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Urban prevention and control policies

A timely understanding of the spatiotemporal pattern and development trend of COVID-19 is critical for timely
prevention and control. However, the under-reporting of casesis widespread in fields associated with public
health. It is also possible to draw biased inferences and formulate inappropriate prevention and control policies if
the phenomenon of under-reporting is not taken into account. Therefore, in this paper, a novel framework was
proposed to explore the impact of under-reporting on COVID-19 spatiotemporal distributions, and empirical
analysis was carried out using infection data of healthcare workers in Wuhan and Hubei (excluding Wuhan). The
results show that (1) the lognormal distribution was the most suitable to describe the evolution of epidemic with
time; (2) the estimated peak infection time of the reported cases lagged the peak infection time of the healthcare
worker cases, and the estimated infection time interval of the reported cases was smaller than that of the
healthcare worker cases. (3) The impact of under-reporting cases on the early stages of the pandemic was greater
than that on its later stages, and the impact on the early onset area was greater than that on the late onset area.
(4) Although the number of reported cases was lower than the actual number of cases, a high spatial correlation
existed between the cumulatively reported cases and healthcare worker cases. The proposed framework of this
study is highly extensible, and relevant researchers can use data sources from other counties to carry out similar
research.

predicting the inflection point of the disease (Shen et al., 2020; Tang
et al., 2020) and detecting its spatial distribution and movement (Jia

1. Introduction

Since the outbreak of the COVID-19, the prevention and control of
the epidemic have rapidly become the focus of social and academic
attention (Fu et al., 2020; Guan et al., 2020; Liu et al., 2021). As a new
infectious disease, measures such as isolation, restriction of crowd ac-
tivities, and wearing masks have been the most effective emergency
prevention and control measures. To achieve targeted and accurate
prevention and control, it is necessary to immediately obtain a timely
understanding of the spatiotemporal patterns of the epidemic and
determine the development trend of the epidemic(Chen et al., 2020; da
Silva Correa & Perl, 2021).

At present, many scholars have used reported cases data to explore
the spatiotemporal characteristics of COVID-19, which includes

et al., 2020; Liu et al., 2020; Wang, Liu, et al., 2021). However, under-
reporting of reported cases is a very common phenomenon in fields
associated with public health, such as epidemiology and biomedicine
(Fernandez-Fontelo et al., 2016). In particular, for newly detected in-
fectious diseases such as COVID-19, under-reporting is more likely to
occur due to the lack of understanding of the disease and strict diag-
nostic criteria (Cabana et al., 2020). It is also possible to draw biased
inferences and formulate inappropriate urban prevention and control
policies if the phenomenon of under-reporting is not taken into account.

To alleviate the problem of data underreporting, the patient death
data are regarded more accurate and are used to conduct research on the
phenomenon of under-reporting, such as reconstructing the true
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s ot Table 1
= = = Sample of confirmed healthcare worker data.
b g & User ID Date Province City County
2
g 1 2020-01-15 Hubei Wuhan Huangpo
E 2 2020-01-15 Hubei Jingmen Zhongxiang
a |:| 3 2020-02-04 Shandong Qingdao Shinan
&
2 1 | PN
3743 2020-02-01 Beijing Beijing Xicheng

Wuhan

epidemic level of the COVID-19 and exploring the impact of under-
reporting cases on mortality rate and effective reproduction number
(Backer et al., 2020; Lau et al., 2021; Linton et al., 2020; Prado et al.,
2020; Saberi et al., 2020). Although the abovementioned studies
analyzed the impact of under-reporting on the epidemic situation from
multiple perspectives, some discrepancies still remain. First, existing
methods mainly estimate the statistical characteristics of COVID-19
from the perspective of time, ignoring the impact of space on the esti-
mation of statistical characteristics. Second, death data still needs to be
accurately reported, and there may be a deviation between the number
of reported deaths and the actual number of deaths due to COVID-19.

Compared with patient death data, information on healthcare
workers with COVID-19 can be considered as a more accurate method
for sampling due to a smaller dataset. In the early stage of the epidemic,
healthcare worker infections were more easily detected and calculated.
Therefore, data on confirmed cases of healthcare workers can more
accurately reflect the relevant characteristics of COVID-19 (Gao et al.,
2020; Ren et al., 2021; Wang et al., 2020). Considering this, a novel
framework was proposed to evaluate the spatiotemporal characteristics
of COVID-19 outbreak based on the infection data of healthcare workers.
The main contributions of this article are as follows:
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(1) A novel framework was proposed to explore the impact of under-
reporting on COVID-19 spatiotemporal distributions. The pro-
posed framework is highly extensible, and relevant researchers
can use data sources from other counties to carry out similar
research.

(2) An empirical analysis was carried out based proposed framework
using infection data of healthcare workers in Wuhan and Hubei

= ] a (excluding Wuhan).

(3) An open-source dataset of HCW diagnoses is provided, which
both ensures the reproducibility of the study and provides the
data needed to support related research on data under-reporting.
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Fig. 1. Sketch map of the study area.
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2. Related works
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In this section, we first reviewed the studies related to the spatio-
temporal distribution of COVID-19, and then reviewed the studies
related to data under-reporting of COVID-19.

Studies on the spatiotemporal distributions of COVID-19 have
mainly focused on reported case data and have explored the patterns
and movement of the epidemic, so as to provide scientific basis for
relevant measures, such as isolation and the restriction of human ac-
tivities(Askarizad et al., 2021; Lin et al., 2021). For example, Wang,
Dong, et al. (2021) used scanning statistics to detect the hotspots of new
cases each week based on the confirmed cases of COVID-19 at the county
level in the United States, thereby characterizing the infection rates
during the epidemic. Lak et al. (2021) used spatial regression technology
to explore the spatiotemporal spread pattern of 43,000 confirmed covid-
19 cases at the neighborhood level in Tehran, the capital of Iran. Wang,
Dong, et al. (2021) analyzed the spatiotemporal differences of the spread
of the COVID-19 epidemic in 337 prefecture-level cities in China, as well
as the social influencing factors and natural influencing factors. Based
on mobile phone and confirmed patient data, Jia et al. (2020) developed
a spatiotemporal “risk source” model to determine the geographic dis-
tribution and growth trends of COVID-19 infections to quickly and
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Fig. 2. Characteristics of healthcare worker infection data. (a) Number of confirmed healthcare workers and (b) number of confirmed cases.
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Fig. 3. Research framework for the impact of under-reporting cases on the spatiotemporal distribution of COVID-19.

accurately assess related risks. Loske (2020) explored the relationship
between COVID-19 transmission and transport volumes in food retail
logistics by combining transport volume data and confirmed patient
data. However, the above studies directly study the spatiotemporal
distribution of COVID-19 through reported case data, ignoring the
possible under-reporting of data in reported cases (Lau et al., 2021). The
conclusions obtained directly from the reported cases may deviate from
the actual situation, thereby affecting the judgment of decision-makers
(Bastos et al., 2021; Deo & Grover, 2021).

To alleviate the problem of data underreporting, an accurate small
sample is used to explore the impact of under-reporting on the estima-
tion of spatiotemporal characteristics (Fellows et al., 2021; Pons-Salort
et al., 2021). Additionally, it is common to estimate population char-
acteristics using small samples in the field of statistics (Lauer et al.,
2020; Smid et al., 2020). At present, most domestic and foreign re-
searchers regard patient death data as relatively accurate data and use it

to study under-reporting (Backer et al., 2020; Fellows et al., 2021; Lau
etal., 2021; Linton et al., 2020; Prado et al., 2020). For example, Russell
et al. (2020) reconstructed the early global dynamics of under-
ascertained COVID-19 cases and infections. Fellows et al. (2021) esti-
mated the incidence, mortality, and lethality rates of COVID-19 among
Indigenous Peoples in the Brazilian Amazon. Li et al. (2020) estimated
the infection peak time via reported cases data as well as internet search
and social media data. Although the above studies considered the
underreporting phenomenon, there are still some deficiencies. First, the
statistical characteristics of COVID-19 are mostly estimated from the
perspective of time, and impact of space on these statistical character-
istics is largely ignored. Second, death data still needs to be accurately
reported, and there may be a deviation between the number of reported
deaths and the actual number of deaths due to COVID-19 (Whittaker
et al., 2021).

Therefore, in this paper, infection data of healthcare workers is



P. Wang et al.

Temporal

Spatial—

\

I_ o |Temporal Dimension I— - ISpatial Dimension

Fig. 4. Data structure of the confirmed and infection inventories.

Table 2
Sample of reported infection inventory in Hubei.
2020-01- 2020-01- 2020-01- 2020-01- 2020-01-
24 25 26 27 28
Wuhan 591 676 839 1033 1268
Ezhou 40 43 44 43 42
Huanggang 141 160 175 191 200
Suizhou 59 71 81 90 94
Table 3
Sample of healthcare worker infection inventory in Hubei.
2020-01- 2020-01- 2020-01- 2020-01- 2020-01-
24 25 26 27 28
Wuhan 106 102 100 101 101
Ezhou 5 5 5 4 4
Huanggang 5 4 5 5 6
Suizhou 1 1 1 1 2

considered as a more accurate method. Compared with patient death
data, healthcare worker infections were more easily detected and
calculated (Ren et al., 2021; Wang et al., 2020). Additionally, we also
proposed a novel framework to explore the impact of under-reporting on
COVID-19 spatiotemporal distributions using an accurate small sample.

H_I_Inventory
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3. Study area and data sources
3.1. Study area

Hubei Province and Wuhan City were the first provinces and cities in
China in which COVID-19 was discovered. As of October 2020, the total
number of confirmed cases in Hubei Province had reached 68,135, ac-
counting for approximately 81.5% of the total cases in the population,
and the total number of confirmed cases in Wuhan had reached 50,340,
accounting for approximately 60.80% of the total cases. In order to
explore the impact of under-reporting cases on the spatiotemporal dis-
tributions of COVID-19, the study area was divided into two parts:
Wuhan City and Hubei Province (excluding Wuhan). Hubei Province is
located in the central part of China, and Wuhan City is located in the
central part of Hubei Province, as shown in Fig. 1.

3.2. Data sources and data preprocessing

3.2.1. Data sources

The data used in this paper included the confirmed cases at the city
and county level in Hubei Province and Wuhan, respectively, and in-
formation on the healthcare workers in China obtained via retrospective
analyses.

The reported cases in Hubei Province were mainly obtained from the
Health Commission of Hubei Province (http://www.nhc.gov.cn), and
spanned the period from January 15, 2020 to March 31, 2020. The re-
ported cases in Wuhan were mainly obtained from the Wuhan Municipal
Health Commission (http://wjw.wuhan.gov.cn), and spanned the
period from February 23, 2020 to March 31, 2020.

Data on the confirmed COVID-19 cases of healthcare workers were
mainly obtained via retrospective analyses from the Chinese Red Cross
Foundation (https://www.crcf.org.cn/), which distributes relief funds
to every healthcare worker suffering from COVID-19. As of September
11, 2020, 83 batches of healthcare workers had received foundation
assistance. We used crawler technology to obtain 3743 publications that
elucidated the conditions of healthcare workers that suffered from
COVID-19. After matching their addresses, information regarding the
province, city, and county of all the affected healthcare workers were
obtained. The data format is shown in Table 1.

3.2.2. Data preprocessing

Data on the reported cases were collected and processed at the China
Data Center and shared on the dataverse platform of Harvard University,
which does not require additional data preprocessing(Hu et al., 2020;
Yang et al., 2020). Therefore, we mainly conducted data preprocessing
for information on healthcare workers suffering from COVID-19, which
was obtained via retrospective analyses.
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Fig. 5. Temporal and spatial correlation coefficients.
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The information on healthcare workers obtained via retrospective
analyses is mainly reported to the Chinese Red Cross Foundation in two
ways(Chinese Red Cross Foundation, 2020): (1) confirmed information
on healthcare workers is directly reported by individuals to the Chinese
Red Cross Foundation; and (2) confirmed information on healthcare
workers is collected by their respective hospitals, which then report to
the Chinese Red Cross Foundation. After examination and approval by
the Chinese Red Cross Foundation, the relevant information is published
on the website after which the hospital may review it. Those who fail to
pass the review do not qualify to be aided. Therefore, data records of
unqualified persons should be deleted from the original data. Moreover,
the Chinese Red Cross Foundation not only aided infected healthcare
workers, but also aided infected or diseased staff during the epidemic;
Thus such data records were needed to be deleted. As shown in Fig. 2a,
after data preprocessing, a total of 3703 confirmed cases of healthcare
workers remained, including 3655 from Hubei Province and 3058 from
Wuhan City. Compared with the real-time data on the confirmed COVID-
19 cases of healthcare workers in the same period (Fig. 2b) (Gao et al.,
2020), the corresponding data obtained via retrospective analyses
exhibit an obvious quantitative advantage.

4. Methods

In this study, the data on confirmed cases of healthcare workers were
considered to represent an accurate and small sample space to explore
the impact of under-reporting on the spatiotemporal distributions of
COVID-19. The overall framework is shown in Fig. 3. First, infection

N
{ H_C_Inventory""" (Hongshan, t,) = Zi |ems;.County == Hongshan N\ cms;.Date == t,

cms; € Retrospective Healthcare Worker Infection Set

inventories were constructed for the healthcare workers and reported
cases in Hubei and Wuhan. Second, based on these inventories, the
impacts of under-reporting cases on the temporal characteristics were
analyzed from three perspectives, namely parameter estimation, tem-
poral correlation, and temporal lag. Finally, the impacts of under-

reporting cases on the spatial characteristics were analyzed from the
perspective of spatial correlation and spatial lag. This work provides
scientific support for researchers that explore the spatiotemporal dis-
tribution of COVID-19 using the data on reported cases.

4.1. Construction of infection inventory

Due to the incubation time of the SARS-COV-2 infection, the
confirmed time does not represent the infection time of the healthcare
workers and reported cases. Therefore, this study constructed a
Healthcare Worker Infection Inventory and a Reported Infection Inventory
based on partition statistics from two perspectives: Hubei and Wuhan.

The construction of the Infection Inventory can be divided into two
steps: (1) Generate a Confirmed Inventory based on confirmed healthcare
worker data, and (2) Generate an Infection Inventory based on the
Confirmed Inventory. The data structures for the two inventories are
shown in Fig. 4. Inventory(S, T) represents a spatiotemporal dataset,
where S and T are the spatial and temporal dimension, respectively; S =
{51,582, *,Sm}, T = {t1,t2, -+, tn}, m is the total number of spatial objects
and n is the total number of timestamps.

Considering the healthcare workers in Wuhan as an example, to
construct the Healthcare Worker Infection Inventory in Wuhan, the
Confirmed Healthcare Worker Inventory in Wuhan City was first gener-
ated. For example, the calculation method for the number of confirmed
healthcare worker on day t( in Hongshan, Wuhan City, is shown in Eq.
1):

; €8]

where N represents the total number of confirmed healthcare worker
infections in China, cms; represents the information of a specific
healthcare worker suffering from COVID-19, and H_C_Inventory"“a
represents the Confirmed Healthcare Worker Inventory in Wuhan, which
elucidates the changes in confirmed healthcare worker infections in
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Table 4
Estimated results of the median and standard deviation for healthcare worker
cases and reported cases in Wuhan.

Distribution Median (peak) Standard Deviation (days)
Healthcare Reported Healthcare Reported
workers cases workers cases
cases cases
Estimate Jan 25 Feb 3 12.1 days 7.6 days
10.8 7.4
Normal 05% CI Jan 24-Jan Feb 3-Feb days-13.5 days-8.0
26 4
days days
Estimate Jan 23 Feb 3 11.8 days 7.6 days
Lognormal Jan 23-Jan  Feb 2-Feb 11.2 7:4
8 95% CI days-12.3  days-7.9
24 3
days days
Estimate Jan 24 Feb 3 11.6 days 7.6 days
Gamma Jan 23-Jan Feb 3-Feb 111 7-4
95% CI days-12.1 days-7.9
24 4
days days

every county of Wuhan over time.

To calculate the Healthcare Worker Infection Inventory, we assumed
that the incubation time X of SARS-Cov-2 is subject to a lognormal
distribution, as seen in other acute respiratory viral infections (Lessler
et al., 2009). Lauer et al. (2020) found that the mean and standard de-
viation of the random variable In(X) were 1.621 and 0.418, respectively,
ie., ln(X)~N(1.621,0.4182). Based on the probability distribution
function of the incubation time X, the daily infected number of health-
care workers can be calculated. For example, the calculation method for
the infected number of healthcare workers on day t, in Hongshan,
Waubhan City, is shown in Eq. (2):

H 1 Inventory™"" (Hongshan,t, ) :Z HCInventory"™ (Hongshan,ty+i)*p;

) ((.\u>2>
In(i) 1 202
pi:/ —e ie.,1<i<13
[

n(i-1)V2m0

12
pi_<]—§ pj>/2i.e.,i—lori—13
2

where p; represents the probability that the incubation time is i days; n
represents the maximum incubation time (as the incubation time of
98.7% patients is within 13 days, n is set as 13); u represents the mean of
lognormal distribution, i.e. 1.621; ¢ represents the standard deviation of
lognormal distribution, i.e. 0.418; and H_I Inventory"""" represents the
Healthcare Worker Infection Inventory in Wuhan. Similarly, the Reported
Infection Inventory in Wuhan can be expressed as R_I_Inventory”“'", and
the corresponding Healthcare Worker Infection Inventory and Reported
Infection Inventory in Hubei can be expressed as H_I_InventoryH“bei and
R_I Invento “bEi, respectively. Taking Hubei Province as an example,
Tables 2 and 3 further show the details of the Reported Infection Inventory
and Healthcare Worker Infection Inventory.

(2

4.2. Statistical model

The T in Inventory(S, T) is essentially a collection of time-series data
which records the temporal characteristics of healthcare worker infec-
tion. Studies have shown that counts of the less frequent infections
typically follow Poisson distribution, whereas those of more frequent
infections may follow approximately normal distribution (Farrington
et al., 1996; Unkel et al., 2012). In the early stages of the epidemic,
SARS-Cov-2 infections were frequent. Therefore, two samples of
healthcare worker cases and reported cases were used to estimate the
infection peak time and the infection time interval of the epidemic from
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Table 5
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Estimated results of percentiles and infection time intervals of healthcare worker cases and reported cases in Wuhan.

Percentiles Healthcare workers cases Reported cases

Normal Lognormal Gamma Normal Lognormal Gamma

2.5th Estimate Jan 1 Jan 8 Jan 7 Jan 19 Jan 21 Jan 20
’ 95% CI Dec 30-Jan 4 Jan 5-Jan 9 Jan 6-Jan 8 Jan 18-Jan 20 Jan 19-Jan 22 Jan 19-Jan 22

97.5th Estimate Feb 18 Feb 22 Feb 21 Feb 18 Feb 19 Feb 19
. 95% CI Feb 15-Feb 21 Feb 20-Feb 25 Feb 18-Feb 25 Feb 17-Feb 20 Feb 18-Feb 21 Feb 18-Feb 21

Infection time interval Estimate 47.5 days 45.6 days 45.0 days 30.1 days 30.0 days 30.0 days
95% CI 40.6 days-55.0 days  42.6 days-49.7 days  40.8 days—49.1 days  27.6 days-32.3days  27.5days-32.4days  27.5 days-32.0 days

three distributions: normal, lognormal, and gamma. The probability
density function of normal, lognormal, and gamma are shown in Egs.
(3), (4), and (5), respectively:

e< ) ®)

((w;nz >

1 20}

—=C ) (©)]
\V2ro,;

Gamma(x;a, ) = ﬁxa— Tt -

I(a)

Normal(x; u, 6) =

Lognormal(x; u;, 0;) =

where u and o represent the fixed parameters of normal, uy; and o;
represent the fixed parameters of lognormal, a and f represent the fixed
parameters of gamma, and I'(a) represents the gamma function. In this
study, the maximum likelihood estimation was used to fit the hyper
parameters of the three distributions. As gamma and lognormal are skew
distribution, the median of the distribution was used to approximate the
peak time of infection.

In addition, the cumulative distribution functions of normal,
lognormal, and gamma were used to estimate the time interval of the
infection. For example, the calculation method of infection time interval
in normal distribution is shown in Eq. (6) as follows:

infection time interval = [ x,%
£ £l (0025)
Xx=F,' (0.975) (6)

normal

Fnormal(x) = / Normal(t)dt

where Fomai(x) represents the cumulative distribution functions of
normal, F,,,,mmfl(x) represents the inverse function of Fjpmqi(x), x rep-

resents lower bound of interval, and X represents upper bound of in-
terval. That is, the infection time interval represents the time span of an
epidemic infection in 95% of patients. In this study, when the difference
between the infection peak and infection interval estimated based on the
two samples was small, under-reporting cases had less impact on tem-
poral characteristics, and vice versa.

4.3. Pearson correlation coefficient

The Pearson's correlation coefficient is used to measure the degree of
correlation between two series (Nahler, 2009). As the Inventory(S, T)
contains both temporal and spatial dimensions, we calculated the tem-
poral and spatial correlation. As shown in Fig. 5, the spatial correlation
was obtained by h_i t3 and r_i_t3, and the temporal correlation was ob-
tained by h.iss and h_is3. The temporal and spatial correlation co-
efficients of the two series were calculated using Egs. (7) and (8),
respectively:

Cov(h_i_s;, r_i_s;)

o D (hoios;)/D(ris,)

Cov(h_i_t;, r_i_t;)
D(h_i_t;)\/D(r-i_t;)

()

(®

Fspatial =

where h_i_s; represents the time series of healthcare worker infections in
a specific spatial region, r_i_s; represents the time series of reported in-
fections in a specific spatial region, h_i_t; represents the spatial series of
healthcare worker infections in a specific time, r.it; represents the
spatial series of reported infections in a specific time, Cov(X,Y) repre-
sents the covariance of the series X and Y, D(X) represents the variance
of the series X, and /D(X) represents the standard deviation of the series
X. The value range of the correlation coefficient is [—1,1]. When the
correlation coefficient is greater than 0, the time series X and Y are
positively correlated; if it is equal to 1, the time series X and Y are
completely positively correlated; if it is less than 0, the time series X and
Y would show a negative correlation; and finally, if it is equal to —1, the
time series X and Y would show a complete negative correlation. In this
study, if the two series showed a significant positive correlation, the
under-reporting of cases had less impact on the spatiotemporal charac-
teristics, and vice versa.

4.4. Cross-correlation function

The cross-correlation function measures the impact of under-
reporting cases on the spatiotemporal characteristics from the perspec-
tive of lag. As shown in Fig. 6, the cross-correlation function can be
understood as a correlation coefficient with a lag.

With regard to the spatial dimension, the spatial lag of series h_i_t;
and r_i_t; was calculated using Eq. (9), as follows:

Cov(h_i_tip, r-i_t;)

= 9
VD(hi-tivy)\/D(ri-tis,) ©

f;pm[al ((P)

where foaial(p) is the spatial correlation coefficient between series
h.iti,, and ri_t; at lag ¢, ri_t; represents the spatial series of reported
infections in a specific time, h_i_t;;, represents the spatial series of
healthcare worker infections lagging ¢ days compared to time i.

With regards to the temporal dimension, the temporal lag of series
his; = {his{}—1"and ris; = {r.is{}1" was calculated using Eq. (10),
as follows:

ytemp()ral ((,0)
\/Oh_i_s; \/Or_i_s;

g @) = E[ (b5, ~ i) (ris)"® — 7ois )

f;cmparal (¢) =
10)

where fiemporai(@) is the temporal correlation coefficient between series
h_is; and r.is; at lag ¢, hist represents the time series of healthcare
worker infections in a specific spatial region, r_i s ** represents the time
series of reported infections lagging ¢ days compared to time i in a
specific spatial region.

In the definition, the cross-correlation function can be regarded as a
function of the lag, and the lag value that maximizes the cross-
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Table 6
Estimated results of the median and standard deviation for healthcare worker
cases and reported cases in Hubei (excluding Wuhan).

Distribution Median (peak) Standard Deviation
Healthcare Reported Healthcare Reported
workers cases workers cases
cases cases
Estimate Jan 29 Jan 29 9.6 days 6.8 days
Jan 9.2 6.4
Normal e S i?)’Ja" 28-Jan days-10.0  days-7.1
29 days days
Estimate Jan 28 Jan 29 10.2 days 6.8 days
Jan 9.6 6.4
Lognormal — gog; ¢ Jan 22;’”" 27-Jan days-10.9  days-7.2
29 days days
Estimate Jan 28 Jan 28 10.4 days 6.9 days
Jan 9.7 6.4
26—
Gamma g Jan 22 Jan 97 Jan days-11.0  days-7.2
29 days days

correlation function is the average delay time of actual infection. The
formal definition can be seen in Eq. (11):

{ aiempoml = argmax Iempam[((/’) ) (11)
P spatial = Argmax (fspa!ial((ﬂ) )

where ¢, represents the estimated delay in space, @ emporq T€Presents
the estimated delay in time, the mean of fiemporai(e) and fopara(e) are
same as those in Formulas (9) and (10). The smaller the @, the smaller
the impact of under-reporting cases on the spatiotemporal characteris-
tics, and vice versa.

5. Experimental results and analysis
5.1. Impact of under-reporting cases on temporal characteristics

To analyze the impact of under-reporting cases on the temporal
characteristics of COVID-19, we first used the data on reported cases and
confirmed healthcare worker infections to estimate the epidemic peak
and infection interval in Wuhan and Hubei (except Wuhan). Then, we
further analyzed the temporal correlation and temporal lag of the data
on reported cases and confirmed the healthcare worker infections in
Wuhan and Hubei (except Wuhan).

5.1.1. Impact of under-reporting cases on infection peak and interval

Fig. 7 shows the fitting results of normal, lognormal, and gamma
distribution for healthcare worker cases and reported cases in Wuhan,
and the mean square error (MSE) is used to evaluate the fitting effect of
each distribution. The results showed that the MSE of lognormal dis-
tribution was the lowest, which indicated that lognormal distribution
was the most suitable to describe the evolution of epidemic with time in
Wuhan. In addition, Tables 4 and 5 show the statistical characteristics of
healthcare worker cases and reported cases in Wuhan. According to the
lognormal distribution, the peak time of infection in Wuhan was esti-
mated to be on February 3 from the data on daily reported cases.
However, it was estimated to be on January 24 from the data on daily
healthcare worker infection cases, i.e., with a difference of 11 days. The
standard deviation estimated from daily reported cases was 7.6 days;
95% of the patients in Wuhan were infected from January 21 to
February 19, i.e., within 30.0 days. However, the standard deviation
estimated by the daily healthcare worker infection cases was 10.6 days;
therefore, 95% of the patients in Wuhan were more likely to be infected
from January 8 to February 22, i.e., within 45.6 days.

Fig. 8 shows the fitting results of normal, lognormal, and gamma
distribution for healthcare worker cases and reported cases in Hubei
(excluding Wuhan). The results showed that the MSE of lognormal and
gamma distribution was relatively small. In addition, Tables 6 and 7
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Table 7

Cities 123 (2022) 103593

Estimated results of percentiles and infection time intervals for healthcare worker cases and reported cases in Hubei (excluding Wuhan).

Percentiles Healthcare workers cases Reported cases

Normal Lognormal Gamma Normal Lognormal Gamma

2.5th Estimate Jan 11 Jan 15 Jan 16 Jan 15 Jan 17 Jan 17
’ 95% CI Jan 10-Jan 12 Jan 14-Jan 16 Jan 15-Jan 16 Jan 14-Jan 16 Jan 16-Jan 18 Jan 16-Jan 18

97.5th Estimate Feb 17 Feb 23 Feb 24 Feb 11 Feb 12 Feb 13
. 95% CI Feb 16-Feb 19 Feb 21-Feb 26 Feb 22-Feb 26 Feb 10-Feb 12 Feb 11-Feb 14 Feb 11-Feb 14

Infection time interval Estimate 37.6 days 39.3 days 39.3 days 26.7 days 26.7 days 26.7 days
95% CI 35.5days-39.5 days  36.8 days-41.9 days  36.7 days—42.1 days  25.1 days-28.0 days  25.1 days-28.1 days  25.1 days-28.1 days
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Fig. 9. Temporal differences between healthcare worker cases and reported cases in Wuhan. (a) Healthcare worker and reported cases in Wuhan, based on daily new
cases; (b) temporal correlation coefficient in Wuhan, based on daily new cases; (c) healthcare worker and reported cases in Wuhan, based on cumulative cases; and

(d) temporal correlation coefficient in Wuhan, based on cumulative cases.

show the statistical characteristics of healthcare worker cases and re-
ported cases in Hubei (excluding Wuhan). Compared with Wuhan, the
impact of under-reporting cases on the temporal characteristics of the
epidemic in Hubei (excluding Wuhan) was relatively small. According to
the lognormal distribution, the peak time of infection in Hubei (except
Wuhan) estimated from the data on daily reported cases was January 28,
whereas that estimated from the data on daily healthcare worker
infection cases was February 29, i.e., only differing by one day. The
standard deviation estimated from the daily reported cases was 6.8 days.
Further, 95% of the patients in Hubei (excluding Wuhan) were infected
from January 17 to February 12, i.e., within 23.7 days. The standard
deviation estimated by the daily healthcare worker infection cases was
10.2 days, and therefore, 95% of the patients in Hubei (excluding
Wuhan) were more likely to be infected from January 15 to February 23,
i.e., within 39.3 days.

In general, when the phenomenon of under-reporting is not consid-
ered, the infection peak and infection interval estimated by the reported

cases may be significantly different from the actual infection peak and
infection interval. Among them, the estimated infection peak time may
be earlier than the actual infection peak time, and the estimated infec-
tion time interval may be smaller than the actual infection time interval.
In addition, the impact of under-reporting phenomenon on Wuhan is
greater than that on Hubei (excluding Wuhan).

5.1.2. Impact of under-reporting cases on temporal correlation

Fig. 9 shows the temporal correlation between the confirmed
healthcare worker cases and the reported cases in Wuhan. The temporal
correlation coefficient between the data on daily reported cases and new
healthcare worker cases in Wuhan was 0.336, which indicated that the
temporal correlation between daily reported cases and actual infection
cases was weak in Wuhan. The correlation coefficient between the cu-
mulative reported cases and the cumulative healthcare worker cases in
Wuhan was 0.926. As shown in Fig. 9d, although there was a strong
temporal correlation between cumulative reported cases and actual
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Fig. 10. Temporal differences between healthcare worker cases and reported cases in Hubei (excluding Wuhan). (a) Healthcare worker and reported cases in Hubei
(excluding Wuhan), based on daily new cases; (b) temporal correlation coefficient in Hubei (excluding Wuhan), based on daily new cases; (c) healthcare worker and
reported cases in Hubei (excluding Wuhan), based on cumulative cases; and (d) temporal correlation coefficient in Hubei (excluding Wuhan), based on cumula-

tive cases.
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Fig. 11. Temporal lag between the healthcare worker cases and under-reporting cases: (a) Wuhan City and (b) Hubei Province (excluding Wuhan).

infection cases in Wuhan, the distance between the trend line and the
scatter points was still large in the early stage of the epidemic. This
indicated the temporal correlation gradually increased over time, and
the phenomenon of under-reporting would gradually decrease over
time.

10

Fig. 10 shows the temporal correlation between the confirmed
healthcare worker cases and the reported cases in Hubei (except
Wuhan). Compared with the temporal correlation coefficient in Wuhan,
the temporal correlation coefficient in Hubei (excluding Wuhan) was
significantly improved. For example, the correlation coefficient between
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Fig. 13. Spatial correlations between healthcare worker cases and reported cases in Wuhan. (a) Reported cases in Wuhan on March 6, 2020; (b) healthcare worker
cases in Wuhan on March 6, 2020; (c) spatial correlation coefficient in Wuhan on March 6, 2020, based on daily new cases; and (d) spatial correlation coefficient in

Wuhan on March 6, 2020, based on cumulative cases.

the daily reported cases and new healthcare worker cases in Hubei
(excluding Wuhan) was 0.828, which indicated that the temporal cor-
relation between daily reported cases and actual infection cases was
relatively strong in Hubei (excluding Wuhan). In addition, the correla-
tion coefficient between the cumulative reported cases and the cumu-
lative healthcare worker cases in Wuhan was 0.988, and the scattered

11

points were mostly around the trend line. This indicated that the impact
of under-reporting cases on Hubei (excluding Wuhan) was relatively
small.

5.1.3. Impact of under-reporting cases on temporal lag
According to Figs. 9 and 10, if the phenomenon of under-reporting is
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Fig. 14. Spatial correlation between healthcare worker cases and reported cases in Hubei (excluding Wuhan). (a) Reported COVID-19 cases in Hubei (excluding
Wuhan) on February 6, 2020; (b) healthcare worker cases in Hubei (excluding Wuhan) on February 6, 2020; (c) spatial correlation coefficient in Hubei (excluding
Wuhan) on February 6, 2020, based on daily new cases; and (d) spatial correlation coefficient in Hubei (excluding Wuhan) on February 6, 2020, based on cumu-

lative cases.

not considered, the estimated peak time of infection in the reported
cases may lead to a time lag. Therefore, we quantitatively analyzed the
time lag in Wuhan and Hubei (excluding Wuhan). Fig. 11 shows the
time-lag results of the healthcare worker infection cases and reported
cases in Wuhan and Hubei (excluding Wuhan). With the increase in ¢,
the autocorrelation function showed a trend of first increasing and then
decreasing, thereby revealing that there was a certain lag in the tem-
poral characteristics in Wuhan and Hubei (excluding Wuhan). When ¢ =
13 days, the autocorrelation function of Wuhan provided the maximum
value, and the correlation coefficient between the daily reported cases
and new healthcare worker cases was 0.984. When ¢ = 3 days, the
autocorrelation function of Hubei (excluding Wuhan) displayed the
maximum value, and the correlation coefficient between the daily re-
ported cases and new healthcare worker cases was 0.972.

In addition, we further quantitatively analyzed the time lag phe-
nomenon of the counties in Wuhan and the cities in Hubei (excluding
Wuhan). In Hubei, we calculated the time lag in the cities where the
cumulative number of healthcare worker infections exceeded 10. In
Wuhan, we calculated the time lag in the counties that still reported
daily cases after February 21. Fig. 12 shows that the time lag phenom-
enon has spatial heterogeneity in Wuhan and Hubei (excluding Wuhan).
Regarding the spatial scale of Hubei, the closer to Wuhan, the greater the
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time lag there was; for example, the time lag in areas around Wuhan
could have been up to 8 days. Regarding the spatial scale of Wuhan, the
time lag near the city center was larger as the central area of Wuhan was
the most affected region with regard to the number of cases.

In general, the phenomenon of under-reporting has a great impact on
the estimated temporal characteristics of the epidemic, and the impact
in Wuhan is greater than that in Hubei (excluding Wuhan). According to
the time of epidemic occurrence in different regions, the impact of
under-reporting in the early onset area was greater than that in the late
onset area, and the impact on the early stage was greater than that on the
later stage.

5.2. Impact of under-reporting cases on spatial characteristics

In order to analyze the impact of under-reporting cases on the spatial
characteristics of COVID-19, we first analyzed the spatial distribution
and spatial correlation of the data on reported cases and confirmed
healthcare worker infections on a single time node in Wuhan and Hubei
(excluding Wuhan). Then, the spatial lag of the data on reported cases
and confirmed healthcare worker infections was further analyzed in
Wuhan and Hubei (excluding Wuhan).
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5.2.1. Impact of under-reporting cases on spatial correlation

Fig. 13 shows the spatial distribution and spatial correlation of the
healthcare worker infections and reported cases in Wuhan on March 6.
According to Fig. 7a and b, except for the Jiangxia District, the spatial
distribution of healthcare worker infections and reported cases in
Wuhan was quite similar, which indicates that, although the level of
reported cases was less than the number of actual cases, the spatial
distribution of reported cases still reflected the spatial distributions of
COVID-19. Moreover, the spatial correlation coefficient between the
newly reported cases and the healthcare worker cases was 0.544 in
Wuhan on March 6, whereas that between the cumulative reported cases
and the healthcare worker cases was 0.889. These results show that
there was a certain deviation between the newly reported and health-
care worker cases in Wuhan on March 6; however, there was a high
correlation between the cumulative reported cases and healthcare
worker cases, which implied that the phenomenon of under-reporting
had little impact on the spatial distribution of COVID-19 in Wuhan.

Fig. 14 shows the spatial distribution and spatial correlation of
healthcare worker and reported cases in Hubei (excluding Wuhan) on
February 6. Compared with Wuhan, the spatial distributions of health-
care worker and reported cases in Hubei (excluding Wuhan) had a high
similarity. Moreover, the spatial correlation coefficient between the
newly reported cases and healthcare worker cases was 0.816 in Hubei
(excluding Wuhan) on February 6, whereas that between the cumulative
reported and healthcare worker cases was 0.846. The results showed
that the cumulative reported cases and daily new cases are highly
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correlated with the healthcare worker infection situation in Hubei
(excluding Wuhan), which indicates that the phenomenon of under-
reporting had little impact on the spatial distribution of COVID-19 in
Hubei (excluding Wuhan).

As Figs. 13 and 14 only analyzed the spatial correlation between the
healthcare worker and reported cases at a single time node in Wuhan
and Hubei (excluding Wuhan), we further demonstrated the spatial
correlation changes over time in both locations, and the results are
shown in Fig. 15.

The results show that the spatial correlation coefficient of daily new
cases in Wuhan and Hubei (excluding Wuhan) have a certain volatility,
which may be caused by the spatial heterogeneity of temporal lag.
Secondly, the spatial correlation of new cases in Hubei (excluding
Wuhan) dropped sharply from February 11 to February 29; this is
because the relevant department made some corrections to the reported
cases data, which led to the decline in the spatial correlation in a short
period of time. However, after February 29, the spatial correlation of
new cases in Hubei (excluding Wuhan) had rapidly increased and
exceeded the correlation coefficient in the early stage of the epidemic.

Moreover, the spatial correlation coefficients of the cumulative cases
in Wuhan and Hubei (excluding Wuhan) were high. Among them, the
spatial correlation coefficient of cumulative cases in Wuhan increased
sharply on March 5, as the Wuhan Municipal Government revised the
statistical method used to obtain the information on reported cases on
March 5 for improving the accuracy of the data. The spatial correlation
coefficient of the cumulative cases in Hubei (excluding Wuhan)
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Fig. 16. (a) Spatial lag phenomenon between healthcare worker cases and under-reporting cases in Wuhan, based on daily new cases; (b) those in Wuhan, based on
cumulative cases; (c) those in Hubei (excluding Wuhan), based on daily new cases; and (d) those in Hubei (excluding Wuhan), based on cumulative cases.

Table 8
The average spatial correlation coefficient in specific lag days.

Lag Wuhan Hubei (outside Wuhan)

days Daily new Cumulative Daily new Cumulative
cases cases cases cases

0 0.3897 0.8117 0.5429 0.8414

1 0.3709 0.8111 0.5429 0.8420

2 0.3939 0.8106 0.5429 0.8427

3 0.4165 0.8101 0.5429 0.8439

4 0.4492 0.8096 0.5362 0.8456

5 0.4923 0.8091 0.5362 0.8475

6 0.5249 0.8085 0.5362 0.8489

7 0.5392 0.8079 0.5636 0.8495

8 0.5616 0.8072 0.5636 0.8493

9 0.5766 0.8066 0.5636 0.8486

fluctuated slightly, prior to February 11. This is because in the early
stages of the pandemic, the under-reporting phenomenon was more
prevalent. As time passes, the phenomenon of under-reporting will be
alleviated and the data on reported cases can better reflect the spatial
distribution characteristics of COVID-19.

Overall, the impact of the under-reporting phenomenon during the
early stages of the pandemic was greater than that during its later stages,
which is not only observed with regard to the temporal characteristics,
but also in terms of daily new cases. In addition, although the number of
reported cases was lower than the number of actual cases, the spatial
distribution of the cumulative reported cases in Wuhan and Hubei
(excluding Wuhan) still reflected the spatial pattern of COVID-19.

Therefore, it is appropriate to use the data on cumulative reported
cases to study the spatial distribution characteristics of COVID-19.

5.2.2. Impact of under-reporting cases on spatial lag

Fig. 16 shows the spatial lag of healthcare worker infection and re-
ported cases in Wuhan and Hubei (excluding Wuhan). The results show
that the spatial lag of cumulative cases had an insignificant effect on the
spatial correlation in Wuhan and Hubei (excluding Wuhan). However,
the spatial lag of daily new cases had a greater effect on spatial corre-
lation, and the effect on Wuhan was greater than that on Hubei
(excluding Wuhan). To analyze the spatial lag phenomenon further
quantitatively, we fixed the lag days and averaged the corresponding
spatial correlation coefficients. Table 8 shows the average spatial cor-
relation coefficient for specific lag days. The results show that the spatial
correlation coefficient based on daily new cases in Wuhan increased
rapidly with the increase in lag days, whereas that based on daily new
cases in Hubei (excluding Wuhan) changed by a small amount with the
increase in lag days. This shows that the daily new cases are greatly
affected by under-reporting. Among them, Wuhan experienced a great
impact due to under-reporting than Hubei (excluding Wuhan). In
addition, the spatial correlation coefficient based on the cumulative
cases in Wuhan and Hubei (excluding Wuhan) changed by a small
amount with the increase in lag days. This indicates that accumulative
cases in Hubei (excluding Wuhan) and Wuhan were less affected by the
under-reporting phenomenon.

Overall, the impact of under-reporting cases on spatial lag was
similar to the impact on spatial correlation. That is, the impact of under-
reporting on the early stages of the pandemic was greater than that on its
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later stages, and its impact on daily new cases was greater than that on
accumulative cases.

6. Discussions and conclusions

For COVID-19 epidemic prevention and control, it is important to
acquire a timely understanding of the spatiotemporal pattern and
determine the development trend of COVID-19 in its early stage. How-
ever, under-reporting is a very common phenomenon in public health
fields such as epidemiology and biomedicine. When the under-reporting
phenomenon is not considered, inaccurate inferences may be produced,
which will affect the judgment of decision makers (Paixao et al., 2021).
Therefore, in this paper, a novel framework was proposed to explore the
impact of under-reporting on COVID-19 spatiotemporal distributions,
and empirical analysis was carried out using infection data of healthcare
workers in Wuhan and Hubei (excluding Wuhan).

The results show that (1) the lognormal distribution was the most
suitable to describe the evolution of epidemic with time; (2) the esti-
mated peak infection time of the reported cases lagged the peak infec-
tion time of the healthcare worker cases, and the estimated infection
time interval of the reported cases was smaller than that of the health-
care worker cases. (3) The impact of under-reporting cases on the early
stages of the pandemic was greater than that on its later stages, and the
impact on the early onset area was greater than that on the late onset
area. (4) Although the number of reported cases was lower than the
actual number of cases, a high spatial correlation existed between the
cumulatively reported cases and healthcare worker cases.

According to the results obtained from the proposed framework, the
time lag phenomenon should be considered in the time characteristics
inferred from the reported cases; otherwise, the urban epidemic pre-
vention and control policies may be unreasonable. Compared with
existing methods(Lau et al., 2021; Russell et al., 2020; Shen et al., 2020),
the proposed framework does not count the actual number of infections,
but treats the healthcare worker infection data as more accurate data to
infer the outbreak of the epidemic. In other words, the proposed
framework indirectly understands the actual situation of the epidemic,
which can avoid complicated calculations and make it more convenient
and faster. In addition, the proposed framework of this study is highly
extensible. Relevant researchers can not only use data sources from
other counties to analyze the impact of under-reported cases on the
spatiotemporal distributions of the COVID-19, but also use other types of
data sources to analyze the impact of under-reported cases on the
spatiotemporal distributions of the COVID-19.

The limitations of this study were as follows: The proposed frame-
work needs more datasets for evaluation. We only used healthcare
worker infection data in China to explore the impact of under-reporting
cases on the spatiotemporal distributions of COVID-19 and lacks data
analysis from other countries. In response to the above limitations,
future studies should focus on collecting further domestic and foreign
healthcare worker and patient infection data to analyze the impact of
under-reporting cases on the spatiotemporal distributions of COVID-19
more accurately and comprehensively.
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