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A B S T R A C T   

A timely understanding of the spatiotemporal pattern and development trend of COVID-19 is critical for timely 
prevention and control. However, the under-reporting of casesis widespread in fields associated with public 
health. It is also possible to draw biased inferences and formulate inappropriate prevention and control policies if 
the phenomenon of under-reporting is not taken into account. Therefore, in this paper, a novel framework was 
proposed to explore the impact of under-reporting on COVID-19 spatiotemporal distributions, and empirical 
analysis was carried out using infection data of healthcare workers in Wuhan and Hubei (excluding Wuhan). The 
results show that (1) the lognormal distribution was the most suitable to describe the evolution of epidemic with 
time; (2) the estimated peak infection time of the reported cases lagged the peak infection time of the healthcare 
worker cases, and the estimated infection time interval of the reported cases was smaller than that of the 
healthcare worker cases. (3) The impact of under-reporting cases on the early stages of the pandemic was greater 
than that on its later stages, and the impact on the early onset area was greater than that on the late onset area. 
(4) Although the number of reported cases was lower than the actual number of cases, a high spatial correlation 
existed between the cumulatively reported cases and healthcare worker cases. The proposed framework of this 
study is highly extensible, and relevant researchers can use data sources from other counties to carry out similar 
research.   

1. Introduction 

Since the outbreak of the COVID-19, the prevention and control of 
the epidemic have rapidly become the focus of social and academic 
attention (Fu et al., 2020; Guan et al., 2020; Liu et al., 2021). As a new 
infectious disease, measures such as isolation, restriction of crowd ac
tivities, and wearing masks have been the most effective emergency 
prevention and control measures. To achieve targeted and accurate 
prevention and control, it is necessary to immediately obtain a timely 
understanding of the spatiotemporal patterns of the epidemic and 
determine the development trend of the epidemic(Chen et al., 2020; da 
Silva Corrêa & Perl, 2021). 

At present, many scholars have used reported cases data to explore 
the spatiotemporal characteristics of COVID-19, which includes 

predicting the inflection point of the disease (Shen et al., 2020; Tang 
et al., 2020) and detecting its spatial distribution and movement (Jia 
et al., 2020; Liu et al., 2020; Wang, Liu, et al., 2021). However, under- 
reporting of reported cases is a very common phenomenon in fields 
associated with public health, such as epidemiology and biomedicine 
(Fernández-Fontelo et al., 2016). In particular, for newly detected in
fectious diseases such as COVID-19, under-reporting is more likely to 
occur due to the lack of understanding of the disease and strict diag
nostic criteria (Cabaña et al., 2020). It is also possible to draw biased 
inferences and formulate inappropriate urban prevention and control 
policies if the phenomenon of under-reporting is not taken into account. 

To alleviate the problem of data underreporting, the patient death 
data are regarded more accurate and are used to conduct research on the 
phenomenon of under-reporting, such as reconstructing the true 
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epidemic level of the COVID-19 and exploring the impact of under- 
reporting cases on mortality rate and effective reproduction number 
(Backer et al., 2020; Lau et al., 2021; Linton et al., 2020; Prado et al., 
2020; Saberi et al., 2020). Although the abovementioned studies 
analyzed the impact of under-reporting on the epidemic situation from 
multiple perspectives, some discrepancies still remain. First, existing 
methods mainly estimate the statistical characteristics of COVID-19 
from the perspective of time, ignoring the impact of space on the esti
mation of statistical characteristics. Second, death data still needs to be 
accurately reported, and there may be a deviation between the number 
of reported deaths and the actual number of deaths due to COVID-19. 

Compared with patient death data, information on healthcare 
workers with COVID-19 can be considered as a more accurate method 
for sampling due to a smaller dataset. In the early stage of the epidemic, 
healthcare worker infections were more easily detected and calculated. 
Therefore, data on confirmed cases of healthcare workers can more 
accurately reflect the relevant characteristics of COVID-19 (Gao et al., 
2020; Ren et al., 2021; Wang et al., 2020). Considering this, a novel 
framework was proposed to evaluate the spatiotemporal characteristics 
of COVID-19 outbreak based on the infection data of healthcare workers. 
The main contributions of this article are as follows:  

(1) A novel framework was proposed to explore the impact of under- 
reporting on COVID-19 spatiotemporal distributions. The pro
posed framework is highly extensible, and relevant researchers 
can use data sources from other counties to carry out similar 
research.  

(2) An empirical analysis was carried out based proposed framework 
using infection data of healthcare workers in Wuhan and Hubei 
(excluding Wuhan).  

(3) An open-source dataset of HCW diagnoses is provided, which 
both ensures the reproducibility of the study and provides the 
data needed to support related research on data under-reporting. 

2. Related works 

In this section, we first reviewed the studies related to the spatio
temporal distribution of COVID-19, and then reviewed the studies 
related to data under-reporting of COVID-19. 

Studies on the spatiotemporal distributions of COVID-19 have 
mainly focused on reported case data and have explored the patterns 
and movement of the epidemic, so as to provide scientific basis for 
relevant measures, such as isolation and the restriction of human ac
tivities(Askarizad et al., 2021; Lin et al., 2021). For example, Wang, 
Dong, et al. (2021) used scanning statistics to detect the hotspots of new 
cases each week based on the confirmed cases of COVID-19 at the county 
level in the United States, thereby characterizing the infection rates 
during the epidemic. Lak et al. (2021) used spatial regression technology 
to explore the spatiotemporal spread pattern of 43,000 confirmed covid- 
19 cases at the neighborhood level in Tehran, the capital of Iran. Wang, 
Dong, et al. (2021) analyzed the spatiotemporal differences of the spread 
of the COVID-19 epidemic in 337 prefecture-level cities in China, as well 
as the social influencing factors and natural influencing factors. Based 
on mobile phone and confirmed patient data, Jia et al. (2020) developed 
a spatiotemporal “risk source” model to determine the geographic dis
tribution and growth trends of COVID-19 infections to quickly and 
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Table 1 
Sample of confirmed healthcare worker data.  

User ID Date Province City County 

1 2020-01-15 Hubei Wuhan Huangpo 
2 2020-01-15 Hubei Jingmen Zhongxiang 
3 2020-02-04 Shandong Qingdao Shinan 
…… …… …… …… …… 
3743 2020-02-01 Beijing Beijing Xicheng  
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accurately assess related risks. Loske (2020) explored the relationship 
between COVID-19 transmission and transport volumes in food retail 
logistics by combining transport volume data and confirmed patient 
data. However, the above studies directly study the spatiotemporal 
distribution of COVID-19 through reported case data, ignoring the 
possible under-reporting of data in reported cases (Lau et al., 2021). The 
conclusions obtained directly from the reported cases may deviate from 
the actual situation, thereby affecting the judgment of decision-makers 
(Bastos et al., 2021; Deo & Grover, 2021). 

To alleviate the problem of data underreporting, an accurate small 
sample is used to explore the impact of under-reporting on the estima
tion of spatiotemporal characteristics (Fellows et al., 2021; Pons-Salort 
et al., 2021). Additionally, it is common to estimate population char
acteristics using small samples in the field of statistics (Lauer et al., 
2020; Smid et al., 2020). At present, most domestic and foreign re
searchers regard patient death data as relatively accurate data and use it 

to study under-reporting (Backer et al., 2020; Fellows et al., 2021; Lau 
et al., 2021; Linton et al., 2020; Prado et al., 2020). For example, Russell 
et al. (2020) reconstructed the early global dynamics of under- 
ascertained COVID-19 cases and infections. Fellows et al. (2021) esti
mated the incidence, mortality, and lethality rates of COVID-19 among 
Indigenous Peoples in the Brazilian Amazon. Li et al. (2020) estimated 
the infection peak time via reported cases data as well as internet search 
and social media data. Although the above studies considered the 
underreporting phenomenon, there are still some deficiencies. First, the 
statistical characteristics of COVID-19 are mostly estimated from the 
perspective of time, and impact of space on these statistical character
istics is largely ignored. Second, death data still needs to be accurately 
reported, and there may be a deviation between the number of reported 
deaths and the actual number of deaths due to COVID-19 (Whittaker 
et al., 2021). 

Therefore, in this paper, infection data of healthcare workers is 

Fig. 2. Characteristics of healthcare worker infection data. (a) Number of confirmed healthcare workers and (b) number of confirmed cases.  

Fig. 3. Research framework for the impact of under-reporting cases on the spatiotemporal distribution of COVID-19.  

P. Wang et al.                                                                                                                                                                                                                                   
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considered as a more accurate method. Compared with patient death 
data, healthcare worker infections were more easily detected and 
calculated (Ren et al., 2021; Wang et al., 2020). Additionally, we also 
proposed a novel framework to explore the impact of under-reporting on 
COVID-19 spatiotemporal distributions using an accurate small sample. 

3. Study area and data sources 

3.1. Study area 

Hubei Province and Wuhan City were the first provinces and cities in 
China in which COVID-19 was discovered. As of October 2020, the total 
number of confirmed cases in Hubei Province had reached 68,135, ac
counting for approximately 81.5% of the total cases in the population, 
and the total number of confirmed cases in Wuhan had reached 50,340, 
accounting for approximately 60.80% of the total cases. In order to 
explore the impact of under-reporting cases on the spatiotemporal dis
tributions of COVID-19, the study area was divided into two parts: 
Wuhan City and Hubei Province (excluding Wuhan). Hubei Province is 
located in the central part of China, and Wuhan City is located in the 
central part of Hubei Province, as shown in Fig. 1. 

3.2. Data sources and data preprocessing 

3.2.1. Data sources 
The data used in this paper included the confirmed cases at the city 

and county level in Hubei Province and Wuhan, respectively, and in
formation on the healthcare workers in China obtained via retrospective 
analyses. 

The reported cases in Hubei Province were mainly obtained from the 
Health Commission of Hubei Province (http://www.nhc.gov.cn), and 
spanned the period from January 15, 2020 to March 31, 2020. The re
ported cases in Wuhan were mainly obtained from the Wuhan Municipal 
Health Commission (http://wjw.wuhan.gov.cn), and spanned the 
period from February 23, 2020 to March 31, 2020. 

Data on the confirmed COVID-19 cases of healthcare workers were 
mainly obtained via retrospective analyses from the Chinese Red Cross 
Foundation (https://www.crcf.org.cn/), which distributes relief funds 
to every healthcare worker suffering from COVID-19. As of September 
11, 2020, 83 batches of healthcare workers had received foundation 
assistance. We used crawler technology to obtain 3743 publications that 
elucidated the conditions of healthcare workers that suffered from 
COVID-19. After matching their addresses, information regarding the 
province, city, and county of all the affected healthcare workers were 
obtained. The data format is shown in Table 1. 

3.2.2. Data preprocessing 
Data on the reported cases were collected and processed at the China 

Data Center and shared on the dataverse platform of Harvard University, 
which does not require additional data preprocessing(Hu et al., 2020; 
Yang et al., 2020). Therefore, we mainly conducted data preprocessing 
for information on healthcare workers suffering from COVID-19, which 
was obtained via retrospective analyses. 

Fig. 4. Data structure of the confirmed and infection inventories.  

Table 2 
Sample of reported infection inventory in Hubei.   

2020-01- 
24 

2020-01- 
25 

2020-01- 
26 

2020-01- 
27 

2020-01- 
28 

Wuhan 591 676 839 1033 1268 
Ezhou 40 43 44 43 42 

Huanggang 141 160 175 191 200 
…… …… …… …… …… …… 

Suizhou 59 71 81 90 94  

Table 3 
Sample of healthcare worker infection inventory in Hubei.   

2020-01- 
24 

2020-01- 
25 

2020-01- 
26 

2020-01- 
27 

2020-01- 
28 

Wuhan 106 102 100 101 101 
Ezhou 5 5 5 4 4 

Huanggang 5 4 5 5 6 
…… …… …… …… …… …… 

Suizhou 1 1 1 1 2  

Fig. 5. Temporal and spatial correlation coefficients.  

P. Wang et al.                                                                                                                                                                                                                                   
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The information on healthcare workers obtained via retrospective 
analyses is mainly reported to the Chinese Red Cross Foundation in two 
ways(Chinese Red Cross Foundation, 2020): (1) confirmed information 
on healthcare workers is directly reported by individuals to the Chinese 
Red Cross Foundation; and (2) confirmed information on healthcare 
workers is collected by their respective hospitals, which then report to 
the Chinese Red Cross Foundation. After examination and approval by 
the Chinese Red Cross Foundation, the relevant information is published 
on the website after which the hospital may review it. Those who fail to 
pass the review do not qualify to be aided. Therefore, data records of 
unqualified persons should be deleted from the original data. Moreover, 
the Chinese Red Cross Foundation not only aided infected healthcare 
workers, but also aided infected or diseased staff during the epidemic; 
Thus such data records were needed to be deleted. As shown in Fig. 2a, 
after data preprocessing, a total of 3703 confirmed cases of healthcare 
workers remained, including 3655 from Hubei Province and 3058 from 
Wuhan City. Compared with the real-time data on the confirmed COVID- 
19 cases of healthcare workers in the same period (Fig. 2b) (Gao et al., 
2020), the corresponding data obtained via retrospective analyses 
exhibit an obvious quantitative advantage. 

4. Methods 

In this study, the data on confirmed cases of healthcare workers were 
considered to represent an accurate and small sample space to explore 
the impact of under-reporting on the spatiotemporal distributions of 
COVID-19. The overall framework is shown in Fig. 3. First, infection 

inventories were constructed for the healthcare workers and reported 
cases in Hubei and Wuhan. Second, based on these inventories, the 
impacts of under-reporting cases on the temporal characteristics were 
analyzed from three perspectives, namely parameter estimation, tem
poral correlation, and temporal lag. Finally, the impacts of under- 

reporting cases on the spatial characteristics were analyzed from the 
perspective of spatial correlation and spatial lag. This work provides 
scientific support for researchers that explore the spatiotemporal dis
tribution of COVID-19 using the data on reported cases. 

4.1. Construction of infection inventory 

Due to the incubation time of the SARS-COV-2 infection, the 
confirmed time does not represent the infection time of the healthcare 
workers and reported cases. Therefore, this study constructed a 
Healthcare Worker Infection Inventory and a Reported Infection Inventory 
based on partition statistics from two perspectives: Hubei and Wuhan. 

The construction of the Infection Inventory can be divided into two 
steps: (1) Generate a Confirmed Inventory based on confirmed healthcare 
worker data, and (2) Generate an Infection Inventory based on the 
Confirmed Inventory. The data structures for the two inventories are 
shown in Fig. 4. Inventory(S, T) represents a spatiotemporal dataset, 
where S and T are the spatial and temporal dimension, respectively; S =
{s1, s2,⋯, sm}, T = {t1, t2,⋯, tn}, m is the total number of spatial objects 
and n is the total number of timestamps. 

Considering the healthcare workers in Wuhan as an example, to 
construct the Healthcare Worker Infection Inventory in Wuhan, the 
Confirmed Healthcare Worker Inventory in Wuhan City was first gener
ated. For example, the calculation method for the number of confirmed 
healthcare worker on day t0 in Hongshan, Wuhan City, is shown in Eq. 
(1):  

where N represents the total number of confirmed healthcare worker 
infections in China, cmsi represents the information of a specific 
healthcare worker suffering from COVID-19, and H_C_InventoryWuhan 

represents the Confirmed Healthcare Worker Inventory in Wuhan, which 
elucidates the changes in confirmed healthcare worker infections in 

Fig. 6. Temporal and spatial lag.  

{
H C InventoryWuhan(Hongshan, t0) =

∑N

i
|cmsi.County == Hongshan ∧ cmsi.Date == t0|

cmsi ∈ Retrospective Healthcare Worker Infection Set
, (1)   

P. Wang et al.                                                                                                                                                                                                                                   



Cities 123 (2022) 103593

6

every county of Wuhan over time. 
To calculate the Healthcare Worker Infection Inventory, we assumed 

that the incubation time X of SARS-Cov-2 is subject to a lognormal 
distribution, as seen in other acute respiratory viral infections (Lessler 
et al., 2009). Lauer et al. (2020) found that the mean and standard de
viation of the random variable ln(X) were 1.621 and 0.418, respectively, 
i.e., ln(X)~N(1.621,0.4182). Based on the probability distribution 
function of the incubation time X, the daily infected number of health
care workers can be calculated. For example, the calculation method for 
the infected number of healthcare workers on day t0 in Hongshan, 
Wuhan City, is shown in Eq. (2): 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H I InventoryWuhan(Hongshan,t0)=
∑n

i
H CInventorywuhan(Hongshan,t0+i)*pi

pi=

∫ ln(i)

ln(i−1)

1̅̅̅
̅̅

2π
√

σ
e

(

−
(x−u)2

2σ2

)

i.e.,1<i<13

pi=

(

1−
∑12

2
pj

)/

2 i.e.,i=1ori=13

(2)  

where pi represents the probability that the incubation time is i days; n 
represents the maximum incubation time (as the incubation time of 
98.7% patients is within 13 days, n is set as 13); u represents the mean of 
lognormal distribution, i.e. 1.621; σ represents the standard deviation of 
lognormal distribution, i.e. 0.418; and H_I_InventoryWuhan represents the 
Healthcare Worker Infection Inventory in Wuhan. Similarly, the Reported 
Infection Inventory in Wuhan can be expressed as R_I_Inventorywuhan, and 
the corresponding Healthcare Worker Infection Inventory and Reported 
Infection Inventory in Hubei can be expressed as H_I_InventoryHubei and 
R_I_InventoryHubei, respectively. Taking Hubei Province as an example, 
Tables 2 and 3 further show the details of the Reported Infection Inventory 
and Healthcare Worker Infection Inventory. 

4.2. Statistical model 

The T in Inventory(S,T) is essentially a collection of time-series data 
which records the temporal characteristics of healthcare worker infec
tion. Studies have shown that counts of the less frequent infections 
typically follow Poisson distribution, whereas those of more frequent 
infections may follow approximately normal distribution (Farrington 
et al., 1996; Unkel et al., 2012). In the early stages of the epidemic, 
SARS-Cov-2 infections were frequent. Therefore, two samples of 
healthcare worker cases and reported cases were used to estimate the 
infection peak time and the infection time interval of the epidemic from 
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Table 4 
Estimated results of the median and standard deviation for healthcare worker 
cases and reported cases in Wuhan.  

Distribution Median (peak) Standard Deviation (days) 

Healthcare 
workers 

cases 

Reported 
cases 

Healthcare 
workers 

cases 

Reported 
cases 

Normal 

Estimate Jan 25 Feb 3 12.1 days 7.6 days 

95% CI 
Jan 24–Jan 

26 
Feb 3–Feb 

4 

10.8 
days–13.5 

days 

7.4 
days–8.0 

days 

Lognormal 

Estimate Jan 23 Feb 3 11.8 days 7.6 days 

95% CI Jan 23–Jan 
24 

Feb 2–Feb 
3 

11.2 
days–12.3 

days 

7.4 
days–7.9 

days 

Gamma 

Estimate Jan 24 Feb 3 11.6 days 7.6 days 

95% CI 
Jan 23–Jan 

24 
Feb 3–Feb 

4 

11.1 
days–12.1 

days 

7.4 
days–7.9 

days  

P. Wang et al.                                                                                                                                                                                                                                   
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three distributions: normal, lognormal, and gamma. The probability 
density function of normal, lognormal, and gamma are shown in Eqs. 
(3), (4), and (5), respectively: 

Normal(x; u, σ) =
1̅̅̅

̅̅
2π

√
σ

e

(

−
(x−u)2

2σ2

)

, (3)  

Lognormal(x; ul, σl) =
1
̅̅̅̅̅
2π

√
σl

e

(

−
(lnx−ul)

2

2σ2
l

)

, (4)  

Gamma(x; α, β) =
βα

Γ(α)
xα−1e−βx, (5)  

where u and σ represent the fixed parameters of normal, ul and σl 
represent the fixed parameters of lognormal, α and β represent the fixed 
parameters of gamma, and Γ(α) represents the gamma function. In this 
study, the maximum likelihood estimation was used to fit the hyper 
parameters of the three distributions. As gamma and lognormal are skew 
distribution, the median of the distribution was used to approximate the 
peak time of infection. 

In addition, the cumulative distribution functions of normal, 
lognormal, and gamma were used to estimate the time interval of the 
infection. For example, the calculation method of infection time interval 
in normal distribution is shown in Eq. (6) as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

infection time interval = [ x, x ]

x = F−1
normal(0.025)

x = F−1
normal(0.975)

Fnormal(x) =

∫ x

−∞
Normal(t)dt

(6)  

where Fnormal(x) represents the cumulative distribution functions of 
normal, Fnormal

−1(x) represents the inverse function of Fnormal(x), x
_ 

rep

resents lower bound of interval, and x represents upper bound of in
terval. That is, the infection time interval represents the time span of an 
epidemic infection in 95% of patients. In this study, when the difference 
between the infection peak and infection interval estimated based on the 
two samples was small, under-reporting cases had less impact on tem
poral characteristics, and vice versa. 

4.3. Pearson correlation coefficient 

The Pearson's correlation coefficient is used to measure the degree of 
correlation between two series (Nahler, 2009). As the Inventory(S,T) 
contains both temporal and spatial dimensions, we calculated the tem
poral and spatial correlation. As shown in Fig. 5, the spatial correlation 
was obtained by h_i_t3 and r_i_t3, and the temporal correlation was ob
tained by h_i_s3 and h_i_s3. The temporal and spatial correlation co
efficients of the two series were calculated using Eqs. (7) and (8), 
respectively: 

rtemporal =
Cov(h i si, r i si)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D(h i si)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D(r i si)

√ (7)  

rspatial =
Cov(h i ti, r i ti)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D(h i ti)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D(r i ti)

√ (8)  

where h_i_si represents the time series of healthcare worker infections in 
a specific spatial region, r_i_si represents the time series of reported in
fections in a specific spatial region, h_i_ti represents the spatial series of 
healthcare worker infections in a specific time, r_i_ti represents the 
spatial series of reported infections in a specific time, Cov(X,Y) repre
sents the covariance of the series X and Y, D(X) represents the variance 
of the series X, and 

̅̅̅̅̅̅̅̅̅̅̅
D(X)

√
represents the standard deviation of the series 

X. The value range of the correlation coefficient is [−1,1]. When the 
correlation coefficient is greater than 0, the time series X and Y are 
positively correlated; if it is equal to 1, the time series X and Y are 
completely positively correlated; if it is less than 0, the time series X and 
Y would show a negative correlation; and finally, if it is equal to −1, the 
time series X and Y would show a complete negative correlation. In this 
study, if the two series showed a significant positive correlation, the 
under-reporting of cases had less impact on the spatiotemporal charac
teristics, and vice versa. 

4.4. Cross-correlation function 

The cross-correlation function measures the impact of under- 
reporting cases on the spatiotemporal characteristics from the perspec
tive of lag. As shown in Fig. 6, the cross-correlation function can be 
understood as a correlation coefficient with a lag. 

With regard to the spatial dimension, the spatial lag of series h_i_ti 
and r_i_ti was calculated using Eq. (9), as follows: 

fspatial(φ) =
Cov(h i ti+φ, r i ti)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D(h i ti+φ)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D(r i ti+φ)

√ (9)  

where fspatial(φ) is the spatial correlation coefficient between series 
h_i_ti+φ and r_i_ti at lag φ, r_i_ti represents the spatial series of reported 
infections in a specific time, h_i_ti+φ represents the spatial series of 
healthcare worker infections lagging φ days compared to time i. 

With regards to the temporal dimension, the temporal lag of series 
h_i_si = {h_i_si

t}t=1
n and r_i_si = {r_i_si

t}t=1
n was calculated using Eq. (10), 

as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

ftemporal(φ) =
γtemporal(φ)

̅̅̅̅̅̅̅̅̅̅̅̅σh i si

√ ̅̅̅̅̅̅̅̅̅̅̅̅σr i si

√

γtemporal(φ) = E
[(

h i st
i − h i st

i

)(
r i st+φ

i − r i st+φ
i

) ]
(10)  

where ftemporal(φ) is the temporal correlation coefficient between series 
h_i_si and r_i_si at lag φ, h_i_si

t represents the time series of healthcare 
worker infections in a specific spatial region, r_i_si

t+φ represents the time 
series of reported infections lagging φ days compared to time i in a 
specific spatial region. 

In the definition, the cross-correlation function can be regarded as a 
function of the lag, and the lag value that maximizes the cross- 

Table 5 
Estimated results of percentiles and infection time intervals of healthcare worker cases and reported cases in Wuhan.  

Percentiles Healthcare workers cases Reported cases 

Normal Lognormal Gamma Normal Lognormal Gamma 

2.5th 
Estimate Jan 1 Jan 8 Jan 7 Jan 19 Jan 21 Jan 20 
95% CI Dec 30–Jan 4 Jan 5–Jan 9 Jan 6–Jan 8 Jan 18–Jan 20 Jan 19–Jan 22 Jan 19–Jan 22 

97.5th Estimate Feb 18 Feb 22 Feb 21 Feb 18 Feb 19 Feb 19 
95% CI Feb 15–Feb 21 Feb 20–Feb 25 Feb 18–Feb 25 Feb 17–Feb 20 Feb 18–Feb 21 Feb 18–Feb 21 

Infection time interval 
Estimate 47.5 days 45.6 days 45.0 days 30.1 days 30.0 days 30.0 days 
95% CI 40.6 days–55.0 days 42.6 days–49.7 days 40.8 days–49.1 days 27.6 days–32.3 days 27.5 days–32.4 days 27.5 days–32.0 days  
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correlation function is the average delay time of actual infection. The 
formal definition can be seen in Eq. (11): 
{

φ̂temporal = argmax
(
ftemporal(φ)

)

φ̂spatial = argmax
(
fspatial(φ)

) (11)  

where φ̂spatial represents the estimated delay in space, φ̂temporal represents 
the estimated delay in time, the mean of ftemporal(φ) and fspatial(φ) are 
same as those in Formulas (9) and (10). The smaller the φ̂, the smaller 
the impact of under-reporting cases on the spatiotemporal characteris
tics, and vice versa. 

5. Experimental results and analysis 

5.1. Impact of under-reporting cases on temporal characteristics 

To analyze the impact of under-reporting cases on the temporal 
characteristics of COVID-19, we first used the data on reported cases and 
confirmed healthcare worker infections to estimate the epidemic peak 
and infection interval in Wuhan and Hubei (except Wuhan). Then, we 
further analyzed the temporal correlation and temporal lag of the data 
on reported cases and confirmed the healthcare worker infections in 
Wuhan and Hubei (except Wuhan). 

5.1.1. Impact of under-reporting cases on infection peak and interval 
Fig. 7 shows the fitting results of normal, lognormal, and gamma 

distribution for healthcare worker cases and reported cases in Wuhan, 
and the mean square error (MSE) is used to evaluate the fitting effect of 
each distribution. The results showed that the MSE of lognormal dis
tribution was the lowest, which indicated that lognormal distribution 
was the most suitable to describe the evolution of epidemic with time in 
Wuhan. In addition, Tables 4 and 5 show the statistical characteristics of 
healthcare worker cases and reported cases in Wuhan. According to the 
lognormal distribution, the peak time of infection in Wuhan was esti
mated to be on February 3 from the data on daily reported cases. 
However, it was estimated to be on January 24 from the data on daily 
healthcare worker infection cases, i.e., with a difference of 11 days. The 
standard deviation estimated from daily reported cases was 7.6 days; 
95% of the patients in Wuhan were infected from January 21 to 
February 19, i.e., within 30.0 days. However, the standard deviation 
estimated by the daily healthcare worker infection cases was 10.6 days; 
therefore, 95% of the patients in Wuhan were more likely to be infected 
from January 8 to February 22, i.e., within 45.6 days. 

Fig. 8 shows the fitting results of normal, lognormal, and gamma 
distribution for healthcare worker cases and reported cases in Hubei 
(excluding Wuhan). The results showed that the MSE of lognormal and 
gamma distribution was relatively small. In addition, Tables 6 and 7 
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Table 6 
Estimated results of the median and standard deviation for healthcare worker 
cases and reported cases in Hubei (excluding Wuhan).  

Distribution Median (peak) Standard Deviation 

Healthcare 
workers 

cases 

Reported 
cases 

Healthcare 
workers 

cases 

Reported 
cases 

Normal 

Estimate Jan 29 Jan 29 9.6 days 6.8 days 

95% CI 
Jan 29–Jan 

30 

Jan 
28–Jan 

29 

9.2 
days–10.0 

days 

6.4 
days–7.1 

days 

Lognormal 

Estimate Jan 28 Jan 29 10.2 days 6.8 days 

95% CI Jan 27–Jan 
29 

Jan 
27–Jan 

29 

9.6 
days–10.9 

days 

6.4 
days–7.2 

days 

Gamma 

Estimate Jan 28 Jan 28 10.4 days 6.9 days 

95% CI 
Jan 26–Jan 

28 

Jan 
27–Jan 

29 

9.7 
days–11.0 

days 

6.4 
days–7.2 

days  
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show the statistical characteristics of healthcare worker cases and re
ported cases in Hubei (excluding Wuhan). Compared with Wuhan, the 
impact of under-reporting cases on the temporal characteristics of the 
epidemic in Hubei (excluding Wuhan) was relatively small. According to 
the lognormal distribution, the peak time of infection in Hubei (except 
Wuhan) estimated from the data on daily reported cases was January 28, 
whereas that estimated from the data on daily healthcare worker 
infection cases was February 29, i.e., only differing by one day. The 
standard deviation estimated from the daily reported cases was 6.8 days. 
Further, 95% of the patients in Hubei (excluding Wuhan) were infected 
from January 17 to February 12, i.e., within 23.7 days. The standard 
deviation estimated by the daily healthcare worker infection cases was 
10.2 days, and therefore, 95% of the patients in Hubei (excluding 
Wuhan) were more likely to be infected from January 15 to February 23, 
i.e., within 39.3 days. 

In general, when the phenomenon of under-reporting is not consid
ered, the infection peak and infection interval estimated by the reported 

cases may be significantly different from the actual infection peak and 
infection interval. Among them, the estimated infection peak time may 
be earlier than the actual infection peak time, and the estimated infec
tion time interval may be smaller than the actual infection time interval. 
In addition, the impact of under-reporting phenomenon on Wuhan is 
greater than that on Hubei (excluding Wuhan). 

5.1.2. Impact of under-reporting cases on temporal correlation 
Fig. 9 shows the temporal correlation between the confirmed 

healthcare worker cases and the reported cases in Wuhan. The temporal 
correlation coefficient between the data on daily reported cases and new 
healthcare worker cases in Wuhan was 0.336, which indicated that the 
temporal correlation between daily reported cases and actual infection 
cases was weak in Wuhan. The correlation coefficient between the cu
mulative reported cases and the cumulative healthcare worker cases in 
Wuhan was 0.926. As shown in Fig. 9d, although there was a strong 
temporal correlation between cumulative reported cases and actual 

Table 7 
Estimated results of percentiles and infection time intervals for healthcare worker cases and reported cases in Hubei (excluding Wuhan).  

Percentiles Healthcare workers cases Reported cases 

Normal Lognormal Gamma Normal Lognormal Gamma 

2.5th 
Estimate Jan 11 Jan 15 Jan 16 Jan 15 Jan 17 Jan 17 
95% CI Jan 10–Jan 12 Jan 14–Jan 16 Jan 15–Jan 16 Jan 14–Jan 16 Jan 16–Jan 18 Jan 16–Jan 18 

97.5th Estimate Feb 17 Feb 23 Feb 24 Feb 11 Feb 12 Feb 13 
95% CI Feb 16–Feb 19 Feb 21–Feb 26 Feb 22–Feb 26 Feb 10–Feb 12 Feb 11–Feb 14 Feb 11–Feb 14 

Infection time interval 
Estimate 37.6 days 39.3 days 39.3 days 26.7 days 26.7 days 26.7 days 
95% CI 35.5 days–39.5 days 36.8 days–41.9 days 36.7 days–42.1 days 25.1 days–28.0 days 25.1 days–28.1 days 25.1 days–28.1 days  

Fig. 9. Temporal differences between healthcare worker cases and reported cases in Wuhan. (a) Healthcare worker and reported cases in Wuhan, based on daily new 
cases; (b) temporal correlation coefficient in Wuhan, based on daily new cases; (c) healthcare worker and reported cases in Wuhan, based on cumulative cases; and 
(d) temporal correlation coefficient in Wuhan, based on cumulative cases. 
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infection cases in Wuhan, the distance between the trend line and the 
scatter points was still large in the early stage of the epidemic. This 
indicated the temporal correlation gradually increased over time, and 
the phenomenon of under-reporting would gradually decrease over 
time. 

Fig. 10 shows the temporal correlation between the confirmed 
healthcare worker cases and the reported cases in Hubei (except 
Wuhan). Compared with the temporal correlation coefficient in Wuhan, 
the temporal correlation coefficient in Hubei (excluding Wuhan) was 
significantly improved. For example, the correlation coefficient between 

Fig. 10. Temporal differences between healthcare worker cases and reported cases in Hubei (excluding Wuhan). (a) Healthcare worker and reported cases in Hubei 
(excluding Wuhan), based on daily new cases; (b) temporal correlation coefficient in Hubei (excluding Wuhan), based on daily new cases; (c) healthcare worker and 
reported cases in Hubei (excluding Wuhan), based on cumulative cases; and (d) temporal correlation coefficient in Hubei (excluding Wuhan), based on cumula
tive cases. 

Fig. 11. Temporal lag between the healthcare worker cases and under-reporting cases: (a) Wuhan City and (b) Hubei Province (excluding Wuhan).  
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the daily reported cases and new healthcare worker cases in Hubei 
(excluding Wuhan) was 0.828, which indicated that the temporal cor
relation between daily reported cases and actual infection cases was 
relatively strong in Hubei (excluding Wuhan). In addition, the correla
tion coefficient between the cumulative reported cases and the cumu
lative healthcare worker cases in Wuhan was 0.988, and the scattered 

points were mostly around the trend line. This indicated that the impact 
of under-reporting cases on Hubei (excluding Wuhan) was relatively 
small. 

5.1.3. Impact of under-reporting cases on temporal lag 
According to Figs. 9 and 10, if the phenomenon of under-reporting is 

Fig. 12. Temporal lag of the counties in Wuhan and the cities in Hubei (excluding Wuhan): (a) Wuhan City and (b) Hubei Province (excluding Wuhan).  

Fig. 13. Spatial correlations between healthcare worker cases and reported cases in Wuhan. (a) Reported cases in Wuhan on March 6, 2020; (b) healthcare worker 
cases in Wuhan on March 6, 2020; (c) spatial correlation coefficient in Wuhan on March 6, 2020, based on daily new cases; and (d) spatial correlation coefficient in 
Wuhan on March 6, 2020, based on cumulative cases. 

P. Wang et al.                                                                                                                                                                                                                                   



Cities 123 (2022) 103593

12

not considered, the estimated peak time of infection in the reported 
cases may lead to a time lag. Therefore, we quantitatively analyzed the 
time lag in Wuhan and Hubei (excluding Wuhan). Fig. 11 shows the 
time-lag results of the healthcare worker infection cases and reported 
cases in Wuhan and Hubei (excluding Wuhan). With the increase in φ, 
the autocorrelation function showed a trend of first increasing and then 
decreasing, thereby revealing that there was a certain lag in the tem
poral characteristics in Wuhan and Hubei (excluding Wuhan). When φ̂ =
13 days, the autocorrelation function of Wuhan provided the maximum 
value, and the correlation coefficient between the daily reported cases 
and new healthcare worker cases was 0.984. When φ̂ = 3 days, the 
autocorrelation function of Hubei (excluding Wuhan) displayed the 
maximum value, and the correlation coefficient between the daily re
ported cases and new healthcare worker cases was 0.972. 

In addition, we further quantitatively analyzed the time lag phe
nomenon of the counties in Wuhan and the cities in Hubei (excluding 
Wuhan). In Hubei, we calculated the time lag in the cities where the 
cumulative number of healthcare worker infections exceeded 10. In 
Wuhan, we calculated the time lag in the counties that still reported 
daily cases after February 21. Fig. 12 shows that the time lag phenom
enon has spatial heterogeneity in Wuhan and Hubei (excluding Wuhan). 
Regarding the spatial scale of Hubei, the closer to Wuhan, the greater the 

time lag there was; for example, the time lag in areas around Wuhan 
could have been up to 8 days. Regarding the spatial scale of Wuhan, the 
time lag near the city center was larger as the central area of Wuhan was 
the most affected region with regard to the number of cases. 

In general, the phenomenon of under-reporting has a great impact on 
the estimated temporal characteristics of the epidemic, and the impact 
in Wuhan is greater than that in Hubei (excluding Wuhan). According to 
the time of epidemic occurrence in different regions, the impact of 
under-reporting in the early onset area was greater than that in the late 
onset area, and the impact on the early stage was greater than that on the 
later stage. 

5.2. Impact of under-reporting cases on spatial characteristics 

In order to analyze the impact of under-reporting cases on the spatial 
characteristics of COVID-19, we first analyzed the spatial distribution 
and spatial correlation of the data on reported cases and confirmed 
healthcare worker infections on a single time node in Wuhan and Hubei 
(excluding Wuhan). Then, the spatial lag of the data on reported cases 
and confirmed healthcare worker infections was further analyzed in 
Wuhan and Hubei (excluding Wuhan). 

Fig. 14. Spatial correlation between healthcare worker cases and reported cases in Hubei (excluding Wuhan). (a) Reported COVID-19 cases in Hubei (excluding 
Wuhan) on February 6, 2020; (b) healthcare worker cases in Hubei (excluding Wuhan) on February 6, 2020; (c) spatial correlation coefficient in Hubei (excluding 
Wuhan) on February 6, 2020, based on daily new cases; and (d) spatial correlation coefficient in Hubei (excluding Wuhan) on February 6, 2020, based on cumu
lative cases. 
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5.2.1. Impact of under-reporting cases on spatial correlation 
Fig. 13 shows the spatial distribution and spatial correlation of the 

healthcare worker infections and reported cases in Wuhan on March 6. 
According to Fig. 7a and b, except for the Jiangxia District, the spatial 
distribution of healthcare worker infections and reported cases in 
Wuhan was quite similar, which indicates that, although the level of 
reported cases was less than the number of actual cases, the spatial 
distribution of reported cases still reflected the spatial distributions of 
COVID-19. Moreover, the spatial correlation coefficient between the 
newly reported cases and the healthcare worker cases was 0.544 in 
Wuhan on March 6, whereas that between the cumulative reported cases 
and the healthcare worker cases was 0.889. These results show that 
there was a certain deviation between the newly reported and health
care worker cases in Wuhan on March 6; however, there was a high 
correlation between the cumulative reported cases and healthcare 
worker cases, which implied that the phenomenon of under-reporting 
had little impact on the spatial distribution of COVID-19 in Wuhan. 

Fig. 14 shows the spatial distribution and spatial correlation of 
healthcare worker and reported cases in Hubei (excluding Wuhan) on 
February 6. Compared with Wuhan, the spatial distributions of health
care worker and reported cases in Hubei (excluding Wuhan) had a high 
similarity. Moreover, the spatial correlation coefficient between the 
newly reported cases and healthcare worker cases was 0.816 in Hubei 
(excluding Wuhan) on February 6, whereas that between the cumulative 
reported and healthcare worker cases was 0.846. The results showed 
that the cumulative reported cases and daily new cases are highly 

correlated with the healthcare worker infection situation in Hubei 
(excluding Wuhan), which indicates that the phenomenon of under- 
reporting had little impact on the spatial distribution of COVID-19 in 
Hubei (excluding Wuhan). 

As Figs. 13 and 14 only analyzed the spatial correlation between the 
healthcare worker and reported cases at a single time node in Wuhan 
and Hubei (excluding Wuhan), we further demonstrated the spatial 
correlation changes over time in both locations, and the results are 
shown in Fig. 15. 

The results show that the spatial correlation coefficient of daily new 
cases in Wuhan and Hubei (excluding Wuhan) have a certain volatility, 
which may be caused by the spatial heterogeneity of temporal lag. 
Secondly, the spatial correlation of new cases in Hubei (excluding 
Wuhan) dropped sharply from February 11 to February 29; this is 
because the relevant department made some corrections to the reported 
cases data, which led to the decline in the spatial correlation in a short 
period of time. However, after February 29, the spatial correlation of 
new cases in Hubei (excluding Wuhan) had rapidly increased and 
exceeded the correlation coefficient in the early stage of the epidemic. 

Moreover, the spatial correlation coefficients of the cumulative cases 
in Wuhan and Hubei (excluding Wuhan) were high. Among them, the 
spatial correlation coefficient of cumulative cases in Wuhan increased 
sharply on March 5, as the Wuhan Municipal Government revised the 
statistical method used to obtain the information on reported cases on 
March 5 for improving the accuracy of the data. The spatial correlation 
coefficient of the cumulative cases in Hubei (excluding Wuhan) 

Fig. 15. Changes in the spatial correlation between healthcare worker cases and under-reporting cases over time. (a) Spatial correlation coefficients in Wuhan, based 
on daily new cases; (b) those in Wuhan, based on cumulative cases; (c) those in Hubei (excluding Wuhan), based on daily new cases; and (d) those in Hubei 
(excluding Wuhan), based on cumulative cases. 
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fluctuated slightly, prior to February 11. This is because in the early 
stages of the pandemic, the under-reporting phenomenon was more 
prevalent. As time passes, the phenomenon of under-reporting will be 
alleviated and the data on reported cases can better reflect the spatial 
distribution characteristics of COVID-19. 

Overall, the impact of the under-reporting phenomenon during the 
early stages of the pandemic was greater than that during its later stages, 
which is not only observed with regard to the temporal characteristics, 
but also in terms of daily new cases. In addition, although the number of 
reported cases was lower than the number of actual cases, the spatial 
distribution of the cumulative reported cases in Wuhan and Hubei 
(excluding Wuhan) still reflected the spatial pattern of COVID-19. 

Therefore, it is appropriate to use the data on cumulative reported 
cases to study the spatial distribution characteristics of COVID-19. 

5.2.2. Impact of under-reporting cases on spatial lag 
Fig. 16 shows the spatial lag of healthcare worker infection and re

ported cases in Wuhan and Hubei (excluding Wuhan). The results show 
that the spatial lag of cumulative cases had an insignificant effect on the 
spatial correlation in Wuhan and Hubei (excluding Wuhan). However, 
the spatial lag of daily new cases had a greater effect on spatial corre
lation, and the effect on Wuhan was greater than that on Hubei 
(excluding Wuhan). To analyze the spatial lag phenomenon further 
quantitatively, we fixed the lag days and averaged the corresponding 
spatial correlation coefficients. Table 8 shows the average spatial cor
relation coefficient for specific lag days. The results show that the spatial 
correlation coefficient based on daily new cases in Wuhan increased 
rapidly with the increase in lag days, whereas that based on daily new 
cases in Hubei (excluding Wuhan) changed by a small amount with the 
increase in lag days. This shows that the daily new cases are greatly 
affected by under-reporting. Among them, Wuhan experienced a great 
impact due to under-reporting than Hubei (excluding Wuhan). In 
addition, the spatial correlation coefficient based on the cumulative 
cases in Wuhan and Hubei (excluding Wuhan) changed by a small 
amount with the increase in lag days. This indicates that accumulative 
cases in Hubei (excluding Wuhan) and Wuhan were less affected by the 
under-reporting phenomenon. 

Overall, the impact of under-reporting cases on spatial lag was 
similar to the impact on spatial correlation. That is, the impact of under- 
reporting on the early stages of the pandemic was greater than that on its 

Fig. 16. (a) Spatial lag phenomenon between healthcare worker cases and under-reporting cases in Wuhan, based on daily new cases; (b) those in Wuhan, based on 
cumulative cases; (c) those in Hubei (excluding Wuhan), based on daily new cases; and (d) those in Hubei (excluding Wuhan), based on cumulative cases. 

Table 8 
The average spatial correlation coefficient in specific lag days.  

Lag 
days 

Wuhan Hubei (outside Wuhan) 

Daily new 
cases 

Cumulative 
cases 

Daily new 
cases 

Cumulative 
cases  

0  0.3897  0.8117  0.5429  0.8414  
1  0.3709  0.8111  0.5429  0.8420  
2  0.3939  0.8106  0.5429  0.8427  
3  0.4165  0.8101  0.5429  0.8439  
4  0.4492  0.8096  0.5362  0.8456  
5  0.4923  0.8091  0.5362  0.8475  
6  0.5249  0.8085  0.5362  0.8489  
7  0.5392  0.8079  0.5636  0.8495  
8  0.5616  0.8072  0.5636  0.8493  
9  0.5766  0.8066  0.5636  0.8486  
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later stages, and its impact on daily new cases was greater than that on 
accumulative cases. 

6. Discussions and conclusions 

For COVID-19 epidemic prevention and control, it is important to 
acquire a timely understanding of the spatiotemporal pattern and 
determine the development trend of COVID-19 in its early stage. How
ever, under-reporting is a very common phenomenon in public health 
fields such as epidemiology and biomedicine. When the under-reporting 
phenomenon is not considered, inaccurate inferences may be produced, 
which will affect the judgment of decision makers (Paixão et al., 2021). 
Therefore, in this paper, a novel framework was proposed to explore the 
impact of under-reporting on COVID-19 spatiotemporal distributions, 
and empirical analysis was carried out using infection data of healthcare 
workers in Wuhan and Hubei (excluding Wuhan). 

The results show that (1) the lognormal distribution was the most 
suitable to describe the evolution of epidemic with time; (2) the esti
mated peak infection time of the reported cases lagged the peak infec
tion time of the healthcare worker cases, and the estimated infection 
time interval of the reported cases was smaller than that of the health
care worker cases. (3) The impact of under-reporting cases on the early 
stages of the pandemic was greater than that on its later stages, and the 
impact on the early onset area was greater than that on the late onset 
area. (4) Although the number of reported cases was lower than the 
actual number of cases, a high spatial correlation existed between the 
cumulatively reported cases and healthcare worker cases. 

According to the results obtained from the proposed framework, the 
time lag phenomenon should be considered in the time characteristics 
inferred from the reported cases; otherwise, the urban epidemic pre
vention and control policies may be unreasonable. Compared with 
existing methods(Lau et al., 2021; Russell et al., 2020; Shen et al., 2020), 
the proposed framework does not count the actual number of infections, 
but treats the healthcare worker infection data as more accurate data to 
infer the outbreak of the epidemic. In other words, the proposed 
framework indirectly understands the actual situation of the epidemic, 
which can avoid complicated calculations and make it more convenient 
and faster. In addition, the proposed framework of this study is highly 
extensible. Relevant researchers can not only use data sources from 
other counties to analyze the impact of under-reported cases on the 
spatiotemporal distributions of the COVID-19, but also use other types of 
data sources to analyze the impact of under-reported cases on the 
spatiotemporal distributions of the COVID-19. 

The limitations of this study were as follows: The proposed frame
work needs more datasets for evaluation. We only used healthcare 
worker infection data in China to explore the impact of under-reporting 
cases on the spatiotemporal distributions of COVID-19 and lacks data 
analysis from other countries. In response to the above limitations, 
future studies should focus on collecting further domestic and foreign 
healthcare worker and patient infection data to analyze the impact of 
under-reporting cases on the spatiotemporal distributions of COVID-19 
more accurately and comprehensively. 
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