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Controlling large swarms of robotic agents presents many challenges, including, but not limited to, computational

complexity due to a large number of agents, uncertainty in the functionality of each agent in the swarm, and

uncertainty in the swarm’s configuration. This work generalizes the swarm state using random finite set (RFS)

theory and solves a centralized control problemwith a quasi-Newton optimization through the use ofmodel predictive

control (MPC) to overcome the aforementioned challenges. This work uses the RFS formulation to control the

distribution of agents assuming an unknownor unspecified number of agents. Computationally efficient solutions are

also obtainedvia theMPCversion of the iterative linear quadratic regulator (ILQR), a variant of differential dynamic

programming. Information divergence is used to define the distance between the swarmRFS and the desired swarm

configuration through the use of the modified L2
2 distance. Simulation results using MPC and ILQR show that the

swarm intensity converges to the desired intensity. Additionally, the RFS control formulation is shown to be very

flexible in terms of the number of agents in the swarm and configuration of the desiredGaussianmixtures. Lastly, the

ILQR and the Gaussian mixture probability hypothesis density filter are used in conjunction to solve a spacecraft

relative motion problem with imperfect information to show the viability of centralized RFS control for this real-

world scenario.

I. Introduction

C ONTROL of large collaborative networks or swarms is cur-

rently an emerging area for controls development. Typically, a

swarm network comprises tiny robots with limited actuators that

perform specific tasks in some collective configuration. For example,

the swarm can use its collective effort to grasp or move in a changing

environment that can offer more flexibility and redundancy to meet a

goal compared with the abilities of a single agent [1]. Specifically in

space applications, swarm control of satellites and rovers can be used

for the exploration of asteroids and other celestial bodies of interest

[2] or areas of assembly and construction on-orbit, including con-

structing space observatories and space habitats [3]. Swarms involv-

ing UAVs have proven to be widely useful in military applications

such as search-and-rescuemissions, communication relaying, border

patrol, surveillance, and mapping of hostile territory [4]. From these

engineering applications, the use of collaborative swarms is an

attractive option to meet objectives that require flexibility and redun-

dancy in a changing environment.

For collaborative swarms, several control techniques have been

implemented to date. With centralized control, one agent in the

swarm computes the overall swarm control and manages the control

execution for individual agents, allowing it to oversee the other

agents’ system processes [5]. Unfortunately, centralized control suf-

fers from two main problems. As the number of agents in the swarm

increases, the computational workload becomes more expensive [6].

This is especially true when the swarm agents are low cost and are

located in an unknown environment [7]. For example, formation

control was applied experimentally to 1024 low-cost Kilobot robots,

which took 12 h to converge to a specific formation [7]. Additionally,

centralized control is not robust against individual agent failures [8].

With a thousand low-cost agents present in a swarm, communication,

actuation, and sensing are performed with less reliability. Thus,

control formulation must be found that considers the computational

performance for control of low-cost agents as well as flexibility

during uncertainty.

Random finite set (RFS) formalism provides a generalization of

the state space for multi-agent systems that can be used for control

[9–11]. It is used to solve a stochastic trans-dimensional problem,

where the dimension of the state space is an unknown a priori

(unknown number of agents). RFS allows for the probability density

function over a collection of state spaces to be defined, which

provides a potential hypothesis for the true number of agents. Then

a Bayesian estimation problem is formulated, and approximate sol-

utions are used through the Gaussian mixture probability hypothesis

density (GM-PHD) filter [12]. Other than the GM-PHD filter, many

extensions around RFS theory have been made using estimation and

simultaneous localization and mapping techniques including the

cardinalized probability hypothesis density (CPHD) filter and the

generalized labeled multi-Bernoulli (GLMB) filter [9,12–14].

By using RFS theory to model multi-agent systems, the time-

varying number of agents and their states can be jointly estimated

from measurement sets including data association uncertainty, clut-

ter, and noise [9,12]. The agents and measurements are modeled as

RFSs, and the probability hypothesis density (PHD) filter is used to

propagate the estimate forward in time. TheRFSmodel has been used

previously with a potential model to describe the temporal evolution

of the probabilistic description of a robotic swarm to promote

coordination [10]. Other work has developed control for individual

agents using the estimated RFS state in a centralized fashion [11]. As
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an introduction to RFSs, the GM-PHD filter is explored for applica-
tion to RFS control.
Other models were developed to represent the behavior for swarm

agents in space and time including probabilistic swarm guidance and
distributed optimal control, which has developed efficient decision
making for swarm control [15–19]. Probabilistic swarmguidance has
been used to enable swarms to converge to target distributions
through distributed control [15]. Distributed control is defined as
the reformulation of the control problem as a set of interdependent
subproblems and solving these subproblems [20]. Probabilistic
swarm guidance solves issues that involve a large number of agents,
also identified as “computationally complex,” by controlling the
swarmdensity distribution of the agents [15]. The distributed optimal
control method is a method that controls multi-agent systems by
modeling the agents as Gaussian mixtures and using an integral cost
function that is optimized to the advection equation [16–18]. The
control laws themselves are determined using potential functions
that attract the agent distributions to the desired state and repel the
distribution from obstacles [21]. By minimizing the objective func-
tion based on distributions using the necessary conditions of opti-
mality, the optimal control law is found using the potential function.
The distributed optimal control method was also expanded to use the
Kullback–Leibler divergence metric using distributions in the objec-
tive function for the use of path planning [19]. This provides a
discovery to a whole class of divergence measures of distributions
that can provide converging optimal control solutions to multi-agent
systems.
Decentralized control has also been implemented in regard to

swarm control. Decentralized model predictive control (MPC) was
applied to swarms of low-cost spacecraft with limited capabilities for
swarm reconfiguration [22]. The benefit of this solution is that it
decentralizes the computation and communication required for the
swarm system. In [23], they used decentralized planning and sequen-
tial convex programming to control swarms.Using sequential convex
programming in combinationwithMPC in real time provided robust-
ness as the agents converged to designated targets. The same authors
also used sequential convex programming to do target assignment
(mapping of agents to targets) and trajectory generation for varying
swarm sizes through time [24].
The objective of this paper is the formulation of the swarm

estimation and control problems using RFS theory. The main con-
tributions of this paper are as follows:
1) The generalization of the state representation using RFS theory

for the control of large collaborative swarms under unknown number
of agents.
2) The proposal of new distributional-based distances for the

control cost function.
3) The “closing-the-loop” betweenRFS control and the PHD filter.
4) The application of multi-agent estimation and control using

RFSs for formation flying of varying number of large collaborative
swarms with the inclusion of process and measurement noise.
The first contribution is accomplished by representing the swarm

state with an RFS, where RFSs are a collection of agent states, with
no ordering between individual agents, that can randomly change
through time [9]. For contribution two, several key divergence met-
rics are considered as control cost functions to drive the overall
swarm behavior to a desired configuration. The third contribution
is shown in Fig. 1. In Fig. 1, the first moment of the RFS models the
current RFS swarm configuration, ν, and the desired RFS swarm
configuration is defined by its first moment, νdes. The first moment
(or intensity discussed later on) contains information on the number
of agents and their states. The PHD filter is used to process measure-
ments from an unknown number of agents with defined spawn (Γ),
birth (B), and death (D) rates, and the distributional distance-based
cost “closes-the-loop” for RFS swarm control. Note that the number
of agents is not a controlled quantity and in fact this work assumes
that the number of agents is unknown and estimated under the RFS
formulation. For the last contribution, convergent control solutions
throughMPCand differential dynamic programming (DDP) are found
from GM-PHD filter estimates to advance control methods for swarm
applications (e.g., Clohessy–Wiltshire relative motion), which offers

improvements in computational efficiency and flexibility to uncer-
tainty. Although the topology underlying the work is centralized, the
formulation allows for a statistical model of the swarm and provides
improvements in computational efficiency and flexibility (similar to
the distributed optimal controlmethods [15–19]) when comparedwith
traditional centralized methods [7]. Although not presented in this
paper, the formulation in general can naturally be extended to decen-
tralized control, which is expected to provide decentralized commu-
nication and computational efficiency.
The paper is organized as follows. Section II introduces prelimi-

naries of the RFS theory relevant to this work. Section III presents the
RFS-based control problem formulation, which is a central contri-
bution of this work. Section IV proposes new distributional distance-
based cost functions to form the RFS control problem. Section V
discusses the dynamic models that will demonstrate the methods and
solutions discussed in the previous section. Section VI discusses
relevant simulation results involving the RFS control framework.
Section VII provides limitations to the RFS control work presented.
Lastly, in Sec. VIII, concluding remarks are provided.

II. Preliminaries

The swarm control approach developed in this work makes use of
RFS theory. The motivation for the use of RFS theory stems from its
application to multi-agent tracking [9,12]. We begin by presenting
the single-agent and multi-agent tracking problems. Additionally,
the multi-agent RFS-based tracking problem is used in this work to
“close-the-loop” for control of large collaborative swarms.
The discrete dynamics andmeasurementmodel for a time-varying,

single-agent system between discrete time steps k and k� 1 is given
by

xk�1 � Akxk � Bkuk � ϵk (1a)

zk � Hkxk �Dkuk � σk (1b)

where xk is the agent state, Ak is the system matrix, Bk is the control
input matrix, uk is the control input, zk is themeasurement vector,Hk

is the observation matrix, and Dk is the feed-forward matrix. The
process noise ϵk and measurement noise σk are zero mean Gaussian
noisewith variancesΣϵ andΣσ , respectively. Note that a single agent,

xk, is produced from a space X ⊆ Rdx , where dx is the agent state
vector size. Similarly, the single agent’s control input uk is produced
from a spaceU ⊆ Rdu , where du is the agent’s control vector size, and
zk is produced from a space Z ⊆ Rdz , where dz is the measurement
vector size.

A. Single-Agent Filtering

To estimate the dynamics for a single-agent system, it is usually
assumed that the state space follows a Markov process with a
transition density,

fkjk−1�xkjxk−1� (2)

Fig. 1 A block diagram of the RFS control and estimation architecture
in a closed loop.
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which is the probability density for the single-agent system to move
through its dynamics from k − 1 to k. For generality, the dynamic
system is partially observed as a likelihood function given by

gk�zkjxk� (3)

where the likelihood function is a probability density of observing the
system by obtaining measurements, zk. By using the observation
information from z1: k � �z1; : : : ; zk�, the posterior density estimate
at a time k is determined using the Bayesian recursion given by

pkjk−1�xkjz1: k−1� �
Z

fkjk−1�xkjxk−1�pk−1�xk−1jz1: k−1� dxk−1
(4a)

pk�xkjz1: k� �
gk�zkjxk�pkjk−1�xkjz1: k−1�R
gk�zkjxk�pkjk−1�xkjz1: k−1� dxk

(4b)

The posterior density contains the measurement update, and the
estimate for this single-agent system can be found using a minimum
mean-squared error method.

B. RFS Formulation

For the multi-agent tracking problem, a Bayesian recursion
through an RFS formulation with discrete-time dynamics is consid-
ered [12]. This theory addresses the decentralized estimation problem
for each agent in the formation. An ith agent in the swarm at time
step k has the challenge of estimating its state configuration

(xik ∈ X ⊆ Rdx ) and designing a control policy to achieve that state.

In thiswork, it is assumed that each agentwithin the swarm is identical,
and using unique identifiers on each agent is unnecessary. Using this
theory, the RFSmodels the uncertainty (i.e., the number of agents and
their spatial states) by an RFS [12]. The agents in the field may die,
survive, and move into the next state through dynamics, or appear
by spawning or birthing. The unknown number of agents in the field
is denoted by Ntotal�k� and may be randomly varying at each time

step by the union of the birth �Γk:∅ → fxik; xi�1
k ; : : : ; x

i�Nbirth�k�
k g�,

spawn �Bkj;k−1�xik−1�: xik−1 → fxik; xi�1
k ; : : : ; x

i�Nspawn�k�
k g�, and surviv-

ing �Skjk−1�xik−1�: xik−1 → xik� agents. Death is denoted by Dk�xik−1�:
xik−1 → ∅. The number of births,Nbirth�k�, and the number of spawns,

Nspawn�k�, are unknown quantities that vary at each time step. The RFS,

Xk, that describes the births, spawns, deaths, and surviving agents is
given by

Xk �
2
4 [

xi
k−1∈Xk−1

Skjk−1�xik−1�
3
5 ∪

2
4 [

xi
k−1∈Xk−1

Bkjk−1�xik−1�
3
5 ∪ Γk (5)

Xk � fx1k; x2k; : : : ; x
Ntotal�k�
k g denotes a realization of the RFS distribu-

tion for agents. The individual RFSs in Eq. (5) are assumed to be
independent from each other. For example, any births that occur at any
time step are independent from any surviving agents.At any time k, the
RFS probability density function can be written as

p�Xk � fx1k;x2k;: : : ;xnkg� � p�jXkj � n�p�fx1k;x2k;: : : ;xnkgjjXkj � n�
(6)

For a generalized observation process, the agents are either detected

�Θk�xik�: xik → zik� or not detected �Fk�xik�: xik → ∅�. Clutter or false
alarms �Kk:∅ → fz1k;z2k; : : : ; zNclutter

k g�, defined asmeasurements that

do not belong to any agents, are also present in the set of observations.

For a time step k, note that zik is the ith measurement obtained from a

space Z ⊆ Rdz . Therefore, RFS of measurements is described by

Zk � Kk ∪

2
4 [

xi
k
∈Xk

Θk�xik�
3
5 (7)

where the origins of each measurement are not known and unique
identifiers are not necessary. Again, the individual RFSs in Eq. (7) are
independent of each other, so measurements and clutter are obtained
independently from each other. With Xk and Zk defined over sets of
agents’ states and measurements, a Bayesian recursion for multistate
estimation can be applied.
On a similar note, the control sequence is also defined by anRFS in

the formUk � fu1k; u2k; : : : ; u
Ntotal�k�
k g; and an RFS probability density

given by

p�Uk �fu1k;u2k;: : : ;unkg��p�jUkj � n�p�fu1k;u2k;: : : ;unkgjjUkj � n�
(8)

because the realization of agents on the field to be controlled are

varying with time k. Similarly, note that uik is the ith agent’s control
input obtained from a space U ⊆ Rdu .
The RFS formulation of describing multi-agent states and obser-

vations can be described very similarly to Eqs. (2) and (3) for single
agent estimation, but the RFS states (Xk) and observations (Zk) are
used instead. To determine the multi-agent posterior density, a multi-
agent Bayes recursion is used given by

pkjk−1�XkjZ1:k−1� �
Z
fkjk−1�XkjXk−1�pk−1�Xk−1jZ1:k−1�μs�dXk−1�

(9a)

pk�XkjZ1: k� �
gk�ZkjXk�pkjk−1�XkjZ1: k−1�R

gk�ZkjXk�pkjk−1�XkjZ1: k−1�μs�dXk�
(9b)

where μs is a reference measure on a collection of all finite subsets
of state space [12]. From Eq. (9b), the integration occurs over all
possible locations of agents residing in the state space as well as
their number, which becomes a set integral. The recursion thus
contains uncertainty in the agent number and location brought
by detection uncertainty and measurement noise, respectively.
Measurements are not a direct function of the individual agents
due to explicitly incorporating clutter into the formulation. There-
fore, measurement to agent assignment is not explicitly required in
the formulation. By computing the set integral about all possible
number of agents and their states, the recursion can become intrac-
table, but solutions have been found for a small number of agents
using sequential Monte Carlo [25]. Fortunately, a PHD filter
approximation provides computational tractability for larger num-
bers of agents.

C. Probability Hypothesis Density Filter

Instead of propagating the multi-agent posterior density through
a multi-agent Bayes recursion, the PHD filter propagates the pos-
terior intensity function. The nonnegative intensity function v�ξ� is
a first-order statistical moment of the RFS state that represents the
probability of finding an agent, represented by a generalized state
variable ξ ∈ X , in a region of state space S ⊆ X . The estimated
number of agents in the region S is the integral of the intensity
function given by

E�jX ∩ Sj� �
Z
S
v�ξ� dξ (10)

where the expectation represents an RFS X intersecting a region S.
This gives the total mass or the number of estimated agents for
RFS X in a region S. The local maximum in intensity v�ξ� shows
the highest concentration of expected number of agents, which
can be used to determine an estimate for the agents in X at a time
step.
To further interpret the intensity function, consider a one-dimen-

sional example with four agents located with a mean and covariance
ofm � f1; 4; 7; 11g and Pi � 1: i � 1; : : : ; 4, respectively. This is a
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realization of X. Assuming that the intensity function corresponds to

a Gaussian mixture representation given by

ν�ξ� �
XNtotal

i�1

w�i�N �ξ;mi; Pi� (11)

where each weight w�i� � 1, ν�ξ� can be plotted against the gener-

alized state ξ given by Fig. 2. Note that this example is a specific case

in which the number of agents is equal to the number of Gaussian

mixtures by assuming w�i� � 1, but in general, this is not the case.

This is further discussed in the RFS Control Problem Formulation

section. The agent locations (X � f1; 4; 7; 11g) are located at indi-

vidual maxima of ν�ξ�. The integral of ν�ξ� in Eq. (10) is

E�jX ∩ Sj� �
Z
S
v�ξ� dξ �

Z
N �ξ; 1; 1� dξ�

Z
N �ξ; 4; 1� dξ

�
Z

N �ξ; 7; 1� dξ�
Z

N �ξ; 11; 1� dξ

� 1 � 1 � 1 � 1 � 4 (12)

which is the total mass or the total number of estimated agents of RFS

X in this state spaceS. It is also noted that the intensity function is not
a probability density because the integral over ξ does not generally
sum up into one. By estimating a potentially large, single intensity

function, ν�ξ�, an estimate of the number of agents and their states can

be obtained.
An RFS that is fully characterized by their intensity is the Poisson

RFS. By assuming that the RFS X is Poisson of the form p�jXj � n�
andp�fx1; x2; : : : ; xngjjXg � n�, approximate solutions can be deter-

mined by the PHD filter [9,12]. Propagation of the PHD can be

determined if the agents are assumed to be independent and identical

with the cardinality of the agent set that is Poisson distributed [12].

Clutter and birth RFSs are assumed to be Poisson RFSs. It is noted that

the assumptions made by the PHD filter are strong assumptions for

swarming robotics. However, this is a good starting point for an initial

proof-of-concept study. For a time step k, the PHD recursion for a

general intensity function vk�ξ� from the previous generalized state

ζ ∈ X is given by

�vk�ξ� � b�ξ� �
Z

ps�ζ�f�ξjζ�v�ζ� dζ �
Z

β�ξjζ�v�ζ� dζ (13)

whereb�ξ�,ps�ζ�, andβ�ξjζ� are the agents’ birth, survival, and spawn
intensity, and f�ξjζ� is the target motion model [12]. The bar on �vk�ξ�
denotes that the PHD has been time-updated. For the measurement

update, the equation is given by

vk�ξ� � �1 − pd�ξ�� �vk�ξ� �
X
z∈Zk

pd�ξ�g�zkjξ� �vk�ξ�
c�z� � R

pd�ζ�g�zkjζ� �vk�ζ� dζ
(14)

where pd�ξ�, g�zkjξ�, and c�z� are the probability of detection, like-
lihood function, and clutter model of the sensor, respectively [12].
By using this recursion, the swarm probabilistic description can be
updated. The recursion itself avoids computations that arise from the
unknown relation between agents and its measurements, and that the
posterior intensity is a function of the generalized state space. Unfortu-
nately, Eqs. (13) and (14) do not contain a closed-form solution and the
numerical integration suffers from higher computational time as the
state increases due to an increasing number of agents.

III. Random Finite Set Control Problem Formulation

With the introduction of RFS theory from multi-agent tracking
applications, a natural extension of RFS theory to the swarm control
problem is appealing. We begin the discussion on how the swarm is
modeled using the RFS intensity function and present the RFS
control problem with the objective based on this model.
The PHD filter recursion given byEqs. (13) and (14), asmentioned

before, can be intractable as the state space increases. Fortunately, a
closed-form solution exists if it is assumed that the survival and
detection probabilities are state independent (i.e., ps�ξ� � ps and
pd�ξ� � pd), and the intensities of the birth and spawn RFSs are
Gaussian mixtures initially presented in Eq. (11).
With the Gaussian mixture assumption, the current and desired

intensities are defined as

�ν�ξ; k� ≜
XNf

i�1

w�i�
f N �ξ;mi

f; P
i
f� � νb�ξ; k� � νps

�ξ; k� � νβ�ξ; k�

(15)

νdes�ξ; k� ≜ g�ξ� ≜
XNg

i�1

w�i�
g N �ξ;mi

g; P
i
g� (16)

wherew�i� are theweights andN �ξ;mi; Pi� is the probability density
function of an ith multivariate Gaussian distribution with a mean and
covariance corresponding to the peaks and spread of the intensity,
respectively. The terms Nf and Ng are the total number of multivari-

ate Gaussian distributions in the current and desired intensities,
respectively. It is assumed that the desired Gaussian mixture inten-
sity, νdes�ξ; k�, is known. Equation (15) includes the summation of
the individual birth (νb�ξ; k�), spawn (νβ), and survival (νps

�ξ; k�)
Gaussian mixture intensities, which simplify to another Gaussian
mixture. Note that closed-form solutions using Gaussian mixtures
exist for caseswithout the state-independent assumption.Additionally,P

i�1
Nf

w�i�
f � Ntotal�k� and

PNg

i�1 w
�i�
g � �Ntotal�k�, where �Ntotal�k� is

the desired number of agents. The current and desired intensity func-
tions ν�ξ; k� and νdes�ξ; k� are in terms of the agents’ state. The swarm
intensity function can be propagated through updates on the mean and
covariance of the Gaussian mixtures as given by

mi
f;k�1 � Akm

i
f;k � Bku

i
f;k (17)

Pi
f;k�1 � AkP

i
f;kA

T
k � Σϵ (18)

The agents’ states x are incorporated in themean and covariance of the
Gaussian mixture intensity. Then given the Gaussian mixture inten-
sities assumption, a control variable is calculated for each component

uif;k. Additionally, each Gaussian mixture component may represent

many agents because the intensity function integrates to the total
number of agents, and the number of agents on the field is found usingPNf

i�1 w
�i�
f � Ntotal�k�. So control is directly applied to the Gaussian

mixture, which may represent single or multiple agents. The weightsFig. 2 The intensity for a 1D, 4-agent problem using Eq. (11).
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can be scaled as the number of agents in the swarm change while not
affecting the optimal solution found for swarm control. This detail is
emphasized in the Results section. Note that although linear dynamics
are used, the dynamics can be modeled as a nonlinear function of
the state.
The measurement update is also closed form given by the intensity

νk�ξ;k��f�ξ���1−pd�ξ���νk�ξ��
X
z∈Zk

XNf

j�1

w�j�
k N

�
ξ;m�j�

kjk�z�;P�j�
kjk
�

(19)

where

w�j�
k � pd�ξ�w�j�

f q�j��z�
K�z� � pd�ξ�

PNf

l�1 w
�l�
f q�l��z�

(20a)

m�j�
kjk�z� � m�j�

f � K�j�
�
z −Hkm

�j�
f

�
(20b)

P�j�
kjk �

�
I − K�j�Hk

�
Pi
f (20c)

K�j� � Pi
fH

T
k

�
HkP

i
fH

T
k � Σσ

�−1
(20d)

q�j�k �z� � N
�
z;Hkm

�j�
f ;Σσ �HkP

i
fH

T
k

�
(20e)

which follow closely to the Kalman filter measurement update equa-
tions. Using RFS theory, it is assumed that the individual swarm
agents form aGaussianmixture intensity function inwhich themeans
and covariances of the Gaussian mixture are propagated and con-
trolled. An optimal control problem is defined by minimizing the
swarm control effort and distance from the desired swarm formation.
The objective function for this optimal control problem is defined as

J�u1; : : : ; uT� �
XT
k�1

uTk Ruk �D�ν�ξ; k�; νdes�ξ; k�� (21)

where νdes�ξ; k� is the desired formation, R is the positive definite
control weight matrix, and the uk are the control effort for the
Gaussian mixture intensities shown in Eq. (17). Both ν�ξ; k� and
νdes�ξ; k� are defined over the complete state space that include
position and velocity parameters. The distance between Gaussian
mixtures, D�⋅; ⋅�, has several closed-form solutions, and it has been
used previously to define an objective function for path planning of
multi-agent systems [19].
The key feature of the RFS control problem is that it can allow for a

unified representation for swarming systems. This unified represen-
tation is achieved by minimizing the RFS objective function,
Eq. (21), about the swarm intensity statistics given by Eqs. (17)
and (18). Thus, it can handle multifidelity swarm localization and
control between the current and desired spatial distributions. The
swarm is treated probabilistically, and the bulk motion is modeled,
which allows the theory to handle large numbers of indistinguishable

units with unknown swarm size. This reduces the dimensionality of
the statewhile enabling complex behavior. Naturally, theRFS control
problem is formulated to enable complex decision making through
RFS theory.
Two different scenarios can be applied by “closing-the-loop”

betweenRFS control and the PHD filter shown in Fig. 1. Specifically,
a single observer can be used to estimate the entire state of the swarm

by collectingmeasurements of each agent in the field. This provides a
centralized approach to obtaining estimates and controlling the
swarm throughRFSs. The other option is to run a local PHD observer
on each agent to estimate the state of the swarm. In this case, the
observer is limited to an agent’s field of view, but it is able to make
localized or decentralized control decisions usingRFS. For thiswork,

centralized RFS control is explored by using the complete topology
obtained from the PHD filter.

IV. Distributional Distance-Based Cost

The control objective for the RFS formulation of agents with an
unknown distance between the intensities is provided by Eq. (21).
The distance metric can be defined using several closed-form sol-
utions for Gaussian mixtures. Then, the corresponding optimal con-
trol problem is formulated using several closed-form methods
discussed in the next section.

A. Cauchy–Schwarz Divergence

The Cauchy–Schwarz divergence is based on the Cauchy–
Schwarz inequality for inner products of RFS, and it is defined for
two RFS with intensities f and g given by

DCS�f; g� � − ln
� hf; gi
kfkkgk

�
(22)

where hr�ξ�; t�ξ�i ≜ ∫ r�ξ�t�ξ� dξ is the L2
2 inner product over the

generalized RFS intensities r�ξ� and t�ξ� [26]. The argument of the
logarithm is nonnegative because probability densities are nonneg-
ative, and it does not exceed one by the Cauchy–Schwarz inequality.
The Cauchy–Schwarz divergence can be interpreted as an approxi-
mation to the Kullback–Leibler divergence but has a closed-form
expression for Gaussian mixtures [26]. This is useful for calculating
the distance between two-point processes represented by intensity
functions. By substituting the intensities from Eqs. (19) and (16) for
f and g, respectively, the Cauchy–Schwarz divergence between
two Poisson point processes with Gaussian mixture intensities,
DCS�f; g�, is simplified to

DCS�f; g� �
1

2
ln
�XNf

j�1

XNf

i�1

w�j�
f w�i�

f N
�
mj

f;m
i
f; P

i
f � Pj

f

��

� 1

2
ln
�XNg

j�1

XNg

i�1

w�j�
g w�i�

g N
�
mj

g;mi
g; P

i
g � Pj

g

��

− ln
�XNg

j�1

XNf

i�1

w�j�
g w�i�

f N
�
mj

g;mi
f; P

i
g � Pj

f

��
(23)

Note that in the control formulation used, only ν�ξ; k� is assumed to
depend on the control u. Therefore, the term that depends only on
νdes�ξ; k� is omitted from the objective function since νdes�ξ; k� does
not depend on u.
Figure 3a shows the surface plot using the Cauchy–Schwarz

divergence for four Gaussian mixtures in the swarm at an initial time
instance that designates the distributional distance-based cost of the
objective function. The four Gaussian mixtures start with initial
conditions of (�3, �3) in a square grid. The desired intensity is set
as (�1, �1) in a square grid. From the surface plot, each initial
intensity has hills and the desired intensity has valleys. The goal is
to minimize the objective function; thus, an optimization method
(e.g., the quasi-Newton method) determines a control solution that
minimizes the objective. Because the desired intensity in Fig. 3a is
located at a minimum in the objective surface plot, the optimization
method finds a control input to move toward that point. The opposite
occurs with the hills (current intensity). The minimization finds a
control solution that moves away from the hills, and thus gives
individual current Gaussian mixtures collision avoidance attributes.
Therefore in the minimization of the objective function, each
Gaussian mixture will repel each other while moving toward the
desired Gaussian mixtures through time. Although the Cauchy–
Schwarz divergence has a repelling effect, collision avoidance is
not guaranteed, but the distance does encourage collision-reducing
trajectory solutions. If the initial intensity is too large compared with
the desired intensity, it will take longer for the fourGaussianmixtures
to converge to the desired values or diverge due to the optimization
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getting stuck in local minima (the flat plane). Also, the repelling
effect due to the hills are relatively small. Thus, the Cauchy–Schwarz
divergence may not be the fastest converging solution for the objec-
tive function minimization.

B. L2
2 Distance

Alternatively, the distance between two Poisson point processes
with Gaussian mixture intensities can be determined by using the L2

2

distance between the intensities. The L2
2 distance is given by

DL2
2
�f; g� �

Z
�f − g�2 dξ � kf − gk2 (24)

where the close-form solution for Gaussian mixture intensities is
simplified to

DL2
2
�f; g� �

XNf

j�1

XNf

i�1

w�j�
f w�i�

f N
�
mj

f;m
i
f; P

i
f � Pj

f

�

�
XNg

j�1

XNg

i�1

w�j�
g w�i�

g N
�
mj

g;mi
g; P

i
g � Pj

g

�

− 2
XNg

j�1

XNf

i�1

w�j�
g w�i�

f N
�
mj

g;mi
f; P

i
g � Pj

f

�
(25)

TheL2
2 distance is stationary (i.e., gradients are zero)when intensities

f and g are equal. That is, the cost is minimum when the target g is
reached from any intensity f.

The L2
2 distance follows the property of the Bregman divergence,

which has an additional property of convexity [27]. The distance,

given by

DF�f; g� � F�f� − F�g� − h∇F�g�; f − gi (26)

is convex ifF�⋅� is strictly convex and continuously differentiable on
a closed convex set [27]. Strictly convex functions are listed in [27].

For this work, the squared Euclidean distanceF�f� � f2 was used to
generate the Bregman divergence given by

DF�f; g� � hf; fi � hg; gi − 2hf; gi (27)

which is in the same exact form of Eq. (25). Figure 3b shows the

surface plot using theL2
2 distance for a 4 Gaussianmixture swarm for

the same example as the Cauchy–Schwarz divergence. The initial

intensity has more defined hills compared with the Cauchy–Schwarz

divergence. Thus, the initial Gaussian mixtures have a stronger

repelling effect upon one another. Also, the desired Gaussian mix-

tures have large valleys that create a large attraction effect for each

initial Gaussian mixture to move to. Thus, the optimization solution

will be faster in the L2
2 distance case. Unfortunately, the L

2
2 distance

suffers from a similar issue to the Cauchy–Schwarz divergence. If the

initial conditions increase farther away from the desired intensity, the

optimization may take much longer or get stuck in local minima due

to a flat surface away from the desired intensity.
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a) Cauchy-Schwarz divergence
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Fig. 3 a–c) Surface plots with the corresponding distributional distance-based costs. The current and desired intensity are initialized at (�3, �3) and
(�1,�1), respectively.
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C. L2
2 Distance with Quadratic Term

The issue of convergence remains for the L2
2 distance when the

initial states are farther away from the desired intensity. To achieve

faster convergence, an additional term is added to the L2
2 distance to

shape the gradient descent through a quadratic term as given by

DL2
2
mod�f; g� � DL2

2
�f; g�

− α
XNg

j�1

XNf

i�1

w�j�
g w�i�

f ln
�
N
�
mj

g;mi
f; P

i
g � Pj

f

��

(28)

where α is a fixed or changing parameter. Unfortunately, adding the

quadratic term to theL2
2 distance does notmake the objective function

stationary atf � g. To alleviate this issue, theα parameter is included

with the quadratic term to relax the contribution of the gradient to

the L2
2 stationary point. By substituting Eq. (25) into Eq. (28), the

equation becomes

DL2
2
mod�f; g� �

XNf

j�1

XNf

i�1

w�j�
f w�i�

f N
�
mj

f;m
i
f; P

i
f � Pj

f

�

�
XNg

j�1

XNg

i�1

w�j�
g w�i�

g N
�
mj

g;mi
g; P

i
g � Pj

g

�

− 2
XNg

j�1

XNf

i�1

w�j�
g w�i�

f N
�
mj

g;mi
f; P

i
g � Pj

f

�

− α
XNg

j�1

XNf

i�1

w�j�
g w�i�

f ln
�
N
�
mj

g;mi
f; P

i
g � Pj

f

��
(29)

Note that this term is referred as quadratic, although it may be more

appropriate to call it quadratic-like. Figure 3c shows the surface plot

using Eq. (29) for the same 4 Gaussian mixture swarm used in the

Cauchy–Schwarz divergence. Compared with the L2
2 distance, the

initial and desired intensities provide the hills and valleys necessary

to obtain convergence. However, as the initial intensity move out-

ward, the surface map decreases in a quadratic fashion instead of

staying flat. This prevents the optimization from converging to a local

minima. Instead, the additional quadratic term allows convergence to

the desired intensity (global minima). Thus, the optimization can

occur at any point to reach convergence.
Traditional LQR-based solutions are not applicable to the mini-

mization of the objective function, Eq. (29), because theL2
2 terms are

nonquadratic [28]. The minimization of the objective function in

discrete time is

min
uk;k�1;: : : ;T

J�u1; : : : ; uT�

�
XT
k�1

uTk Ruk �
XNf

j�1

XNf

i�1

w�j�
f;kw

�i�
f;kN

�
mj

f;k;m
i
f;k; P

i
f;k � Pj

f;k

�

�
XNg

j�1

XNg

i�1

w�j�
g;kw

�i�
g;kN

�
mj

g;k;m
i
g;k; P

i
g;k � Pj

g;k

�

− 2
XNg

j�1

XNf

i�1

w�j�
g;kw

�i�
f;kN

�
mj

g;k;m
i
f;k; P

i
g;k � Pj

f;k

�

− α
XNg

j�1

XNf

i�1

w�j�
g;kw

�i�
f;k ln

�
N
�
mj

g;k;m
i
f;k; P

i
g;k � Pj

f;k

��
(30)

Subject to: mi
f;k�1 � Akm

i
f;k � Bku

i
f;k;

Pi
f;k�1 � AkP

i
f;kA

T
k � Σϵ (31)

where uk � ��u1f;k�T; : : : ; �u
Nf

f;k�T �T is the collection of all control

variables. Therefore, control solutions are found by either using
DDP, where the objective function is quadratized by taking a Taylor
series approximation about a nominal trajectory, or using optimiza-
tion techniques (e.g., the quasi-Newton method), where the non-
quadratic objective function is used directly to find an optimal
control solution. The number of agents is not a controlled quantity
and can be normalized out of the objective function [this can be
shown by examining Eq. (30)]. In this work we do not desire to
control the number of agents but rather control individual agents to
track the desired concentration or distribution of agents. Under the
proposed formulation, the distribution of agents is indeed a control-
lable quantity using the control inputs defined in Eq. (30).
To obtain efficient control solutions for large time horizons, MPC

is used directly with the control techniques. Quasi-Newton handles
the nonlinearities in the objective function, and it provides an initial
basis in comparing the time-history responses for RFS control using
different distributional distance-based costs. Next, RFS control is
extended to MPC with DDP, which approximates (quadratizes) the
objective function for value iteration to provide quick and reliable
convergence to locally optimal control solutions. DDP and MPC are
discussed in theAppendix. The RFS control solution is demonstrated
on spacecraft swarm relative motion simulation with and without
perfect information combining the GM-PHD filter and DDP (formed
as iterative linear quadratic regulator [ILQR]) in a closed-loop fash-
ion given in Fig. 1. In a single loop, the RFS control is determined
from optimizing the objective containing the distributional distance-
based cost between the estimate and the desired intensity; the swarm
dynamics are updatedwith new spawn, birth, or death of agents in the
field; and measurements including clutter are incorporated into the
overall system before a GM-PHD filter estimate is determined for
control again. From this RFS-based architecture, the ability to deter-
mine an estimate of the cardinality and states of the swarm that is used
directly for control using ILQR is realized.
As previously discussed for this work, the topology underlying the

RFS control is complete and uses the complete graph in a centralized
manner. Thus, the computational load for control of the swarm is
centralized. It is computationally feasible to perform centralized
control from a single agent, although a separate ground station may
be necessary to perform difficult control computations.

V. Dynamic Models

To show viability of optimal swarm control via RFS, an acceler-
ation model and a relative motion model, both linear systems, are
used to describe rover and satellite dynamics, respectively. The
dynamic equations of individual agents are used here to describe
the dynamics of the Gaussian mixture components (means) given by
the control objective Eqs. (30) and (31). Because linear dynamics are
used, the DDP term can be expressed as ILQR.

A. Acceleration Model

On a 2D plane, the linear time-invariant system of each agent can
be described by the continuous state and control matrices

Ac �

2
664
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

3
775; Bc �

2
664
0 0

0 0

1 0

0 1

3
775 (32)

and a state vector x � �x; y; _x; _y�T. Both x and y are defined to be the
2D positions of the agent, respectively. The Ac and Bc matrices are
discretized along a fixed time interval using a zero-order hold
assumption for the control (i.e., control is held constant over the time
interval). This results in discretized A and B matrices for the state-
space equation

xk�1 � Axk � Buk (33)
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B. Relative Motion Using Clohessy–Wiltshire Equations

For a spacecraft in low Earth orbit, the relative dynamics of each
spacecraft (agent), to a chief spacecraft in circular orbit, is given by
the Clohessy–Wiltshire equations [29]

�x � 3n2x� 2n _y� ax (34a)

�y � −2n _x� ay (34b)

�z � −n2z� az (34c)

where x, y, and z are the relative positions in the orbital local-vertical
local-horizontal (LVLH) frame and ax, ay, and az are the acceler-

ations in each axis, respectively. The variable n is defined as the
orbital frequency given by

n �
�����
μ

a3

r
(35)

where μ is the standard gravitational parameter and a is the radius
of the circular orbit. The continuous state-space representation is
given by

Ac �

2
6666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0

3
7777775
; Bc �

2
6666664

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

3
7777775

(36)

with a state vector x � �x; y; z; _x; _y; _z� and a control input

u � �ax; ay; az�T . These equations are discretized similarly to the

acceleration model discussed previously.

VI. Results

The first goal is to generalize RFSs for control of large collabora-
tive swarms to form and test behaviors of several different RFS-based
distancemeasures for control. Using the accelerationmodel, which is
discretized from Eq. (32) to Eq. (33), a 4 Gaussian mixture swarm on
a 2D plane is initialized in a square grid where the mixtures 1, 2, 3,
and 4 are defined counterclockwise starting on the first quadrant.
With the 4 Gaussian mixture swarm, three different test cases are
implemented to bring the intensity to the target trajectories and to test
the distributional distance-based costs and control theory involved

from the RFS formulation. The first test case compares the L2
2

distance with varying initial conditions in a square grid with the L2
2

plus quadratic distance with four desired Gaussian mixtures located

at (�1,�1) using quasi-NewtonMPC.AnL2
2 plus quadratic distance

comparison is also done using ILQR. The last two cases present the

quasi-Newton MPC and ILQR control using the L2
2 distance with a

quadratic term and varying desired Gaussian mixtures. For case 2,
three target destinations are located at (�1, 1) and (−1,−1). Lastly, in
case 3, five target destinations are located at (�1, �1) and (0, 0).

The second goal is to form and apply multi-agent estimation and
control of large collaborative swarms in the presence of unknown
number of agents, clutter, and noise using RFS theory. This is applied
directly to the satellite relative motion problem using the Clohessy–
Wiltshire equations. Specifically, the L2

2 plus quadratic distance is
used for spacecraft formation flight. A 77Gaussian mixture swarm is
initialized uniformly random between −1 and 1 on a 2D plane.
Assuming that the spacecraft swarm is at lower Earth orbit, the goal
for the spacecraft is to track a rotating star pattern moving counter-
clockwise at an orbital frequency of n.
For these two separate examples, it should be emphasized that each

Gaussian mixture component may represent many agents because
the intensity function integrates to the total number of agents. For the
initial example, many agents are represented by each Gaussian

mixture, and the number of agents on the field must be calculated

using
PNf

i�1 w
�i�
f � Ntotal�k�. So individual agents follow the control

law that is applied to their specific Gaussian mixture. As mentioned
before, the weights of the desired RFS do not affect the optimal
solution, and therefore, for simplicity, this initial goal uses weights of
wk � 1 for all k. For the second example, which incorporates the
Clohessy–Wiltshire relative motion model, the perfect and imperfect
information scenarios assume that the number of agents is equal to the

number of Gaussian mixtures (i.e.,w�i�
f � 1 for all k) and the number

of agents is estimated from the GM-PHD filter at each time step k,
respectively. Thus, the individual agents are controlled directly.

A. Acceleration Model

1. Case 1: L2
2 Versus L

2
2+Quadratic Term, Four Desired Gaussian

Mixtures

For case 1, four swarm Gaussian mixtures are controlled to move
toward the desired intensity at initial conditions farther away (square
grid at (�3, �3)) and closer to (square grid at (�1.5, �1.5)) the
desired intensity as shown by mean responses given by the black-
dashed and red-dotted lines in Fig. 4b, respectively. From the trajec-
tory snapshots given by Fig. 4a1, initial conditions that are far from
the desired intensity do not have a converging control solution. From
the surface visualization in Fig. 3b, the general plane is flat in areas
away from the desired targets and the current agents’ states. There-
fore, optimization using quasi-NewtonMPC ismore difficult in these
flat areas andmay not converge to a solution. If the current intensity is
initialized much closer to the desired intensity as shown in Fig. 4a2,
the flatness in the general plane is minimal, and the optimization step

in quasi-Newton MPC converges to a solution. By using the L2
2

distance, converging control solutions can only be found for initial

conditions and target destinations that are close. For the L2
2 plus

quadratic distance, four swarm Gaussian mixtures move toward the
four desired Gaussian mixtures given by the blue-solid lines (mean
responses) in Fig. 4b. Figure 4c shows the trajectory snapshots and
final states of each of the swarm Gaussian mixtures during the
simulation. The target destinations are plotted as black x’s. The red
dots are the individual swarm agents that form the Gaussian mixture
intensities. From the figure, all four mixtures converge to the desired
mixtures in approximately 0.17 s and approximately 0.03 of steady-
state error between the mixtures’ position to the desired intensity. In

comparison to only the L2
2 distance, Fig. 4b shows that for small

distances between the initial state and the desired intensity, the L2
2

distance is sufficient for state convergence, but as the distance

increases, the L2
2 distance diverges away. By adding the quadratic

term toL2
2, the optimization step can directly determine theminimum

for the control solution shown in Fig. 3c. Therefore, the desired
intensity attracts the current swarm intensity at distances that fail

for only L2
2 distance given by Fig. 4b.

TheL2
2 plus quadratic distance is also extended to ILQR. Figure 5a

shows the trajectory snapshots and final states of the simulation. All
four Gaussian mixtures converge to the desired intensity in approx-
imately 0.03 s and approximately 0.01 of steady-state error as shown
in Fig. 5b. In this figure, the x responses, y responses, and the desired
intensity are given by blue, green, and red lines, respectively. The
entire simulation horizon is used to provide the prediction horizon for
the ILQR trajectory. Even with a quadratic approximation of the
objective function, ILQR is able to find control solutions that follow

the L2
2 plus quadratic characteristics that are presented using quasi-

Newton MPC.

2. Case 2: Three Desired Gaussian Mixtures

Case 2 illustrates the effect of three desired Gaussian mixtures on
the final trajectories of the four swarm Gaussian mixtures using
quasi-Newton MPC and ILQR. Using quasi-Newton MPC, the cur-
rent swarm intensity converges as given by the position time history
in Fig. 6b. The trajectories for mixture 1 and mixture 3 reach their
target, but mixtures 2 and 4 reach the third target with approximately
0.42 and 0.50 of steady-state error with 0.20 and 0.16 s of settling
time, respectively. From Fig. 6a, it can be visually shown where the
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swarm intensity is located relative to the desired intensity at each time

step. The results obtained follow directly from theRFS control theory

using the L2
2 plus quadratic distance term. By using this L2

2 with a

quadratic term in the objective function, the current intensity will

attract toward the desired intensity while repulsing away from each

other. This can be seen in the surfacemap shown in Fig. 3c, where the

hills are areas of repulsion and valleys are areas of attraction. Thus,

for quasi-Newton MPC, mixtures 2 and 4 are attracted to the same

target, but they stay away from each other. This case is also extended

to ILQR. Figures 7a and 7b show the trajectory snapshots and time

history of the same swarm using ILQR. As discussed previously, due

to the approximation of the objective function, the mixtures 2 and 4

converged in 0.03 and 0.15 s with approximately 0.01 and 0.42 of

steady-state error. By comparing the time histories in Figs. 7b and 6b,

the fourth intensity using ILQR follows very similarly to the MPC

method. Therefore, there is a degree of accuracy in the approximation

a) L2 quadratic distance trajectory2 b) L2 quadratic distance position time history2

Fig. 5 Case 1: 4Gaussianmixture swarm controlled to four desiredGaussianmixtures via ILQR. a) Trajectories for the swarm; b) position time history.

a) L2 distance trajectory2
b) L2 + quadratic distance position time history2 , L2

2

c) L2 quadratic distance trajectory2 + 

Fig. 4 Case 1: a, c) controlled trajectories using the acceleration model and quasi-Newton MPC; b) intensity mean responses from the trajectories.
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of the objective function to minimize for ILQR that allows the
attraction of individual mixtures to the desired intensity while repuls-

ing away from each other.

3. Case 3: Five Desired Gaussian Mixtures

Case 3 shows the effect of five desired Gaussian mixtures with the

four swarm Gaussian mixtures using quasi-NewtonMPC and ILQR.
Figure 8b shows the time histories for all the mixtures using quasi-

NewtonMPC. The trajectory snapshots of the Gaussian mixtures are
visually shown relative to the desired Gaussian mixtures in Fig. 8a.

From Fig. 8b, the intensity converges in 0.19 s with a steady state

error of approximately 0.17, which follows the theory as expected.
Because the swarm Gaussian mixtures are far from each other, the

effects of repulsion are minimal. Also, the mixtures are attracted to

the four desiredGaussianmixtures thatmake up a square, but they are
also attracted to the desiredGaussianmixture at the origin. This is due

to theminimization of the objective function that has both anL2
2 and a

quadratic term where the individual mixtures will attract toward the

desired intensity. Because there is an additional desired Gaussian

mixture at the origin, all four swarm Gaussian mixtures are affected
by the origin as they are moving toward the four square desired

Gaussian mixtures. Thus, compared with case 1 with only four
desired Gaussian mixtures, the swarm intensity, in this case, will

have a steady-state error due to the attraction to the additional desired

Gaussian mixture. ILQR is also used to show how five desired

Gaussian mixtures affect the quadratization of the L2
2 plus quadratic

objective function. Figures 9a and 9b show the trajectory snapshots
and time history, respectively. The swarm converges in 0.03 s and
0.12 of steady-state error. This steady-state error shows the attraction
of the desired Gaussian mixture at the origin, which follows directly

from results from the L2
2 plus quadratic distance given by Fig. 3c.

B. Clohessy–Wiltshire Relative Motion

1. Relative Motion with Perfect Information

For the spacecraft relative motion, 77 Gaussian mixtures are
initialized (birthed) from uniformly random initial conditions
between −1 and 1 m from the chief satellite in a circular orbit. This
is similar to the setup in [30] and follows Fig. 1 without the Swarm
Estimation block because it is assumed that the state information
received throughout the simulation is perfect. Additionally, no agent
dies or spawns during the simulation. The goal is to control the
spacecraft into a moving star-shaped pattern. Both the spacecraft
and the rotating star pattern have an orbital frequency of n �
0.00110678 rad∕s. Figure 10a shows the trajectory snapshots of
the spacecraft (contours) and the desire Gaussian mixtures (black

x’s) using ILQR and the L2
2 plus quadratic distance. The Gaussian

mixtures, represented by each contour, can be safely assumed to
contain a single agent. As time progresses, agents converge quickly
into the formation and maintains the formation for the simulation
time of 40 min. A few agents lag behind the desired targets due to the
repelling effect from their proximity to other agents in the swarm.
Figure 10b shows the acceleration for five agents to maintain the star

a) L2 quadratic distance trajectory+2 b) L2 quadratic distance position time history+2

Fig. 6 Case 2: 4 Gaussian mixture swarm controlled to three desired Gaussian mixtures via quasi-Newton MPC. a) Trajectories for the swarm;

b) position time history.

a) L2 quadratic distance trajectory+2 b) L2 quadratic distance position time history+2

Fig. 7 Case 2: 4Gaussianmixture swarmcontrolled to three desiredGaussianmixtures via ILQR. a)Trajectories for the swarm;b) position timehistory.
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a) L2 quadratic distance trajectory+2 b) L2 quadratic distance position time history+2

Fig. 9 Case 3: 4 Gaussianmixture swarm controlled to five desiredGaussianmixtures via ILQR. a) Trajectories for the swarm; b) position time history.

a) Clohessy-Wiltshire trajectory snapshots b) Control input

Fig. 10 Seventy-seven Gaussian mixture spacecraft swarm controlled to a rotating star target via ILQR with perfect information. a) Trajectories;
b) acceleration for five agents.

a) L2 quadratic distance trajectory+2 b) L2 quadratic distance position time history+2

Fig. 8 Case 3: 4Gaussianmixture swarm controlled to five desiredGaussianmixtures via quasi-NewtonMPC. a) Trajectories for the swarm; b) position
time history.
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formation. From these results, control using RFS can be expanded to
physical spacecraft systems and can be used for moving targets.

2. Relative Motion with Imperfect Information

Next, the imperfect information (i.e., process, measurement, and
clutter noise) is included in the simulation. To control with imperfect
information, theGM-PHD filter is used in the SwarmEstimation block
in Fig. 1 with the RFS control method. TheGM-PHD filter determines
the estimates of the intensities that are used for RFS control. The
problem was altered to be more complicated by including differing
birth and death times for the agents. With the addition of imperfect
information and the added complication of changingnumber of agents,
using the GM-PHD filter provides accurate estimates of the agents
through time, which allows for RFS control in the loop. Figure 11a
shows the cardinality or number of agents in the swarm through time.
The solid line is the truenumberof agents, and the dotted line shows the
estimate at each time step.At each time step, the agent estimates are fed
through the RFS control using ILQR to obtain a control input for each
agent. Then, the estimates are controlled and fed back to the GM-PHD

filter at the next time step. Figure 11c shows the snapshots of the

controlled agents (black circles) and targets (green stars) at each time

step. Figure 11b shows the time history for the true agents (solid lines),

estimated agents (black dots), and overall measurements (gray x’s).

From Fig. 11a, as the true agents die or birth initially, estimates of the

occurrence are accurate. As the number of agents increases, the

estimates become less accurate. This is because the GM-PHD filter

only uses the first-order statistical moment to propagate the cardinality

information of agents [31]. The cardinality distribution is unknown,

and it is approximated as a Poisson distribution. For a Poisson dis-

tribution, the mean and covariance are equal. Therefore, if there are a

larger number of agents in the field, the corresponding covariance of

the cardinality distribution is also higher. Although the estimates are

less accurate at high cardinality, the individual agents are controlled

successfully intoa star pattern in the presenceof imperfect information.

This is shown directly in Figs. 11c and 11b. As agents die or birth, the

corresponding control dies or births with it, and due to the L2
2 plus

quadratic distance, agents are flexible tomove intodifferent parts of the

formation.

a) Cardinality b) Time history

c) Clohessy-Wiltshire trajectory snapshots

Fig. 11 c) The seventy-seven-agent spacecraft swarm controlled via ILQR to a rotating star target with imperfect information. a, b) Plot cardinality and
the tracks, respectively.
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VII. Limitations

RFS control for large collaborative swarms provides control sol-
utions that are adaptive to varying swarm size (number of agents) and
desired targets in the presence of process, measurement, and cardi-
nality uncertainty, but several limitations currently exist. First, agents
are assumed to be identical and unlabeled. Thus, this formulation
does not provide control to a specific agent in the field. Secondly,
control optimality of the solutions shown in this work is demon-
strated through empirical results, but this work lacks theoretical
proofs of robustness and optimally. Thirdly, RFS control was applied
using a complete topology (centralized control); therefore, computa-
tional inefficiencies do exist. But the authors believe that the RFS-
based method can be generalized and extended to decentralized
applications. Lastly, no strict collision avoidancemethods are applied
for this problem. Although repelling behavior between agents exists
in the objective function, no strict collision avoidance constraints are
applied. Thus, this provides many areas for future work.

VIII. Conclusions

The objective of this paper is to formulate the multi-agent estima-
tion and control background for swarming formations using the
GM-PHD filter and either quasi-Newton MPC or ILQR from RFS
theory. The RFS formulation is used to control the concentration of
agents to match a desired distribution. By setting up the problem
using information divergence to define the distance between the
swarm RFS and the desired target configuration, an optimal control
problem is found that tracks a linear system with a nonquadratic
objection function through the use of quasi-NewtonMPC and ILQR.
The results show that the approach can be adaptive to varying swarm
size and desired targets. Lastly, control using RFSs is also applied to
the spacecraft relativemotion problemby “closing-the-loop”with the
GM-PHD filter.With the inclusion of process andmeasurement noise
and uncertainty in the large number of agents in the field, a converg-
ing control solution is found obtained from estimates from the
GM-PHD filter. These examples show the benefit of control using
RFS by overcoming the curse of dimensionality.

Appendix A: Differential Dynamic Programming

Finite-horizon LQR control is first discussed to provide the neces-
sary background for DDP discussed afterward.

A.1. LQR Finite-Horizon Optimal Control Problem

The linear quadratic regulator problem is defined by a discrete
time-varying system given by

xk�1 � Akxk � Bkuk � ϵk (A1)

where ϵk is Brownian process noise. For the finite horizonN, the total
cost is calculated from an initial state x0 and using the control
sequenceU � �uk; uk�1; : : : ; uN−1� applied to the dynamics given by

J�x0; U� �
XN−1

k�0

l�xk;uk� � lf�xN� (A2)

where l�uk; uk� is the running cost and lf�xN� is the terminal cost.

The LQR costs are quadratic given by

l�xk; uk� �
1

2

2
664

1

xk

uk

3
775

T
2
664

0 qTk rTk

qk Qk Pk

rk Pk Rk

3
775
2
664

1

xk

uk

3
775;

lf�xN� �
1

2
xTNQNxN � xTNqN (A3)

where qk, rk, Qk, Rk, and Pk are the running weights (coefficients),
andQN and qN are the terminal weights. Theweight matricesQk and
Rk are positive definite and the block matrix

�
Qk Pk

Pk Rk

�

is positive semidefinite [32]. The costs are substituted into Eq. (A2),

and due to the symmetry in the weight matrices, the total cost is

simplified to

J�x0; U� �
XN−1

k�0

xTk qk � uTk rk �
1

2
xTkQkxk �

1

2
uTkRkuk � uTkPkxk

� 1

2
xTNQNxN � xTNqN (A4)

The optimal control solution is based onminimizing the cost function

in terms of the control sequence, which is given by

U	�x0� � argmin
U

J�x0; U� (A5)

To solve for the optimal control solution given by Eq. (A5), a value

iteration method is used. Value iteration is a method that determines

the optimal cost-to-go (value) starting at the final time step and

moving backward in time minimizing the control sequence. Similar

to Eq. (A2) and (A5), the cost-to-go and optimal cost-to-go are

defined as

J�xk; Uk� �
XN−1

k

l�xk; uk� � lf�xN� (A6a)

V�xk� � min
Uk

J�xk; Uk� (A6b)

where Uk � �uk; uk�1; : : : ; uN−1�. Instead, the cost starts from time

step k instead of k � 0. At a time step k, the optimal cost-to-go

function is a quadratic function given by

V�xk� �
1

2
xTk Skxk � xTk sk � ck (A7)

where Sk, sk, and ck are computed backward in time using the value

iteration method. First, the final conditions SN � QN , sN � qN , and
cN � c are set. This reduces the minimization of the entire control

sequence to just a minimization over a control input at a time step,

which is the principle of optimality [33]. To find the optimal cost-to-

go, the Riccati equations are used to propagate the final conditions

backward in time given by

Sk � AT
k Sk�1Ak �Qk − �BT

k Sk�1Ak � PT
k �T�BT

k Sk�1Bk � Rk�−1
× �BT

k Sk�1Ak � PT
k � (A8a)

sk � qk � AT
k sk�1 � AT

k Sk�1gk − �BT
k Sk�1Ak � PT

k �T
× �BT

k Sk�1Bk � Rk�−1�BT
k Sk�1gk � BT

k sk�1 � rk� (A8b)

ck � gTk Sk�1gk � 2sTk�1gk � ck�1 − �BT
k Sk�1gk � BT

k sk�1 � rk�T
× �BT

k Sk�1Bk � Rk�−1�BT
k Sk�1gk � BT

k sk�1 � rk� (A8c)

Using the Riccati solution, the optimal control policy is in the affine

form

uk�xk� � Kkxk � lk (A9)

where the controller Kk and controller offset is given by

Kk � −�Rk � BT
k Sk�1Bk�−1�BT

k Sk�1Ak � PT
k � (A10a)

lk � −�Rk � BT
k Sk�1Bk�−1�BT

k Sk�1gk � BT
k sk�1 � rk� (A10b)
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This optimal solution to the LQR problemworks for linear dynam-
ics and quadratic cost functions, but unfortunately, the objective
function specified for the swarm problem is nonquadratic. Fortu-
nately, DDP can be used for nonlinear dynamics and nonquadratic
local cost functions.

A.2. Differential Dynamic Programming Problem

The DDP approach to solving nonlinear and nonquadratic equa-
tions uses a similar process as the LQR solution, but a second-order
approximation of the dynamics and objective function are obtained
for value iteration and the solution is iterated to increasingly get better
approximations of the optimal trajectory of the system. Note that if
linear dynamics are used, the ILQR formulation is obtained [28,34].
Because the results are produced by a linear system, both the DDP
and ILQR terms can be used interchangeably. The following discus-
sion on DDP follows closely to that of Tassa et al. [34,35]. The
general nonlinear discrete-time dynamics is given by

xk�1 � f�xk; uk� (A11)

where the state at the next time step, xk�1, is a function of the current
state xk and control input uk. The cost function is in the form of
Eq. (A2), but the costs are nonquadratic. The solution to the optimal
control problem is Eq. (A5). Similarly, the cost-to-go and the optimal
cost-to-go function are defined by Eq. (A6a) and Eq. (A.6b), respec-
tively. Given the terminal condition V�xN� � lf�xN�, the optimal

cost-to-go obtained from the principle of optimality is

V�xk� � min
uk

�l�xk; uk� � V�xk�1�� (A12)

which minimizes over the control at a time step and solved through
time by a backward pass (value iteration).

a. Backward Pass

The first step in the backward pass (value iteration) is to determine
a value function that is quadratic. The argument in Eq. (A12) is taken
as a function of small perturbations around the state (δxk) and control
input (δuk), and it is quadratized through a second-order Taylor series
expansion given by

Q�δx; δu� � l�xk � δxk;uk � δu�k − l�x; u� � V�xk�1 � δxk�1�
− V�xk�1�;

≈
1

2

2
664

1

δxk

δuk

3
775

T
2
664

0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu

3
775
2
664

1

δxk

δuk

3
775 (A13)

where Qx, Qu, Qxx, Qxu, and Quu are the running coefficients
(weights) of the quadratized value function at a certain time step.
Note, in the standard formulation, the time step k is dropped for these
equations. Any primes denote the next time step. The equations for
the running weights are given by

Qx � lx � fTx V
0
x (A14a)

Qu � lu � fTuV
0
x (A14b)

Qxx � lxx � fTx V
0
xxfx � V 0

xfxx (A14c)

Quu � luu � fTuV
0
xxfu � V 0

xfuu (A14d)

Qux � lux � fTuV
0
xxfx � V 0

xfux (A14e)

where lx, lu, lxx, luu, and lux are the gradients and Hessians of the cost
function; fx, fu, fxx, fuu, and fux are the gradients and Hessians of
the nonlinear dynamics; and V 0

x and V
0
xx are the gradient and Hessian

of the value function. For the ILQR formulation, the gradients and

Hessians for an LTV system (which is themodel used for RFS control
in Sec. V) are trivial, but for the DDP formulation, the gradients and
Hessians for the nonlinear dynamicsmust be computed. By using this
quadratic approximation, the minimum in terms of δu is found using

δu � argmin
δu

Q�δx; δu� � −Q−1
uu�Qu �Quxδx� (A15)

which provides local feedback and feed-forward gains of

K � −Q−1
uuQux (A16a)

k � −Q−1
uuQu (A16b)

respectively. The locally optimal controller is substituted back into
Eq. (A13) to get the optimal value given by

ΔV � −
1

2
kTQuuk (A17a)

Vx � Qx − KTQuuk (A17b)

Vxx � Qxx − KTQuuK (A17c)

so the value can be propagated backward in time to find new locally
optimal solutions to the value function.

b. Forward Pass

By continually computing the quadratic approximations in
Eq. (A14), local controller in Eq. (A16), and the new values in
Eq. (A.17) backward in time from the terminal condition
V�xN� � lf�xN�, the updated trajectory can be found through a

forward pass given by

x̂0 � x0 (A18a)

ûk � uk � kk � Kk�x̂k − xk� (A18b)

x̂k�1 � f�x̂k; ûk� (A18c)

where x̂k and ûk consists of the state and control input at a time step of

the new trajectory �X̂; Û�. This composes one iteration of DDP. If the

cost of the new trajectory, �X̂; Û�, is less than the cost of the old

trajectory, �X;U�, thenX � X̂ andU � Û are set, and the algorithm
is ran again until a convergence threshold is met between the old and
new costs.

c. Regularization via the Levenberg–Marquardt Heuristic

If the cost of the new trajectory is greater than the cost of the
old trajectory, the iteration has not provided a better solution. To
circumvent this issue, the Hessian is regularized. This is called the
Levenberg–Marquardt heuristic. The control sequence that is calcu-
lated in DDP is computed like a Newton optimization that uses
second-order information (curvature information) on top of the
first-order information (gradient information) [36]. By including
second-order curvature to the update, optimization can occur faster,
but this relies on the fact that the Hessian is positive definite and an
accurate quadraticmodel. If the control update is not improving (for a
nonpositive definite Hessian and inaccurate quadratic model), the
Levenberg–Marquardt heuristic uses less curvature information and
more on the gradient information. This regularization is added to the
Hessian of the control cost given by

~Quu � Quu � μIm (A19)

where ~Quu is the regularized control cost Hessian, μ is the Levenberg–
Marquardt parameter, and Im is the identity matrix that is the size of
the control input vector [37]. This allows for the increase or decrease
of curvature information in the optimization by adding a quadratic
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cost around the current control input. Unfortunately, adding this

regularization term can have different effects at different time steps

using the same control perturbation based on a changing fu in the
linearized dynamics. By increasing μ → ∞, the k and K gains

become very small due to the ~Q−1
uu term. Therefore, the regularization

term is improved by penalizing the states instead of the control inputs,

which are given by

~Quu � luu � fTu �V 0
xx � μIn�fu � V 0

xfuu (A20a)

~Qux � lux � fTu �V 0
xx � μIn�fx � V 0

xfux (A20b)

K � − ~Q−1
uu

~Qux (A20c)

k � − ~Q−1
uuQu (A20d)

where In is the identity matrix that is the size of the state vector. The μ
parameter is placed on the state instead of the control input. For this

method, the regularization term is directly incorporated with fu, and
the feedback gains k and K do not disappear as μ → ∞. Instead, the

new k andK values bring the new trajectory closer to the old one. For
the implementation of the μ term, three requirements should be

followed. If reaching the minimum is accurate, the μ should become

zero in order to obtain faster convergence due to the second-order

optimization term. If a nonpositive definite ~Quu is found, the back-

ward pass should be restarted with a larger μ. The last requirement is

that when a μ > 0 is needed, the smallest μ should be used that allows
the ~Quu to be positive definite. Therefore, more of the second-order

information can be used to provide faster convergence than gradient
descent. The specific algorithm is found in [35].
Equation (A17) must also be modified based on regularization

added in Eq. (A20a) [28]. Equation (A17) was originally derived

using Eqs. (A13) and (A15), but using the new regularized terms in
Eq. (A20a) creates error. Therefore, themodified values at a time step

k are

ΔV � 1

2
kTQuuk� kTQu (A21a)

Vx � Qx � KTQuuk� KTQu �QT
uxk (A21b)

Vxx � Qxx � KTQuuK� KTQux �QT
uxK (A21c)

The regularization terms create a faster and more accurate solution to
the backward pass of the DDP solution.

d. Forward Pass Line Search

Regularization of the forward pass can improve convergence and

performance of the DDP algorithm. For linear time-varying systems,

one iteration provides aminimal solution after one iteration. This is not
the case for general nonlinear systems. Because nonlinear systems are

approximated by aTaylor series expansion, theremay be regions in the

new DDP trajectory that are not valid about the nonlinear model. This

may lead to divergence and have a larger cost function than the old
trajectory. To fix this issue, a backtracking line-search parameter is

introduced in the control update equation given by

ûk � uk � αkk � Kk�x̂k − xk� (A22)

where α is set to α � 1 at the start of the forward pass. Then the
expected cost reduction is considered using

ΔJ�α� � α
XN−1

k�0

k�k�TQu�k� �
α2

2

XN−1

k�0

kT�k�Quu�k�k�k� (A23)

A ratio z is determined using the actual and expected cost reduction

given by

z � �J�x0; U� − J�x̂0; Û��
ΔJ�α� (A24)

where J�x0; U� and J�x̂0; Û� are the old and new cost, respectively.

The control update is accepted if the condition

0 < c1 < z (A25)

ismetwhere c1 is a parameter set by the user. The c1 is usually set close
to zero. If the condition is not met, the forward pass is restarted with a

smaller α value, which means that the new trajectory strayed farther

than the system’s region of validity. By using the α line search

parameter, convergence can be achieved for nonlinear systems by

iteratively deceasing α to obtain a cost reduction.

e. DDP Summary

A DDP iteration can be summarized in four steps. First, an initial

rollout of the nonlinear dynamics given by Eq. (A11) is integrated

over time for a given control sequence U. If there is no good

initialization of the control sequence, the control sequence can be

set to U � 0. After the initial rollout, the derivatives of the cost

function and nonlinear dynamics used in Eq. (A14) are found. The

derivatives are used in the third step, which is to determine local

control solutions using a backward pass. Using the terminal condi-

tion, V�xN� � lf�xN�, local control solutions are found by iterating

Eq. (A14), (A20), and (A21) backward at each time step. When a

nonpositive definite ~Quu is found, increase the regularization param-

eter μ and restart the backward pass. Once a local optimal policy is

found, α is set to α � 1, and Eqs. (A18c) and (A23) are propagated

forward in time. If the integration diverged or cost reduction con-

dition in Eq. (A25) was not met, the forward pass is restarted with a

smaller α.

Appendix B: Receding Horizon Control using the RFS
Formulation

An optimal solution, u, can also be obtained in a real-time com-

putational sense by minimizing the objective, Eq. (29), by reducing

the finite horizon to a computational manageable prediction horizon

using MPC or receding horizon control [24]. Conceptually, at a time

k, the knowledge of the system model is used to derive a sequence

u�kjk�; u�k� 1jk�;u�k� 2jk�; : : : ; u�k� Tpjk�, where Tp is the

finite prediction horizon from the current state x�k� [38]. With the

input sequence, the state is moved forward in time by the control

horizon,Tc; usually one time step. Then the same strategy is repeated

for time k� 1. The finite prediction horizon Tp can be chosen to be

either small or large. As Tp increases, the degrees of freedom in the

optimization increase, which can slow down the algorithm consid-

erably, even though more of the future reference trajectory would be

useful to bring the output closer to the reference. With a smaller Tp,

the computation timewill be faster, but the optimizationmay bemore

suboptimal. Thus, the swarm may not converge to the desired con-

figuration.
For the RFS control formulation, a u that controls the swarm

intensities through their statistics (mean and covariance) is found

by minimizing the objective as given by Eqs. (30) and (31). This can

be done by usingMPC via the quasi-Newtonmethod or DDP. DDP is

able to determine an optimal solution for nonlinear equations of

motion and a nonquadratic cost function through an iterative process

of finding the solution involving second-order approximations of the

dynamics and the objective function. The dynamic systems used in

the results are linear; thus, DDP can be formed as its variant, ILQR.

For the quasi-Newton method, the optimal control input u is found

using MATLAB’s fminunc solver [39]. Note that MPC via DDP and

the quasi-Newton method are both closed-loop control methods in

terms of the statistics (mean and covariance) of the system.
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