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a b s t r a c t

We derive bounds for the ball Lp-discrepancies in the Hamming
space for 0 < p < ∞ and p = ∞. Sharp estimates of discrepan-
cies have been obtained for many spaces such as the Euclidean
spheres and more general compact Riemannian manifolds. In the
present paper, we show that the behavior of discrepancies in the
Hamming space differs fundamentally because the volume of the
ball in this space depends on its radius exponentially while such
a dependence for the Riemannian manifolds is polynomial.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Basic definitions

Let Xn = {0, 1}n be the binary Hamming space which can be also thought of as a linear space Fn
2

ver the finite field F2. The cardinality |Xn| = 2n. Denote by B(x, t) the ball with center at x ∈ Xn and
radius t ≥ 0, i.e., the set of all points y ∈ Xn with d(x, y) ≤ t , where d(x, y) is the Hamming distance.
The volume of the ball v(t) := |B(x, t)| =

∑t
i=0

(n
i

)
is independent of x ∈ Xn. It is convenient to

assume that B(x, t) = ∅ and v(t) = 0 for t < 0, and B(x, t) = Xn and v(t) = 2n for t > n.
For an N-point subset ZN ⊂ Xn and a ball B(y, t) define the local discrepancy as follows:

D(ZN , y, t) = |B(y, t) ∩ ZN | − N 2−nv(t). (1)
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We note that D(ZN , y, n) = 0 for any ZN , y, and thus below we limit ourselves to the values

≤ t ≤ n − 1. Define the weighted Lp-discrepancy by

Dp(G, ZN ) =

( n−1∑
t=0

gt
∑
y∈Xn

2−n
|D(ZN , y, t)|p

)1/p
, 0 < p < ∞ , (2)

where G = (g0, . . . , gn−1) is a vector of nonnegative weights normalized by
n−1∑
t=0

gt = 1. (3)

With such a normalization, we have

Dp(G, ZN ) ≤ Dq(G, ZN ) 0 < p < q < ∞ . (4)

The L∞-discrepancy is defined by

D∞(I, ZN ) = max
t∈I

max
y∈Xn

|D(ZN , y, t)| , (5)

where I ⊆ {0, . . . , n − 1} is a subset of the set of the radii.
We also introduce the following extremal discrepancies

Dp(G, n,N) = min
ZN⊂Xn

Dp(G, ZN ) , 0 < p < ∞ ,

and

D∞(I, n,N) = min
ZN⊂Xn

D∞(I, ZN ) .

These quantities can be thought of as geometric characteristics of the Hamming space.
It is useful to keep in mind the following simple observations:
(i) If Z c

N = Xn \ ZN is the complement of ZN ⊆ Xn, then D(ZN , y, t) = −D(Z c
N , y, t) , and we have

Dp(G, ZN ) = Dp(G, Z c
N ) and Dp(G, n,N) = Dp(G, n, 2n

− N) ,

for all 0 < p ≤ ∞. Hence, generally it suffices to consider only subsets ZN with N ≤ 2n−1. Together
with results of [1] on quadratic discrepancies, this remark enables us to identify some new examples
of subsets that attain the minimum value of D2(G1, n, 2n

− N) with uniform weights

G1 = (1/n, 1/n, . . . , 1/n).

Let us give one example. A code ZN ∈ Xn with minimum pairwise distance 2t + 1 is called
perfect if spheres of radius t around the codewords fill the entire space Xn without overlapping.
Perfect codes were shown in [1] to have the smallest quadratic discrepancy among all codes of the
same cardinality. For instance, for n = 2m

− 1, t = 1 the well-known Hamming code is perfect
[13, p.23ff]. Therefore, for N = 2n(1 − 2−m),m ≥ 2 the code ZN formed of spheres of radius one
around the codewords of the Hamming code (i.e., the union of the n cosets of the Hamming code)
is a minimizer of quadratic discrepancy. Another family of minimizers is given by Xn\{y, ȳ} for any
y ∈ Xn, where ȳ := 1n

+ y is a point antipodal to y and 1n
∈ Xn denotes the all-ones vector. Some

other examples can be also given; see [1]. For the reader’s convenience, we emphasize that the
quadratic discrepancy DL2 (ZN ) in [1] is related to our definition (2) by DL2 (ZN ) = 2nnN−2(D(G1, ZN ))2.

(ii) Without loss of generality we can restrict the range of summation on t in (2) from {0, . . . , n−

1} to {0, . . . , ν, 0, . . . , 0}, where ν = ⌊(n−1)/2⌋, limiting ourselves to a half of the full range. More
precisely, we have

Dp(G, ZN ) = Dp(G∗, ZN ) and Dp(G, n,N) = Dp(G∗, n,N) ,

where G∗
= (g∗, . . . , g∗) with g∗

= g + g .
1 ν t t n−t+1

2

abarg
Highlight



A. Barg and M. Skriganov Journal of Complexity 65 (2021) 101552

A

U

w
t
t
b
s
b
i

Indeed, notice that B(y, t) = Xn \ B(ȳ, n − 1 − t), and therefore D(ZN , y, t) = D(ZN , ȳ, n − 1 − t).
Also, obviously,∑

y∈Xn

|D(ZN , ȳ, t)|p =

∑
y∈Xn

|D(ZN , y, t)|p ,

and thus

Dp(G, ZN ) =

( ν∑
t=0

(
gt2−n

∑
y∈Xn

|D(ZN , y, t)|p + gn−1−t2−n
∑
y∈Xn

|D(ZN , ȳ, t)|p
))1/p

=

(
2−n

ν∑
t=0

(gt + gn−t−1)
∑
y∈Xn

|D(ZN , y, t)|p
)1/p

.

We conclude that limiting the summation range of t amounts to changing the weights in definition
(2). Similar arguments hold true for the L∞-discrepancy (5).

1.2. Earlier results

Discrepancies in compact metric measure spaces have been studied for a long time, starting with
basic results in the theory of uniform distributions [2,3,14]. In particular, quadratic discrepancy
of finite subsets of the Euclidean sphere is related to the structure of the distances in the subset
through a well-known identity called Stolarsky’s invariance principle [19]. Stolarsky’s identity
expresses the L2-discrepancy of a spherical set as a difference between the average distance on the
sphere and the average distance in the set. Recently it has been a subject of renewed attention in
the literature. In particular, papers [4,7,15] gave new, simplified proofs of Stolarsky’s invariance,
while [18] extended Stolarsky’s principle to projective spaces and derived asymptotically tight
estimates of discrepancy. Sharp bounds on quadratic discrepancy were obtained in [6,8,15,16].
Finally, paper [17] introduced new asymptotic upper bounds on Lp-discrepancies of finite sets in
compact metric measure spaces.

A recent paper [1] initiated the study of Stolarsky’s invariance in finite metric spaces, deriving an
explicit form of the invariance principle in the Hamming space Xn as well as bounds on the quadratic
discrepancy of subsets (codes) in Xn. Explicit formulas were obtained for the uniform weights G1.
Namely, let x, y ∈ Xn be two points with d(x, y) = w. Define

λ(x, y) = λ(w) := 2n−ww

(
w − 1

⌈
w
2 ⌉ − 1

)
, w = 0, . . . , n.

s shown in [1, Eq. (23)], Stolarsky’s identity for ZN ⊂ Xn can be written in the following form:

2nnD2(G1, ZN )2 =
nN2

2n+1

(
2n
n

)
−

N∑
i,j=1

λ(d(zi, zj)). (6)

sing this representation, [1, Cor.5.3, Thm.5.5] further showed that

c n−3/4 N1/2
(
1 −

N
2n

)1/2
≤ D2(G1, n,N) ≤ C n−1/4 N1/2 ,

here c, C are some universal constants. Here the upper bound is proved by random choice and
he lower bound by linear programming. The method of linear programming, well known in coding
heory [11,12], is applicable to the problem of bounding the quadratic discrepancy because it can
e expressed as an energy functional on the code with potential given by λ. Moreover, there exist
equences of subsets (codes) ZN ⊂ Xn, n = 2m

− 1 whose quadratic discrepancy meets the lower
ound. Observe also that if N = o(2n), then the bounds differ only by a factor of

√
n: for example,

f N ≃ 2αn, 0 < α < 1, then

N1/2 (logN)−3/4 ≲ D (G , n,N) ≲ N1/2 (logN)−1/4 , (7)
2 1
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In this short paper we develop the results of [1], proving bounds on Dp(G, n,N), p ∈ (0, ∞].
We also consider a restricted version of the discrepancy Dp(G, ZN ), limiting ourselves to the case
of hemispheres in Xn. In other words, we take local discrepancy for t = (n − 1)/2 in (1) (n
odd) and average its value over the centers of the balls. For the case of the Euclidean sphere,
quadratic discrepancy for hemispheres was previously studied in [4,16], which established a version
of Stolarsky’s invariance for this case.

2. Bounds on Dp(G, n,N )

We are interested in universal bounds for discrepancies (2)–(5) for given n,N and p ∈ (0, ∞]

without accounting for the structure of the subset. For the case of finite subsets in compact
Riemannian manifolds this problem was recently studied in [17], and we draw on the approach
of this paper in the derivations below.

2.1. The case 0 < p < ∞

We shall consider random subsets ZN ⊂ Xn, using the following standard result to handle
discrepancies of such subsets.

Lemma 2.1 (Marcinkiewicz–Zygmund Inequality; [10], Sec.10.3). Let ζj, j ∈ J, |J| < ∞, be a finite
collection of real-valued independent random variables with expectations E ζj = 0 and E ζ 2

j < ∞ , j ∈ J .
Then, we have

E |

∑
j∈J

ζj |
p
≤ 2p (p + 1)p/2 E (

∑
j∈J

ζ 2
j )p/2, 1 ≤ p < ∞ .

In our first result we construct a random subset ZN by uniform random choice. Later we will
refine this procedure, obtaining a more precise bound on Dp.

Theorem 2.2. Let G be a vector of weights. For all N ≤ 2n−1, we have

Dp(G, n,N) ≤

{
2(p + 1)1/2 N1/2 for 1 ≤ p < ∞,

23/2 N1/2 for 0 < p < 1.
(8)

Remark 2.1. Bounds of the type (8) hold true for arbitrary compact metric measure spaces.
Theorem 2.2 is given here to compare it with Theorem 2.3. Notice also that the upper bound (7) is
better than (8) with p = 2 and G = G1 by a logarithmic factor. Such an improvement is obtained
in [1] because of the explicit formula (6) for the quadratic discrepancy with the uniform weights
G1.

Proof. Choose a subset ZN by selecting the points {zi}N1 independently and uniformly in Xn. The
probability that such a point falls into a subset E ∈ Xn equals |E|/|Xn|. Therefore, for the local
discrepancy (1) of this random subset ZN we have

D(ZN , y, t) =

N∑
i=1

ζi(y, t) , (9)

where

ζi(y, t) = 1B(y,t)(zi) −
v(t)
|Xn|

,

where 1E is the indicator function of a subset E ⊆ Xn. The quantities ζi(y, t) are independent random
variables that satisfy |ζi(y, t)| ≤ 1 and E ζi(y, t) = 0.

Applying the Marcinkiewicz–Zygmund inequality to the sum (9), we obtain

E |D(Z , y, t)|p ≤ 2p (p + 1) p/2 N p/2, 1 ≤ p < ∞ ,
N

4
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and, therefore, in view of (3),

ED(G, ZN )p ≤ 2p (p + 1) p/2 N p/2, 1 ≤ p < ∞.

Thus, there exists a subset ZN = ZN (p) ⊂ Xn, 1 ≤ p < ∞, whose discrepancy is bounded above as
in this inequality. For 0 < p < 1, in view of (4), we can put ZN (p) = ZN (1) to complete the proof. □

In some situations the bound of this theorem can be improved relying on the method of jittered
(or stratified) sampling, which uses a partition of the metric space into subsets of small diameter
and equal volume. This idea goes back to classical works on discrepancy theory [2], [3, pp. 237–240]
and it was used more recently in [5,6,9] for the case of the Euclidean sphere and in [17] for general
metric spaces. Below we follow the approach of [17]. In the case of the Hamming space the natural
way to proceed is to partition Xn into sub-hypercubes of a fixed dimension.

In our analysis bounds on the volume of the ball v(t) are crucial. For large n and t = λn , 0 ≤

λ ≤ 1, the well-known bound on v(t) (cf. [13, p. 310]) can be written in the form

v(λn) ≤ 2nH(λ) , (10)

where

H(λ) =

{
h(λ), if 0 ≤ λ ≤ 1/2,
1, if 1/2 < λ ≤ 1 ,

(11)

and h(λ) = −λ log2 λ− (1−λ) log2(1−λ) is the standard binary entropy, and in general, the bound
(10) cannot be improved. Formally speaking, the statement (10) requires λn to be integer, but this
does not matter for the asymptotic arguments that we employ.

Theorem 2.3. Let N = 2αn, 0 < α < 1, be a power of 2. Suppose that the weights gt = 0 for
> βn, 0 < β < 1/2. Then

Dp(G, n,N) ≤

{
2(p + 1)1/2 N (1−κ)/2, for 1 ≤ p < ∞ ,

23/2 N (1−κ)/2, for 0 < p < 1 ,
(12)

here

κ = κ(α, β) =
1 − H(1 + β − α)

α
≥ 0 . (13)

If α > 1
2 + β , then the exponent κ(α, β) > 0, and the bound (12) is better than (8).

Proof. Let V ⊂ Xn be the k-dimensional subspace, k = γ n, 0 < γ < 1, consisting of all vectors
x1, . . . , xn) with xi = 0 if i > k. Let N = 2n−k

= 2αn, α = 1 − γ . The affine subspaces

Vi = V + si, si ∈ Xn/V

form a partition of the Hamming space

Xn =

N⋃
i=1

Vi , Vi ∩ Vj = ∅ ,

where |Vi| = 2γ n, diam Vi = γ n, where diam E = max{d(x1, x2) : x1, x2 ∈ E} denotes the diameter
of a subset E ⊆ Xn.

We consider a subset ZN = {zi}N1 with zi ∈ Vi, i = 1, . . . ,N . For such a subset, the local
discrepancy (1) can be written as follows

D(ZN , y, t) =

N∑
i=1

ζi(y, t) , (14)

where

ζi(y, t) = 1{B(y,t)∩Vi}(zi) − N
|(B(y, t) ∩ Vi|

.

|Xn|

5
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Notice that if Vi ⊂ B(y, t), then ζi(y, t) ≡ 0 (recall that zi ∈ Vi and NVi = 2n). Therefore, the sum
(14) takes the form

D(ZN , y, t) =

N∑
i∈J

ζi(y, t) ,

where J is a subset of indices i such that Vi ∩ B(y, t) ̸= ∅ but Vi ̸⊂ B(y, t) (Vi is neither completely
inside nor completely outside B(y, t)). Since diam Vi = k, we conclude that all Vi, i ∈ J , are contained
in the ball B(y, t + k) and do not intersect the ball B(y, t − k − 1). Therefore,

|J| |Vi| ≤ v(t + k) − v(t − k − 1) ≤ v(t + k) .

Here we estimate |J| from above by the number of sets Vi such that Vi ⊂ B(y, t + k). We note that
discarding the term v(t − k − 1) entails no significant loss in the asymptotics because this term is
exponentially small compared to v(t + k). For t ≤ βn, using the bound (11) and α + γ = 1, we
obtain

|J| ≤ 2nH(β+γ )−γ n
= 2αn(1−κ)

= N1−κ ,

where κ is defined in (13).
Now consider a random subset ZN = {zi}N1 in which each point zi is selected independently and

uniformly in Vi. For a subset E ∈ Vi we have Pr(zi ∈ E) = |E|/|Vi| = N|E|/|Xn|. The quantities ζi(y, t)
are bounded independent random variables that satisfy |ζi(y, t)| ≤ 1 and E ζi(y, t) = 0. Applying
the Marcinkiewicz–Zygmund inequality to the sum (14), we obtain

E |D(ZN , y, t)|p ≤ 2p(p + 1) p/2 N p(1−κ)/2

and, therefore, in view of (3),

E |D(G, ZN )|p ≤ 2p(p + 1) p/2 N p(1−κ)/2. (15)

Thus, there exists a subset ZN = ZN (p) ⊂ Xn, 1 ≤ p < ∞, whose discrepancy is bounded above as
in this inequality. For 0 < p < 1, in view of (4), we can put Z(p) = Z(1) to complete the proof. □

Remark 2.2. We conjecture that the improvement of the discrepancy estimate for weights equal to
zero in the neighborhood of t = n/2 takes place also for d-dimensional Euclidean spheres Sd ⊂ Rd+1

in the case that the dimension d grows in proportion to the cardinality N . Indeed, the sphere Sd
and the Hamming space Xn share the property that for large dimensions the invariant measure
concentrates around the ‘‘equator’’. This interesting problem deserves a separate study.

2.2. The case p = ∞

The following statement is analogous to [17, Prop.2.2]. For 1 ≤ p < ∞, any subset ZN ⊆ Xn, and
I ⊂ {0, 1, . . . , n − 1}, we have

D∞(I, ZN ) ≤ |I| 1/p 2 n/p Dp(GI , ZN ) , (16)

where

Dp(GI , ZN ) =

( ν∑
t=0

|I|−1
∑
y∈Xn

2−n
|D(ZN , y, t)|p

)1/p
,

is a special Lp-discrepancy with GI = (g1, . . . , gν), where gt = |I|−1 for t ∈ I and gt = 0 otherwise.
Indeed, for y ∈ Xn and t ∈ I we have

|D(ZN , y, t)| ≤

(∑
t∈I

∑
y∈Xn

|D(ZN , y, t)|p
)1/p

= |I| 1/p 2 n/p
(∑

t∈I

|I|−1
∑
y∈Xn

2−n
|D(ZN , y, t)|p

)1/p
.

6
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Theorem 2.4. (i) Let I ⊆ {0, 1, . . . , n} be an arbitrary subset of the set of radii, and N ≤ 2n−1. Then

D∞(I, ZN ) ≤ 8 (1 + n) 1/2 N 1/2 . (17)

f N increases exponentially, N ∼= 2αn, then D∞(I, n,N) = O((log2 N)1/2 N1/2).
(ii) Let I ⊆ {0, 1, . . . , βn} be an arbitrary subset of the set of radii t ≤ βn, 0 < β < 1/2, and let
= 2αn

≤ 2n−1 be a power of 2. Then

D∞(I, n,N) ≤ 8
(
2 +

log2 N
α

)1/2
N (1−κ)/2 , (18)

where the exponent κ = κ(α, β) is given in (13). If α > 1
2 +β , then the exponent κ(α, β) > 0, and the

ound (18) is better than (17).

Proof. Substituting the bounds (8) and (12) into inequality (16), we obtain

D∞(I, ZN ) ≤ n1/p 2n/p 2 (p + 1)1/2 N1/2 (19)

nd

D∞(I, ZN ) ≤ n 1/p 2 n/p 2 (p + 1) 1/2 N (1−κ)/2 . (20)

ow, we put p = n in (19) and (20) to obtain, respectively, (17) and (18). □

. Discrepancy for hemispheres

Let Xn, n = 2m + 1 be the Hamming space. In this section we consider a restricted version of
iscrepancy where instead of all the ball radii in (2) we consider discrepancy only with respect to
he balls of radius m, calling them hemispheres. For any pair of antipodal points y, ȳ

Xn = B(y,m) ∪ B(ȳ,m) , B(y,m) ∩ B(ȳ,m) = ∅ ,

ence 2−nv(m) = 2−n
|B(y,m)| = 1/2.

For a subset ZN ⊂ Xn define

D(m)
p (ZN ) =

(
2−n

∑
y∈Xn

|D(ZN , y,m)|p
)1/p

, 0 < p < ∞ , (21)

here

D(ZN , y,m) = |B(y,m) ∩ ZN | −
N
2

s the local discrepancy defined in (1). In the previous notation D(m)
p (ZN ) = Dp(G(m), ZN ), with

eights G(m) = (g1, . . . , gn−1), where gm = 1 and gt = 0 if t ̸= m. Further, let

D(m)
∞

(ZN ) = max
y∈Xn

|D(ZN , y)| .

As before, define

D(m)
p (n,N) = min

ZN⊂Xn
D(m)
p (ZN ), p ∈ (0, ∞].

First we address the question of global minimizers of discrepancy.

Theorem 3.1. For the Hamming space Xn with odd n = 2m + 1, we have the following.
(i) Let N = 2K be even, then for all subsets ZN ⊆ Xn and p ∈ (0, ∞]

D(m)
p (ZN ) ≥ 0 (22)

with equality for subsets ZN consisting of K pairs of antipodal points.
(ii) Let N = 2K + 1 be odd, then for all subsets ZN ⊆ Xn and p ∈ (0, ∞]

D(m)
p (ZN ) ≥ 1/2 (23)

with equality for subsets Z consisting of K pairs of antipodal points supplemented with a single point.
N

7
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In other words, for all p ∈ (0, ∞] the extremal discrepancy D(m)
p (n,N) = 0 if N is even and

D(m)
p (n,N) = 1/2 if N is odd.

Remark 3.1. The phenomenon of such small discrepancies for hemispheres is also known for
Euclidean spheres Sd ⊂ Rd+1, see [4,15,16]. The sphere Sd can be represented as a disjoint union
of two antipodal hemispheres and the equator. But the equator in this partition is of zero invariant
measure and has no effect on the discrepancy. A similar situation holds for the Hamming space Xn
with odd n, because in this case the ‘‘equator’’ with t = n/2 is simply an empty set.

Proof. From (21) we conclude that

N = |B(y,m) ∩ ZN | + |B(ȳ,m) ∩ ZN | ,

and for any y ∈ Xn the local discrepancy can be written as

2|D(ZN , y,m)| =

⏐⏐⏐ 2 |B(y,m) ∩ ZN | − N
⏐⏐⏐ =

⏐⏐⏐ |B(y,m) ∩ ZN | − |B(ȳ,m) ∩ ZN |

⏐⏐⏐ . (24)

Let N = 2K . Inequality (22) holds for all subsets ZN . If ZN is formed of K pairs of antipodal points,
then |D(ZN , y,m)| = 0 for all y ∈ Xn. This proves part (i).

Let N = 2K + 1. It follows from (24) that 2|D(ZN , y,m)| ≥ 1, since N is odd and 2 |B(y,m) ∩ ZN |

is even. This implies inequality (23). Furthermore, it also follows from (24) that 2|D(ZN , y,m)| = 1
for all y ∈ Xn if ZN consists of K pairs of antipodal points supplemented with a single point. This
proves part (ii). □

Thus in particular, any linear code ZN ⊂ Xn that contains the all-ones vector has discrepancy
zero (such codes are called self-complementary). Many well-known families of binary linear codes
such as the Hamming codes, BCH codes [13], etc. possess this property.

A minor generalization of the above proof implies the following useful relation. Let ZN = Z ′

N ∪Z ′′

N
be a union of two subsets, where Z ′

N contains all pairs of antipodal points in ZN then

D(m)
p (ZN ) = D(m)

p (Z ′′

N ) , p ∈ (0, ∞].

3.1. Quadratic discrepancy for hemispheres

In this section we consider the discrepancy D(m)
p (ZN ) defined in (21) for the special case p = 2.

Let ZN ⊂ Xn be a code, where n = 2m + 1. For a pair of points x, y ∈ Xn such that d(x, y) = w let
µm(x, y) = µm(w) = |B(x,m) ∩ B(y,m)| be the size of the intersection of the balls of radius t with
centers at x and y. By abuse of notation we write µm both as a kernel on Xn ×Xn and as a function
on {0, 1, . . . , n}. This is possible because µm(x, y) depends only on the distance between x and y.
Note that µm(0) = v(m) = 2n−1 and µm(n) = 0.

In this section we use some more specific facts of coding theory. We refer to [13] for details. For
a code ZN ⊂ Xn let

Aw = Aw(ZN ) =
1
N

|{(zi, zj) ∈ Z2
N | d(zi, zi) = w}|, w = 0, 1, . . . , n

be the normalized number of ordered pairs of points at distance w (the numbers Aw, w = 0, 1, . . . , n
form the distance distribution of ZN ). Recall that the dual distance distribution of the code ZN is given
by

A⊥

i =
1
N

n∑
w=0

AwK
(n)
i (w), i = 0, 1, . . . , n, (25)

where K (n)
i (x) be the binary Krawtchouk polynomial of degree k = 0, . . . , n, defined as follows:

K (n)
i (x) =

i∑
(−1)j

(
x
j

)(
n − x
i − j

)
. (26)
j=0

8



A. Barg and M. Skriganov Journal of Complexity 65 (2021) 101552

T

d

P

w

The vector (A⊥

i ) forms the MacWilliams transform of the distance distribution of the code ZN , and
if ZN is a linear code, it coincides with the weight distribution of the dual code Z⊥

N [13, pp. 129,138].
he MacWilliams transform is an involution [11, Thm. 3], which enables us to invert relations (25):

Ai =
2n

N

n∑
w=0

A⊥

wK
(n)
i (w), i = 0, 1, . . . , n. (27)

The following result is implied by [1], Lemma 4.1.

Lemma 3.2. The Krawtchouk expansion of the function µm(w), w = 0, 1, . . . , n has the form

µm(w) = µ̂0 +

n∑
k=1
k odd

µ̂kK
(n)
k (w)

where µ̂0 = 2n−2 and for all k = 1, 3, . . . , n

µ̂k = 2−n
(
2m
m

)2
( m
(k−1)/2

)2( 2m
k−1

)2 .

In the next proposition we establish a version of Stolarsky’s invariance principle for the quadratic
iscrepancy D(m)

2 (ZN ) defined above in (21).

roposition 3.3. We have

2nN−2D(m)
2 (ZN )2 =

1
N

n∑
w=0

Awµm(w) − 2n−2 (28)

=

n∑
k=1
k odd

µ̂kA⊥

k . (29)

Proof. Starting with (21), we compute

2nD(m)
2 (ZN )2 =

∑
y∈Xn

( N∑
j=1

1B(y,m)(zj) −
N
2

)2
=

∑
y∈Xn

( N∑
j=1

1B(zj,m)(y) −
N
2

)2

=

∑
y∈Xn

( N∑
i,j=1

1B(zi,m)(y)1B(zj,m)(y) − N
N∑
j=1

1B(zj,m)(y) +
N2

4

)

=

N∑
i,j=1

∑
y∈Xn

1B(zi,m)(y)1B(zj,m)(y) − 2n−2N2

=

N∑
i,j=1

µm(zi, zj) − 2n−2N2
= N

n∑
w=0

Awµm(w) − 2n−2N2,

where the last equality uses the definition of Aw . This proves (28).
To obtain (29), substitute the result of Lemma 3.2 into (28) and then use (25). □

The size of the intersection of the balls can be written in a more explicit form:

µm(w) =

∑
i,j

(
w

i

)(
n − w

j

)
, w = 0, 1, . . . , n,

here i+j ≤ m, 0 ≤ w−i+j ≤ m; in particular, µm(0) = 2n−1. It is not difficult to show that for any
l = 1, 2, . . . , ⌊n/2⌋ we have µ (2l−1) = µ (2l) and otherwise µ (w) is a decreasing function of w.
m m m

9
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Let ⟨µm⟩E be the average value of the kernel µm(x, y) over the subset E ⊂ Xn. Since ⟨µm⟩Xn = µ̂0,
we can write (28) in the following form:

2nN−2 D(m)
2 (ZN )2 = ⟨µm⟩ZN − ⟨µm⟩Xn . (30)

Relations (30), (28) are similar to the invariance principle for hemispheres in the case of the
Euclidean sphere, [4, Thm. 3.1]. At the same time, the concrete forms of the results for the Hamming
space and the sphere are different: while for the sphere the quadratic discrepancy is expressed
via the average geodesic distance in ZN , in the Hamming case it is related to the average of the
kernel µm and is not immediately connected to the average distance. Note that for quadratic
discrepancy D2(G, ZN ) for the Hamming space defined above in (2), results of this form were
previously established in [1].

Our final result in this section concerns a characterization of codes with zero discrepancy for
hemispheres for the case of even N .

Theorem 3.4. Let ZN be a code of even size N. Then D(m)
2 (ZN ) = 0 if and only if the code ZN is formed

of N/2 antipodal pairs of points.

Proof. The sufficiency part has been proved in Theorem 3.1. The proof in the other direction is a
combination of the following steps.

Step 1. Since µ̂k > 0 for all odd k, expression (29) implies that a code ZN ⊂ Xn has zero quadratic
discrepancy for hemispheres if and only if its dual distance coefficients A⊥

k ̸= 0 only if k is even,
Step 2. A code ZN is formed of antipodal pairs if and only if its distance distribution is symmetric,

i.e., Aw = An−w for all w = 0, 1, . . . ,m.
Indeed, the distance distribution coefficients Aw, w = 0, . . . , n can be written as

Aw =

∑
z∈ZN

Aw(z), (31)

where Aw(z) =
1
N |{y : d(z, y) = w}| is the local distance distribution at the point z ∈ ZN .

Suppose the code is formed of antipodal pairs. For every y ∈ ZN such that d(z, y) = w, the
opposite point ȳ satisfies d(z, ȳ) = n− w, and thus, the pair (y, ȳ) contributes to Aw(z) and An−w(z)
in equal amounts. Therefore, from (31) also Aw = An−w .

Now suppose that the distance distribution is symmetric. For any code A0 = 1, and then also
An = 1, but this means that every code point has a diametrically opposite one, or otherwise (31)
cannot be satisfied for w = n.

Step 3. The matrix

Φm =

⎛⎜⎜⎜⎝
K (n)
1 (0) K (n)

1 (1) . . . K (n)
1 (m)

K (n)
3 (0) K (n)

3 (1) . . . K (n)
3 (m)

...
... . . .

...

K (n)
2m+1(0) K (n)

2m+1(1) . . . K (n)
2m+1(m)

⎞⎟⎟⎟⎠
has rank m + 1. This is shown as follows. Orthogonality of Krawtchouk polynomials [11], [13, Thm
5.16] implies that(

n
k

)
2nδj,k =

2m+1∑
w=0

K (n)
k (w)K (n)

j (w)
(
n
w

)

=

m∑
w=0

K (n)
k (w)K (n)

j (w)
(
n
w

)
+

2m+1∑
w=m+1

(−1)j+kK (n)
k (n − w)K (n)

j (n − w)
(

n
n − w

)

= 2
m∑

w=0

K (n)
k (w)K (n)

j (w)
(
n
w

)
.

10
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Here on the second line we used the relation

K (n)
k (w) = (−1)kK (n)

k (n − w), 0 ≤ k, w ≤ n. (32)

which is immediate from (26). In other words, for odd j, k we have
m∑

w=0

K (n)
k (w)K (n)

j (w)
(
n
w

)
= δk,j2n−1

(
n
k

)
. (33)

Rephrasing this relation, we obtain

ΦmBΦT
m = 2n−1diag

((
n
1

)
,

(
n
3

)
, . . . ,

(
n

2m + 1

))
,

where B = diag(
(n
w

)
, w = 0, 1, . . . ,m). This implies that rank(Φm) = m + 1.

Step 4. To complete the proof, suppose that D(m)
2 (ZN ) = 0 and thus from Step 1 above, A⊥

k = 0
for all odd k. In particular, for k = 1, 3, . . . , 2m + 1, using (25) and (32), we obtain

2m+1∑
w=0

AwK
(n)
k (w) =

m∑
w=0

(Aw − An−w)K
(n)
k (w) = 0. (34)

Define the vector

α = (Aw − An−w, w = 0, 1, . . . ,m).

From (34) and the definition of Φm we obtain that ΦmαT
= 0. From Step 3 we conclude that α = 0

or Aw = An−w, w = 0, 1, . . . ,m. Now Step 2 implies our claim. □
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