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Antipodal points

1. Introduction
1.1. Basic definitions

Let X, = {0, 1}" be the binary Hamming space which can be also thought of as a linear space I}
over the finite field F,. The cardinality |X,| = 2". Denote by B(x, t) the ball with center at x € X, and
radius t > 0, i.e., the set of all points y € X, with d(x, y) < t, where d(x, y) is the Hamming distance.
The volume of the ball v(t) := |B(x, t)| = Zf:o ('l') is independent of x € X,. It is convenient to
assume that B(x,t) = ¥ and v(t) =0 for t < 0, and B(x, t) = X, and v(t) = 2" for t > n.

For an N-point subset Zy C X, and a ball B(y, t) define the local discrepancy as follows:

D(Zy,y,t) = [B(y, t) N Zy| — N27"(t). (1)
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We note that D(Zy,y,n) = 0 for any Zy,y, and thus below we limit ourselves to the values
0 <t < n— 1. Define the weighted L,-discrepancy by
1/p
Dy(G. Zy) = (Z&Zz D@y, t)") " 0<p<oo, )
t=0 yeXy
where G = (go, ..., gn—1) is a vector of nonnegative weights normalized by

n—1

g=1 (3)
>
t=0

With such a normalization, we have
Dy(G,Zy) < Dy(G,Zy) O0<p<g<o0. (4)

The L.,-discrepancy is defined by

Deo(l, Zy) = max max |D(Zy, y, t)| , (5)
tel yeXn
where I C {0, ...,n — 1} is a subset of the set of the radii.

We also introduce the following extremal discrepancies

Dy(G,n,N)= min Dp(G,Zy), O0<p<oo,

ZNCXn

and

Doo(I,n,N) = min D(I, Zy).
ZNCXn
These quantities can be thought of as geometric characteristics of the Hamming space.
It is useful to keep in mind the following simple observations:
(i) If Z§ = X, \ Zy is the complement of Zy C X,, then D(Zy, y, t) = —D(Z, y, t), and we have

D,(G,Zy) = Dy(G,Z5) and D,(G,n,N) = D,(G,n,2" —N),

for all 0 < p < oo. Hence, generally it suffices to consider only subsets Zy with N < 2", Together
with results of [ 1] on quadratic discrepancies, this remark enables us to identify some new examples
of subsets that attain the minimum value of D,(Gq, n, 2" — N) with uniform weights

=(1/n,1/n,...,1/n).

Let us give one example. A code Zy € X, with minimum pairwise distance 2t + 1 is called
perfect if spheres of radius t around the codewords fill the entire space X, without overlapping.
Perfect codes were shown in [1] to have the smallest quadratic discrepancy among all codes of the
same cardinality. For instance, for n = 2™ — 1,t = 1 the well-known Hamming code is perfect
[13, p.23ff]. Therefore, for N = 2"(1 — 2™™), m > 2 the code Zy formed of spheres of radius one
around the codewords of the Hamming code (i.e., the union of the n cosets of the Hamming code)
is a minimizer of quadratic discrepancy. Another family of minimizers is given by X, \{y, y} for any
Yy € X, where y := 1" 4 y is a point antipodal to y and 1" € X, denotes the all-ones vector. Some
other examples can be also given; see [1]. For the reader’s convenience, we emphasize that the
quadratic discrepancy D*2(Zy) in [1] is related to our definition (2) by D"2(Zy) = 2"n N—2(D(G4, Zy))?.
(ii)
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Indeed, notice that B(y, t) = X, \ B(J, n — 1 — t), and therefore D(Zy,y, t) = D(Zy,y,n — 1 —t).
Also, obviously,

> D@y, 3, 0P = Y D@y, y, ),

YEXn YEXn

and thus
v _ 1/p
Dy 20) = (3 (827" 3 1D, v, OF + 012" Y 1Dy, 7, 01 ) )

t=0 yeXn YEXp

= (2" Y a0 Y wzy.or)

t=0 YyeXn

We conclude that limiting the summation range of t amounts to changing the weights in definition
(2). Similar arguments hold true for the L.,-discrepancy (5).

1.2. Earlier results

Discrepancies in compact metric measure spaces have been studied for a long time, starting with
basic results in the theory of uniform distributions [2,3,14]. In particular, quadratic discrepancy
of finite subsets of the Euclidean sphere is related to the structure of the distances in the subset
through a well-known identity called Stolarsky’s invariance principle [19]. Stolarsky’s identity
expresses the L,-discrepancy of a spherical set as a difference between the average distance on the
sphere and the average distance in the set. Recently it has been a subject of renewed attention in
the literature. In particular, papers [4,7,15] gave new, simplified proofs of Stolarsky’s invariance,
while [18] extended Stolarsky’s principle to projective spaces and derived asymptotically tight
estimates of discrepancy. Sharp bounds on quadratic discrepancy were obtained in [6,8,15,16].
Finally, paper [17] introduced new asymptotic upper bounds on L,-discrepancies of finite sets in
compact metric measure spaces.

A recent paper [1] initiated the study of Stolarsky’s invariance in finite metric spaces, deriving an
explicit form of the invariance principle in the Hamming space X, as well as bounds on the quadratic
discrepancy of subsets (codes) in X,. Explicit formulas were obtained for the uniform weights G;.
Namely, let x, y € X, be two points with d(x, y) = w. Define

-1
Ax,y) = AMw) :=2n—ww( w ), w=0,...,n.

[51-1
As shown in [1, Eq. (23)], Stolarsky’s identity for Zy C X, can be written in the following form:
nN? (2n N
2"nDy(G1, Zy)* = i ( i ) — ) Md(zi, 7). (6)

ij=1
Using this representation, [1, Cor.5.3, Thm.5.5] further showed that

N 172
cn‘3/4N1/2(1 — —) < Dy(Gy,n,N) < Cn VAN2,

2n

where c, C are some universal constants. Here the upper bound is proved by random choice and
the lower bound by linear programming. The method of linear programming, well known in coding
theory [11,12], is applicable to the problem of bounding the quadratic discrepancy because it can
be expressed as an energy functional on the code with potential given by 1. Moreover, there exist
sequences of subsets (codes) Zy C X,,n = 2™ — 1 whose quadratic discrepancy meets the lower
bound. Observe also that if N = o(2"), then the bounds differ only by a factor of 4/n: for example,
ifN>~2*" 0 <a < 1, then

N2 (logN)™/* < Dy(G1,n,N) < N2 (logN)~ "4, (7)
3
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In this short paper we develop the results of [1], proving bounds on Dy(G,n,N),p € (0, co].
We also consider a restricted version of the discrepancy D,(G, Zy), limiting ourselves to the case
of hemispheres in X,. In other words, we take local discrepancy for t = (n — 1)/2 in (1) (n
odd) and average its value over the centers of the balls. For the case of the Euclidean sphere,
quadratic discrepancy for hemispheres was previously studied in [4,16], which established a version
of Stolarsky’s invariance for this case.

2. Bounds on Dy(G, n, N)

We are interested in universal bounds for discrepancies (2)-(5) for given n, N and p € (0, oo]
without accounting for the structure of the subset. For the case of finite subsets in compact
Riemannian manifolds this problem was recently studied in [17], and we draw on the approach
of this paper in the derivations below.

2.1. The case 0 < p < 00

We shall consider random subsets Zy C X, using the following standard result to handle
discrepancies of such subsets.

Lemma 2.1 (Marcinkiewicz-Zygmund Inequality; [10], Sec.10.3). Let &, j € J, ]| < oo, be a finite
collection of real-valued independent random variables with expectations E §; = 0 and E g“l <o00,je].
Then, we have

EIY gP<2°(p+1PE() ¢ P? 1<p<oo.
Jjel i€l
In our first result we construct a random subset Zy by uniform random choice. Later we will
refine this procedure, obtaining a more precise bound on D,,.

Theorem 2.2. Let G be a vector of weights. For all N < 2", we have

2(p+ 1)V2NY2 for1<p < oo,
D,(G,n,N) < 8
bl ) {23/21\11/2 for0<p<1. (8)
Remark 2.1. Bounds of the type (8) hold true for arbitrary compact metric measure spaces.
Theorem 2.2 is given here to compare it with Theorem 2.3. Notice also that the upper bound (7) is
better than (8) with p = 2 and G = G; by a logarithmic factor. Such an improvement is obtained
in [1] because of the explicit formula (6) for the quadratic discrepancy with the uniform weights
Gi.
Proof. Choose a subset Zy by selecting the points {z;}; N independently and uniformly in X,. The
probability that such a point falls into a subset & € xn equals |€|/|Xy|. Therefore, for the local
discrepancy (1) of this random subset Zy we have

D(Zy, y t) Z Gy, t 9)

where
v(t)
1%l

where 1; is the indicator function of a subset & C X,.. The quantities ¢;(y, t) are independent random
variables that satisfy |gi(y, t)] < 1and E¢(y, t) = 0.
Applying the Marcinkiewicz-Zygmund inequality to the sum (9), we obtain

E[D(Zy,y, ) <2°(p+ 1)P?NP?, 1<p<oo,

Gy, t) = Lpy,n(zi) —

4



A. Barg and M. Skriganov Journal of Complexity 65 (2021) 101552

and, therefore, in view of (3),
ED(G, Zyf <2°(p+ 1)P2NP2, 1<p <co.

Thus, there exists a subset Zy = Zy(p) C X5, 1 < p < oo, whose discrepancy is bounded above as
in this inequality. For 0 < p < 1, in view of (4), we can put Zy(p) = Zy(1) to complete the proof. O

In some situations the bound of this theorem can be improved relying on the method of jittered
(or stratified) sampling, which uses a partition of the metric space into subsets of small diameter
and equal volume. This idea goes back to classical works on discrepancy theory [2], [3, pp. 237-240]
and it was used more recently in [5,6,9] for the case of the Euclidean sphere and in [17] for general
metric spaces. Below we follow the approach of [17]. In the case of the Hamming space the natural
way to proceed is to partition X, into sub-hypercubes of a fixed dimension.

In our analysis bounds on the volume of the ball v(t) are crucial. For large n and t = An,0 <
A < 1, the well-known bound on v(t) (cf. [13, p. 310]) can be written in the form

v(an) < 2M*) (10)
where
HOL) = h(2), ¥f0 <A<1/2, (a1
1, if1/2<x<1,

and h(A) = —Alog, A —(1—A)log,(1— 1) is the standard binary entropy, and in general, the bound
(10) cannot be improved. Formally speaking, the statement (10) requires An to be integer, but this
does not matter for the asymptotic arguments that we employ.

Theorem 2.3. Let N = 2*", 0 < a < 1, be a power of 2. Suppose that the weights g = 0 for
t>pgn, 0<pB < 1/2. Then

20p+ DV2 NO=K2 ) for1<p < o0,
Dy(G.n.N) = {23/2 NO=)/2, for0<p<1, (12)
where
1—H(1 —
K=K(O(,,3)=M >0. (13)

o
Ifa > % + B, then the exponent k(«, 8) > 0, and the bound (12) is better than (8).

Proof. Let V C X, be the k-dimensional subspace, k = yn, 0 < y < 1, consisting of all vectors
(X1, ..., xp) Withx; = 0ifi > k. Let N =2k =2 o =1— y. The affine subspaces
Vi=V+si, seX,/V
form a partition of the Hamming space
N
= v, vinv=g,
i=1
where |V;| = 2", diam V; = yn, where diam & = max{d(x;, X) : x1, X, € &} denotes the diameter
of a subset & C Xj,.
N

We consider a subset Zy = {z}] with zz € V;,i = 1,...,N. For such a subset, the local
discrepancy (1) can be written as follows

N
D(Zn,y, ) = DGy 1), (14)
i=1

where
[(B(y, t) N Vi

Gy, £) = Ligy.onvy(zi) = N
[ |
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Notice that if V; C B(y, t), then ¢;(y, t) = 0 (recall that z; € V; and NV; = 2"). Therefore, the sum
(14) takes the form

N
D(Zn,y, ) = )&y t),
i€f
where ] is a subset of indices i such that V; N B(y, t) # @ but V; ¢ B(y, t) (V; is neither completely
inside nor completely outside B(y, t)). Since diam V; = k, we conclude that all V;, i € J, are contained
in the ball B(y, t + k) and do not intersect the ball B(y, t — k — 1). Therefore,

UIIVil < o(t +k)— ot —k—1) < v(t +k).

Here we estimate |J| from above by the number of sets V; such that V; C B(y, t + k). We note that
discarding the term v(t — k — 1) entails no significant loss in the asymptotics because this term is
exponentially small compared to v(t + k). For t < fn, using the bound (11) and ¢ + y = 1, we
obtain

U| < 2nH(ﬂ+y)fyn — 2an(1fk) — Nlﬂ( ,

where « is defined in (13).

Now consider a random subset Zy = {z; ’1" in which each point z; is selected independently and
uniformly in V;. For a subset € € V; we have Pr(z; € &) = |€]/|Vi| = N|€|/|X,|. The quantities ¢;(y, t)
are bounded independent random variables that satisfy |Zj(y, t)] < 1 and E(y, t) = 0. Applying
the Marcinkiewicz-Zygmund inequality to the sum (14), we obtain

E[D(Zy.y. )" < 2°(p + 1P NPI2
and, therefore, in view of (3),

E |D(G, Zy)IP < 2°(p + 1)P/2 NP2, (15)
Thus, there exists a subset Zy = Zy(p) C X5, 1 < p < oo, whose discrepancy is bounded above as
in this inequality. For 0 < p < 1, in view of (4), we can put Z(p) = Z(1) to complete the proof. O

Remark 2.2. We conjecture that the improvement of the discrepancy estimate for weights equal to
zero in the neighborhood of t = n/2 takes place also for d-dimensional Euclidean spheres §¢ ¢ R4+!
in the case that the dimension d grows in proportion to the cardinality N. Indeed, the sphere S¢
and the Hamming space X, share the property that for large dimensions the invariant measure
concentrates around the “equator”. This interesting problem deserves a separate study.

2.2. The case p = oo

The following statement is analogous to [17, Prop.2.2]. For 1 < p < o0, any subset Zy C X,, and
I c{0,1,...,n— 1}, we have

Doo(l, Zn) < |17 2P Dy(Gy, Zn) , (16)
where
” 1/p
Do(Grz) = (Y7 D0 271Dz, v, OF )
t=0 yeXn
is a special L,-discrepancy with G; = (g1, ..., &), where g; = [I|7! for t €I and g = 0 otherwise.

Indeed, for y € X, and t € I we have

Dz y. 01 =< (X @y.or)”

tel yeXn

1/p
=12 (DY 27y OF )

tel yeXp
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Theorem 2.4. (i) Let I € {0, 1, ..., n} be an arbitrary subset of the set of radii, and N < 2"~1. Then
Doo(I, Zy) < 8(1+n)2N12. (17)

If N increases exponentially, N = 2°", then Doo(I, n, N) = O((log, N)/2 N1/2),
(ii) Let I € {0, 1, ..., Bn} be an arbitrary subset of the set of radii t < fn,0 < B < 1/2, and let
N = 2" < 2" 1 be a power of 2. Then

log, N\ 1/2
Dw(z,n,N)ss(H%) NG=/2 (18)

where the exponent k = «(«, ) is given in (13). If & > % + B, then the exponent k(«, 8) > 0, and the
bound (18) is better than (17).
Proof. Substituting the bounds (8) and (12) into inequality (16), we obtain

Doo(l, Zy) < n'? 2P 2(p 4 1)V/2N'/2 (19)
and

Doo(I, Zy) < n'/P 2™MP 2 (p + 1) V2 NI—)/2 | (20)
Now, we put p = n in (19) and (20) to obtain, respectively, (17) and (18). O

3. Discrepancy for hemispheres

Let X,,n = 2m + 1 be the Hamming space. In this section we consider a restricted version of
discrepancy where instead of all the ball radii in (2) we consider discrepancy only with respect to
the balls of radius m, calling them hemispheres. For any pair of antipodal points y, y

Xp = By, m)UB(y,m), B(y,m)NB(y,m)=4¢,
hence 27"v(m) = 27" |B(y, m)| = 1/2.
For a subset Zy C X, define
1/p
D@z = (273 IpEwy.mPP) . 0<p <o, 1)
YE€Xn

where
N
D(Zy,y, m) = By, m) N Zn| — 3
is the local discrepancy defined in (1). In the previous notation Dg,m)(ZN) = Dp(G(m), Zy), with
weights G(m) = (g1, ..., 8gn—1), where g, = 1 and g; = 0 if t # m. Further, let
DI(Zy) = max |D(Zy, )| -
yeXn
As before, define
Di™(n, N) = min D{™(Zy), p € (0, co].
P Zycxn P
First we address the question of global minimizers of discrepancy.
Theorem 3.1. For the Hamming space X,, with odd n = 2m + 1, we have the following.
(i) Let N = 2K be even, then for all subsets Zy € X,, and p € (0, o]
Di™(Zy) = 0 (22)

with equality for subsets Zy consisting of K pairs of antipodal points.
(ii) Let N = 2K + 1 be odd, then for all subsets Zy < X, and p € (0, oo]

D{M(Zy) > 1/2 (23)
with equality for subsets Zy consisting of K pairs of antipodal points supplemented with a single point.

7



A. Barg and M. Skriganov Journal of Complexity 65 (2021) 101552

In other words, for all p € (0, oo] the extremal discrepancy Di,m)(n,N) = 0 if N is even and
DY™(n, N) = 1/2 if N is odd.

Remark 3.1. The phenomenon of such small discrepancies for hemispheres is also known for
Euclidean spheres S¢ ¢ R+, see [4,15,16]. The sphere S¢ can be represented as a disjoint union
of two antipodal hemispheres and the equator. But the equator in this partition is of zero invariant
measure and has no effect on the discrepancy. A similar situation holds for the Hamming space X,
with odd n, because in this case the “equator” with t = n/2 is simply an empty set.

Proof. From (21) we conclude that
N = |B(y, m) N Zy| + |B(y, m) N Zy|,
and for any y € X, the local discrepancy can be written as
20Dz, y, m) = |2 1B, m) N 2| =N | = | 1B m) (2] = [BZ. m) " 2] | (24)

Let N = 2K. Inequality (22) holds for all subsets Zy. If Zy is formed of K pairs of antipodal points,
then |D(Zy,y, m)| = 0 for all y € X,.. This proves part (i).

Let N = 2K + 1. It follows from (24) that 2|D(Zy, y, m)| > 1, since N is odd and 2 |B(y, m) N Zy|
is even. This implies inequality (23). Furthermore, it also follows from (24) that 2|D(Zy,y, m)| = 1
for all y € X, if Zy consists of K pairs of antipodal points supplemented with a single point. This
proves part (ii). O

Thus in particular, any linear code Zy C X, that contains the all-ones vector has discrepancy
zero (such codes are called self-complementary). Many well-known families of binary linear codes
such as the Hamming codes, BCH codes [13], etc. possess this property.

A minor generalization of the above proof implies the following useful relation. Let Zy = Z, UZy
be a union of two subsets, where Z, contains all pairs of antipodal points in Zy then

Di™(zy) = DM(Zy),  p € (0, o0l.
3.1. Quadratic discrepancy for hemispheres

In this section we consider the discrepancy Di,'")(ZN) defined in (21) for the special case p = 2.
Let Zy C X, be a code, where n = 2m + 1. For a pair of points x, y € X, such that d(x,y) = w let
wm(X,¥) = um(w) = |B(x, m) N B(y, m)| be the size of the intersection of the balls of radius t with
centers at x and y. By abuse of notation we write u,, both as a kernel on X, x X;, and as a function
on {0, 1, ..., n}. This is possible because wu(x, y) depends only on the distance between x and y.
Note that u,(0) = v(m) = 2" and um(n) = 0.

In this section we use some more specific facts of coding theory. We refer to [13] for details. For
acode Zy C X, let

1
Ay = Au(Zy) = Nl{(zhzj) €Zy|dz,z)=w}, w=0,1,...,n
be the normalized number of ordered pairs of points at distance w (the numbersA,,, w =0, 1,...,n

form the distance distribution of Zy). Recall that the dual distance distribution of the code Zy is given
by

1 « .
A= > A (w), i=0.1,....n, (25)
w=0
where Ki(")(x) be the binary Krawtchouk polynomial of degree k = 0, ..., n, defined as follows:
i
X\ (n—x
KM(x) = Z(—l)'(.) ( ) ) (26)
Py J/\t—1]
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The vector (A,-l) forms the MacWilliams transform of the distance distribution of the code Zy, and
if Zy is a linear code, it coincides with the weight distribution of the dual code Zﬁ [13, pp. 129,138].
The MacWilliams transform is an involution [11, Thm. 3], which enables us to invert relations (25):
2" L ;
Ai:ﬁZAwKi (w), i=0,1,...,n. (27)
w=0

The following result is implied by [1], Lemma 4.1.

Lemma 3.2. The Krawtchouk expansion of the function pum(w), w =0, 1, ..., n has the form
n
w)=Ho+ Y k" (w)
kkjd]d
where io = 2" and forallk=1,3,...,n
mo\2
~ _nf2m 2 ((k—l)/z)
g =2 m /) Tz
(kfl)
In the next proposition we establish a version of Stolarsky’s invariance principle for the quadratic

discrepancy Dzm)(ZN) defined above in (21).

Proposition 3.3. We have

2"N=2D{"(zy ) = ZAme (w) —2"2 (28)
w_O
n
=) LA (29)
k=1

k odd

Proof. Starting with (21), we compute

N\ 2
o L <Z tom() = ) =2 (Z Ly, m(¥) — 5)
yeXn j=1 yern V1
N N .

= Z (Z gz, m)(¥) ez, m(¥) — N Z Lpig.m () + 7)

yeXn ij=1 P

N

= Z Z 1B(zi,m)(y)]13(zjvm)(y) _ 2”72N2

ij=1yeXn

n
3 e )~ 2N =S A 2N
Lj=1 w=0

where the last equality uses the definition of A,. This proves (28).
To obtain (29), substitute the result of Lemma 3.2 into (28) and then use (25). O

The size of the intersection of the balls can be written in a more explicit form:

Mm(MZZ(?)(n;w), w=0,1,...,n,

LJ

where i+j < m, 0 < w—i+j < m; in particular, p,(0) = 2" 1. It is not difficult to show that for any
I=1,2,...,|n/2] we have upn(2l—1) = um(2l) and otherwise un,(w) is a decreasing function of w.

9
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Let {i4;m) ¢ be the average value of the kernel w,(x, y) over the subset & C X,,. Since (im) x, = Hos
we can write (28) in the following form:

2"N"2DY(Z )? = (ftm)zy — (im) - (30)

Relations (30), (28) are similar to the invariance principle for hemispheres in the case of the
Euclidean sphere, [4, Thm. 3.1]. At the same time, the concrete forms of the results for the Hamming
space and the sphere are different: while for the sphere the quadratic discrepancy is expressed
via the average geodesic distance in Zy, in the Hamming case it is related to the average of the
kernel u, and is not immediately connected to the average distance. Note that for quadratic
discrepancy D,(G, Zy) for the Hamming space defined above in (2), results of this form were
previously established in [1].

Our final result in this section concerns a characterization of codes with zero discrepancy for
hemispheres for the case of even N.

Theorem 3.4. Let Zy be a code of even size N. Then D(zm)(ZN) = 0 if and only if the code Zy is formed
of N/2 antipodal pairs of points.

Proof. The sufficiency part has been proved in Theorem 3.1. The proof in the other direction is a
combination of the following steps.
Step 1. Since 71, > 0 for all odd k, expression (29) implies that a code Zy C X, has zero quadratic
discrepancy for hemispheres if and only if its dual distance coefficients A,ﬂ- # 0 only if k is even,
Step 2. A code Zy is formed of antipodal pairs if and only if its distance distribution is symmetric,
i.e, Ay, =A,_, forallw=0,1,...,m

Indeed, the distance distribution coefficients A,,, w = 0, ..., n can be written as
Ay = Z Aw(z), (3])
zeZn

where A, (z) = ﬁl{y :d(z,y) = w}]| is the local distance distribution at the point z € Zy.

Suppose the code is formed of antipodal pairs. For every y € Zy such that d(z,y) = w, the
opposite point y satisfies d(z, y) = n — w, and thus, the pair (y, ¥) contributes to A, (z) and A,_,,(z)
in equal amounts. Therefore, from (31) also A, = Aq_y.

Now suppose that the distance distribution is symmetric. For any code Aq = 1, and then also
A, = 1, but this means that every code point has a diametrically opposite one, or otherwise (31)
cannot be satisfied for w = n.

Step 3. The matrix

kPo0) kM) o kMm)

K5"(0) 1<§”)(1) o K(m)
(pm = . . .
K™ (0 1<(”) T <l

2m+1( ) Ko (1) Koy (m)

has rank m + 1. This is shown as follows. Orthogonality of Krawtchouk polynomials [11], [13, Thm
5.16] implies that

2m+1
() ZK(” K™ )( )
w
2m+1

n n n j+k (N n "
= ZK( K( )<w> + Z (—1YK"(n — w)KJ( (n - w)(n - w)

w=m+1
_221(”) K™( )( )
w
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Here on the second line we used the relation
KP(w) = (=1 (n —w), 0<kw<n. (32)

which is immediate from (26). In other words, for odd j, k we have

ZK,S”(w)Kj(")(w)(Z) = 52! (Z) (33)

w=0

Rephrasing this relation, we obtain

&BOT = 2" di ") (M), ... "
m dlag<<1>,<3 o \oma >,

where B = diag(([)), w = 0, 1, ..., m). This implies that rank(®p) = m + 1.
Step 4. To complete the proof, suppose that ng)(ZN) = 0 and thus from Step 1 above, A,} =0
for all odd k. In particular, for k =1, 3,...,2m 4+ 1, using (25) and (32), we obtain

2m+1 m
> AWK (W) =Y (A — Apu)K (w) = 0. (34)
w=0 w=0

Define the vector
a=Ay —Ap_yp,w=0,1,...,m).

From (34) and the definition of ®,, we obtain that &, = 0. From Step 3 we conclude that @ = 0
orA, =Ap_w,w=0,1,..., m. Now Step 2 implies our claim. O
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