1

V

“ 2i´j ,

where the last equality follows because r1 ě 2h. It follows
that the left-hand sides of conditions (14) are zero. On the
other hand, we have bi “ 1 for all 1 ď i ď h. Since r1 ě 2h,
we have u

psq

l “ 0 for all 1 ď s ď h and 0 ď l ď s ´ 1, and
thus, the right-hand sides are also zero, which confirms the
optimality claim.
Proposition 7. Suppose that the conditions (14) are satisfied,
then the code C is a strongly optimal H-LRC code in the sense
of Sec. I-A.

Proof: It suffices to show that the dimension of the i-th
local code equals ri for all i.

By assumption, we have ri`1 ą ri and thus ai ě 2 for
1 ď i ď h. It is not difficult to verify from (13) that δi`1 ď

pνi ´ ai ` 1qni ď ni`1 ´ ni for all 1 ď i ď h. We claim that
gpαn´ni`tiq ‰ 0 for every ti P Ti, 1 ď i ď h where

Ti “ tnu Y pt1, . . . , ni ´ 1uzZi ` n ´ niq.

Then by the second part of Lemma 3 the dimension of the
i-th local code equals ri and the strong optimality follows.

Now let us show n ´ ni ` ti R Z. Observe that the set Z
contains n{ni copies of Zi and the set Ti is the complement
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to the last one of those copies with respect to t1, . . . , niu.
Indeed, we have n´ni ` ti “ ti `pn{ni ´1qni R tnuYpZi `

pn{ni ´ 1qniq. Now consider the last copy of Zi`1 contained
in Z. Obviously, it contains the last copy of Zi. To establish
n´ni `ti R Z, it remains to show n´ni `ti is not in the last
copy of Di`1, namely, n ´ ni ` ti R Di`1 ` n ´ ni`1. Since
δi`1 ď ni`1 ´ni as we observed above and ni`1 ´ni ` ti ě

ni`1 ´ni ` δi, we have ni`1 ´ni ` ti R Di`1. It follows that
n ´ ni ` ti R Di`1 ` n ´ ni`1. Therefore, n ´ ni ` ti R Z

and gpαn´ni`tiq ‰ 0 for every ti P Ti, 1 ď i ď h.
In the case that ri`1 “ ri for some 1 ď i ď h (although

we rule out this trivial case in Definition 3), the code C is still
strongly optimal if the optimality conditions are satisfied. In
fact, if ri`1 “ ri then from (13) we have δi`1 “ pνi´aiqni`

δi “ ni`1 ´ ni ` δi R Di`1. By similar arguments as above,
we have n´ni ` ti R Z for every ti P Ti, 1 ď i ď h, and thus
establish the strong optimality of the code.

We conclude with a numerical example that shows that the
assumptions on the parameters can be simultaneously satisfied
for moderate values of the length and alphabet size.
Example 1. Consider the case h “ 3. Let r1 “ 2 and δ1 “

2. Then n1 “ 3. Let pn2, r2q “ p9, 3q, pn3, r3q “ p27, 5q,
and pn4, r4q “ p81, 7q. Then our construction (with designed
distances found from (13)) gives rise to a strongly optimal H-
LRC code of length n “ n4 and dimension k “ r4 with local
distances δ2 “ 6, δ3 “ 17 and distance d “ δ4 “ 53 over
a finite field Fq where 81|pq ´ 1q (for example, we can take
q “ 163).

B. Hierarchical cyclic codes of unbounded length

In this section we construct a family of H-LRC codes with
distance d “ δh ` 1, h ě 1 and unbounded length. The
construction combines the idea of [27] with H-LRC codes of
the previous section.

Let 1 ă r1 ă r2 ă . . . ă rh be integers. Let 1 “ δ0 ă δ1
and let δ2, δ3, . . . , δh be as in (13). Again, we put n1 “ r1 `

δ1 ´ δ0 and let ni`1 “ νini for 1 ď i ď h ´ 1, where
νi ě rri`1{ris is an integer. Let Fqm ,m ě 1 be a finite field
and let nh|pq ´ 1q. Let n “ qm ´ 1 and observe that nh|n.
Let α P Fqm be a primitive n-th root of unity. Let Zh be
constructed by the procedure in (9) and (10). Finally, define

L “

n{nh´1
ď

s“0

pZh ` snhq, Z “ L Y t0u. (16)

Consider a cyclic code C with generator polynomial

gpxq “
ź

tPZ

px ´ αtq. (17)

As is easily seen, gpxq P Fqrxs. Indeed,

gpxq “ px ´ 1q
ź

tPL

px ´ αtq

“ px ´ 1q

n{nh´1
ź

s“0

ź

tPZh

px ´ αsnh`tq

“ px ´ 1q
ź

tPZh

pxn{nh ´ αnt{nhq.

For the last equality we note that xn{nh ´ αnt{nh “
śn{nh´1

s“0 px ´ αsnh`tq. Observe that for t P Zh we have
pαnt{nhqq´1 “ 1 since nh|pq´1q. It follows that αnt{nh P Fq

for t P Zh and thus gpxq P Fqrxs.
Proposition 8. Let C “ xgpxqy P Fqrxs{pxn ´ 1q be a cyclic
code. Then dimpCq “ nrn{nh ´ 1, dpCq ě δh ` 1, and the
locality parameters are pri, δiq for 1 ď i ď h.

Proof: The dimension of C is found as

k “ n ´ degpgpxqq “ n ´ 1 ´
|Zh|n

nh
“

nrh
nh

´ 1,

where the last equality follows by Proposition 5. The distance
of the code C is d ě δh ` 1 since gpxq has consecutive roots
αt, t “ 0, . . . , δh ´ 1.

The locality parameters of the code C follow immediately
by Lemma 3 and Proposition 5.

The next lemma provides the conditions when the code C is
optimal. Its proof amounts to a calculation based on Lemma 6
and Proposition 8.
Lemma 9. Suppose that for 1 ď i ď h ´ 1, conditions (14)
are satisfied. Further, suppose that

n

nh

R

rh
rl

V

“

R

k

rl

V

, 1 ď l ď h ´ 1. (18)

Then the code C is optimal.

Proof: By Lemma 6, we have

δh “ nh ´ rh ` δh´1 ´

h´1
ÿ

l“1

R

rh
rl

V

pδl ´ δl´1q. (19)

By Proposition 8, we have k “ nrh{nh´1. Using the bound
(2), the distance of the code cannot exceed

n ´ k ` δh ´

h
ÿ

l“1

R

k

rl

V

pδl ´ δl´1q

“ n ´
nrh
nh

` 1 ` δh ´
n

nh
pδh ´ δh´1q

´

h´1
ÿ

l“1

R

k

rl

V

pδl ´ δl´1q (20)

“ 1 ` δh `
n

nh

h´1
ÿ

l“1

R

rh
rl

V

pδl ´ δl´1q

´

h´1
ÿ

l“1

R

k

rl

V

pδl ´ δl´1q (21)

“ 1 ` δh, (22)

where (20) follows since rh ą 1 implies rk{rhs “ n{nh, in
(21) we used (19), and (22) follows by (18). Hence, the code
C has the largest possible distance d “ δh ` 1.

In particular, the conditions in Lemma 9 are satisfied when
ri|ri`1, i “ 1, . . . , h ´ 1 and rh|k.

As in Sec. II-A, the code C constructed above in this section
has the strong optimality property if the optimality conditions
in Lemma 9 are satisfied. Specifically, the main difference
between the construction in this section and the one in the
previous section is in the final step of constructing the defining
set Z, which also includes element 0 (i.e., α0). By an argument
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similar to Sec. II-A, one can show n ´ ni ` ti R Z for every
ti P pt0, . . . , ni ´ 1uzZiq ` pn ´ niq, 1 ď i ď h and so strong
optimality follows.
Example 2. Consider the case h “ 3. Let r1 “ 2 and δ1 “ 2.
Then n1 “ 3. Let pn2, r2q “ p9, 3q and pn3, r3q “ p27, 5q.
Let m ě 1 be an arbitrary integer and q “ 163. Then
our construction (with designed local distances given by
(13)) gives rise to a strongly optimal H-LRC code of length
n “ 163m ´ 1 and dimension k “ 2p163m ´ 1q{9 with local
distances δ2 “ 6, δ3 “ 17 and distance d “ 18 over Fq .

Recall that [4] shows that the length of an optimal LRC
code in the general case cannot be greater than a certain
power of the alphabet size q. Using similar arguments, it
might be possible to derive upper bounds on the length of
optimal H-LRC codes in the general case; however already in
the case of pr, δq locality addressed in [6] (with just a single
level of hierarchy), following this route requires cumbersome
calculations.

III. CONVOLUTIONAL CODES WITH LOCALITY

It has been recognized a long while ago that quasi-cyclic
codes can be encoded convolutionally, and multiple papers
constructed families of convolutional codes from their quasi-
cyclic counterparts [9], [19], [36]. In this section, we present
a family of convolutional codes with locality by relying on the
tailbiting version of convolutional codes [32]. We single out
this approach because it enables us to establish the locality
properties of convolutional codes based on the properties of
cyclic H-LRC codes constructed above in this paper.

We begin with a brief reminder of the basic notions for
convolutional codes [18]. Let D be an indeterminate and
let FqpDq be the field of rational functions of one variable
over Fq. A q-ary pn, kq convolutional code C is a linear k-
dimensional subspace of FqpDqn. A generator matrix GpDq “

pgijpDqq of the code C is a kˆn matrix with entries in FqpDq

whose rows form a basis of C. Thus, the code C is a linear
space tupDqGpDq | upDq P FqpDqku. The matrix GpDq can
be transformed to the polynomial form by multiplying every
element by the least common denominator of its entries. The
transformed matrix generates the same code C, and so in the
sequel we will consider only polynomial generator matrices.
Below we will assume that the generator matrix GpDq is a
k ˆ n matrix with entries in FqrDs, where FqrDs is the ring
of polynomials over Fq.

For 1 ď i ď k, the degree mi of the i-th row of GpDq

is the maximum degree of the entries in row i, namely,
mi “ max1ďjďn degpgi,jpDqq. As with linear block codes,
the encoding of a convolutional code depends on the choice of
a generator matrix. The maximum degree M :“ max1ďiďk mi

is called the memory of the encoder. The generator matrix of
the code C can also be written in the form

G “

»

—

–

G0 G1 . . . GM

G0 G1 . . . GM

. . . . . . . . .

fi

ffi

fl

, (23)

where each Gi is a kˆn matrix over Fq. The codeword of the
code C is obtained as a product uG, where u is a semi-infinite
input sequence of symbols of Fq.

With a given convolutional code C one can associate a
multitude of distance measures. In direct analogy with block
codes, one defines the free distance of the code C as the
minimum Hamming weight of the Laurent expansions of the
nonzero codewords.

Another distance measure of interest is the so-called column
distance of the code [18, p.162]. To define it, let Cr0,js be the
truncated code of C at the j-th time instant, j ě 0, namely,

Cr0,js “

!

cr0,jspDq “

j
ÿ

i“0

ciD
i | cpDq “

ÿ

iě0

ciD
i P C

)

.

This is a linear block code of length npj ` 1q, and by (23)
its generator matrix can be written in the form

Gc
j “

»

—

—

—

–

G0 G1 . . . Gj

G0 . . . Gj´1

. . .
...
G0

fi

ffi

ffi

ffi

fl

(24)

where we put Gl “ 0 for l ą M. Clearly, the code Cr0,js is
obtained by truncating the code C to its first j ` 1 entries.
A codeword of Cr0,js has the form pc0, c1, . . . , cjq, where for
j ď M and each l “ 0, 1, . . . , j

cl “

l
ÿ

i“0

uiGl´i, (25)

where cl “ pc
p1q

l , . . . , c
pnq

l q for each l.
We assume throughout that G0 has full rank, so the mapping

Fk
q

G
Ñ Fn

q given by u0G0 ÞÑ c0 is injective.
Definition 4. For j ě 0 the j-th column distance of C is given
by

dcj “ mintwtpcr0,jspDqq | cr0,jspDq P Cr0,js, c0 ‰ 0u.

Clearly, the value of dcj is at least the minimum distance
of the truncated code Cr0,js. This follows because for the
column distance we seek the minimum of pairwise distances
of codewords that differ in the first coordinate, while the
standard minimum distance computation does not involve
this assumption. In many cases the column distance is in
fact strictly greater. This remark is important for the sliding
window repair which enables one to correct more erasures than
would be possible for block codes relying on their minimum
distance.

Convolutional codes support several forms of erasure repair.
One of them, called the sliding window repair [28], [37], is
based on the column distance and is used to correct erasures
in streaming applications [37]. We illustrate the idea of sliding
window repair in Fig. 1, representing a code sequence of the
code C as a semi-infinite matrix whose columns are length n
vectors cl, l ě 0, and whose row cpiq, i “ 1, . . . , n represents
the stream formed by the ith coordinates of the symbols cl, l “

0, 1, . . . . We begin with fixing j based on the value of the
column distance dcj of the code. The box in the figure shown
with dashed lines represents the window of length j ` 1 that
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contains the truncated code at time l ě j. The erasures within
the sliding window can clearly be repaired as long as their
number at no point exceeds dcj ´ 1.

Having in mind streaming applications, one may argue that
a more efficient way of repairing erasures is to rely either
on the symbols at a fixed time instant, or on a small group
of symbols contained within the same stream i. Accordingly,
in the next two subsections we define two types of locality
for convolutional codes, calling them the column and row
localities.

A. Convolutional codes with column locality

Column locality was introduced in [28]. First let us define
the ith column code Ci, i ě 0 of a convolutional code C as a
block code of length n given by

Ci “ tci | cpDq P Cu.

We say that a convolutional code C has pr, δq column locality
if for all i the codes Ci have the pr, δq locality property.

The results in [28] are based on a version of this definition
that requires that only the code CM support pr, δq locality.
This restriction may seem too narrow until one realizes that if
locality is present in the code CM , then every code Ci, i ě 0
has the pr, δq locality property. This follows immediately from
(25) and the definition of Ci because Ci “ CM for i ą M
and Ci forms a linear subcode of CM otherwise. The only
difference between this definition and the one given above is
that under the approach of [28], every code Ci has similarly
aligned repair groups which are propagated from the repair
groups of CM , while our definition allows differently aligned
repair groups for different values of i.

To enable local repair, we simply assume that every column
of the codeword forms a block code with pr, δq locality. An
example is given in Fig 2, demonstrating sliding window repair
combined with column locality.

B. Convolutional codes with row locality

In this section we introduce and study another notion of
locality for convolutional codes. Given a convolutional code
C, define the ith row code C

piq
r0,js

, 1 ď i ď n truncated at jth
time instant, j ě 0, as follows:

C
piq
r0,js

“ tc
piq
r0,js

“ pc
piq
0 , . . . , c

piq
j q | c P Cu. (26)

Definition 5. We say that C has pr, δq row locality if for all
t ě 0 the codes C

piq
rt,t`js

, 1 ď i ď n have the pr, δq locality
property, where j ě 0 is fixed.

In the case of tailbiting codes, it is more convenient to give
this definition in the following form, which will also be used
in our constructions below.
Definition 6. Let j ě 0 be fixed. A convolutional code C has
pr, δq row locality at time j if every code C

piq
r0,js

, 1 ď i ď n

has pr, δq locality.

We give two examples of repair with row locality. Namely,
Figure 3 illustrates Def. 5 while Figure 4 applies to the case of
tailbiting codes and Def. 6. Let us stress that whenever local

repair by rows is not possible, we fall back on sliding window
repair relying on the column distance of the truncated code.

The problem that we address is to construct convolutional
codes with locality and large column distance. This is similar
to the problem studied in [28] and also to the case of block
codes with locality and large minimum distance. We begin
with deriving an upper bound on the column distance of the
truncated code with either column or row locality property.
Proposition 10. (a) Let C be an pn, kq convolutional code with
pr, δq (column or row) locality. Then for any j ě 0, the j-th
column distance satisfies

dcj ď pn ´ kqpj ` 1q ` δ ´

R

k

r

V

pδ ´ 1q. (27)

(b) Equality in (27) implies that for all i ď j, the i-th
column distance satisfies

dci “ pn ´ kqpi ` 1q ` δ ´

R

k

r

V

pδ ´ 1q. (28)

The proof is given in Appendix C.
Part (b) of this proposition is similar to the propagation of

the column distance optimality property in the case of general
convolutional codes proved in [11]. Namely, the Singleton
bound implies that the column distance for all j satisfies

dcj ď pn ´ kqpj ` 1q ` 1, (29)

and equality for a given j implies that all the other distances
dci , i ď j also attain their versions of the Singleton bound with
equality.

C. Convolutional codes and quasicyclic codes

A transformation between these two code families was
constructed in [32], and it has led to a broader family of
convolutional codes and trellises now known as tailbiting
codes (tailbiting trellises) [18]. An pnpm ` 1q, kpm ` 1qq

quasicyclic code can be defined by a generator matrix

G “ pGijq, i “ 0, . . . , k ´ 1, j “ 0, . . . , n ´ 1

where each Gij is an pm ` 1q ˆ pm ` 1q circulant matrix.
With a given matrix Gij we associate a polynomial gijpDq “
řm

l“0 glD
l, where pg0, . . . , gmq is the first row of the matrix.

Then the kˆn generator matrix GpDq “ pgijpDqq defines an
pn, kq convolutional code. The authors of [32] showed that if
one takes the input sequences of the convolutional code in the
form

upDq “

m
ÿ

l“´M

ulD
l such that u´s “ um`1´s

for s “ 1, . . . ,M, (30)

then the convolutional code is equivalent to the quasicyclic
code defined above. In other words, the quasicyclic code
can be encoded convolutionally, and the convolutional code
with “symmetric” input sequences as in (30) is exactly the
quasicyclic code.
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l “ 2

cp1q

cp2q

cp3q ˆ

ˆ ˆ

l “ 3

cp1q

cp2q

cp3q ˆ

ˆ ˆ

Fig. 1: SLIDING WINDOW REPAIR. Suppose C is an p3, 2q convolutional code with dc2 “ 4. Let pcp1q, cp2q, cp3qq P C be a codeword, where the crosses
denote erasures. At time instant l “ 2, there are two erasures in the window of length three (dashed box in the left figure), which is less than the 2nd column
distance. However, neither of the two erasures are in the first column of the window, and thus their recovery is postponed until later. At time l “ 3 (right
figure), the sliding window contains 3 erasures, of which one is in the first column. This erasure can be recovered from the other symbols in the window.
The remaining erasures are corrected in the next steps as long as the number of erasures in the window does not exceed dc2 ´ 1.

l “ 2

cp1q

cp2q

cp3q

cp4q ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

l “ 3

cp1q

cp2q

cp3q

cp4q

ˆ

ˆ

ˆ

ˆ

ˆ
Fig. 2: SLIDING WINDOW REPAIR WITH COLUMN LOCALITY. Suppose C is a p4, 2q convolutional code with p1, 2q column locality and dc2 “ 6. Let
pcp1q, cp2q, cp3q, cp4qq P C be a codeword, where the crosses denote erasures, and different repair groups in the columns are shown in different colors. At
time l “ 2, the window of length j ` 1 “ 3 contains 4 erasures. Of these, the symbols c

p4q
0 , c

p2q
2 can be recovered within their repair groups. Then for

l “ 3 the window contains 5 erasures, of which two in the first column can be repaired from the other symbols in the window, while the symbol cp1q
3 can

be recovered locally.

D. A family of tailbiting convolutional codes with row locality

We come to the main result of this section, which is a
construction of a family of convolutional codes with pr, δq

row locality. This family of codes has the largest possible
minimum distance for the truncated code Cr0,js, however we
stop short of showing that the j-th column distance attains
(27) with equality. The construction is achieved by exploiting
the connection between quasi-cyclic codes and convolutional
codes discussed above. In high-level terms, our plan is to
construct a cyclic code from its set of zeros chosen according
to the procedure in Sec. II, writing it in a quasicyclic form (via
a circulant generator matrix) and to construct a convolutional
code using the technique discussed above. We note that the
lower bounds on the column distance of the codes constructed
here and in [28] coincide. At the same time, the field size
needed for our construction is linear in the output length n of
the code at each time instant whereas the construction in [28]
requires exponentially sized alphabet.

Let us first construct an pnpj ` 1q, kpj ` 1qq cyclic LRC
codes with pr, δq locality. We proceed similarly to Sec. II-A.
We will need a few assumptions regarding the parameters of
the code. Let j ě 0 be such that k ď j ` 1 ď n and that

j ` 1 “ pr ` δ ´ 1qν where ν ě 1. Let Fq be a finite field
such that npj ` 1q | pq ´ 1q and let α P Fq be a primitive root
of unity of order npj ` 1q in Fq.

The set of zeros of the code is obtained as follows. let
Z1 “ t1, . . . , δ ´ 1u. Using (10) and setting D2 “ Z1, we
have

Z2 “

ν´1
ď

l“0

pZ1 ` lpr ` δ ´ 1qq. (31)

Further, let L3 “
Ťn´1

l“0 pZ2 ` lpj ` 1qq and let D3 “

t1, . . . , δ3 ´ 1u, where

δ3 “ pn ´ kqpj ` 1q ` δ ´

R

kpj ` 1q

r

V

pδ ´ 1q. (32)

Finally, put Z “ L3 Y D3 and let B be the cyclic code with
generator polynomial gBpxq “

ś

tPZpx´αtq. Note for future
use that the complement of the set D3 in the set of exponents
of α has cardinality

|D̄3| “npj ` 1q ´ pδ3 ´ 1q

“kpj ` 1q `

´Qkpj ` 1q

r

U

´ 1
¯

pδ ´ 1q. (33)



10

l “ 3

cp1q

cp2q

cp3q

cp4q ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

l “ 4

cp1q

cp2q

cp3q

cp4q

ˆ ˆ

ˆ ˆ

Fig. 3: SLIDING WINDOW REPAIR WITH ROW LOCALITY. Suppose C is a p4, 2q convolutional code with p1, 2q row locality dc3 “ 8. Let pcp1q, cp2q, cp3q, cp4qq P
C be a codeword, where the crosses denote erasures, and different repair groups in the rows are shown in different colors. At time l “ 3, by row locality, the
symbols c

p2q
0 , c

p2q
3 , c

p4q
1 , c

p4q
2 can be recovered from the other symbols in their respective repair groups. At time l “ 4 there are four erasures in the window

of length four, which is smaller than dc3, so they are recoverable. Thereafter the two remaining erasures can be recovered relying on row locality.

Sliding window starting from time l “ 0

cp1q

cp2q

cp3q

cp4q ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

Sliding window starting from time l “ 2

cp1q

cp2q

cp3q

cp4q ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

Fig. 4: SLIDING WINDOW REPAIR WITH ROW LOCALITY FOR TAILBITING CODES. Suppose C is a p4, 2q unit memory tailbiting convolutional code with p1, 2q

row locality and dc7 “ 16. Let pcp1q, cp2q, cp3q, cp4qq P C be a codeword, where the crosses denote erasures, and different repair groups in the rows are shown
in different colors. There are a total of 16 erasures. First we engage row locality to repair symbols c

p2q
0 , c

p2q
5 , c

p4q
0 , c

p4q
5 , whereupon 12 erasures remain. In

the sliding window starting from time l “ 0, the remaining two erasures in the first column can be recovered. After that, cp1q
4 , c

p3q
4 can be recovered locally.

Next, we move the sliding window to start at time l “ 2. (Note that the window is wrapped around.) The erasures in the first column of this window
can be recovered since the number of erasures is smaller than the column distance, and after that the remaining erasures can be recovered relying on row
locality.

In the next theorem we give an explicit representation of the
code B in quasicyclic form, and we also specify its locality
properties.
Theorem 11. paq The code B is an pnpj`1q, kpj`1qq optimal
LRC code with pr, δq locality, and the punctured codes

Bl “ tpcl, cl`n, . . . , cl`njq | pc0, . . . , cnpj`1q´1q P Bu,

l “ 0, . . . , n ´ 1,

are LRC codes of length j ` 1 with pr, δq locality.
pbq Furthermore, if k|n, then the code B is equivalent to a

code with generator matrix G given by

G “ pGilq, i “ 0, . . . , k ´ 1, l “ 0, . . . n ´ 1,

where every Gil is a pj ` 1q ˆ pj ` 1q circulant matrix. For
every i “ 0, 1, . . . , k ´ 1 the matrices Gil satisfy

Gil “

#

Ij`1 if l “ in{k

0 if l P t0, n{k, . . . , n ´ n{kuztin{ku.

Proof: paq We note that the set of zeros of the code B

is partitioned into segments of length r ` δ ´ 1, i.e., has the

structure of the set L in (7). In other words, the generator
polynomial of B satisfies

ź

tPL

px ´ αtq|gBpxq, where L “

nν´1
ď

s“0

pZ1 ` spr ` δ ´ 1qq.

Therefore, Lemma 3 implies that the code B has pr, δq locality.
To compute the dimension of the code B we count the
number of its nonzeros. They are all located in D̄3. This
is a consecutive segment of exponents, and by (31), within
each whole subsegment of length r ` δ ´ 1 in it there
are r nonzeros. Once all such segments are accounted for,
there may be an incomplete segment left, which contains
minp|D̄3| ´ t

|D̄3|

r`δ´1 upr ` δ ´ 1q, rq zeros. As easily checked,
the total number of nonzeros in either case is kpj ` 1q, which
is therefore the dimension of the code B. The distance of B is
at least δ3, and the bound (3) implies that the code B has the
largest possible distance for the chosen locality parameters.

Examining the structure of zeros of the punctured codes Bl,
we observe that they satisfy the assumptions of Lemma 3, and
thus the punctured codes Bl also have pr, δq locality. Indeed,
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let l “ 0. By Lemma 3, Eq. (8), the code Bp0q given by

Bp0q “ tpc0, cnν , . . . , cpr`δ´2qnνq | pc0, . . . , cnpj`1q´1q P Bu

has dimension at most r and minimum distance at least δ. This
implies that the coordinates that are multiples of nν isolate a
repair group of the code B0. By shifting this set of coordinates
to the right by n positions, we obtain another repair group of
B0, which is disjoint from the first one. After several more
shifts we will reach the set of coordinates tnpν ´ 1q, npν ´

1q `nν, . . . , npν ´ 1q ` pr ` δ ´ 2qnνu. The collection of the
sets constructed along the way forms a partition of the support
of B0 into disjoint repair groups. The same argument works
for every code Bl, 1 ď l ď n ´ 1 whose repair groups are
formed by shifting the repair groups of B0 to the right by l
positions. This concludes the proof of Part (a).

Let us prove Part (b). Recalling the discussion in the
beginning of Sec. I-C, it is possible to represent the generator
matrix G of the code to have rows of the form

ppαtqnpj`1q´1, pαtqnpj`1q´2, . . . , 1q,

t P t0, . . . , npj ` 1q ´ 1uzZ, (34)

(note the inverse order of the exponents). Let

I “ t0, n{k, . . . , npj ` 1q ´ n{ku

be a subset of coordinates. As before, we label the columns of
G by the exponents of α from 0 to npj`1q´1 and consider a
square kpj`1qˆkpj`1q submatrix GI formed of the columns
with indices in I. We claim that GI is invertible. Indeed, the
rows of GI have the form

α´tppαtn{kqkpj`1q, pαtn{kqkpj`1q´1, . . . , αtn{kq,

t P t0, . . . , npj ` 1q ´ 1uzZ,

and thus it forms a Vandermonde matrix generated by the set
pαtn{kq for all t outside the set of zeros Z. We will assume that
the submatrix GI “ Ikpj`1q (the identity matrix) and continue
to use the notation G for the resulting generator matrix of the
code.

Let gi,0, gi,1, . . . , gi,npj`1q´1 be the ith row of G, where i P

t0, . . . , k ´ 1u. With an outlook of constructing convolutional
codes later in this section, define the polynomials

gipDq “

npj`1q´1
ÿ

s“0

gi,sD
s

gi,lpDq “

j
ÿ

s“0

gi,ns`iD
i, l “ 0, 1, . . . , n ´ 1. (35)

Then we have

gipDq “

n´1
ÿ

l“0

Dl
j

ÿ

s“0

gi,ns`lD
ns “

n´1
ÿ

l“0

Dlgi,lpD
nq,

Since GI is the identity matrix, we have gi,in{kpDq “ 1 and
gi,lpDq “ 0 for l P t0, n{k, . . . , n ´ n{kuztin{ku.

To write the generator matrix in the circulant form given
in the statement, we need to form the matrices Gil. This is
accomplished by writing the coefficients of gi,jpDq as the first
row of Gil and filling the rest of this matrix by consecutive

cyclic shifts to the right. This yields the following pj ` 1q ˆ

npj ` 1q matrix
`

Gi,0 Gi,1 ¨ ¨ ¨ Gi,n´1

˘

. (36)

Note that each row in this matrix is a codeword of the code
(equivalent to) B. Finally, the matrix

G “

¨

˚

˚

˚

˝

G0,0 G0,1 ¨ ¨ ¨ G0,n´1

G1,0 G1,1 ¨ ¨ ¨ G1,n´1

...
...

. . .
...

Gk´1,0 Gk´1,1 ¨ ¨ ¨ Gk´1,n´1

˛

‹

‹

‹

‚

. (37)

formed of the rows (36) for i “ 0, . . . , k ´ 1 generates a code
equivalent to the code B.

This theorem gives an explicit representation of B as a qua-
sicyclic code, and we can use this representation to construct
a convolutional code following the method in Sec. III-C. Let
GpDq “ pgi,lpDqq be a k ˆn generator matrix where gi,lpDq

is defined in (35). Since degpgi,lpDqq ď j, we conclude that
the memory of the generator matrix GpDq is M ď j. Having
(30) in mind, define an pn, kq tailbiting convolutional code
over C “ Cr0,js P FqrDs as a set of sequences

C “ tcpDq | cpDq “ upDqGpDq;upDq “

j
ÿ

s“´M

usD
s;

u´s “ uj`1´s, s “ 1, . . . ,Mu.

Here j, k ´ 1 ď j ď n ´ 1 is any integer such that pr ` δ ´

1q|pj ` 1q and k|n.
The next theorem states the main properties our construc-

tion.
Theorem 12. The code C has pr, δq row locality. When viewed
as a block code, the minimum distance of C attains the bound
(3).

Proof: For l “ 0, . . . , n ´ 1, we have

cplqpDq “

k´1
ÿ

i“0

upiqpDqgi,lpDq.

Furthermore, since u´s “ uj`1´s for s “ 1, . . . ,M , we have
the following relation

cplqpDq “

k´1
ÿ

i“0

upiqpDqgi,lpDq mod pDj`1 ´ 1q.

In other words, we have
`

cp0qcp1q . . . cpn´1q
˘

“
`

up0qup1q . . . upk´1q
˘

G,

where the matrix G is defined in (37). This implies that the
codes Cplq are exactly the codes Bl defined in Theorem 11(a),
viz., Cplq “ Bl for l “ 0, . . . , n ´ 1. Since the code Bl has
pr, δq locality for l “ 0, . . . , n´ 1, we conclude that the code
C has pr, δq row locality. Concluding, we have established that
the convolutional code C has pr, δq row locality.

As a block code, C is equivalent to the code B, which proves
the last claim of the theorem.

The large minimum distance of the code C is related to the
performance of the (hard decision) Viterbi decoding of the
code C, and is therefore of interest in applications.
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As remarked earlier, the constructed codes stop short of
attaining the bound (27), and thus cannot be claimed to be
optimal. Of course, as observed after Def. 4, the jth column
distance of the code C is at least the minimum distance of the
code B, given by (32), but a more precise estimate remains an
open question. Nevertheless, we believe that extension of the
basic construction of LRC codes to the case of convolutional
codes carries potential for future research into their structure.
In particular, the algebraic machinery of quasicyclic codes of
[22], [25] could lead to new constructions, and it may also
be possible to further extend these studies to codes over ring
alphabets [26].

IV. BI-CYCLIC CODES WITH AVAILABILITY

The H-LRC codes constructed in Sec. II rely on h em-
bedded recovering sets for each code coordinate, which are
not disjoint. In this section we consider LRC codes with t
disjoint recovering sets for each code coordinate, i.e., LRC
codes with availability t (here we do not pursue a hierarchy
of locality). This arises when the data is simultaneously
requested by a large number of users, which suggests that the
erased coordinate afford recovery from several nonoverlaping
recovering sets in order to increase data availability. LRC
codes with this property are defined as follows [29], [38].
Definition 7 (LRC CODES WITH AVAILABILITY). Let t ě 1
and pr1, δ1q, . . . , prt, δtq be integers. A code C Ă Fn

q is said
to have availability t with locality pr1, δ1q, . . . , prt, δtq if for
every coordinate j, 1 ď j ď n of the code C there are t
punctured codes Cpiq, 1 ď i ď t such that j P supppCpiqq, i “

1, . . . , t and
(a) dimpCpiqq ď ri,
(b) dpCpiqq ě δi,
(c)

Şt
i“1 supppCpiqq “ tju.

Below we limit ourselves to the case t “ 2. We say
that two partitions P1,P2 of the coordinates of the code
are orthogonal (or transversal) if |P1 X P2| ď 1 for any
P1 P P1, P2 P P2 and every coordinate is contained in a pair of
subsets X P P1, Y P P2. Orthogonal partitions enable multiple
disjoint recovering sets and were used in [33] to construct
codes with availability. A simple observation made in [33] is
that product codes naturally yield orthogonal partitions, and
it is possible to use products of one-dimensional cyclic codes
to support this structure. A drawback of this approach is that
product codes result in rather poor parameters of LRC codes
with availability, in particular the rate of the resulting codes
is low (although the alphabet is small compared to the code
length [16], [33]). It is well known that the rate of product
codes can be increased with no loss to the distance by passing
to generalized concatenations of codes [5]. In this section we
use a particular case of this construction given in [30] and
sometimes called hyperbolic codes. The resulting LRC codes
with availability have the same distance guarantee as simple
product codes while having a much higher rate. As above, our
starting point is the general method of Theorem 2, and we
proceed similarly to Eq. (10).

We start with a finite field Fq and assume that the code
length n divides q ´ 1. We further choose the size of the

repair groups to be r1, r2 and suppose that 0 ă r1 ď r2 and
pr1 ` 1q|n and pr2 ` 1q|n. Further, let ν1 “ n{pr1 ` 1q and
ν2 “ n{pr2 ` 1q. Let α P Fq be a primitive n-th root of unity.
To simplify the expressions below, we will construct codes
with δ1 “ δ2 “ 2. To construct the defining set Z of our code,
let

L1 “ H, D1 “ tp0, 0qu, Z1 “ L1 Y D1. (38)

Let us fix the designed distance of the code C to be δ ě 2.
Define

L2,1 “

ν1´1
ď

l1“0

n´1
ď

j“0

pZ1 ` pl1pr1 ` 1q, jqq,

L2,2 “

n´1
ď

i“0

ν2´1
ď

l2“0

pZ1 ` pi, l2pr2 ` 1qqq,

L2 “ L2,1 Y L2,2,

D2 “ tpi, jq | pi ` 1qpj ` 1q ă δu, Z2 “ L2 Y D2.

Note that zeros are now indexed by pairs of exponents, and
pairs are added element-wise. Finally, put Z “ Z2.

Consider a two-dimensional cyclic code C “ xgpx, yqy of
length n2, where

gpx, yq “
ź

pi,jqPZ

px ´ αiqpy ´ αjq. (39)

Lemma 13. The code C has two disjoint recovering sets of
size r1 and r2 for every coordinate.

Proof: The proof relies on Lemma 3. For c P C, let us
write c “ pci,jq where 0 ď i ď n´1, 0 ď j ď n´1. Fix j and
let Cp1q “ tpc0,j , cν1,j , . . . , cr1ν1,jq | c P Cu and let L

j
2,1 “

Ťν1´1
l1“0 pZ1 `pl1pr1 `1q, jqq. The generator polynomial for the

punctured code tpc0,j , c1,j , . . . , cn´1,jq | c P Cu is given by
yj

ś

pi,jqPZpx´αiq, which is divisible by
ś

pi,jqPL
j
2,1

px´αiq.
Then, by arguments similar to Lemma 3 we conclude that the
code Cp1q has dimension at most r1 and distance at least 2.
Since the code is cyclic in both dimensions, we also claim
that every symbol of the code C has a recovering set of size
at most r1 for one erasure.

Repeating the above arguments for a fixed index i, we
isolate another recovering of size r2 for every coordinate. Fur-
thermore, the two recovering sets are disjoint by construction.

To estimate the distance, recall the following result about
bicyclic codes.
Lemma 14 (HYPERBOLIC BOUND [30]). Suppose that the
defining set of zeros of an n ˆ n bicyclic code contains a
subset given by Z “ tpi, jq : pi ` 1qpj ` 1q ă du. Then the
distance of the code is at least d.

Thus, the distance of the code C constructed above is at
least δ, and its dimension dimpCq “ n2 ´ |Z|. Let us estimate
the dimension from below. We have

|D2| “

δ´2
ÿ

j“0

Z

δ

j ` 1

^

ď δ
δ´1
ÿ

j“1

1

j

ď δ

˜

1 `

ż δ´1

1

lnpx ´ 1qdx

¸
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ď δp1 ` ln pδ ´ 1qq.

Therefore, we have

n2 ´ |Z| ě n2 ´ |L2| ´ |D2|

“ n2 ´ pr1 ` r2 ` 1qν1ν2 ´ δp1 ` ln pδ ´ 1qq

“
n2r1r2

pr1 ` 1qpr2 ` 1q
´ δp1 ` ln pδ ´ 1qq. (40)

To compare this estimate of the dimension with product
codes, let C1 be a direct product of two cyclic LRC codes of
length n with locality r and distance

?
δ. The defining set of

this code are given by Z1 “ L1 Y D1, where

L1 “ tpi, jq | i, j “ 1 mod pr ` 1qu,

D1 “ tpi, jq | i, j “ 1, . . . ,
?
δ ´ 1u.

Choosing r1 “ r2 “ r in our construction, we have L2 `

p1, 1q “ L1. It is also easy to see that |Z| ď |Z1| and thus,
dimpCq ě dimpC1q.

Let us write out an estimate for the rate of the constructed
codes. Putting r1 “ r2 “ r in (40), we obtain for the rate
of the code C the following estimate in terms of the relative
distance θ “ δ{n2:

R ě 1 ´
2

r ` 1
`

1

pr ` 1q2
´ θp1 ` lnpδ ´ 1qq.

The best known upper bound on the rate of LRC codes with
locality r, availability t, and relative distance θ [21] has the
form

R ď
r ´ 1

r
p1 ´ θq ´ op1q.

The gap between this bound and the lower estimate implied
by our construction is roughly Op 1

r ` θ ln δq.

Example 3. Let r1 “ 2, r2 “ 6, and δ “ 9. Our construction
gives rise to an LRC code with availability two, of length n2 “

441, dimension k “ 246, and distance d ě 9, over a finite field
Fq such that 21|pq ´ 1q (for example, we can take q “ 64).
To compare these codes with the product construction, let us
choose the column codes and row codes of length 21 and
distance 3, and let us take the maximum dimension of codes
as given by the bound (1) for locality 2 and 6. This gives
k1 “ 13, k2 “ 17 and the overall dimension k “ 221, lower
than above.

An extension of the construction in this section to the case
of t ě 2 can be easily obtained via t-dimensional cyclic codes
and the general hyperbolic bound. Furthermore, using proce-
dures similar to those used in (9) and (10), our construction
can be generalized to h ě 2 levels of hierarchy such that the
local codes in each of the h levels have availability t ě 2.

APPENDIX A
PROOF OF PROPOSITION 5

Let us first prove a technical claim.

Claim 15. For 1 ď i ď h`1, we have δ1 “ pδi ´b
pi´1q
0 q mod

n1.

Proof: We prove the claim by induction. Clearly, for i “ 1

we have δ1 “ pδ1 ´ b
p0q
0 q mod n1. Next suppose that for a

given i, 1 ď i ă h`1 we have δ1 “ pδi´b
pi´1q
0 q mod n1. Re-

ducing (13) modulo n1, we obtain the equality pδi ´b
pi´1q
0 q “

pδi`1 ´ b
piq
0 q mod n1. Thus also δ1 “ pδi`1 ´ b

piq
0 q mod n1,

and this completes the proof.
Now we are ready to prove Proposition 5. Clearly, for i “ 1

we have |Z1| “ δ1 ´ 1 “ n1 ´ r1. Suppose for 1 ď i1 ď i we
have |Zi1 | “ ni1 ´ ri1 , where 1 ď i ă h ` 1. Let us establish
the induction step.

By the definition of Zi`1 and (13), we have |Zi`1| ě pνi ´

aiqni. Consider the set

Ai`1 “ pνi ´ aiqni ` tδi ´ b
pi´1q
0 ´ δ1 ` 1,

δi ´ b
pi´1q
0 ´ δ1 ` 2, . . . , niu

formed by adding pνi ´ aiqni to every element of the subset
above, and let Bi`1 “ Ai`1 X Di`1. Since

Ťνi´ai´1
l“0 pZi `

lniq Ď Di`1, we have

|Zi`1| “ pνi ´ aiqni ` |Bi`1zpZi ` pνi ´ aiqniq|

`

ˇ

ˇ

ˇ

νi´1
ď

l“νi´ai

pZi ` lniq

ˇ

ˇ

ˇ
.

Next, we would like to determine the cardinality of the set
Bi`1zpZi ` pνi ´ aiqniq. By Claim 15, we have δ1 “ pδi ´

b
pi´1q
0 q mod n1. Therefore, |Ai`1| is divisible by n1. Note that
Bi`1 Ď Ai`1. Moreover, among the first upiq

i´1ni´1 elements
of Ai`1 there are u

piq
i´1ri´1 ´ b

pi´1q
0 elements that are in Bi`1

but not in Zi ` pνi ´ aiqni. For the next upiq
i´2ni´2 elements

in Ai`1 there are u
piq
i´2ri´2 elements that are in Bi`1 but not

in Zi ` pνi ´ aiqni, and so forth. Hence, we have

|Bi`1zpZi ` pνi ´ aiqniq|

“

i´1
ÿ

j“1

u
piq
j rj ` u

piq
0 r1 ` b

piq
0 ´ b

pi´1q
0

“ bi.

It follows that

|Zi`1| “ pνi ´ aiqni ` bi `

ˇ

ˇ

ˇ

νi´1
ď

l“νi´ai

pZi ` lniq

ˇ

ˇ

ˇ

“ pνi ´ aiqni ` bi ` ai|Zi|

“ ni`1 ´ aini ` bi ` aipni ´ riq (41)
“ ni`1 ´ pairi ´ biq

“ ni`1 ´ ri`1,

where (41) uses |Zi| “ ni ´ ri, which is the induction
hypothesis. This completes the proof.

APPENDIX B
PROOF OF LEMMA 6

We again argue by induction on i. For i “ 1, by (13) we
have

δ2 “ pν1 ´ a1qn1 ` δ1 ` u
p1q
0 n1 ` b

p1q
0 ´ b

p0q
0

“ n2 ´ a1n1 ` δ1 ` u
p1q
0 pn1 ´ r1q ` b1 (42)

“ n2 ´ a1pr1 ` δ1 ´ δ0q ` δ1 ` u
p1q
0 pn1 ´ r1q ` b1
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“ n2 ´ r2 ` δ1 ´ a1pδ1 ´ δ0q ` u
p1q
0 pδ1 ´ δ0q (43)

“ n2 ´ r2 ` δ1 ´ pa1 ´ u
p1q
0 qpδ1 ´ δ0q

“ n2 ´ r2 ` δ1 ´

R

r2
r1

V

pδ1 ´ δ0q,

where (42) follows from n2 “ n1ν1 and (12), in (43) we used
a1r1 “ r2`b1, and the last equality follows from a1 “ rr2{r1s

and u
p1q
0 “ tpb

p1q
1 ` b

p0q
0 q{r1u “ 0.

For the induction step, let us fix i, 1 ď i ă h and suppose
that

δi`1 “ ni`1 ´ ri`1 ` δi ´

i
ÿ

l“1

R

ri`1

rl

V

pδl ´ δl´1q, (44)

provided that conditions (14) are satisfied. Observe that

δi`2 “ pνi`1 ´ ai`1qni`1 ` δi`1

`

i
ÿ

j“1

u
pi`1q
j nj ` u

pi`1q
0 n1 ` b

pi`1q
0 ´ b

piq
0

“ ni`2 ´ ai`1ni`1 ` δi`1

`

i
ÿ

j“1

u
pi`1q
j pnj ´ rjq ` u

pi`1q
0 pn1 ´ r1q ` bi`1

(45)

Substituting ni`1 from (44), we obtain

ai`1ni`1 “ ai`1

´

ri`1 ` δi`1 ´ δi

`

i
ÿ

l“1

Qri`1

rl

U

pδl ´ δl´1q

¯

. (46)

In addition, also by the induction hypothesis, we have

u
pi`1q
0 pn1 ´ r1q “ u

pi`1q
0 pδ1 ´ δ0q,

u
pi`1q
j pnj ´ rjq “ u

pi`1q
j pδj ´ δj´1q

`

j´1
ÿ

l“1

u
pi`1q
j

Qrj
rl

U

pδl ´ δl´1q,

1 ď j ď i.

Therefore,
i

ÿ

j“1

u
pi`1q
j pnj ´ rjq ` u

pi`1q
0 pn1 ´ r1q

“

i
ÿ

l“1

´

u
pi`1q

l `

i
ÿ

j“l`1

u
pi`1q
j

Qrj
rl

U¯

pδl ´ δl´1q

` u
pi`1q
0 pδ1 ´ δ0q. (47)

Substituting (46) and (47) into (45), we obtain

δi`2 “ ni`2 ´ ri`2 ` δi`1 ´ ai`1pδi`1 ´ δiq

`

i
ÿ

l“2

´

u
pi`1q

l `

i
ÿ

j“l`1

u
pi`1q
j

Qrj
rl

U

´ ai`1

Qri`1

rl

U¯

pδl ´ δl´1q

`

´

u
pi`1q
0 ` u

pi`1q
1 `

i
ÿ

j“2

u
pi`1q
j

Qrj
r1

U

´ ai`1

Qri`1

r1

U¯

pδ1 ´ δ0q.

Thus, if the corresponding conditions of (14) are satisfied, then
we have

δi`2 “ ni`2 ´ ri`2 ` δi`1 ´

i`1
ÿ

l“1

Qri`2

rl

U

pδi`1 ´ δiq.

This completes the induction step.

APPENDIX C
PROOF OF PROPOSITION 10

Part (a): The generator matrix of the truncated code Cr0,js is
given in (24), where rankpG0q “ k.

Since G0 has full rank, by Definition 4, the j-th column
distance of C is equal to

dcj “ mintwtpur0,jsG
c
jq | u0 ‰ 0u,

where ur0,js “ pu0, . . . , ujq P Fkpj`1q
q is an input sequence

truncated at the j-th time instant. Obviously,

dcj ď mintwtpur0,jsG
c
jq |

u0 ‰ 0, u1 “ u2 “ . . . “ uj “ 0u. (48)

Consider the k ˆ npj ` 1q submatrix rG0, G1, . . . , Gjs that
forms the first k rows of Gc

j . By elementary row operations
it is possible to make some, say first, k columns of G1 be
all-zero, and the same is true for some k columns of the
matrices Gi, i “ 2, . . . , j. (Note that to accomplish this,
we use all the rows of Gc

j and not just the rows of the
submatrix rG0, G1, . . . , Gjs.) As a result, the vector bpu0q :“
u0rG0, G1, . . . , Gjs will contain at least kj zero coordinates
for any choice of u0 P Fk

q , and so the effective length of the
set of vectors tbpu0qu is npj ` 1q ´ kj. The set of vectors
tbpu0q | u0 P Fk

qu is a subset of the code Cr0,js and it forms
a linear code K of effective length npj ` 1q ´ kj with pr, δq

locality if the original convolutional code C has (column or
row) pr, δq locality. The distance of the code K gives an upper
bound on dcj , and is itself bounded above as in (3). Substituting
the parameters of the code K, we obtain the bound (27) for
the distance dcj . Part (a) is proved.

Remark: Without the locality assumption the above argu-
ment proves the Singleton bound (29) for the column distance
of the code C.

Part (b): Recall the following observation (e.g., [11]):
Proposition 16. Let j ě 0. Let Hc

j be the parity check matrix
for the truncated convolutional code Cr0,js. Then the following
properties are equivalent:

1) dcj “ d;
2) none of the first n columns of Hc

j is contained in the span
of any other d´2 columns and one of the first n columns
of Hc

j is in the span of some other d´ 1 columns of Hc
j .

Now suppose that dcj attains (27) with equality while dcj´1 ă

pn ´ kqj ` δ ´
P

k
r

T

pδ ´ 1q. By Proposition 16, there exists a
column among the first n columns of Hc

j´1 such that it is in



15

the span of some other dcj´1 ´ 1 columns of Hc
j´1. Note that

Hc
j´1 is a submatrix of Hc

j . Specifically, we have

Hc
j “

¨

˚

˚

˚

˝

Hc
j´1

0
...
0

Hj Hj´1 ¨ ¨ ¨ H1 H0

˛

‹

‹

‹

‚

,

where Hi, 1 ď i ď j are pn´kqˆn matrices and rankpH0q “

n´k. Because of this, there exists a column among the first n
columns of Hc

j such that it is in the span of some other dcj´1´

1 ` n ´ k ă dcj ´ 1 columns of Hc
j , which by Proposition 16

contradicts our assumption about dcj . Hence, it follows that the
optimality of the j-th column distance implies the optimality
of the i-th column distance for all i ď j for convolutional
codes with (column or row) locality.
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