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Controlling large swarms of robotic agents presents many challenges, including, but not limited to, computational
complexity due to a large number of agents, uncertainty in the functionality of each agent in the swarm, and
uncertainty in the swarm’s configuration. This work generalizes the swarm state using random finite set (RFS)
theory and solves a centralized control problem with a quasi-Newton optimization through the use of model predictive
control (MPC) to overcome the aforementioned challenges. This work uses the RFS formulation to control the
distribution of agents assuming an unknown or unspecified number of agents. Computationally efficient solutions are
also obtained via the MPC version of the iterative linear quadratic regulator (ILQR), a variant of differential dynamic
programming. Information divergence is used to define the distance between the swarm RFS and the desired swarm
configuration through the use of the modified L2 distance. Simulation results using MPC and ILQR show that the
swarm intensity converges to the desired intensity. Additionally, the RFS control formulation is shown to be very
flexible in terms of the number of agents in the swarm and configuration of the desired Gaussian mixtures. Lastly, the
ILQR and the Gaussian mixture probability hypothesis density filter are used in conjunction to solve a spacecraft
relative motion problem with imperfect information to show the viability of centralized RFS control for this real-

Downloaded by CORNELL UNIVERSITY on February 8, 2022 | http://arc.aiaa.org | DOI: 10.2514/1.G004861

world scenario.

I. Introduction

ONTROL of large collaborative networks or swarms is cur-

rently an emerging area for controls development. Typically, a
swarm network comprises tiny robots with limited actuators that
perform specific tasks in some collective configuration. For example,
the swarm can use its collective effort to grasp or move in a changing
environment that can offer more flexibility and redundancy to meet a
goal compared with the abilities of a single agent [1]. Specifically in
space applications, swarm control of satellites and rovers can be used
for the exploration of asteroids and other celestial bodies of interest
[2] or areas of assembly and construction on-orbit, including con-
structing space observatories and space habitats [3]. Swarms involv-
ing UAVs have proven to be widely useful in military applications
such as search-and-rescue missions, communication relaying, border
patrol, surveillance, and mapping of hostile territory [4]. From these
engineering applications, the use of collaborative swarms is an
attractive option to meet objectives that require flexibility and redun-
dancy in a changing environment.

For collaborative swarms, several control techniques have been
implemented to date. With centralized control, one agent in the
swarm computes the overall swarm control and manages the control
execution for individual agents, allowing it to oversee the other
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agents’ system processes [5]. Unfortunately, centralized control suf-
fers from two main problems. As the number of agents in the swarm
increases, the computational workload becomes more expensive [6].
This is especially true when the swarm agents are low cost and are
located in an unknown environment [7]. For example, formation
control was applied experimentally to 1024 low-cost Kilobot robots,
which took 12 h to converge to a specific formation [7]. Additionally,
centralized control is not robust against individual agent failures [8].
With a thousand low-cost agents present in a swarm, communication,
actuation, and sensing are performed with less reliability. Thus,
control formulation must be found that considers the computational
performance for control of low-cost agents as well as flexibility
during uncertainty.

Random finite set (RFS) formalism provides a generalization of
the state space for multi-agent systems that can be used for control
[9-11]. It is used to solve a stochastic trans-dimensional problem,
where the dimension of the state space is an unknown a priori
(unknown number of agents). RFS allows for the probability density
function over a collection of state spaces to be defined, which
provides a potential hypothesis for the true number of agents. Then
a Bayesian estimation problem is formulated, and approximate sol-
utions are used through the Gaussian mixture probability hypothesis
density (GM-PHD) filter [12]. Other than the GM-PHD filter, many
extensions around RFS theory have been made using estimation and
simultaneous localization and mapping techniques including the
cardinalized probability hypothesis density (CPHD) filter and the
generalized labeled multi-Bernoulli (GLMB) filter [9,12—14].

By using RFS theory to model multi-agent systems, the time-
varying number of agents and their states can be jointly estimated
from measurement sets including data association uncertainty, clut-
ter, and noise [9,12]. The agents and measurements are modeled as
RFSs, and the probability hypothesis density (PHD) filter is used to
propagate the estimate forward in time. The RFS model has been used
previously with a potential model to describe the temporal evolution
of the probabilistic description of a robotic swarm to promote
coordination [10]. Other work has developed control for individual
agents using the estimated RFS state in a centralized fashion [11]. As
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an introduction to RFSs, the GM-PHD filter is explored for applica-
tion to RFS control.

Other models were developed to represent the behavior for swarm
agents in space and time including probabilistic swarm guidance and
distributed optimal control, which has developed efficient decision
making for swarm control [15—-19]. Probabilistic swarm guidance has
been used to enable swarms to converge to target distributions
through distributed control [15]. Distributed control is defined as
the reformulation of the control problem as a set of interdependent
subproblems and solving these subproblems [20]. Probabilistic
swarm guidance solves issues that involve a large number of agents,
also identified as “computationally complex,” by controlling the
swarm density distribution of the agents [15]. The distributed optimal
control method is a method that controls multi-agent systems by
modeling the agents as Gaussian mixtures and using an integral cost
function that is optimized to the advection equation [16—18]. The
control laws themselves are determined using potential functions
that attract the agent distributions to the desired state and repel the
distribution from obstacles [21]. By minimizing the objective func-
tion based on distributions using the necessary conditions of opti-
mality, the optimal control law is found using the potential function.
The distributed optimal control method was also expanded to use the
Kullback-Leibler divergence metric using distributions in the objec-
tive function for the use of path planning [19]. This provides a
discovery to a whole class of divergence measures of distributions
that can provide converging optimal control solutions to multi-agent
systems.

Decentralized control has also been implemented in regard to
swarm control. Decentralized model predictive control (MPC) was
applied to swarms of low-cost spacecraft with limited capabilities for
swarm reconfiguration [22]. The benefit of this solution is that it
decentralizes the computation and communication required for the
swarm system. In [23], they used decentralized planning and sequen-
tial convex programming to control swarms. Using sequential convex
programming in combination with MPC in real time provided robust-
ness as the agents converged to designated targets. The same authors
also used sequential convex programming to do target assignment
(mapping of agents to targets) and trajectory generation for varying
swarm sizes through time [24].

The objective of this paper is the formulation of the swarm
estimation and control problems using RFS theory. The main con-
tributions of this paper are as follows:

1) The generalization of the state representation using RFS theory
for the control of large collaborative swarms under unknown number
of agents.

2) The proposal of new distributional-based distances for the
control cost function.

3) The “closing-the-loop” between RES control and the PHD filter.

4) The application of multi-agent estimation and control using
RFSs for formation flying of varying number of large collaborative
swarms with the inclusion of process and measurement noise.

The first contribution is accomplished by representing the swarm
state with an RFS, where RFSs are a collection of agent states, with
no ordering between individual agents, that can randomly change
through time [9]. For contribution two, several key divergence met-
rics are considered as control cost functions to drive the overall
swarm behavior to a desired configuration. The third contribution
is shown in Fig. 1. In Fig. 1, the first moment of the RFS models the
current RFS swarm configuration, v, and the desired RFS swarm
configuration is defined by its first moment, v4.,. The first moment
(or intensity discussed later on) contains information on the number
of agents and their states. The PHD filter is used to process measure-
ments from an unknown number of agents with defined spawn (I'),
birth (B), and death (D) rates, and the distributional distance-based
cost “closes-the-loop” for RFS swarm control. Note that the number
of agents is not a controlled quantity and in fact this work assumes
that the number of agents is unknown and estimated under the RFS
formulation. For the last contribution, convergent control solutions
through MPC and differential dynamic programming (DDP) are found
from GM-PHD filter estimates to advance control methods for swarm
applications (e.g., Clohessy—Wiltshire relative motion), which offers

Spawn, Birth, Death

D(v, Vies) Swarmi /L

Vdes ) Plant

Desired Swarm Control
State
Swarm ~
imati & Sensors
Estimation
K
Clutter

Fig.1 A block diagram of the RFS control and estimation architecture
in a closed loop.

improvements in computational efficiency and flexibility to uncer-
tainty. Although the topology underlying the work is centralized, the
formulation allows for a statistical model of the swarm and provides
improvements in computational efficiency and flexibility (similar to
the distributed optimal control methods [15—-19]) when compared with
traditional centralized methods [7]. Although not presented in this
paper, the formulation in general can naturally be extended to decen-
tralized control, which is expected to provide decentralized commu-
nication and computational efficiency.

The paper is organized as follows. Section II introduces prelimi-
naries of the RFS theory relevant to this work. Section III presents the
RFS-based control problem formulation, which is a central contri-
bution of this work. Section IV proposes new distributional distance-
based cost functions to form the RFS control problem. Section V
discusses the dynamic models that will demonstrate the methods and
solutions discussed in the previous section. Section VI discusses
relevant simulation results involving the RFS control framework.
Section VII provides limitations to the RFS control work presented.
Lastly, in Sec. VIII, concluding remarks are provided.

II. Preliminaries

The swarm control approach developed in this work makes use of
RES theory. The motivation for the use of RES theory stems from its
application to multi-agent tracking [9,12]. We begin by presenting
the single-agent and multi-agent tracking problems. Additionally,
the multi-agent RFS-based tracking problem is used in this work to
“close-the-loop” for control of large collaborative swarms.

The discrete dynamics and measurement model for a time-varying,
single-agent system between discrete time steps k and k 4 1 is given
by

Xir1 :Akxk+Bkuk+€k (13)
Zk =Hkxk+Dkuk+0'k (lb)

where x;, is the agent state, A, is the system matrix, By is the control
input matrix, u;, is the control input, z; is the measurement vector, H,
is the observation matrix, and D, is the feed-forward matrix. The
process noise €; and measurement noise 6, are zero mean Gaussian
noise with variances X, and Z, respectively. Note that a single agent,
Xy, is produced from a space X C R%, where d, is the agent state
vector size. Similarly, the single agent’s control input u, is produced
fromaspaceld C R, where d,, is the agent’s control vector size, and
2 is produced from a space Z C R%, where d, is the measurement
vector size.

A. Single-Agent Filtering

To estimate the dynamics for a single-agent system, it is usually
assumed that the state space follows a Markov process with a
transition density,

S k=1 Geglx,_y) 2
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which is the probability density for the single-agent system to move
through its dynamics from k — 1 to k. For generality, the dynamic
system is partially observed as a likelihood function given by

gr(zilxy) 3)

where the likelihood function is a probability density of observing the
system by obtaining measurements, z;. By using the observation
information from z ., = (zy,.. ., Zx), the posterior density estimate
at a time k is determined using the Bayesian recursion given by

Pk|k—1(xk|zl;k—1) = /fklk—l(xk|xk—1)pk—1(xk—1|zlzk—l)dxk—l
(4a)

gk(zk|xk)pk\k—l (x|z15-1)
fgk(zk|xk)pk\k—l(xklzl:k—l)dxk

Pr(xlzip) = (4b)

The posterior density contains the measurement update, and the
estimate for this single-agent system can be found using a minimum
mean-squared error method.

B. RFS Formulation

For the multi-agent tracking problem, a Bayesian recursion
through an RFS formulation with discrete-time dynamics is consid-
ered [12]. This theory addresses the decentralized estimation problem
for each agent in the formation. An ith agent in the swarm at time
step k has the challenge of estimating its state configuration
(x{ € X C R%) and designing a control policy to achieve that state.
In this work, itis assumed that each agent within the swarm is identical,
and using unique identifiers on each agent is unnecessary. Using this
theory, the RFS models the uncertainty (i.e., the number of agents and
their spatial states) by an RFS [12]. The agents in the field may die,
survive, and move into the next state through dynamics, or appear
by spawning or birthing. The unknown number of agents in the field
is denoted by N, (k) and may be randomly varying at each time

. . A i+ Ny

step by the union of the birth ([y: @ — {xi, xi .. x 7 O,
; ; -- i+ Ny :

spawn (By 1 (xi_): xi_, — {xi,xi o x ™ Y), and surviv-

ing (Sy—1 (x}_,): x{_, — x}) agents. Death is denoted by Dy (x}_,):
X;_; = @. The number of births, Ny, and the number of spawns,
N gpawn(r)» are unknown quantities that vary at each time step. The RFS,
X, that describes the births, spawns, deaths, and surviving agents is
given by

Xy = U Skk—1(xj_y) | U U By (xjy) [ UL (5)

xi_ EXiy X €Xi1

X, = {xl,x2.....x)™ ¥} denotes a realization of the RFS distribu-
tion for agents. The individual RESs in Eq. (5) are assumed to be
independent from each other. For example, any births that occur at any
time step are independent from any surviving agents. Atany time &, the
REFS probability density function can be written as

PXi = {xpxi . x) = p(IXi] = m)p(xp.xi. . XXkl = )
(6)

For a generalized observation process, the agents are either detected
(O (xi): xt — zi) ornot detected (F(x}): x; — @). Clutter or false
alarms (K;: @ - {z},23,..., szC‘““e‘ 1), defined as measurements that
do not belong to any agents, are also present in the set of observations.
For a time step k, note that z, is the ith measurement obtained from a
space Z C R¢. Therefore, RFS of measurements is described by

Zi=K.u | | o) (7)

xi €Xy

where the origins of each measurement are not known and unique
identifiers are not necessary. Again, the individual RFSs in Eq. (7) are
independent of each other, so measurements and clutter are obtained
independently from each other. With X; and Z; defined over sets of
agents’ states and measurements, a Bayesian recursion for multistate
estimation can be applied.

On a similar note, the control sequence is also defined by an RFS in
the form U; = {ui,u3,. .., ug”‘“““ }; and an RFS probability density
given by

(3)

because the realization of agents on the field to be controlled are
varying with time k. Similarly, note that u} is the ith agent’s control
input obtained from a space U C R%.

The RFS formulation of describing multi-agent states and obser-
vations can be described very similarly to Egs. (2) and (3) for single
agent estimation, but the RES states (X) and observations (Z,) are
used instead. To determine the multi-agent posterior density, a multi-
agent Bayes recursion is used given by

Piik=1 Xl Zy.4m1) = /fk\k—l(Xk|Xk—l)Pk—l(Xk—l|lek—1)ﬂs(dxk—l)

(9a)

&k(Zi1X 1) Prj—1 Xk Z1: 1)
J & ZX ) Prgk—1 Xkl Zy:k)ps (dX )

Pie(XilZy.p) = (9b)

where p, is a reference measure on a collection of all finite subsets
of state space [12]. From Eq. (9b), the integration occurs over all
possible locations of agents residing in the state space as well as
their number, which becomes a set integral. The recursion thus
contains uncertainty in the agent number and location brought
by detection uncertainty and measurement noise, respectively.
Measurements are not a direct function of the individual agents
due to explicitly incorporating clutter into the formulation. There-
fore, measurement to agent assignment is not explicitly required in
the formulation. By computing the set integral about all possible
number of agents and their states, the recursion can become intrac-
table, but solutions have been found for a small number of agents
using sequential Monte Carlo [25]. Fortunately, a PHD filter
approximation provides computational tractability for larger num-
bers of agents.

C. Probability Hypothesis Density Filter

Instead of propagating the multi-agent posterior density through
a multi-agent Bayes recursion, the PHD filter propagates the pos-
terior intensity function. The nonnegative intensity function v(€) is
a first-order statistical moment of the RFS state that represents the
probability of finding an agent, represented by a generalized state
variable € € X, in a region of state space S C X. The estimated
number of agents in the region S is the integral of the intensity
function given by

E(X n 8)) = [s v(E) dE (10)

where the expectation represents an RFS X intersecting a region S.
This gives the total mass or the number of estimated agents for
RFS X in a region S. The local maximum in intensity v(€) shows
the highest concentration of expected number of agents, which
can be used to determine an estimate for the agents in X at a time
step.

To further interpret the intensity function, consider a one-dimen-
sional example with four agents located with a mean and covariance
ofm=1{1,4,7,11}and P! = 1:i = 1,..., 4, respectively. This is a
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realization of X. Assuming that the intensity function corresponds to
a Gaussian mixture representation given by

Niotal

U = Y wONEm', P) an
i=1

where each weight w(® = 1, v(€) can be plotted against the gener-
alized state £ given by Fig. 2. Note that this example is a specific case
in which the number of agents is equal to the number of Gaussian
mixtures by assuming w® = 1, but in general, this is not the case.
This is further discussed in the RFS Control Problem Formulation
section. The agent locations (X = {1,4,7, 11}) are located at indi-
vidual maxima of v(€). The integral of v(€) in Eq. (10) is

E(X n S]) = Lv(é)dé - [N(g; 11)dE + /N(§;4, 1) de

+/N(¢;7,1)d§+/N(§;n,1>d§

=1+ 1+ 1+ 1=4 (12)

which is the total mass or the total number of estimated agents of RFS
X in this state space S. It is also noted that the intensity function is not
a probability density because the integral over € does not generally
sum up into one. By estimating a potentially large, single intensity
function, v(€), an estimate of the number of agents and their states can
be obtained.

An RFS that is fully characterized by their intensity is the Poisson
RFS. By assuming that the RFS X is Poisson of the form p(|X| = n)
and p({x',x?,...,x"}||X} = n), approximate solutions can be deter-
mined by the PHD filter [9,12]. Propagation of the PHD can be
determined if the agents are assumed to be independent and identical
with the cardinality of the agent set that is Poisson distributed [12].
Clutter and birth RFSs are assumed to be Poisson RFSs. It is noted that
the assumptions made by the PHD filter are strong assumptions for
swarming robotics. However, this is a good starting point for an initial
proof-of-concept study. For a time step k, the PHD recursion for a
general intensity function v (€) from the previous generalized state
¢ € X is given by

5(8) = b(®) + / PO FEDVE) dE + / PEOVE) & (13)

where b(€), p,(£), and p(|¢) are the agents’ birth, survival, and spawn
intensity, and f(|¢) is the target motion model [12]. The bar on v, (€)
denotes that the PHD has been time-updated. For the measurement
update, the equation is given by

0.12 T T T

O 1 L L L L L
-2 0 2 4 6 8 10 12

Fig. 2 The intensity for a 1D, 4-agent problem using Eq. (11).

- - Pa(®)g (2418 v (&)
v(&) = (1 - pa(§)v(§) + ZEXZ:k D [ @105 @ 0

(14)

where p,(€), g(z,|€), and c¢(z) are the probability of detection, like-
lihood function, and clutter model of the sensor, respectively [12].
By using this recursion, the swarm probabilistic description can be
updated. The recursion itself avoids computations that arise from the
unknown relation between agents and its measurements, and that the
posterior intensity is a function of the generalized state space. Unfortu-
nately, Egs. (13) and (14) do not contain a closed-form solution and the
numerical integration suffers from higher computational time as the
state increases due to an increasing number of agents.

III. Random Finite Set Control Problem Formulation

With the introduction of RFS theory from multi-agent tracking
applications, a natural extension of RFS theory to the swarm control
problem is appealing. We begin the discussion on how the swarm is
modeled using the RFS intensity function and present the RFS
control problem with the objective based on this model.

The PHD filter recursion given by Egs. (13) and (14), as mentioned
before, can be intractable as the state space increases. Fortunately, a
closed-form solution exists if it is assumed that the survival and
detection probabilities are state independent (i.e., p,(€) = p, and
pa(€) = py), and the intensities of the birth and spawn RFSs are
Gaussian mixtures initially presented in Eq. (11).

With the Gaussian mixture assumption, the current and desired
intensities are defined as

Ny
DEK) 2w NEm) P = v, (E k) + v, (E.5) + v(E. k)
i=1

15)

Ng ) ) )
Vaes (€. 1) 2 () 2 " w N' (& m},, P}) (16)
i=1

where w') are the weights and N (€; m', P?) is the probability density
function of an ith multivariate Gaussian distribution with a mean and
covariance corresponding to the peaks and spread of the intensity,
respectively. The terms Ny and N, are the total number of multivari-
ate Gaussian distributions in the current and desired intensities,
respectively. It is assumed that the desired Gaussian mixture inten-
Sity, vges (€, k), is known. Equation (15) includes the summation of
the individual birth (v, (&, k)), spawn (v), and survival (v, (€, k))
Gaussian mixture intensities, which simplify to another Gaussian
mixture. Note that closed-form solutions using Gaussian mixtures

exist for cases without the state-independent assumption. Additionally,

=1, (i Ne (i v v .
Z;\J_,l w;') = Ntotal (k) and Z[:él Wé) = Nlolal(k)’ where Ntotal (k) 18

the desired number of agents. The current and desired intensity func-
tions v(€, k) and v4, (€, k) are in terms of the agents’ state. The swarm
intensity function can be propagated through updates on the mean and
covariance of the Gaussian mixtures as given by

mj},,H_l = Akm;-’k + Bku}',k 17
Pl = AcPl AL + 2 (18)

The agents’ states x are incorporated in the mean and covariance of the
Gaussian mixture intensity. Then given the Gaussian mixture inten-
sities assumption, a control variable is calculated for each component
u’j - Additionally, each Gaussian mixture component may represent
many agents because the intensity function integrates to the total
number of agents, and the number of agents on the field is found using
2?21 w?) = Ny (k). So control is directly applied to the Gaussian
mixture, which may represent single or multiple agents. The weights
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can be scaled as the number of agents in the swarm change while not
affecting the optimal solution found for swarm control. This detail is
emphasized in the Results section. Note that although linear dynamics
are used, the dynamics can be modeled as a nonlinear function of
the state.

The measurement update is also closed form given by the intensity

€D =1®=1-p,@)n@+ Y > wfN(Em(2).P)

z€Z; j=1
(19)
where

W0 — Pa®wYqV(z) 200)

K(2) + pa® X0 wq " (2)
m (z) = mY + KO (z - Hkm(”) (20b)
P, = (1-KOH,) P, (20¢)
KO = PLHT (HkP;H{ n 2,,)‘1 (20d)
a9V (z) = (z; HmD %, + HkP;H{) (20¢)

which follow closely to the Kalman filter measurement update equa-
tions. Using RFS theory, it is assumed that the individual swarm
agents form a Gaussian mixture intensity function in which the means
and covariances of the Gaussian mixture are propagated and con-
trolled. An optimal control problem is defined by minimizing the
swarm control effort and distance from the desired swarm formation.
The objective function for this optimal control problem is defined as

T
J@y,....ur) = Y ulRug + DWE k), vaes €. 5) (1)

where vy (€, k) is the desired formation, R is the positive definite
control weight matrix, and the u; are the control effort for the
Gaussian mixture intensities shown in Eq. (17). Both v(€, k) and
Vyes (€, k) are defined over the complete state space that include
position and velocity parameters. The distance between Gaussian
mixtures, D(-, -), has several closed-form solutions, and it has been
used previously to define an objective function for path planning of
multi-agent systems [19].

The key feature of the RES control problem is that it can allow for a
unified representation for swarming systems. This unified represen-
tation is achieved by minimizing the RFS objective function,
Eq. (21), about the swarm intensity statistics given by Egs. (17)
and (18). Thus, it can handle multifidelity swarm localization and
control between the current and desired spatial distributions. The
swarm is treated probabilistically, and the bulk motion is modeled,
which allows the theory to handle large numbers of indistinguishable
units with unknown swarm size. This reduces the dimensionality of
the state while enabling complex behavior. Naturally, the RFS control
problem is formulated to enable complex decision making through
REFS theory.

Two different scenarios can be applied by “closing-the-loop”
between RFS control and the PHD filter shown in Fig. 1. Specifically,
a single observer can be used to estimate the entire state of the swarm
by collecting measurements of each agent in the field. This provides a
centralized approach to obtaining estimates and controlling the
swarm through RFSs. The other option is to run a local PHD observer
on each agent to estimate the state of the swarm. In this case, the
observer is limited to an agent’s field of view, but it is able to make
localized or decentralized control decisions using RFS. For this work,

centralized RFS control is explored by using the complete topology
obtained from the PHD filter.

IV. Distributional Distance-Based Cost

The control objective for the RFS formulation of agents with an
unknown distance between the intensities is provided by Eq. (21).
The distance metric can be defined using several closed-form sol-
utions for Gaussian mixtures. Then, the corresponding optimal con-
trol problem is formulated using several closed-form methods
discussed in the next section.

A. Cauchy-Schwarz Divergence

The Cauchy—Schwarz divergence is based on the Cauchy—
Schwarz inequality for inner products of RFS, and it is defined for
two RFS with intensities f and g given by

(f. &)
(Ilfllllgll) @2

where (r(€), #(€)) £ [r(€)t(€) d€ is the L2 inner product over the
generalized RFS intensities r(€) and #(€) [26]. The argument of the
logarithm is nonnegative because probability densities are nonneg-
ative, and it does not exceed one by the Cauchy—Schwarz inequality.
The Cauchy—Schwarz divergence can be interpreted as an approxi-
mation to the Kullback-Leibler divergence but has a closed-form
expression for Gaussian mixtures [26]. This is useful for calculating
the distance between two-point processes represented by intensity
functions. By substituting the intensities from Eqs. (19) and (16) for
f and g, respectively, the Cauchy—Schwarz divergence between
two Poisson point processes with Gaussian mixture intensities,
Dcs(f, g), is simplified to

Des(f.8) = (Z Z ww N (m)smi. P+ Pj;))

j=1i=

+%ﬁn(i: ing)wg)N(mé;mg,Pg + Pé))
==
(ZZU} w(’)N<mg,mf,P’ +P])) (23)

j=1i

Des(f,8) =

Note that in the control formulation used, only v(€, k) is assumed to
depend on the control u. Therefore, the term that depends only on
Vges (€, k) is omitted from the objective function since vy (€, k) does
not depend on u.

Figure 3a shows the surface plot using the Cauchy—Schwarz
divergence for four Gaussian mixtures in the swarm at an initial time
instance that designates the distributional distance-based cost of the
objective function. The four Gaussian mixtures start with initial
conditions of (£3, +3) in a square grid. The desired intensity is set
as (£1, £1) in a square grid. From the surface plot, each initial
intensity has hills and the desired intensity has valleys. The goal is
to minimize the objective function; thus, an optimization method
(e.g., the quasi-Newton method) determines a control solution that
minimizes the objective. Because the desired intensity in Fig. 3a is
located at a minimum in the objective surface plot, the optimization
method finds a control input to move toward that point. The opposite
occurs with the hills (current intensity). The minimization finds a
control solution that moves away from the hills, and thus gives
individual current Gaussian mixtures collision avoidance attributes.
Therefore in the minimization of the objective function, each
Gaussian mixture will repel each other while moving toward the
desired Gaussian mixtures through time. Although the Cauchy-—
Schwarz divergence has a repelling effect, collision avoidance is
not guaranteed, but the distance does encourage collision-reducing
trajectory solutions. If the initial intensity is too large compared with
the desired intensity, it will take longer for the four Gaussian mixtures
to converge to the desired values or diverge due to the optimization
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Fig. 3 a—c) Surface plots with the corresponding distributional distance-based costs. The current and desired intensity are initialized at (£3, +3) and

(£1, £1), respectively.

getting stuck in local minima (the flat plane). Also, the repelling
effect due to the hills are relatively small. Thus, the Cauchy—Schwarz
divergence may not be the fastest converging solution for the objec-
tive function minimization.

B. L2 Distance

Alternatively, the distance between two Poisson point processes
with Gaussian mixture intensities can be determined by using the L3
distance between the intensities. The L3 distance is given by

Di(fog) = [ (£ =0t = If = gl @4

where the close-form solution for Gaussian mixture intensities is
simplified to

NN o '
DL%(f’ g) = Zl 21: w}’)w}’)N(m};m}.,P}. + p})
==

Ne N,
+ Z wg)wg)/\/(m{;;m;, Pi+ Pﬁ)

j=1 i=1

o

=

s S B . . . X .
Z wg)w}')/\/’(m{g; m, Py + P’f) (25)
=1 izl

\S}
~

The L2 distance is stationary (i.e., gradients are zero) when intensities
f and g are equal. That is, the cost is minimum when the target g is
reached from any intensity f.

The L3 distance follows the property of the Bregman divergence,
which has an additional property of convexity [27]. The distance,
given by

Dp(f.g) = F(f) —F(g) — (VF(g).f — g) (26)

is convex if F(-) is strictly convex and continuously differentiable on
a closed convex set [27]. Strictly convex functions are listed in [27].
For this work, the squared Euclidean distance F(f) = f> was used to
generate the Bregman divergence given by

which is in the same exact form of Eq. (25). Figure 3b shows the
surface plot using the L3 distance for a 4 Gaussian mixture swarm for
the same example as the Cauchy—Schwarz divergence. The initial
intensity has more defined hills compared with the Cauchy—Schwarz
divergence. Thus, the initial Gaussian mixtures have a stronger
repelling effect upon one another. Also, the desired Gaussian mix-
tures have large valleys that create a large attraction effect for each
initial Gaussian mixture to move to. Thus, the optimization solution
will be faster in the L distance case. Unfortunately, the L3 distance
suffers from a similar issue to the Cauchy—Schwarz divergence. If the
initial conditions increase farther away from the desired intensity, the
optimization may take much longer or get stuck in local minima due
to a flat surface away from the desired intensity.
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C. LZDistance with Quadratic Term

The issue of convergence remains for the L3 distance when the
initial states are farther away from the desired intensity. To achieve
faster convergence, an additional term is added to the L3 distance to
shape the gradient descent through a quadratic term as given by

DL%mod(f’ g) = DL%(f9 g)

N, Ny
—aZng)w(f“ [7“/( (mg,mf,P’ + Pf))
=1 =1
(28)

where « is a fixed or changing parameter. Unfortunately, adding the
quadratic term to the L2 distance does not make the objective function
stationary at f = g. To alleviate this issue, the o parameter is included
with the quadratic term to relax the contribution of the gradient to
the L% stationary point. By substituting Eq. (25) into Eq. (28), the
equation becomes

NN . A
Dp2noa(f 8) = Z Z w}’)w_(f’)./\/'(m}; m';, Pi + P;)

J=1i=1

L

+ Z Z wy w(l)/\/<mg,m;, Pi + Pé,)

j=1i=
N, Ny

—ZZZw w(')./\/(mg,mf,P’ +P’)

N, N;

—aiZw‘”M” al( (mg mi. P, +P})) @9

o8

\

Note that this term is referred as quadratic, although it may be more
appropriate to call it quadratic-like. Figure 3¢ shows the surface plot
using Eq. (29) for the same 4 Gaussian mixture swarm used in the
Cauchy-Schwarz divergence. Compared with the L3 distance, the
initial and desired intensities provide the hills and valleys necessary
to obtain convergence. However, as the initial intensity move out-
ward, the surface map decreases in a quadratic fashion instead of
staying flat. This prevents the optimization from converging to a local
minima. Instead, the additional quadratic term allows convergence to
the desired intensity (global minima). Thus, the optimization can
occur at any point to reach convergence.

Traditional LQR-based solutions are not applicable to the mini-
mization of the objective function, Eq. (29), because the L% terms are
nonquadratic [28]. The minimization of the objective function in
discrete time is

min  J(u;,...,u
i (uy T)
T Ny Ny ) )
= Y ulRuy+ Y Y whu N (m) cmi . Py + Py
=1 =1 im
N, N, ‘
+ ww N (m] s mi P+ Py
=1 =1
N, Ny
0,0 j
-2) >, gkwka( my my . Pl +P./f.k)
=1 i=1
N, Ny

—a > whul (W (mlgml P+ PL)) GO)
i=1

j=1i=

Subject to: m}’kﬂ = Akm},k + Bku}.k,
P i1 = AcPl AL + e 31

where u;, = [(u}»_k)T (u ) ] is the collection of all control

variables. Therefore, control solutions are found by either using
DDP, where the objective function is quadratized by taking a Taylor
series approximation about a nominal trajectory, or using optimiza-
tion techniques (e.g., the quasi-Newton method), where the non-
quadratic objective function is used directly to find an optimal
control solution. The number of agents is not a controlled quantity
and can be normalized out of the objective function [this can be
shown by examining Eq. (30)]. In this work we do not desire to
control the number of agents but rather control individual agents to
track the desired concentration or distribution of agents. Under the
proposed formulation, the distribution of agents is indeed a control-
lable quantity using the control inputs defined in Eq. (30).

To obtain efficient control solutions for large time horizons, MPC
is used directly with the control techniques. Quasi-Newton handles
the nonlinearities in the objective function, and it provides an initial
basis in comparing the time-history responses for RFS control using
different distributional distance-based costs. Next, RFS control is
extended to MPC with DDP, which approximates (quadratizes) the
objective function for value iteration to provide quick and reliable
convergence to locally optimal control solutions. DDP and MPC are
discussed in the Appendix. The RFS control solution is demonstrated
on spacecraft swarm relative motion simulation with and without
perfect information combining the GM-PHD filter and DDP (formed
as iterative linear quadratic regulator [ILQR]) in a closed-loop fash-
ion given in Fig. 1. In a single loop, the RFS control is determined
from optimizing the objective containing the distributional distance-
based cost between the estimate and the desired intensity; the swarm
dynamics are updated with new spawn, birth, or death of agents in the
field; and measurements including clutter are incorporated into the
overall system before a GM-PHD filter estimate is determined for
control again. From this RFS-based architecture, the ability to deter-
mine an estimate of the cardinality and states of the swarm that is used
directly for control using ILQR is realized.

As previously discussed for this work, the topology underlying the
RFS control is complete and uses the complete graph in a centralized
manner. Thus, the computational load for control of the swarm is
centralized. It is computationally feasible to perform centralized
control from a single agent, although a separate ground station may
be necessary to perform difficult control computations.

V. Dynamic Models

To show viability of optimal swarm control via RES, an acceler-
ation model and a relative motion model, both linear systems, are
used to describe rover and satellite dynamics, respectively. The
dynamic equations of individual agents are used here to describe
the dynamics of the Gaussian mixture components (means) given by
the control objective Egs. (30) and (31). Because linear dynamics are
used, the DDP term can be expressed as ILQR.

A. Acceleration Model

On a 2D plane, the linear time-invariant system of each agent can
be described by the continuous state and control matrices

B, = (32)

N eNeNe)
N eNeNel
o= OO
— o O O

0
1
0l
0

S OO =

and a state vector x = [x, y, x, y]7. Both x and y are defined to be the
2D positions of the agent, respectively. The A. and B, matrices are
discretized along a fixed time interval using a zero-order hold
assumption for the control (i.e., control is held constant over the time
interval). This results in discretized A and B matrices for the state-
space equation

Xpy1 = Ax; + Buy (33)
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B. Relative Motion Using Clohessy—Wiltshire Equations

For a spacecraft in low Earth orbit, the relative dynamics of each
spacecraft (agent), to a chief spacecraft in circular orbit, is given by
the Clohessy—Wiltshire equations [29]

¥ =3n%x+2ny + a, (34a)
y=-2nx+a, (34b)
F=-n’z+a, (34¢)

where x, y, and z are the relative positions in the orbital local-vertical
local-horizontal (LVLH) frame and a,, a,, and a, are the acceler-
ations in each axis, respectively. The variable n is defined as the
orbital frequency given by

n= |5 (35)
7

where p is the standard gravitational parameter and a is the radius
of the circular orbit. The continuous state-space representation is
given by

0O 0 O 1 0 0 0 0 0
0O 0 O 0 1 0 0 0 0
0 0 O 0 0 1 0 0 0
Ae = 3n2 0 0 0 2n 0} B. = 1 00
0 0 0 -2n 0 O 01 0
0 0 -n* 0 0 0 0 0 1

(36)

with a state vector x =[x,y,z,%,¥,2] and a control input
u=lay,a,, a,]". These equations are discretized similarly to the
acceleration model discussed previously.

VI. Results

The first goal is to generalize RFSs for control of large collabora-
tive swarms to form and test behaviors of several different RFS-based
distance measures for control. Using the acceleration model, which is
discretized from Eq. (32) to Eq. (33), a4 Gaussian mixture swarm on
a 2D plane is initialized in a square grid where the mixtures 1, 2, 3,
and 4 are defined counterclockwise starting on the first quadrant.
With the 4 Gaussian mixture swarm, three different test cases are
implemented to bring the intensity to the target trajectories and to test
the distributional distance-based costs and control theory involved
from the RFS formulation. The first test case compares the L3
distance with varying initial conditions in a square grid with the L3
plus quadratic distance with four desired Gaussian mixtures located
at(£1, £1) using quasi-Newton MPC. An L3 plus quadratic distance
comparison is also done using ILQR. The last two cases present the
quasi-Newton MPC and ILQR control using the L3 distance with a
quadratic term and varying desired Gaussian mixtures. For case 2,
three target destinations are located at (£1, 1) and (—1, —1). Lastly, in
case 3, five target destinations are located at (&1, 1) and (0, 0).

The second goal is to form and apply multi-agent estimation and
control of large collaborative swarms in the presence of unknown
number of agents, clutter, and noise using RFS theory. This is applied
directly to the satellite relative motion problem using the Clohessy—
Wiltshire equations. Specifically, the L3 plus quadratic distance is
used for spacecraft formation flight. A 77 Gaussian mixture swarm is
initialized uniformly random between —1 and 1 on a 2D plane.
Assuming that the spacecraft swarm is at lower Earth orbit, the goal
for the spacecraft is to track a rotating star pattern moving counter-
clockwise at an orbital frequency of n.

For these two separate examples, it should be emphasized that each
Gaussian mixture component may represent many agents because
the intensity function integrates to the total number of agents. For the
initial example, many agents are represented by each Gaussian

mixture, and the number of agents on the field must be calculated
using va:’l w}') = Niota1 (k). So individual agents follow the control
law that is applied to their specific Gaussian mixture. As mentioned
before, the weights of the desired RFS do not affect the optimal
solution, and therefore, for simplicity, this initial goal uses weights of
wy = 1 for all k. For the second example, which incorporates the
Clohessy—Wiltshire relative motion model, the perfect and imperfect
information scenarios assume that the number of agents is equal to the
number of Gaussian mixtures (i.e., wfﬁ) = 1 forall k) and the number

of agents is estimated from the GM-PHD filter at each time step &,
respectively. Thus, the individual agents are controlled directly.

A. Acceleration Model
1. Case 1: L} Versus L3+Quadratic Term, Four Desired Gaussian
Mixtures

For case 1, four swarm Gaussian mixtures are controlled to move
toward the desired intensity at initial conditions farther away (square
grid at (£3, £3)) and closer to (square grid at (£1.5, £1.5)) the
desired intensity as shown by mean responses given by the black-
dashed and red-dotted lines in Fig. 4b, respectively. From the trajec-
tory snapshots given by Fig. 4al, initial conditions that are far from
the desired intensity do not have a converging control solution. From
the surface visualization in Fig. 3b, the general plane is flat in areas
away from the desired targets and the current agents’ states. There-
fore, optimization using quasi-Newton MPC is more difficult in these
flat areas and may not converge to a solution. If the current intensity is
initialized much closer to the desired intensity as shown in Fig. 4a2,
the flatness in the general plane is minimal, and the optimization step
in quasi-Newton MPC converges to a solution. By using the L3
distance, converging control solutions can only be found for initial
conditions and target destinations that are close. For the L3 plus
quadratic distance, four swarm Gaussian mixtures move toward the
four desired Gaussian mixtures given by the blue-solid lines (mean
responses) in Fig. 4b. Figure 4c shows the trajectory snapshots and
final states of each of the swarm Gaussian mixtures during the
simulation. The target destinations are plotted as black x’s. The red
dots are the individual swarm agents that form the Gaussian mixture
intensities. From the figure, all four mixtures converge to the desired
mixtures in approximately 0.17 s and approximately 0.03 of steady-
state error between the mixtures’ position to the desired intensity. In
comparison to only the L} distance, Fig. 4b shows that for small
distances between the initial state and the desired intensity, the L%
distance is sufficient for state convergence, but as the distance
increases, the L3 distance diverges away. By adding the quadratic
term to L3, the optimization step can directly determine the minimum
for the control solution shown in Fig. 3c. Therefore, the desired
intensity attracts the current swarm intensity at distances that fail
for only L3 distance given by Fig. 4b.

The L3 plus quadratic distance is also extended to ILQR. Figure 5a
shows the trajectory snapshots and final states of the simulation. All
four Gaussian mixtures converge to the desired intensity in approx-
imately 0.03 s and approximately 0.01 of steady-state error as shown
in Fig. 5b. In this figure, the x responses, y responses, and the desired
intensity are given by blue, green, and red lines, respectively. The
entire simulation horizon is used to provide the prediction horizon for
the ILQR trajectory. Even with a quadratic approximation of the
objective function, ILQR is able to find control solutions that follow
the L2 plus quadratic characteristics that are presented using quasi-
Newton MPC.

2. Case 2: Three Desired Gaussian Mixtures

Case 2 illustrates the effect of three desired Gaussian mixtures on
the final trajectories of the four swarm Gaussian mixtures using
quasi-Newton MPC and ILQR. Using quasi-Newton MPC, the cur-
rent swarm intensity converges as given by the position time history
in Fig. 6b. The trajectories for mixture 1 and mixture 3 reach their
target, but mixtures 2 and 4 reach the third target with approximately
0.42 and 0.50 of steady-state error with 0.20 and 0.16 s of settling
time, respectively. From Fig. 6a, it can be visually shown where the
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Fig.5 Case 1: 4 Gaussian mixture swarm controlled to four desired Gaussian mixtures via ILQR. a) Trajectories for the swarm; b) position time history.

swarm intensity is located relative to the desired intensity ateach time
step. The results obtained follow directly from the RFS control theory
using the L3 plus quadratic distance term. By using this L3 with a
quadratic term in the objective function, the current intensity will
attract toward the desired intensity while repulsing away from each
other. This can be seen in the surface map shown in Fig. 3c, where the
hills are areas of repulsion and valleys are areas of attraction. Thus,
for quasi-Newton MPC, mixtures 2 and 4 are attracted to the same

target, but they stay away from each other. This case is also extended
to ILQR. Figures 7a and 7b show the trajectory snapshots and time
history of the same swarm using ILQR. As discussed previously, due
to the approximation of the objective function, the mixtures 2 and 4
converged in 0.03 and 0.15 s with approximately 0.01 and 0.42 of
steady-state error. By comparing the time histories in Figs. 7b and 6b,
the fourth intensity using ILQR follows very similarly to the MPC
method. Therefore, there is a degree of accuracy in the approximation
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Fig.7 Case2:4 Gaussian mixture swarm controlled to three desired Gaussian mixtures via ILQR. a) Trajectories for the swarm; b) position time history.

of the objective function to minimize for ILQR that allows the
attraction of individual mixtures to the desired intensity while repuls-
ing away from each other.

3. Case 3: Five Desired Gaussian Mixtures

Case 3 shows the effect of five desired Gaussian mixtures with the
four swarm Gaussian mixtures using quasi-Newton MPC and ILQR.
Figure 8b shows the time histories for all the mixtures using quasi-
Newton MPC. The trajectory snapshots of the Gaussian mixtures are
visually shown relative to the desired Gaussian mixtures in Fig. 8a.
From Fig. 8b, the intensity converges in 0.19 s with a steady state
error of approximately 0.17, which follows the theory as expected.
Because the swarm Gaussian mixtures are far from each other, the
effects of repulsion are minimal. Also, the mixtures are attracted to
the four desired Gaussian mixtures that make up a square, but they are
also attracted to the desired Gaussian mixture at the origin. This is due
to the minimization of the objective function that has both an L% and a
quadratic term where the individual mixtures will attract toward the
desired intensity. Because there is an additional desired Gaussian
mixture at the origin, all four swarm Gaussian mixtures are affected
by the origin as they are moving toward the four square desired
Gaussian mixtures. Thus, compared with case 1 with only four
desired Gaussian mixtures, the swarm intensity, in this case, will
have a steady-state error due to the attraction to the additional desired
Gaussian mixture. ILQR is also used to show how five desired
Gaussian mixtures affect the quadratization of the L? plus quadratic

objective function. Figures 9a and 9b show the trajectory snapshots
and time history, respectively. The swarm converges in 0.03 s and
0.12 of steady-state error. This steady-state error shows the attraction
of the desired Gaussian mixture at the origin, which follows directly
from results from the L% plus quadratic distance given by Fig. 3c.

B. Clohessy—Wiltshire Relative Motion
1. Relative Motion with Perfect Information

For the spacecraft relative motion, 77 Gaussian mixtures are
initialized (birthed) from uniformly random initial conditions
between —1 and 1 m from the chief satellite in a circular orbit. This
is similar to the setup in [30] and follows Fig. 1 without the Swarm
Estimation block because it is assumed that the state information
received throughout the simulation is perfect. Additionally, no agent
dies or spawns during the simulation. The goal is to control the
spacecraft into a moving star-shaped pattern. Both the spacecraft
and the rotating star pattern have an orbital frequency of n =
0.00110678 rad/s. Figure 10a shows the trajectory snapshots of
the spacecraft (contours) and the desire Gaussian mixtures (black
x’s) using ILQR and the L plus quadratic distance. The Gaussian
mixtures, represented by each contour, can be safely assumed to
contain a single agent. As time progresses, agents converge quickly
into the formation and maintains the formation for the simulation
time of 40 min. A few agents lag behind the desired targets due to the
repelling effect from their proximity to other agents in the swarm.
Figure 10b shows the acceleration for five agents to maintain the star
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Fig.9 Case 3: 4 Gaussian mixture swarm controlled to five desired Gaussian mixtures via ILQR. a) Trajectories for the swarm; b) position time history.
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Fig. 10 Seventy-seven Gaussian mixture spacecraft swarm controlled to a rotating star target via ILQR with perfect information. a) Trajectories;
b) acceleration for five agents.
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formation. From these results, control using RFS can be expanded to
physical spacecraft systems and can be used for moving targets.

2. Relative Motion with Imperfect Information

Next, the imperfect information (i.e., process, measurement, and
clutter noise) is included in the simulation. To control with imperfect
information, the GM-PHD filter is used in the Swarm Estimation block
in Fig. 1 with the RFS control method. The GM-PHD filter determines
the estimates of the intensities that are used for RFS control. The
problem was altered to be more complicated by including differing
birth and death times for the agents. With the addition of imperfect
information and the added complication of changing number of agents,
using the GM-PHD filter provides accurate estimates of the agents
through time, which allows for RFS control in the loop. Figure 11a
shows the cardinality or number of agents in the swarm through time.
The solid line is the true number of agents, and the dotted line shows the
estimate at each time step. Ateach time step, the agent estimates are fed
through the RFS control using ILQR to obtain a control input for each
agent. Then, the estimates are controlled and fed back to the GM-PHD

filter at the next time step. Figure 11c shows the snapshots of the
controlled agents (black circles) and targets (green stars) at each time
step. Figure 11b shows the time history for the true agents (solid lines),
estimated agents (black dots), and overall measurements (gray Xx’s).
From Fig. 11a, as the true agents die or birth initially, estimates of the
occurrence are accurate. As the number of agents increases, the
estimates become less accurate. This is because the GM-PHD filter
only uses the first-order statistical moment to propagate the cardinality
information of agents [31]. The cardinality distribution is unknown,
and it is approximated as a Poisson distribution. For a Poisson dis-
tribution, the mean and covariance are equal. Therefore, if there are a
larger number of agents in the field, the corresponding covariance of
the cardinality distribution is also higher. Although the estimates are
less accurate at high cardinality, the individual agents are controlled
successfully into a star pattern in the presence of imperfect information.
This is shown directly in Figs. 11c and 11b. As agents die or birth, the
corresponding control dies or births with it, and due to the L3 plus
quadratic distance, agents are flexible to move into different parts of the
formation.
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Fig. 11 c) The seventy-seven-agent spacecraft swarm controlled via ILQR to a rotating star target with imperfect information. a, b) Plot cardinality and
the tracks, respectively.
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VII. Limitations

RFS control for large collaborative swarms provides control sol-
utions that are adaptive to varying swarm size (number of agents) and
desired targets in the presence of process, measurement, and cardi-
nality uncertainty, but several limitations currently exist. First, agents
are assumed to be identical and unlabeled. Thus, this formulation
does not provide control to a specific agent in the field. Secondly,
control optimality of the solutions shown in this work is demon-
strated through empirical results, but this work lacks theoretical
proofs of robustness and optimally. Thirdly, RES control was applied
using a complete topology (centralized control); therefore, computa-
tional inefficiencies do exist. But the authors believe that the RFS-
based method can be generalized and extended to decentralized
applications. Lastly, no strict collision avoidance methods are applied
for this problem. Although repelling behavior between agents exists
in the objective function, no strict collision avoidance constraints are
applied. Thus, this provides many areas for future work.

VIII. Conclusions

The objective of this paper is to formulate the multi-agent estima-
tion and control background for swarming formations using the
GM-PHD filter and either quasi-Newton MPC or ILQR from RFS
theory. The RFS formulation is used to control the concentration of
agents to match a desired distribution. By setting up the problem
using information divergence to define the distance between the
swarm RFS and the desired target configuration, an optimal control
problem is found that tracks a linear system with a nonquadratic
objection function through the use of quasi-Newton MPC and ILQR.
The results show that the approach can be adaptive to varying swarm
size and desired targets. Lastly, control using RFSs is also applied to
the spacecraft relative motion problem by “closing-the-loop” with the
GM-PHD filter. With the inclusion of process and measurement noise
and uncertainty in the large number of agents in the field, a converg-
ing control solution is found obtained from estimates from the
GM-PHD filter. These examples show the benefit of control using
RFS by overcoming the curse of dimensionality.

Appendix A: Differential Dynamic Programming

Finite-horizon LQR control is first discussed to provide the neces-
sary background for DDP discussed afterward.

A.l. LQR Finite-Horizon Optimal Control Problem

The linear quadratic regulator problem is defined by a discrete
time-varying system given by

Xyl = Akxk + Bkuk + €, (Al)

where €, is Brownian process noise. For the finite horizon N, the total
cost is calculated from an initial state x, and using the control

sequence U = [uy, uy,q,...,uy_1] applied to the dynamics given by
N-1

T(xo, U) = Y U wg) + Lp(xy) (A2)
k=0

where [(uy, uy) is the running cost and /¢(xy) is the terminal cost.
The LQR costs are quadratic given by

1L]"To qf ][ 1
1
[(xp, uy) = 5| Xk 9 Oc Pr || x|
uj re Pr R || u

1
Ie(xy) = Exg\-]QNxN + xiqy (A3)

where g, ry, Oy, Ry, and P are the running weights (coefficients),
and Qy and gy are the terminal weights. The weight matrices Q; and
R, are positive definite and the block matrix

O P
P Ry
is positive semidefinite [32]. The costs are substituted into Eq. (A2),

and due to the symmetry in the weight matrices, the total cost is
simplified to

N-1

1 1
J(xo, U) = Zx,{qk + u[rk + ZXZQka =+ Equkuk + uZ—kak
k=0
1
+ 50 Onxy + XNy (A4)

The optimal control solution is based on minimizing the cost function
in terms of the control sequence, which is given by

U*(x¢) = arg min J(xg, U) (AS)
U

To solve for the optimal control solution given by Eq. (AS), a value
iteration method is used. Value iteration is a method that determines
the optimal cost-to-go (value) starting at the final time step and
moving backward in time minimizing the control sequence. Similar
to Eq. (A2) and (AS), the cost-to-go and optimal cost-to-go are
defined as

N-1
T Up) =Y 1 wy) + 1 (xy) (A6a)
k
Vixy) = ”lljin J(xp Uy) (A6b)
k
where U, = [uy, uy1,. .., uy_1]. Instead, the cost starts from time

step k instead of k = (0. At a time step k, the optimal cost-to-go
function is a quadratic function given by

1
V(xk) = ExZSkxk —+ x,{sk + Ci (A7)

where Sy, s, and ¢, are computed backward in time using the value
iteration method. First, the final conditions Sy = Qy, Sy = ¢y, and
¢y = c are set. This reduces the minimization of the entire control
sequence to just a minimization over a control input at a time step,
which is the principle of optimality [33]. To find the optimal cost-to-
go, the Riccati equations are used to propagate the final conditions
backward in time given by

St = ALSki1 Ak + O = (B{Si1 A + PDT (B Sis1 B + RY) ™!

X (BZSk+1Ak + P[) (ASa)

Sk = Qi + AfSki1 + AL Si18k — (BL Sk A + P))T
X (B{Sis1Bi + R) ™ (B] Sii181 + Bl Sis1 + 1) (A8b)

Ck = &1 Skr18k + 25018k + ki1 — (B Sk 18 + Bisiir + 1)
X (BYSks1Bi + R) ™ (B Ski18k + B Sps1 + 1) (A8c)

Using the Riccati solution, the optimal control policy is in the affine
form

u(x) = Kpxp + 1 (A9)
where the controller K; and controller offset is given by

Kk = —(Rk + stk+13k)_l(BZSk+1Ak + P/{) (AlOa)

Iy = —(Ry + Bl Si1By) ™ (B] Sys18k + Bisie1 + 1) (AlOb)
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This optimal solution to the LQR problem works for linear dynam-
ics and quadratic cost functions, but unfortunately, the objective
function specified for the swarm problem is nonquadratic. Fortu-
nately, DDP can be used for nonlinear dynamics and nonquadratic
local cost functions.

A.2. Differential Dynamic Programming Problem

The DDP approach to solving nonlinear and nonquadratic equa-
tions uses a similar process as the LQR solution, but a second-order
approximation of the dynamics and objective function are obtained
for value iteration and the solution is iterated to increasingly get better
approximations of the optimal trajectory of the system. Note that if
linear dynamics are used, the ILQR formulation is obtained [28,34].
Because the results are produced by a linear system, both the DDP
and ILQR terms can be used interchangeably. The following discus-
sion on DDP follows closely to that of Tassa et al. [34,35]. The
general nonlinear discrete-time dynamics is given by

X = [ uy) (A1)

where the state at the next time step, x; , is a function of the current
state x; and control input u;. The cost function is in the form of
Eq. (A2), but the costs are nonquadratic. The solution to the optimal
control problem is Eq. (A5). Similarly, the cost-to-go and the optimal
cost-to-go function are defined by Eq. (A6a) and Eq. (A.6b), respec-
tively. Given the terminal condition V(xy) = I;(xy), the optimal
cost-to-go obtained from the principle of optimality is

V(x;) = n;ikn(l(xk, up) + V(xpg1)) (A12)

which minimizes over the control at a time step and solved through
time by a backward pass (value iteration).

a. Backward Pass

The first step in the backward pass (value iteration) is to determine
avalue function that is quadratic. The argument in Eq. (A12) is taken
as a function of small perturbations around the state (0x;) and control
input (duy,), and itis quadratized through a second-order Taylor series
expansion given by

Q(0x,6u) = l(x; + oxp uy + ou), — l(x,u) + V(x; 1 + 6xp41)

= V(xpp1),
11" T o of of 1
1
zz 5xk Qx Qxx qu 5xk (A13)

5uk Qu qu Quu 5uk

where Q,, Q,, O Q.. and Q,, are the running coefficients
(weights) of the quadratized value function at a certain time step.
Note, in the standard formulation, the time step k is dropped for these
equations. Any primes denote the next time step. The equations for
the running weights are given by

O, =1+ fiVi (Al4a)
0,=1,+rrv] (Al14b)
Oux = Lo + fIViLS s + Vifur (Al4c)
Quu = Luw + FiVicku + Vifuu (A14d)
Qux = Ly + fUVisfc + Vifux (Alde)

wherel,, l,, I\, l,,,and [, are the gradients and Hessians of the cost
function; f, f,, fxx> fuu, and f,, are the gradients and Hessians of
the nonlinear dynamics; and V; and V|, are the gradient and Hessian
of the value function. For the ILQR formulation, the gradients and

Hessians for an LTV system (which is the model used for RES control
in Sec. V) are trivial, but for the DDP formulation, the gradients and
Hessians for the nonlinear dynamics must be computed. By using this
quadratic approximation, the minimum in terms of éu is found using

Su = argmin Q(6x, du) = —0;1(0, + Q,,6x) (A15)
Su

which provides local feedback and feed-forward gains of
K =~00u (Al6a)

k=-0u0, (Al6b)

respectively. The locally optimal controller is substituted back into
Eq. (A13) to get the optimal value given by

1
AV = —2KTQ,.k (Al7a)
V.= Qx - KTQuuk (A17b)
Vxx = Qxx - KTQuuK (A17C)

so the value can be propagated backward in time to find new locally
optimal solutions to the value function.

b. Forward Pass

By continually computing the quadratic approximations in
Eq. (A14), local controller in Eq. (A16), and the new values in
Eq. (A.17) backward in time from the terminal condition
V(xy) = ly(xy), the updated trajectory can be found through a
forward pass given by

X =X (A18a)
lik =uk+kk +Kk(£'k—xk) (Algb)
X = f(Ry ) (A18c)

where x;, and &, consists of the state and control input at a time step of
the new trajectory ()2' U ). This composes one iteration of DDP. If the
cost of the new trajectory, ()2 U ), is less than the cost of the old
trajectory, (X, U), then X = XandU = U are set, and the algorithm

is ran again until a convergence threshold is met between the old and
New costs.

c.  Regularization via the Levenberg—Marquardt Heuristic

If the cost of the new trajectory is greater than the cost of the
old trajectory, the iteration has not provided a better solution. To
circumvent this issue, the Hessian is regularized. This is called the
Levenberg—Marquardt heuristic. The control sequence that is calcu-
lated in DDP is computed like a Newton optimization that uses
second-order information (curvature information) on top of the
first-order information (gradient information) [36]. By including
second-order curvature to the update, optimization can occur faster,
but this relies on the fact that the Hessian is positive definite and an
accurate quadratic model. If the control update is not improving (for a
nonpositive definite Hessian and inaccurate quadratic model), the
Levenberg—Marquardt heuristic uses less curvature information and
more on the gradient information. This regularization is added to the
Hessian of the control cost given by

Oui = Quu + ul,, (A19)

where Q,,, is the regularized control cost Hessian, u is the Levenberg—
Marquardt parameter, and /,, is the identity matrix that is the size of
the control input vector [37]. This allows for the increase or decrease
of curvature information in the optimization by adding a quadratic
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cost around the current control input. Unfortunately, adding this
regularization term can have different effects at different time steps
using the same control perturbation based on a changing f, in the
linearized dynamics. By increasing 4 — oo, the k and K gains
become very small due to the QN;J term. Therefore, the regularization
term is improved by penalizing the states instead of the control inputs,
which are given by

Oui = Lue + FEVie + L) fu + Vi (A20a)
Oux = lux + fL(Vix + uL)fo + Vifu (A20b)
K =-0u0. (A20c)
k=-0.0, (A20d)

where /,, is the identity matrix that is the size of the state vector. The y
parameter is placed on the state instead of the control input. For this
method, the regularization term is directly incorporated with f,, and
the feedback gains k and K do not disappear as 4 — oo. Instead, the
new k and K values bring the new trajectory closer to the old one. For
the implementation of the u term, three requirements should be
followed. If reaching the minimum is accurate, the 4 should become
zero in order to obtain faster convergence due to the second-order
optimization term. If a nonpositive definite Q~W is found, the back-
ward pass should be restarted with a larger u. The last requirement is
that when a > 01is needed, the smallest y should be used that allows

the Q,, to be positive definite. Therefore, more of the second-order
information can be used to provide faster convergence than gradient
descent. The specific algorithm is found in [35].

Equation (A17) must also be modified based on regularization
added in Eq. (A20a) [28]. Equation (A17) was originally derived
using Egs. (A13) and (A15), but using the new regularized terms in
Eq. (A20a) creates error. Therefore, the modified values at a time step
k are

1
AV = K0,k +K7Q, (A21a)
Ve=0,+K'Quk+K"Q,+ 0.k (A21b)
Vie = O + K" QK + K" Qi + Q1K (A21c)

The regularization terms create a faster and more accurate solution to
the backward pass of the DDP solution.

d. Forward Pass Line Search

Regularization of the forward pass can improve convergence and
performance of the DDP algorithm. For linear time-varying systems,
one iteration provides a minimal solution after one iteration. This is not
the case for general nonlinear systems. Because nonlinear systems are
approximated by a Taylor series expansion, there may be regions in the
new DDP trajectory that are not valid about the nonlinear model. This
may lead to divergence and have a larger cost function than the old
trajectory. To fix this issue, a backtracking line-search parameter is
introduced in the control update equation given by

ﬁk =uk—|—(xkk+Kk(.f'k—xk) (A22)

where «a is set to @ = 1 at the start of the forward pass. Then the
expected cost reduction is considered using

N-1 2 N-1
AJ(@) = a Y kR0, + 5 Y KT (00 (k) (A23)
k=0 k=0

A ratio z is determined using the actual and expected cost reduction
given by

_ (J(xg. U) = J(%, U))
- AJ(a)

(A24)

where J(xg, U) and J(x, U) are the old and new cost, respectively.
The control update is accepted if the condition

O<c <z (A25)

is met where ¢ is a parameter set by the user. The ¢ is usually set close
to zero. If the condition is not met, the forward pass is restarted with a
smaller a value, which means that the new trajectory strayed farther
than the system’s region of validity. By using the a line search
parameter, convergence can be achieved for nonlinear systems by
iteratively deceasing « to obtain a cost reduction.

e. DDP Summary

A DDP iteration can be summarized in four steps. First, an initial
rollout of the nonlinear dynamics given by Eq. (A11) is integrated
over time for a given control sequence U. If there is no good
initialization of the control sequence, the control sequence can be
set to U = 0. After the initial rollout, the derivatives of the cost
function and nonlinear dynamics used in Eq. (A14) are found. The
derivatives are used in the third step, which is to determine local
control solutions using a backward pass. Using the terminal condi-
tion, V(xy) = I;(xy), local control solutions are found by iterating
Eq. (A14), (A20), and (A21) backward at each time step. When a

nonpositive definite Q,m is found, increase the regularization param-
eter ¢ and restart the backward pass. Once a local optimal policy is
found, a is set to a = 1, and Eqgs. (A18c) and (A23) are propagated
forward in time. If the integration diverged or cost reduction con-
dition in Eq. (A25) was not met, the forward pass is restarted with a
smaller a.

Appendix B: Receding Horizon Control using the RFS
Formulation

An optimal solution, u, can also be obtained in a real-time com-
putational sense by minimizing the objective, Eq. (29), by reducing
the finite horizon to a computational manageable prediction horizon
using MPC or receding horizon control [24]. Conceptually, at a time
k, the knowledge of the system model is used to derive a sequence
u(klk), u(k + 1[k),u(k + 2|k),...,u(k + T,lk), where T, is the
finite prediction horizon from the current state x(k) [38]. With the
input sequence, the state is moved forward in time by the control
horizon, T, ; usually one time step. Then the same strategy is repeated
for time k + 1. The finite prediction horizon T, can be chosen to be
either small or large. As T, increases, the degrees of freedom in the
optimization increase, which can slow down the algorithm consid-
erably, even though more of the future reference trajectory would be
useful to bring the output closer to the reference. With a smaller T,
the computation time will be faster, but the optimization may be more
suboptimal. Thus, the swarm may not converge to the desired con-
figuration.

For the RFS control formulation, a u that controls the swarm
intensities through their statistics (mean and covariance) is found
by minimizing the objective as given by Egs. (30) and (31). This can
be done by using MPC via the quasi-Newton method or DDP. DDP is
able to determine an optimal solution for nonlinear equations of
motion and a nonquadratic cost function through an iterative process
of finding the solution involving second-order approximations of the
dynamics and the objective function. The dynamic systems used in
the results are linear; thus, DDP can be formed as its variant, [ILQR.
For the quasi-Newton method, the optimal control input u is found
using MATLAB’s fminunc solver [39]. Note that MPC via DDP and
the quasi-Newton method are both closed-loop control methods in
terms of the statistics (mean and covariance) of the system.



Downloaded by CORNELL UNIVERSITY on February 8, 2022 | http://arc.aiaa.org | DOI: 10.2514/1.G004861

520 DOERR ET AL.

Acknowledgments

The authors wish to acknowledge support by the NASA under
Contract Number NNX16CP45P issued through the NASA Small
Business Technology Transfer (STTR) Program by the Jet Propulsion
Laboratory (JPL) and led by Amir Rahmani at JPL. This work was also
supported in part by Office of Naval Research (ONR) Code 321 and in
part by National Science Foundation (NSF) Algorithms for Threat
Detection (ATD) Grant 1738010. The authors wish to acknowledge
useful conversations related to satellite technologies with Chuck Hisa-
moto, Vaughn Weirens, and Suneel Sheikh of ASTER Labs, Inc. The
authors wish to acknowledge Andrew Akerson, a graduate student at
the California Institute of Technology, who enabled useful notation for
the mathematical theory used in the paper. Lastly, the authors wish to
acknowledge Piyush M. Mehta, assistant professor at West Virginia
University, for providing useful conversations in structuring and opti-
mizing code. This paper is an extension of the paper published in the
Proceedings of 2018 American Control Conference: Doerr B, Linares
R, “Control of Large Swarms via Random Finite Set Theory,” 2018
Annual American Control Conference (ACC), Inst. of Electrical and
Electronics Engineers, New York, 2018, pp. 2904-2909.

References

[1] Kube, C. R., and Zhang, H., “Collective Robotics: From Social Insects
to Robots,” Adaptive Behavior, Vol. 2, No. 2, 1993, pp. 189-218.
https://doi.org/10.1177/105971239300200204

Vassev, E., Hinchey, M., and Paquet, J., “Towards an ASSL Specifica-

tion Model for NASA Swarm-Based Exploration Missions,” Proceed-

ings of the 2008 ACM Symposium on Applied Computing—SAC 08,

ACM Press, New York, 2008, pp. 1652-1657.

https://doi.org/10.1145/1363686.1364079

1zzo, D., Pettazzi, L., and Ayre, M., “Mission Concept for Autonomous

on Orbit Assembly of a Large Reflector in Space,” 56th International

Astronautical Congress, Vol. 5, 2005, pp. D1-D4.

Ryan, A., Zennaro, M., Howell, A., Sengupta, R., and Hedrick, J.,

“An Overview of Emerging Results in Cooperative UAV Control,”

2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE

Cat. No. 04CH37601), Inst. of Electrical and Electronics Engineers,

New York, 2004, pp. 602-607.

https://doi.org/10.1109/cdc.2004.1428700

[5] Sommerville, 1., Software Engineering GE., Pearson Australia, 2016.

[6] Bakule, L., “Decentralized Control: An Overview,” Annual Reviews in

Control, Vol. 32, No. 1, 2008, pp. 87-98.

Rubenstein, M., Cornejo, A., and Nagpal, R., “Programmable Self-

Assembly in a Thousand-Robot Swarm,” Science, Vol. 345, No. 6198,

2014, pp. 795-799.

https://doi.org/10.1126/science.1254295

Mondada, F., Gambardella, L., Floreano, D., Nolfi, S., Deneubourg, J.,

and Dorigo, M., “The Cooperation of Swarm-Bots—Physical Inter-

actions in Collective Robotics,” IEEE Robotics & Automation Maga-

zine, Vol. 12, No. 2, 2005, pp. 21-28.

https://doi.org/10.1109/mra.2005.1458313

Mahler, R., “Multitarget Bayes Filtering via First-Order Multitarget

Moments,” IEEE Transactions on Aerospace and Electronic Systems,

Vol. 39, No. 4, 2003, pp. 1152-1178.

https://doi.org/10.1109/taes.2003.1261119

[10] Pace, M., Birattari, M., and Dorigo, M., “The Swarm/Potential Model:
Modeling Robotics Swarms with Measure-Valued Recursions Associ-
ated to Random Finite Sets,” IEEE Transactions on Robotics (submitted
for publication).

[11] Doerr, B., and Linares, R., “Control of Large Swarms via Random Finite
Set Theory,” 2018 Annual American Control Conference (ACC), Inst. of
Electrical and Electronics Engineers, New York, 2018, pp. 2904-2909.
https://doi.org/10.23919/acc.2018.8430968

[12] Vo, B.-N., and Ma, W.-K., “The Gaussian Mixture Probability Hypoth-
esis Density Filter,” IEEE Transactions on Signal Processing, Vol. 54,
No. 11, 2006, pp. 4091-4104.
https://doi.org/10.1109/tsp.2006.881190

[13] Vo, B., Vo, B., and Cantoni, A., “The Cardinalized Probability Hypoth-
esis Density Filter for Linear Gaussian Multi-Target Models,” 2006 40th
Annual Conference on Information Sciences and Systems, Inst. of
Electrical and Electronics Engineers, New York, 2006, pp. 681-686.
https://doi.org/10.1109/ciss.2006.286554

[14] Vo,B.-T., and Vo, B.-N., “Labeled Random Finite Sets and Multi-Object
Conjugate Priors,” IEEE Transactions on Signal Processing, Vol. 61,

[2

—

3

=

[4

=

[7

—

[8

=

[9

—

No. 13, 2013, pp. 3460-3475.
https://doi.org/10.1109/tsp.2013.2259822

[15] Bandyopadhyay, S., Chung, S.-J., and Hadaegh, F. Y., “Probabilistic
Swarm Guidance Using Optimal Transport,” 2014 IEEE Conference on
Control Applications (CCA), Inst. of Electrical and Electronics Engi-
neers, New York, 2014, pp. 498-505.
https://doi.org/10.1109/cca.2014.6981395

[16] Foderaro, G., Ferrari, S., and Wettergren, T. A., “Distributed Optimal
Control for Multi-Agent Trajectory Optimization,” Automatica, Vol. 50,
No. 1, 2014, pp. 149-154.
https://doi.org/10.1016/j.automatica.2013.09.014

[17] Rudd, K., Foderaro, G., and Ferrari, S., “A Generalized Reduced Gra-
dient Method for the Optimal Control of Multiscale Dynamical
Systems,” 52nd IEEE Conference on Decision and Control, Inst. of
Electrical and Electronics Engineers, New York, 2013.
https://doi.org/10.1109/cdc.2013.6760478

[18] Foderaro, G., Zhu, P., Wei, H., Wettergren, T. A., and Ferrari, S.,
“Distributed Optimal Control of Sensor Networks for Dynamic Target
Tracking,” IEEE Transactions on Control of Network Systems, Vol. 5,
No. 1, 2018, pp. 142-153.
https://doi.org/10.1109/tcns.2016.2583070

[19] Ferrari, S., Foderaro, G., Zhu, P., and Wettergren, T. A., “Distributed
Optimal Control of Multiscale Dynamical Systems: A Tutorial,” IEEE
Control Systems, Vol. 36, No. 2, 2016, pp. 102-116.
https://doi.org/10.1109/mcs.2015.2512034

[20] Lunze, J., Feedback Control of Large-Scale Systems, Prentice Hall,
Upper Saddle River, NJ, 1992.

[21] Reif, J. H., and Wang, H., “Social Potential Fields: A Distributed

Behavioral Control for Autonomous Robots,” Robotics and Autono-

mous Systems, Vol. 27, No. 3, 1999, pp. 171-194.

https://doi.org/10.1016/s0921-8890(99)00004-4

Morgan, D., Chung, S.-J., and Hadaegh, F. Y., “Decentralized Model

Predictive Control of Swarms of Spacecraft Using Sequential Convex

Programming,” Journal of Guidance, Control, and Dynamics, Vol. 37,

No. 6, Nov. 2014, pp. 1725-1740.

https://doi.org/10.2514/1.2g000218

[23] Morgan, D., Chung, S.-J., and Hadaegh, F., “Spacecraft Swarm Guidance
Using a Sequence of Decentralized Convex Optimizations,” AIAA/AAS
Astrodynamics Specialist Conference, AIAA Paper 2012-4583, 2012.
https://doi.org/10.2514/6.2012-4583

[24] Morgan, D., Chung, S.-J., and Hadaegh, F. Y., “Swarm Assignment and
Trajectory Optimization Using Variable-Swarm, Distributed Auction
Assignment and Model Predictive Control,” AIAA Guidance, Naviga-
tion, and Control Conference, AIAA Paper 2015-0599, 2015.
https://doi.org/10.2514/6.2015-0599

[25] Ma, W.-K., Vo, B.-N., Singh, S., and Baddeley, A., “Tracking an
Unknown Time-Varying Number of Speakers Using TDOA Measure-
ments: A Random Finite Set Approach,” IEEE Transactions on Signal
Processing, Vol. 54, No. 9, 2006, pp. 3291-3304.
https://doi.org/10.1109/tsp.2006.877658

[26] Hoang, H. G., Vo, B.-N., Vo, B. T., and Mahler, R., “The Cauchy-

Schwarz Divergence for Poisson Point Processes,” 2014 IEEE Work-

shop on Statistical Signal Processing (SSP), Inst. of Electrical and

Electronics Engineers, New York, 2014, pp. 4475-4485.

https://doi.org/10.1109/ssp.2014.6884620

Banerjee, A., Merugu, S., Dhillon, I., and Ghosh, J., “Clustering with

Bregman Divergences,” Proceedings of the 2004 SIAM International

Conference on Data Mining, Soc. for Industrial and Applied Mathemat-

ics, Philadelphia, PA, 2004, pp. 1705-1749.

https://doi.org/10.1137/1.9781611972740.22

[28] Todorov, E., and Li, W., “A Generalized Iterative LQG Method
for Locally-Optimal Feedback Control of Constrained Nonlinear Sto-
chastic Systems,” Proceedings of the 2005, American Control
Conference, Inst. of Electrical and Electronics Engineers, New York,
2005, pp. 300-306.
https://doi.org/10.1109/acc.2005.1469949

[29] Curtis, H. D., Orbital Mechanics for Engineering Students,
Butterworth-Heinemann, Oxford, 2013.

[30] Eren, U., Demirer, N., and Ackmese, B., “Density-Based Feedback
Control for Earth Orbiting Swarms via Velocity Fields,” IFAC-Paper-
sOnLine, Vol. 51, No. 12, 2018, pp. 44-49.
https://doi.org/10.1016/j.ifacol.2018.07.086

[31] Mahler, R., “PHD Filters of Higher Order in Target Number,” /[EEE
Transactions on Aerospace and Electronic Systems, Vol. 43, No. 99,
2007, pp. 1523-1543.
https://doi.org/10.1109/taes.2007.4407475

[32] Inaba, M., and Corke, P. (eds.), Robotics Research, Springer, Berlin,
2016.
https://doi.org/10.1007/978-3-319-28872-7

[22

[27



Downloaded by CORNELL UNIVERSITY on February 8, 2022 | http://arc.aiaa.org | DOI: 10.2514/1.G004861

[33]

[34]

[35]

DOERR ET AL.

Bellman, R., “The Theory of Dynamic Programming,” Proceedings of
the National Academy of Sciences of the United States of America,
Vol. 38, No. 8, 1952, p. 716.

Tassa, Y., Mansard, N., and Todorov, E., “Control-Limited Differential
Dynamic Programming,” 2014 IEEE International Conference on
Robotics and Automation (ICRA), Inst. of Electrical and Electronics
Engineers, New York, 2014, pp. 1168-1175.
https://doi.org/10.1109/icra.2014.6907001

Tassa, Y., Erez, T., and Todorov, E., “Synthesis and Stabilization of Com-
plex Behaviors Through ONLINE Trajectory Optimization,” 2012 IEEE/
RSJ International Conference on Intelligent Robots and Systems, Inst. of
Electrical and Electronics Engineers, New York, 2012, pp. 4906-4913.
https://doi.org/10.1109/ir0s.2012.6386025

[36]

[37]

[38]

[39]

521

Liao, L.-Z., and Shoemaker, C. A., “Advantages of Differential
Dynamic Programming over Newton’s Method for Discrete-Time Opti-
mal Control Problems,” Tech. Rept., Cornell Univ., New York, 1992.
Liao, L.-Z., and Shoemaker, C., “Convergence in Unconstrained
Discrete-Time Differential Dynamic Programming,” IEEE Transactions
on Automatic Control, Vol. 36, No. 6, 1991, pp. 692-706.
https://doi.org/10.1109/9.86943

Findeisen, R., and Allgower, F., “An Introduction to Nonlinear MODEL
Predictive Control,” 21st Benelux Meeting on Systems and Control,
Vol. 11, Technische Univ. Eindhoven Veldhoven, Eindhoven, The
Netherlands, 2002, pp. 119-141.

Fletcher, R., Practical Methods of Optimization: Vol. 1 Unconstrained
Optimization, Wiley, New York, 1980.



