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Abstract

The black hole images obtained with the Event Horizon Telescope (EHT) are expected to be variable at the dynamical
timescale near their horizons. For the black hole at the center of the M87 galaxy, this timescale (5–61 days) is
comparable to the 6 day extent of the 2017 EHT observations. Closure phases along baseline triangles are robust
interferometric observables that are sensitive to the expected structural changes of the images but are free of station-
based atmospheric and instrumental errors. We explored the day-to-day variability in closure-phase measurements on
all six linearly independent nontrivial baseline triangles that can be formed from the 2017 observations. We showed
that three triangles exhibit very low day-to-day variability, with a dispersion of ∼3°–5°. The only triangles that exhibit
substantially higher variability (∼90°–180°) are the ones with baselines that cross the visibility amplitude minima on
the u–v plane, as expected from theoretical modeling. We used two sets of general relativistic magnetohydrodynamic
simulations to explore the dependence of the predicted variability on various black hole and accretion-flow parameters.
We found that changing the magnetic field configuration, electron temperature model, or black hole spin has a
marginal effect on the model consistency with the observed level of variability. On the other hand, the most
discriminating image characteristic of models is the fractional width of the bright ring of emission. Models that best
reproduce the observed small level of variability are characterized by thin ring-like images with structures dominated
by gravitational lensing effects and thus least affected by turbulence in the accreting plasmas.

Unified Astronomy Thesaurus concepts: Black hole physics (159); High energy astrophysics (739)

1. Introduction

The Event Horizon Telescope (EHT) has produced horizon-
scale images of the black hole in the center of the M87 galaxy
using Very Long Baseline Interferometry (VLBI) at a
wavelength of 1.3 mm (EHT Collaboration et al. 2019a, 2019b,
2019c, 2019d, 2019e, 2019f). Together with upcoming studies

127 NSF Astronomy and Astrophysics Postdoctoral Fellow.
128 NASA Hubble Fellowship Program, Einstein Fellow.
129 EACOA fellow.
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of the black hole in the center of the Milky Way, Sgr A*, these
images have opened up numerous avenues to studying physics
at event-horizon scales related to both accretion processes and
gravity. The structure of the accretion disks and jets observed
around the black holes will improve our understanding of the
behavior of plasma in these environments (EHT Collaboration
et al. 2019e, 2019f). The measurements of the sizes and shapes
of the black hole shadows give insights into deviations of the
black hole spacetime from the Kerr metric (Psaltis 2019; Psaltis
et al.2020).

Accretion flows, which make up the horizon-scale environ-
ments of black holes, are expected to be highly variable by nature.
The radiation observed from these regions at 1.3 mm is dominated
by synchrotron emission from electrons that are heated and
accelerated by magnetohydrodynamic turbulence (EHT Colla-
boration et al. 2019e). The accretion flow is also expected to
evolve at the dynamical timescales near the innermost stable
circular orbit (ISCO), which range from 4 to 56 minutes for Sgr
A*

(for MBH= 4.148× 106Me; see Gravity Collaboration et al.
2019) and 5 to 61 days for M87 (depending on the black hole
spin; Bardeen et al. 1972). The timescales suggest that there can
be substantial variability in the source structure over a single
observing night for Sgr A*, which makes it difficult to obtain a
static image. However, we expect substantial source variability in
M87 only for observations that span about a week or longer.
Evidence for long-term variability in the image structure of M87
has been reported recently, based on VLBI observations spanning
nearly a decade (Wielgus & The EHT Collaboration 2020).

The EHT observed M87 in 2017 April for four nights with a
maximum separation of six calendar days between observa-
tions. For a black hole of the inferred mass (MBH=
6.5× 109Me; Gebhardt et al. 2011; EHT Collaboration et al.
2019f), the six days correspond to 16GM/c3. This is
approximately equal to ∼3.5 dynamical timescales at the ISCO
for a maximally spinning black hole. Over this observation
span, only a limited amount of variability in source structure
was inferred between days, reflected as a small change in the
thickness or azimuthal brightness distribution of the observed
bright emission ring (EHT Collaboration et al. 2019d).

Our goal in this paper is to use general relativistic
magnetohydrodynamic (GRMHD) simulations of accretion
flows, followed by general relativistic ray tracing and radiative
transfer, with parameters that are relevant to the M87 black
hole, in order to explore the short-term variability in the source
structure as it is imprinted in the interferometric observables.
The EHT, being an interferometer, measures complex visibi-
lities, which denote the two-dimensional Fourier transform of
the source image on the sky. The measurements are typically
decomposed into visibility amplitudes and phases (Thompson
et al. 2017). Image reconstruction techniques enable us to use
these variables and create the map of the source brightness on
the plane of the sky (see EHT Collaboration et al. 2019d).

The visibility measurements in VLBI are affected by time-
dependent atmospheric and instrumental errors of the tele-
scopes, particularly challenging for the short radio wavelengths
(Thompson et al. 2017). The custom-built EHT data reduction
pipeline addresses the specific requirements of the millimeter
VLBI (EHT Collaboration et al. 2019c). The pipeline uses
Atacama Large Millimeter/submillimeter Array (ALMA) as an
anchor station, leveraging its extreme sensitivity for the
calibration of the entire EHT array (Blackburn et al. 2019;
Janssen et al. 2019). As a result, the measured visibilities

indicate sufficient phase-stability to enable long coherent
averaging and building up the high signal-to-noise ratio.
Remaining station-based errors can be modeled as complex
gains multiplying the visibilities. In order to eliminate the
effects of these errors in the data, one can construct closure
quantities with amplitudes and phases (Jennison 1958;
Kulkarni 1989; Thompson et al. 2017; Blackburn et al.
2020). For a set of three baselines forming a closure triangle,
the closure phase is defined as the sum of the measured
visibility phases in each of these baselines. This cancels out the
station-based phase measurement errors for each station. As a
result, the closure phases are optimal and robust probes of the
intrinsic structure of the source.
Closure phases have indeed proven to be a powerful tool to

study and quantify variability in synthetic data from GRMHD
simulations. Medeiros et al. (2018) studied the dependence of
variability in closure phases on the orientations and baseline
lengths of the closure triangles (see also Roelofs et al. 2017).
Triangles that involve large baselines (that probe small length
scales in the source image) were shown to have a high degree
of variability in closure phases. On the other hand, triangles
that involve small baselines (that probe the overall size of the
ring and source structure) exhibit less variability. The exception
to this rule are triangles involving a baseline close to a deep
visibility minimum. The visibility phases in regions of
visibility minima are extremely sensitive to minor changes in
source structure. This localization of variability in the Fourier
space is vital in understanding variability in GRMHD
simulations and in observations.
In this paper, we first present a data-driven model to quantify

the variability of observed closure phases in the various linearly
independent triangles of the M87 observations across the six
days of observations in 2017. We apply this algorithm to the
2017 EHT data on M87 and identify three closure triangles that
show a remarkably small degree of variability. We then explore
the degree of variability produced in a large set of GRMHD
simulations, with different magnetic field configurations and
prescriptions of the plasma physics, and understand the effects
of various model parameters on the variability in the models.
Finally, we compare the predictions of the GRMHD simula-
tions to the observations and discuss how the latter constrain
the physical properties of the accretion flow in M87.

2. Closure-phase Observations of M87

The EHT measures complex visibilities, given by

( ) ( ) ( )( )V u v dx dy I x y e, , , 1i ux vy2

where I(x, y) represents the total intensity of radiation at a given
spatial location (x, y) on the image plane and (u, v) denote the
Fourier frequencies corresponding to the (x, y) coordinates.
However, due to atmospheric and instrumental effects, the
measured visibilities do not represent the actual visibilities of
the source. The measured visibilities are related to the source
visibilities through complex gains. The measured visibility
between the ith and the jth telescopes, ijV , can be written as

( )g g V , 2ij i j ij*V

where gi and gj are the complex gains associated with the two
telescopes, and the star superscript indicates complex con-
jugates. We define the closure phase as the argument of the
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complex bispectrum along a closed triangle of three telescopes
(Jennison 1958). The closure phase

ijk
CP for a closure triangle

formed by the ith, the jth, and the kth telescopes is hence given
by

[ ]

[ ]

[∣ ∣ ∣ ∣ ∣ ∣ ]

[ ]
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g g V g g V g g V

g g g V V V

V V V

Arg

Arg
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ijk ij jk ki

i j ij j k jk k i ki

i j k ij jk ki

ij jk ki

ij jk ki

CP

2 2 2

* * *

V V V

where fij denotes the visibility phase between the ith and the
jth telescopes. Equation (3) shows that the measured closure
phase in a triangle is equal to the actual closure phase
represented by the source.

The EHT observed M87 on four nights in 2017 April 5, 6,
10, and 11. The observations involved seven stations spread
across five geographical locations (EHT Collaboration et al.
2019b): the Atacama Large Millimeter Array (ALMA) and the
Atacama Pathfinder Experiment (APEX) in Chile; the James
Clerk Maxwell Telescope (JCMT) and the Submillimeter Array
(SMA) in Hawaii; the Large Millimeter Telescope (LMT) in
Mexico; the Submillimeter Telescope Observatory (SMT) in
Arizona; and the IRAM 30 m telescope in Pico Veleta (PV) in
Spain. On each night of observation, the rotation of the Earth
implies that each baseline traces out an elliptical path in the u–v
space with the progression of time.

Figure 1 shows the u–v coverage for M87 during one of the
observing days (left panel) as well as the visibility amplitudes
measured as a function of baseline length on the same day
(right panel). Two deep minima in visibility amplitude can be
seen at baseline lengths of ∼3.4 and ∼8.3 Gλ encountered in
three baselines (LMT-SMA, SMT-SMA, and PV-SMA) along
the east–west orientation (indicated in blue). In contrast, the
minimum encountered by the ALMA-LMT baseline is only
marginally deep (right panel of Figure 1).

We construct closure-phase quantities using all the base-
lines shown in Figure 1. However, closure triangles with two
telescopes at the same geographical location yield trivial
closure phases, with deviations from zero arising due to
changes in the large scale source structure alongside

systematic and thermal errors (EHT Collaboration et al.
2019c). While these triangles are useful to quantify systematic
errors in closure phases, they do not capture any information
about the source structure at horizon scales. Hence, we only
choose triangles with telescopes at different geographical
locations for our study. Since Chile and Hawaii have two
stations each, we pick the station with the higher signal-to-
noise ratio. We, therefore, consider five stations—ALMA,
SMA, LMT, SMT, and PV, out of which six linearly
independent closure phases can be constructed. We list the
six triangles in Table 1. We choose the triangles such that all
of them involve ALMA, which has the highest signal-to-noise
ratio, and hence smaller uncertainties in closure-phase
measurements.
In Figure 2, we show the evolution of closure phases with

time in Greenwich Mean Sidereal Time (GMST) coordinates
over all four days of observations in three triangles that exhibit
substantial day-to-day variability in closure phases over the
span of the 2017 campaign (see also EHT Collaboration et al.
2019c, Section 7.3.2):

Figure 1. Left: the u–v coverage traced by the EHT for the M87 observations on 2017 April 11, with the dashed circles indicating locations of the two observed
visibility minima. The colors indicate different orientations of the u–v coverage. Right: the visibility amplitude as a function of baseline length on the same day.

Table 1

Closure Triangles Used with Baseline Lengths and Inferred Variability in
Closure Phases

Trianglea Baseline Lengths (Gλ)b Inferred Variabilityc

1 2 3

ALMA-SMA-LMT 6.7–7.2 3.1–4.5 3.4–4.1 ∼30°–60°
ALMA-LMT-SMT 3.4–4.2 1.3–1.5 4.8–5.5 3°.4
ALMA-PV-LMT 6.0–6.6 5.1–6.4 3.4–4.2 4°.6
ALMA-SMA-SMT 6.7–7.2 2.4–3.5 4.8–5.5 ∼180°
ALMA-PV-SMA 6.0–6.2 8.2–8.3 6.8–7.0 L

ALMA-PV-SMT 6.0–6.6 5.5–6.4 5.3–5.5 5°.4

Notes.
a The bold baselines indicate the triangles that cross one of the deep visibility
minima in the E-W orientation at 3.4 and 8.3 Gλ.
b Baselines labeled 1, 2, and 3 in a triangle labeled as A-B-C correspond to the
baselines A-B, B-C, and C-A, respectively.
c An estimated range of variation in the high-variability triangles, and the
maximum likelihood value of the inferred Gaussian variability (Equation (7))
in the low-variability triangles.
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(i) The ALMA-SMA-LMT triangle shows a change of 30°–
60° between the first two days and the later two days of
observation.

(ii) The ALMA-SMA-SMT triangle shows a swing of 180°
on each day of observation. In addition to this, the direction of
this swing flips between the first two days and the later two
days of observation.

(iii) In the ALMA-PV-SMA triangle, it is difficult to
quantify the degree of variability because of the reduced

complex visibility amplitudes between PV and SMA baselines,
and the low signal-to-noise ratio in some data points. However,
a persistent structure in the evolution of closure phases is not
observed.
We note that each of these closure triangles involves one of

the baselines (i.e., LMT-SMA, SMT-SMA, and PV-SMA) that
cross a deep visibility minimum in the E-W orientation. In
addition, we note that, in the ALMA-SMA-SMT triangle, the
closure phases show little day-to-day variability until ∼19
GMST on each day. We attribute this behavior to the fact that
the SMT-SMA baseline encounters the deep visibility mini-
mum at ∼19 GMST. We plan to analyze the dependence of
variability in the observations on the depth of the visibility
minima in a future study.
The closure phases in the remaining triangles (i.e., ALMA-

LMT-SMT, ALMA-PV-LMT, and ALMA-PV-SMT) show a
persistent and continuous evolution with time during each day
of observation (see Figure 3). This behavior represents the
evolution of closure phases as the various baselines trace their
paths on the u–v plane following the rotation of the Earth.
However, the same evolution with time is repeated in all days
of observations; there is little scatter around the general trend
set by the rotation of the baselines. The presence of substantial
scatter from day to day would have been a signature of
structure variability in the image.
In order to compare the observations to theoretical models,

we quantify the degree of closure-phase day-to-day variability
observed in this last set of triangles. Upon examination of the
closure phases in the maximal set of closure triangles, we find
that, outside the set of linearly independent triangles that we
choose, only one triangle (LMT-SMT-PV) shows a low degree
of day-to-day variability. We conclude that it is optimal and
sufficient to quantify the day-to-day variability in the low-
variability triangles that we choose in Table 1, since the LMT-
SMT-PV triangle can be obtained by a linear combination of
these three triangles.
We also note that the comparison between observations and

models could, in principle, be carried out for both high-
variability and low-variability triangles. However, as we will
discuss in Section 4, images from theoretical models uniformly
show a high degree of phase variability in baselines that cross a
visibility minimum and, as a result, a comparison with the
high-variability triangles in the data turns out not to have much
discriminating power between various models. The degree of
variability exhibited on the low-variability triangles identified
in the data, on the other hand, is a more significant challenge to
the GRMHD models and proves to be a useful tool to
distinguish between them.
The quantification of day-to-day variability in the set of three

low-variable triangles is not straightforward, because closure
phases evolve with time on each observing day but the
individual scans on each day are not aligned at the exact same
times. As a result, a difference in closure phases measured in
two scans separated by almost (but not exactly) one sidereal
day incorporates both the change due to the slightly different
locations on the u–v plane probed by the two scans and the
change due to the structural changes in the image.
In order to disentangle the two sources of variability, we

employ a data-driven analytic model for the evolution of the
closure phase with time during a single day of observation.
This is meant to capture the change in closure phases
introduced by the changing location on the u–v plane of the

Figure 2. The evolution of closure phases plotted with time for all four days of
observation for closure triangles in which baselines are known to encounter
regions of deep visibility minima. All three triangles exhibit a high level of
variability in closure phases across six days of observation.
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closure triangles. We then compare the overall change of the
parameters of this model from day to day, in order to quantify
the variability due to structural changes of the image.

For our data-driven model, fmodel(t), we use a second-order
polynomial in the observation time t (in GMST coordinates),
given by

( ) ( )t c c t c t . 4model 0 1 2
2

In order to account for potential structural changes from day
to day, we allow for an intrinsic Gaussian spread in the zeroth-
order coefficient of this polynomial (c0), with a standard
deviation of c0. In this prescription, we do not assign any
physical significance to the polynomial coefficients. Since the

maximum separation between any two nights of observations is
six days, c0 acts as a constraint on the overall change in closure
phase at a given time in a given triangle across six days.
Using this model, we define the likelihood of making a

particular closure-phase measurement using a Gaussian mixture
model as

( )
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Figure 3. The parameters and functional forms of the data-driven closure-phase evolution model, applied to the closure triangles that exhibit low variability across the
six days of 2017 EHT observations (see Equation (4)). Left: the posterior projected on the –cc 00 parameter plane, where σ0 is a measure of the variability across the
six days. The red dots indicate the most likely values. The contours indicate the levels containing 68% and 95% of the posterior probability. The dashed horizontal
lines indicate the systematic error of 2° in closure-phase observations. Right: closure-phase observations plotted as a function of time for the same triangles. The cyan
band indicates the most likely value of the width of the model c0.
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where fi is the closure phase in a triangle at an observation
time ti, and σi denotes the uncertainty in fi. Note that we have
assumed here Gaussian statistics for the measurements of
closure phases. This assumption is not expected to introduce
any significant changes in our quantitative results since the
triangles we will be applying this method to are characterized
by high signal-to-noise measurements. Applying this mixture
model to data with large errors would require using an
appropriate distribution for the closure-phase errors and their
correlations (see Christian & Psaltis 2020).

The likelihood that n closure-phase observations in a given
triangle across all four days of observation follow the model
fmodel(t) is

( ) ( ) ( )L c c c L c c c, , , , , , 6c

i

n

i c0 1 2

1

0 1 20 0

( )

{ ( )}
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2
.

7

i

n

i c i

n
i i

i c1
2 2

1

model
2

2 2

0 0

⎧
⎨⎩

⎫
⎬⎭

⎡
⎣⎢

⎤
⎦⎥

Assuming flat priors in the polynomial coefficients and in c0,
we map the parameter space using the Markov-chain Monte
Carlo sampling.

Figure 3 shows the posteriors over two of the model
parameters, c0 and c0, for each of the three triangles that
exhibits low day-to-day variability. The left panels show the
68% and 95% contours of the posteriors; the right panels show
the data-driven model with the most likely value of the
parameters, overplotted on the closure-phase observations in
these triangles. The most likely standard deviations of
variability across the six days of observations are ∼3°–5°.
This is comparable to the systematic error in closure-phase
observations of 2° as reported in EHT Collaboration et al.
(2019c) and is remarkably small.

3. GRMHD Simulations and Library

A large suite of GRMHD simulations has been generated to
model the accretion flow around M87. The simulations have
been performed using the algorithms harm (see Gammie et al.
2003), BHAC (Olivares Sánchez et al. 2018), KORAL (Sądowski
et al. 2014), etc. The simulations have been initialized with two
magnetic field configurations that led to different field
structures in the flows: Standard and Normal Evolution (SANE;
see Igumenshchev et al. 2003) and Magnetically Arrested Disk
(MAD; see Narayan et al. 2012 and Sądowski et al. 2013). A
comprehensive comparison of the GRMHD algorithms is
presented in Porth et al. (2019). The set of observables that
results from these simulations has been obtained by general
relativistic ray tracing and radiative transfer algorithms, such as
GRay (Chan et al. 2013) and ipole (Mościbrodzka &
Gammie 2018).

In this paper, we analyze the GRMHD simulations that were
run using harm (see Gammie et al. 2003; Narayan et al. 2012).
The simulations include SANE and MAD configurations of the
magnetic fields and different black hole spins with corotating or
counterrotating accretion disks. The flow properties, as
calculated in the GRMHD simulations, scale with the mass
of the black hole and, therefore, the latter does not enter the
calculation. The dependence of the electron temperature on the

local value of the plasma β parameter aims to capture the
effects of sub-grid electron physics that are not resolved in the
GRMHD simulations (see Chan et al. 2015). The accretion
flows in the simulations are modeled as collisionless plasmas,
where the ratio of ion temperature to electron temperature
(R≡ Ti/Te) is given by

( )R R
1

1

1
. 8high

2

2 2

Here, β≡ Pgas/Pmag is the ratio of gas pressure (Pgas) to the
magnetic pressure (Pmag). This prescription aims to simulate
the effects of sub-grid electron heating, using this simple,
physics-motivated parametric form (Mościbrodzka et al. 2016;
and EHT Collaboration et al. 2019e).
General relativistic ray tracing and radiative transfer is

performed on the simulated system at the wavelength of
1.3 mm in order to generate the images of the black hole using
the different snapshots of the simulations. For radiative
transfer, the black hole mass (MBH) and the overall electron
number-density scale in the accretion disk (ne) set a scale for
the mass and the optical depth in the accretion disk, which
determines the mass accretion rate and the flux of emission in
the source. It follows from the scaling properties of the
emissivity of the accretion disk at 1.3 mm and from the natural
scaling of the GRMHD simulations (see Chan et al. 2015) that
ne and MBH are degenerate quantities with the resulting images
and, therefore, the various interferometric observables, depend-
ing only on the product M neBH

2 (see a derivation and discussion
in the Appendix).
We use two sets of GRMHD models for studying closure-

phase variability:
(i) The first set of models (henceforth Set A) is aimed at

understanding the dependence of the closure-phase variability
on the properties of the accretion flow, i.e., MAD versus SANE
magnetic field configuration, the plasma prescription, and the
electron number-density scale (ne). In particular, they include
SANE and MAD models for a single spin, three different
values of Rhigh, and five different values of ne (defined at a
fiducial mass of MBH= 6.5× 109Me). For this value of the
black hole mass, this range allows us to explore compact fluxes
that are up to a factor of a few above and below the nominal
value of 0.5 Jy. Each model is used to generate 1024 images
with a time cadence of 10 GM/c3, amounting to a total of
∼30,000 images in this set. Ray tracing and radiative transfer
calculations for this simulation set are carried out using GRay.
(ii) The second set of models (henceforth Set B) explores a

comprehensive set of black hole spins and Rhigh of the accretion
plasma, which are used in EHT Collaboration et al. (2019e) in
the interpretation of the EHT observations. The electron
number-density scale (ne) in this simulation set is tuned
a priori such that the total flux of radiation at 1.3 mm is equal to
0.5 Jy for a fiducial mass of MBH= 6.2× 109Me. Each model
in this simulation set is used to generate 600–1000 images at a
time cadence of 5 GM/c3, amounting to ∼50,000 images in
this set. Ray tracing and radiative transfer calculations for this
simulation set are carried out using ipole.
The ray tracing and radiative transfer tracing calculations on

the GRMHD simulations performed using ipole and GRay

ignore the effects of finite light travel time. Bronzwaer et al.
(2018) showed that the effect of the approximation on the
lightcurve of flux density in a simulation is restricted to only a
few percent. Depending upon the nature of the spatial
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correlations in structural variability in the simulation, the
computed images may carry either time-correlated or time-
uncorrelated features. These features will have an effect on the
amplitude of variability inferred. In this study, we ignore these
effects in inferring the variability in the images.

The parameter spaces studied in sets A and B are listed in
Table 2. Although the mass of the black hole MBH does not
enter as an independent parameter in the calculation of the
black hole images, it affects our interpretation of the
observations in the following ways:

(i) The characteristic time unit (τ) in the GRMHD
simulations is set by the mass of the black hole as
τ=GMBH/c

3. A higher mass of the black hole implies that
an observation span of 6 days would translate to a shorter
elapsed time in units of τ.

(ii) The angular size of the image as seen by a distant
observer depends on the black hole mass (Δθ∼ λ/MBH),
which implies that the EHT probes different regions in the
Fourier space for black holes of different masses. A higher
mass of the black hole translates to the EHT probing structures
at smaller length scales.

The mass of M87 has been measured using two methods prior
to the EHT observations (EHT Collaboration et al. 2019e).
Gebhardt et al. (2011) measured a mass of MBH= 6.6±
0.4× 109Me using stellar dynamics. Walsh et al. (2013)
measured a mass of M M3.5 10BH 0.7

0.9 9 by studying
emission lines from ionized gas. The GRMHD models in
simulation sets A and B give images for which the ring sizes and
widths correspond to masses in the range inferred by the stellar
dynamics measurement of Gebhardt et al. (2011; see EHT
Collaboration et al. 2019f). Because of this, we allow the black
hole mass to vary in the range 5× 109Me�MBH� 9.5× 109Me

in both sets of the simulations.
The orientation of the black hole spin axis has been

constrained by long-wavelength observations of its jet at a
position angle of ∼288° north of east and at an inclination of
17° with respect to the line of sight (see discussion in EHT
Collaboration et al. 2019f). We trace the Set A models at an
inclination of 17°. In Set B, we trace the positive spin models at
an inclination of 163° and the negative spin models at 17°.

The simulations typically run for lengths that correspond
to∼ 104GM/c3. Here, we only use images obtained from the

relaxed turbulent state with a slowly varying mass accretion
rate. This corresponds to simulation times in the range of
5× 103� t� 104GM/c3.

4. Closure-phase Variability in GRMHD Simulations

In order to analyze visibility phase and closure-phase
variability in GRMHD models, we first transform the GRMHD
snapshots into the visibility space by performing a two-
dimensional Fourier transform on each of the images. We then
compute the amplitude and phase from the complex visibilities
at each location in the u–v plane.
Since the visibility phase is a directional quantity, we need to

employ directional statistics to infer the standard deviation in a
time-series. For a given time-series of n phases θi, we compute
its directional dispersion as

{ ( ¯)} ( )D
n

1
1 cos , 9
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1
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In the limit of small deviations in the time-series from the
circular mean ¯ , the directional dispersion can be approximated
as

( )D
2
, 11

2

where σ is inferred as a standard deviation of the time-series θi
for small fluctuations about ¯ .
We use this quantity to construct heat maps of phase

variability in order to understand the dependence of variability
on the u–v coordinates (see also Medeiros et al. 2017). We
present an example of such a heat map for one of the
simulations in Set B in Figure 4. The left panel shows the mean
visibility amplitude on the u–v plane computed across the
simulation run and reveals deep visibility minima that are
aligned with the spin axis of the black hole. The right panel
shows a heat map of the visibility phase dispersion. There are
hot regions of visibility phase variability, i.e., localized regions
in u–v space that show large dispersions. These regions lie
primarily along the spin axis of the black hole and at baseline
lengths that correspond to the deep minima in visibility
amplitudes. In fact, a natural anticorrelation between phase
variability and mean visibility amplitude is observed in all the
GRMHD models, which was also explored in Medeiros et al.
(2017; see their Figures 3 and 4).
Based on this understanding, one expects the closure-phase

variability computed along various triangles to depend on the
locations of the three vertices in the u–v space. In particular, the
localized nature of variability implies that closure triangles that
have baselines crossing the hot regions are expected to exhibit
high variability in closure phases, whereas triangles with
vertices in quiet parts of the u–v space should show a low level
of variability. In Figure 4, we show examples of two such
triangles: the ALMA-SMA-LMT triangle has a baseline on a
hot region and is expected to be highly variable, while a low-
variability closure triangle (ALMA-LMT-SMT) avoids the hot
regions.
The azimuthal extent of the hot regions of phase dispersion

in the u–v plane depends on the degree of symmetry of the

Table 2

GRMHD Simulation Model Parameters

Parametera Parameter Space

Set A Set B

Model type MAD, SANE MAD, SANE
Black hole spinb +0.9 0.0, ±0.5, ±0.94
Plasma Rhigh 1, 20, 80 1, 10, 20, 40,

80, 160
Electron number density

(ne)
c

1,2.5,5,7.5,10 (×105 cm−3
) Tuned to

constant flux
Time cadence 10 GM/c3 5 GM/c3

Notes.
a The u–v coordinates of the baselines are rotated to align the spin axis of the
black hole at a position angle of 288° east of north.
b The positive spin models are ray traced at an inclination of 163° and negative
spin models at 17° in Set A. Set B models are ray traced at an inclination of
17°.
c The electron number density is defined at a fiducial mass of 6.5 × 109Me for
Set A and 6.2 × 109Me for Set B.
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underlying image. This is shown in Figure 7, where each
column corresponds to a simulation from Set A with a different
electron-density scale ne, and all other black hole and plasma
parameters held fixed. Qualitatively, the two effects of
increasing the electron-density scale are a higher level of
symmetry in the bright emission ring and an increase in its
fractional width. The more symmetric images lead to a larger
azimuthal extent in the minima in the visibility amplitudes
(middle panels) and in the hot regions of phase dispersion
(lower panels). The increased fractional width of the images
lead to the locations of both the visibility amplitude minima
and the hot regions in phase dispersion to appear at smaller
baseline lengths.

4.1. Closure-phase Variability and Compliance Fractions

The phase dispersions discussed in the previous section were
calculated across the entire span of the simulations, which
corresponds to many dynamical timescales. In order to compare
the simulations to the observed variability in M87, however,
we need to calculate the degree of variability for a time span of
Δt= 6 days, which is the longest separation between the four
observations in 2017. Furthermore, because observations only
yield closure phases, hereafter we focus on this quantity to
facilitate comparisons.

We define the variance in closure phase fcp(t) for a time span
of Δt= 6 days using Equation (11) as

( ) [ { ( ) ¯ }] ( )t
t

dt t
1

2 1 cos . 12
t

t t
2

0 cp cp
0

0

In order to reduce the discretization noise when calculating
this quantity, we perform a linear interpolation between
simulation time-steps and construct a continuous function
fcp(t) representing the evolution of closure phases. We use
fixed u–v locations taken at a median time over the night of
observations, in order to construct this function. This ensures
that we separate the evolution of closure phases due to the
changing locations of the baselines from the structural
variability of the images that we are interested in inferring.

In Figure 5, we show the evolution of the closure phase with
time during one segment of a simulation chosen from Set B,
which has a MAD configuration with parameters a=+0.94
and Rhigh= 20. As is evident from this evolution, there are time
spans where the closure phase shows little variability (e.g., the
times between the green vertical lines) and others where there
are substantial swings of order π over a short period of time
that are comparable to the length of the observations. Given the
low degree of variability observed for some triangles in M87
data (see Section 2), this motivates us to define a metric that
quantifies how common such periods are in a given model.
Figure 6 shows the standard deviation in closure-phase

variability computed from all 6 day segments in the simulation
shown in Figure 5, for the three triangles that have
observationally shown a small degree of variability. The
dashed lines correspond to thresholds σ1, σ2, σ3 of this

Figure 4. Normalized mean visibility amplitude map on a logarithmic scale (left) and directional dispersion map (see Equation (9)) of visibility phases (right) for the
SANE, a = +0.5, Rhigh = 1 model from simulation set B. The black hole spin points upwards as indicated by the white arrow labeled as Ω. The EHT baseline
coverage (on April 11) are shown by the white dots, and are rotated such that the spin points to a position angle of 288° east of north (with north indicated by the white
arrow labeled as N and the urot–vrot plane representing the rotated u–v plane). The cyan and the red triangles indicate the ALMA-LMT-SMT (at UTC 3:32:5.0003 hr/
GMST 16:26:37.1531 hr) and ALMA-SMA-LMT (at UTC 5:00:5.0001 hr/GMST 17:54:51.6089 hr) triangles respectively. The second triangle includes the SMA-
LMT baseline that crosses a visibility minimum, which translates to a high level of variability in the closure phase introduced by structural changes in the image. The
mass of the black hole is set to MBH = 7.5 × 109 Me.

Figure 5. Closure phases for three triangles plotted as a function of time for a
particular segment of the same simulation (Set B—MAD a = +0.94,
Rhigh = 20). The black parallel lines indicate the timescale of 6 days and a
standard deviation of ∼4°. The section within the green dashed vertical lines
indicates a region of low variability, and hence counts toward the compliance
fraction of the model.
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observed variability. In Figure 5, we choose as the most likely
values of c0 in the corresponding triangles as the thresholds
(see Table 1). The green points indicate the occurrences of
6 day segments that are consistent with observations. We define
the quantity ( ), ,1 2 3F of a model as the fraction of 6 day
segments that shows a level of variability consistent with the
observed one; i.e., the ratio of green points to the total number
of points in this figure.

Formally, ( ), ,1 2 3F can be written as

( ) ( )

( ∣ ) ( )

d d d P

P

, ,

, , , 13

1 2 3
0

1
0

2
0

3 sys

model 1 2 3 sys

F

where P(σsys) is the prior in the systematic uncertainty σsys, and
( ∣ )P , ,model 1 2 3 sys is the three-dimensional distribution of

circular standard deviations , ,1 2 3 computed in the three
low-variability triangles using Equation (12). The observed
variability, as quantified in Section 2, is a combination of the
true intrinsic variability of the source and the systematic errors
in the measurement. Because of our limited knowledge of the
systematic uncertainties and their priors, we assume a form

such that Equation (13) can be written as

( )

( ) ( )

d d

d P

, ,

, , , 14

1 2 3
0 1 0 2

0 3 model 1 2 3

1 2

3

F

i.e., simply assuming that the combined intrinsic degree of
variability and the systematic uncertainties cannot exceed the
inferred values.
Because our inferred degree of variability from the

observations themselves have associated formal errors as
described by the marginalized posteriors P(σ1), P(σ2), and
P(σ3) as shown in Figure 3; we compute the compliance
fraction by integrating over those posteriors using

( ) ( ) ( ) ( ) ( )

( )

d d d P P Pmodel , , .
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The compliance fraction denotes the expectation value of
( ), ,1 2 3F given the probability distributions of σ1, σ2, and

σ3.
We compute this compliance fraction for black hole masses

in the range 5× 109Me�MBH� 9.5× 109Me and use the
maximum number as the compliance fraction for a given
GRMHD model.

5. Comparison of GRMHD Simulations to M87
Observations

In this section, we use the two sets of simulations we discuss
in Section 3 to explore the dependence of the compliance
fraction on the magnetic field configuration, electron temper-
ature prescription in the plasma, and electron-density scale
(Set A), as well as on the black hole spin (Set B). These two
sets are meant to serve as two slices in the large parameter
space of simulations.
Table 3 shows the compliance fractions calculated for the 30

simulations in Set A. Overall, these compliance fractions are
rather small, indicating that a lot of simulations show more
frequent periods of high variability, even in the triangles that
observationally do not exhibit large changes in the closure

Figure 6. Two-dimensional scatter plots of inferred standard deviation in closure phases in three triangles across one simulation (simulation set B–MAD a = +0.94,
Rhigh = 20). The horizontal and vertical dashed lines indicate the observational bounds for the standard deviation for each triangle, as described in Section 2.

Table 3

Compliance Fraction for Set A

Model ne (×105cm−3
)

Rhigh

1 20 80

SANE a = +0.9 1 41% 30% 24%
2.5 37% 31% 24%
5 31% 28% 25%
7.5 24% 24% 22%
10 18% 18% 20%

MAD a = +0.9 1 52% 36% 22%
2.5 50% 32% 23%
5 40% 22% 20%
7.5 24% 15% 18%
10 12% 12% 18%
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phase across the six days of the campaign. The dominant
distinguishing characteristic of the simulations that show a
higher compliance fraction is the small value for the electron-
density scale. There is a smaller difference in compliance
fractions between the MAD and SANE simulations. We
observe that, for small values of Rhigh, the dependence of the
compliance fraction on the fractional width is stronger.

We explored how the electron-density scale affects the
image structure and variability. To this end, we calculated the
characteristic properties of the average image in each
simulation, using the image-domain techniques discussed in
EHT Collaboration et al. (2019d, 2019f). We measured the
fractional width of each average image δwf as the ratio of the
width δw to the ring diameter d, i.e., δwf≡ δw/d. We found the

fractional widths of the images correlate strongly with the
electron-density scale, as shown in Figure 8. This is expected,
given that increasing the electron-density scale also increases
the emissivity and optical depth in the accretion flow, as shown
in the top panels of Figure 7 (Chan et al. 2015).
The right panel of Figure 8 shows, indeed, that the

compliance fraction is anticorrelated with the fractional width
of the average images of the simulations. When the bright
emission ring in an image is narrow, it traces the outline of the
black hole shadow and, therefore, its shape and brightness
distribution is determined primarily by gravitational lensing
effects. On the other hand, when the bright emission ring is
broad, variability due to the turbulence in the accretion flow
introduces more apparent effects. The low level of variability

Figure 7. The average images (top), normalized average visibility amplitudes (middle), and directional phase dispersion (bottom) of the MAD, a = 0.9, Rhigh = 20
simulation. Models with three electron number densities—ne = 1 × 105 cm−3

(left), ne = 5 × 105 cm−3
(middle), and ne = 1 × 106 cm−3

(right), are mapped in this
figure. The white arrows labeled as Ω indicate the spin vector of the black hole, and the ones labeled as N indicate the north direction. The coordinates (urot, vrot)
represent the u–v coordinates rotated such that the spin points to a position angle of 288° east of north. It is evident that a model with lower ne exhibits an emission
dominant from the photon ring, and has a lower variability in visibility phases outside the first visibility minimum. The three triangles plane indicate the low-variability
triangles—ALMA-LMT-SMT (cyan), ALMA-PV-SMT (green), and ALMA-PV-LMT (white) at UTC 3:32:5.0003 hr/ GMST 16:26:37.1531 hr. The colormap in the
visibility amplitude is in logarithmic scale with the maximum value normalized to unity.
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across the six days observed in M87 argues in favor of images
characterized by thin (∼20%) rings of emission.

In the simulations of Set B, the electron number-density
scale was tuned to generate a fixed source flux of 0.5 Jy.
Different configurations were explored with both rotating and
counterrotating black hole spins of various magnitudes. The
compliance fractions are shown in Table 4 and are, overall,
lower than those of the Set A simulations. As in the previous
case, the MAD simulations have on average a higher
compliance fraction than the SANE simulations, and there is
only a marginal dependence on the electron temperature
parameter Rhigh. However, there is a significant dependence
on the spin of the black hole, with corotating, high-spin
simulations producing the highest compliance fractions.

The table also shows constraints imposed on the models of
Set B by other considerations, not originating from the EHT
observations (EHT Collaboration et al. 2019e). They include
constraints related to (a) the simulations having achieved
radiative equilibrium, (b) the predicted X-Ray flux to be
LX= (4.4± 0.1)× 1040 erg s−1, as measured during the
nearly simultaneous observations with the Chandra X-Ray

Observatory and the Nuclear Spectroscopic Telescope Array
(NuSTAR), and (c) the jet power being in range 1042 to
1045 erg s−1. Simulations with fast black hole spins, which are
consistent with these constraints, are also characterized by
larger compliance fractions, giving preference to these models.

6. Discussion

In this paper, we studied the variability of the black hole
image structure of M87 at timescales comparable to the fastest
dynamical timescale near the horizon, as it is imprinted on the
closure phases measured during the EHT 2017 observations.
We identified three linearly independent closure triangles that
exhibit a persistent evolution pattern of closure phases over the
course of each night of observation but show little variation
around this pattern across the six days of observations, namely,
ALMA-LMT-SMT, ALMA-PV-SMT, and ALMA-PV-LMT.
In other words, the closure-phase evolution in these triangles
follows set tracks determined by the rotation of the baselines on
the u–v plane but shows very little scatter around these tracks
from day to day. We quantified the degree of variability in
these triangles to be ∼3°–5°. This inferred level of variability is

Figure 8. Left: the fractional width of the ring of emission in the average image of each simulation in Set A. Right: the anticorrelation between the fractional width and
compliance fraction in the simulation set A.

Table 4

Compliance Fraction for Set B

Model Spin Rhigh

1 10 20 40 80 160

SANE −0.94 <1% a,b,c 2% a,b,c 3%a,b,c 2%a,b,c 1%a,b,c <1%a,b,c

−0.5 <1%a 12%a 12%a,b 12%a,b 8%a,b 7%a,b

0.0 <1%a,b 3%a,b 8%a 11%a,b 11%a,b 10%a,b

+0.5 6%a,b 2%a,b 2%a,b 6%a,b 10%a,b 10%a,b

+0.94 21%b 21%b 15%a,b 15%a,b 19%a,b,c 24%a,b,c

MAD −0.94 7%b,c 6%a,b,c 7%a,b,c 6%a,b,c 6%a,b,c 9%a,b,c

−0.5 10%b 12%a,b 13% a,b,c 11% a,b,c 11%a,b,c 11%a,b,c

0.0 12% b 11% a,b 15%a,b 13% a,b 10%a,b 9%a,b

+0.5 11%b 16% a,b,c 18%a,b,c 19%a,b,c 18%a,b,c 17% a,b,c

+0.94 20%c 24% b,c 24%a,b,c 20%a,b,c 16%a,b,c 12%a,b,c

Notes.
a Satisfies radiative efficiency constraint.
b Satisfies X-ray luminosity constraint.
c Satisfies jet power constraint.
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comparable to the ∼2° systematic error in measurement of
closure phases (EHT Collaboration et al. 2019c).

We also found three triangles that exhibit a high level of day-
to-day variability, namely, ALMA-SMA-LMT, ALMA-SMA-
SMT, and ALMA-PV-SMA. The change in the closure phase
across 6 days in a given location on the u–v plane for these
triangles can be ∼90°–180°. We identified them as triangles
with at least one baseline that encounters a deep visibility
minimum on the u–v plane. This is in agreement with
expectations based on theoretical models that reveal the
presence of highly variable but highly localized regions on
the u–v plane associated with the locations of these minima.

We used GRMHD simulations to explore the dependence of
closure-phase variability on different model parameters and at
different locations in the u–v plane. We found that the most
discriminating image characteristic of models in terms of the
degree of closure-phase variability is the fractional width of the
ring of high intensity on the image. Models that best reproduce
the observed small level of variability are those with thin ring-
like images with structures dominated by gravitational lensing
effects and thus least affected by turbulence in the accreting
plasmas.

Among the models we explored, there is marginal difference
between SANE and MAD simulations, which explore different
magnetic field configurations in the accretion flows, with some
preference for the MAD models. There is also a small
dependence on the black hole spin, with the high-spin
corotating models showing the lowest level of day-to-day
variability, in agreement with the observations.

These findings demonstrate that the method we introduced to
quantify the day-to-day variability in the closure-phase data
and compare it to the models is a useful tool in exploring the
origin of variability in horizon-scale images of black holes and
in discriminating between models.
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Appendix
Approximate Degeneracy of the Radiative Transfer

Solution

In this appendix, we present analytical arguments to show
that the mm-wavelength images calculated from GRMHD
simulations of accretion flows with parameters relevant to the
M87 black hole are approximately invariant to the product
n Me
2

BH, where ne is the electron-density scale and MBH is the
mass of the black hole.
The radiative transfer equation at a frequency ν is given by

( )
dI

ds
I , A1

where Iν denotes the specific intensity at a frequency ν, s

denotes the distance traveled along the path of a photon, ην
denotes the emissivity of the medium, and χν denotes the
opacity of the medium. Equation (A1) can be recast as

( )
dI

ds
I . A2⎜ ⎟⎛

⎝
⎞
⎠
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The fraction ην/χν is the source function Sν and, for thermal
emission, is equal to the blackbody function, which depends
solely on temperature T. We denote this as ( )TB .

Throughout this work, we use the analytic approximation
devised by Leung et al. (2011) for synchrotron emissivity from
a thermal distribution of relativistic electrons

( )
( ) ( ) ( )n

e

K c
X X X

2

3 1
2 exp , A3e

e

2
s

2

1 2 11 12 1 6 2 1 3

where X≡ ν/νs, ( )2 9 sines c
2 , νc≡ eB/(2πmec), Θe≡

kbTe/(mec
2
) is the dimensionless electron temperature, and K2

denotes the modified Bessel function of the second kind. In the
these expressions, θ denotes the angle between the magnetic
field and the emitted photon, B denotes the magnetic field
strength, and Te denotes the electron temperature. We use the
constants me, e, kb, and c to denote the electron mass, electron
charge, the Boltzmann’s constant, and the speed of light
respectively. It is explicit in this expression that the synchrotron
emissivity and opacity, for a given electron temperature and
magnetic field, scale proportionally to the electron number
density ne. We show here that, for the parameters of the black
hole at the center of the M87 galaxy, the synchrotron opacity
and emissivity at a wavelength of λ= 1.3 mm also scale
proportionally to a power of the magnetic field, i.e., ∝ Bα,
with α∼ 2.

We estimate the properties of the plasma in the inner
accretion flow of M87 using the following analytic model. The
electron density at a given radius r is given by the continuity
equation, assuming a spherical accretion rate M via the relation

( )M r
h

r
m n u4 , A4p e

r2⎛⎝ ⎞⎠
where h/r is the scale height of the accretion flow, mp is the
proton mass (assuming fully ionized hydrogen), and u

r is the
radial component of the accretion flow. We take the latter to be
a fraction ξ of the freefall velocity, i.e.,

( )u
GM

r
. A5r BH

1 2⎛⎝ ⎞⎠
We also express the accretion rate asM mME, in terms of the
Eddington accretion rate defined by
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where LE is the Eddington critical luminosity, ò is the radiative
efficiency of the flow, σT is the Thomson cross section, and m
is the mass accretion rate in units of the Eddington accretion
rate. Under these conditions, the electron density is
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where in the last expression we have used typical values for the
M87 black hole and set ξ= ò= 0.1 and h/r= 0.4.

Because of the radiatively inefficient character of the
accretion flow around the M87 black hole, the ion temperature
Ti is a fraction of the virial temperature

( )T
GM m

k r3
. A8

p
v

BH

B

It is also customary to write the electron temperature as a
fraction 1/R of the ion temperature, i.e.,
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Finally, we write the magnetic field in terms of the plasma β

parameter as

( ) ( )n k T T
B

8
A10e i eB

2

such that

( )

( )

A11

B c
m

GM

m R

R

T

T

h

r

rc

GM

M

M

m rc

GM

2
2

3

1

9
6.5 10 2 10 5

G,

i

2 p

BH T

1 2 1 2

v

1 2 1 2 2

BH

5 4

BH

9

1 2

5

1 2 2

BH

5 4

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

and we have set Ti/Tv= 1/3 and β= 10.
Figure 9 shows the ratio ην/ne evaluated at the observed

frequency of the EHT (ν= 230 GHz, λ= 1.33 mm) and at a
radial distance r= 5GMBH/c

2, as a function of the strength of
the magnetic field B, for the values of the various parameters
used in the previous equations, i.e., for the conditions of the
inner accretion flow around the black hole at the center of M87.
This figure demonstrates that, over a broad range of magnetic
field strengths (spanning more than an order of magnitude), the
synchrotron emissivity scales approximately as ην∼ neB

α, with
α; 2. This allows us to write the emissivity as

( ) ( ) ( )rn B T f T , , A12e

and the opacity as

( ) ( )rn B f T , , A13e

where fν(T, r) captures the scaling of the opacity with
temperature T and the location in the accretion flow (see
similar arguments in Chan et al. 2015).
In order to calculate the various simulated images, we used

the plasma properties from long GRMHD simulations.
Nonradiative GRMHD simulations are invariant to a rescaling
of the density by a factor , as long as the magnetic field is
also rescaled by a factor of 1 2 and the internal energy by a
factor of . In other words, B ne

1 2 and the Alfvén speed
( )B m nep

1 2 are the quantity that remains invariant under
rescaling. Combined with the approximate expressions (A12)–
(A13) derived above, this implies that the synchrotron
emissivity and opacity evaluated using the simulation outputs
are invariant to rescaling, as long as the product
n B ne e

1 2 remains constant.
Finally, the integration of the transfer equation is performed

on a coordinate system in which the distances are expressed in
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terms of the length scale set by the mass of the black hole, i.e.,

( )ds ds
GM

c
. A14

BH

2
⎛⎝ ⎞⎠

Rewriting Equation (A2) using the scaling (A12)–(A14), we
find

( ) [ ( ) ] ( )r
dI

ds
n f T

GM

c
T I, A15e

1 2 BH

2
B

( ) ( )[ ( ) ] ( )rn M
G

c
f T T I, . A16e

1 2
BH 2

B

We drop the ν in subscript to indicate quantities calculated at
ν= 230 GHz. From this last expression, it is apparent that the
electron number density ne and the black hole mass MBH are
degenerate quantities in the solution of the radiative transfer
problem at wavelengths where the dominant source of opacity
is due to synchrotron processes, with a degeneracy in the
product n Me

1 2
BH and with α; 2.
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