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Abstract. Traffic congestion has become a serious issue around the globe, partly owing to single-occupancy commuter 
trips. Ridesharing can present a suitable alternative for serving commuter trips. However, there are several important 
obstacles that impede ridesharing systems from becoming a viable mode of transportation, including the lack of a 
guarantee for a ride back home as well as the difficulty of obtaining a critical mass of participants. This paper addresses 
these obstacles by introducing a Traveler Incentive Program (TIP) to promote community-based ridesharing with a ride-
back home guarantee among commuters. The TIP program allocates incentives to (1) directly subsidize a select set of 
ridesharing rides, and (2) encourage a few, carefully selected set of travelers to change their travel behavior (i.e., departure 
or arrival times). We formulate the underlying ride-matching problem as a budget-constrained min-cost flow problem, 
and present a Lagrangian Relaxation-based algorithm with a worst-case optimality bound to solve large-scale instances 
of this problem in polynomial time. We further propose a polynomial-time budget-balanced version of the problem. 
Numerical experiments suggest that allocating subsidies to change travel behavior is significantly more beneficial than 
directly subsidizing rides. Furthermore, using a flat tax rate as low as 1% can double the system's social welfare in the 
budget-balanced variant of the incentive program. 

Keywords: P2P ridesharing; Incentive design; Community-based ridesharing; Monetary subsidy; Budget-constrained 
min-cost flow problem; Guaranteed ride-back home 

 

1 Introduction 
In recent years, traffic congestion has become a serious issue around the globe. In a contemporary study of 
1,360 cities in 38 countries, Bloomberg CITYLab asserted that traffic congestion costs over $305 Billion per 
year only in the U.S. (Schneider 2018). This spike in traffic congestion, especially during morning and evening 
peak hours, is mainly due to the rising number of solo-driver commuting trips. Despite tremendous 
expenditure on subsidy, public transit services have failed to alleviate congestion by shifting solo driving 
toward more sustainable forms of transport. In addition, not only has the recent proliferation of Transportation 
Network Companies (TNCs) such as Uber and Lyft not addressed this issue, but it has exacerbated congestion, 
particularly in large cities (Hawkins 2019). 

Peer-to-peer (P2P) ridesharing is a manifestation of the sharing economy business model in the mobility 
market, and provides a promising solution for mitigating traffic congestion. In contrast to TNCs that produce 
high empty miles, thereby adversely affecting traffic congestion, P2P ridesharing improves congestion by 
increasing the utilization rate of empty seats. Additionally, P2P ridesharing provides a unique opportunity for 
communities to augment transit services by serving their mobility needs internally. In community-based 
ridesharing — a form of P2P ridesharing for commuters — the members of the community who own cars, 
henceforth referred to as drivers, transport their peers, henceforth referred to as riders, along their routes while 
completing their own personal trips. Aside from its environmental benefits, community-based ridesharing 
provides a promising mobility solution for the following reasons: 

1. Existing trust: Drivers and riders are members of the same small community, preventing lack of 
participation that may arise from lack of trust in large metropolitan areas. 

2. Lack of opportunity cost: Drivers travel according to their own schedules, and may only take small 
detours to serve their fellow community members. 

3. Revenue for the community: The fare of the rides will be set so as to compensate drivers fully for 
their detours and partially for their base travel costs, as they would be sharing the cost of their base 
trips with riders. 
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Despite abundant benefits of ridesharing systems, there are a few obstacles that hinder the adoption of such 
systems by commuters in practice. First, commuters are in general reluctant to leave their vehicles at home in 
favor of outsourcing their rides in the morning if they do not have a guarantee for a ride back home. Traditional 
carpooling services can provide such a guarantee for commuters who have fixed and common working hours. 
However, carpooling may not be a viable option for commuters whose working hours may shift from one day 
to the next. Secondly, in P2P ridesharing participants are available in the network only for a short period of 
time (compared to TNC drivers and transit providers), which leads to low spatio-temporal proximity among 
trips. These factors pose a challenge for P2P ridesharing systems achieving a critical mass, and thereby, 
becoming a viable transportation option in the long run. 

This paper tackles this timely issue by designing a traveler incentive program (TIP) that allocates monetary 
subsidies to riders and drivers to foster ridesharing participation rates and provide an opportunity for the 
commuters within a community to serve their mobility needs internally. To this end, this paper develops a 
ridesharing system with ride-back guarantee that incentivizes commuters to share their morning and evening 
trips with their peers. TIP finds the optimal allocation of a set budget to participants so as to: (𝑖) subsidize a 
selective set of rides, and (𝑖𝑖) change the travel behavior of a small, carefully selected set of commuters, with 
respect to their travel time windows. The ultimate goal of TIP is to maximize social welfare of system 
participants while ensuring that every dollar injected to the system will generate a higher value in social 
welfare. 

In the rest of this paper, Section 2 provides a review of the literature related to P2P ridesharing and using 
incentives to promote shared mobility services. Next, we carefully define the problem in this paper and its 
underlying assumptions in Section 3. In Section 4, we present a mathematical formulation for the problem and 
a solution methodology to solve its large instances. Section 5 presents the results of several numerical 
experiments that evaluate different aspects of our proposed methodology. Finally, Section 6 finalizes this 
paper by summarizing our findings and providing directions for future research. 

2 Literature Review 
In this section, we first present a brief overview of the literature in P2P ridesharing, followed by a review of 
studies in shared mobility that consider various types of incentives to promote their systems. Finally, we 
clearly state the contributions of this paper. 

2.1 Peer-to-Peer (P2P) Ridesharing 
P2P ridesharing is a shared mobility platform that encourages users with similar routes and time schedules to 
share their rides together (Agatz et al. 2012). In spite of some similarities, one must distinguish P2P ridesharing 
from other forms of shared mobility platforms such as carpooling (see e.g., Baldacci, Maniezzo, and Mingozzi 
(2004)), since it does not require long-time commitments from users, as well as ride-sourcing (see e.g., Xu, 
Yin, and Ye (2020)) or taxi-sharing (see e.g., Alonso-Mora et al. (2017)) since drivers in P2P ridesharing are 
not treated as employees and their primary intention is to complete their own personal trips. In what follows, 
we describe a number of major characteristics of P2P ridesharing, henceforth referred to as ridesharing, and 
its variant forms. For further information on ridesharing, the interested reader is referred to the surveys by 
Agatz et al. (2012; Furuhata et al. 2013; Tafreshian, Masoud, and Yin 2020). 

Ridesharing systems can be roughly divided into the two categories of static ridesharing (see e.g., Regue, 
Masoud, and Recker (2016; Xiaoqing Wang, Dessouky, and Ordonez 2016; Long et al. 2018)) and dynamic 
ridesharing (see e.g., Agatz et al. (2011; Lee and Savelsbergh 2015; Masoud and Jayakrishnan 2017b)). In the 
former case, the trip information of all users is known ahead of time, while in the latter case, users enter the 
system dynamically and register their trips shortly before their departure times. Most of the studies in P2P 
ridesharing consider the sets of riders and drivers as two mutually exclusive sets (see e.g., Agatz et al. (2011; 
Nourinejad and Roorda 2016; Najmi, Rey, and Rashidi 2017)). However, a few studies relax this assumption 
and let the system operator decide the most beneficial role (i.e., rider or driver) for each participant (see 
e.g., Amey (2011; Chen et al. 2019; Tafreshian and Masoud 2020a, 2020b)). The core of a ridesharing system 
is a ride-matching problem, the solution of which determines the optimal assignment between riders and 
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drivers, users’ trip schedules, and drivers’ routes. With an intent to make ridesharing convenient for both riders 
and drivers, many studies consider the simplest form of the ride-matching problem in which every user can be 
matched with at most one other user (see e.g., Ma, Zheng, and Wolfson (2013; Najmi, Rey, and Rashidi 2017; 
Xing Wang, Agatz, and Erera 2017)). In order to increase the possibility of matching, however, a number of 
studies diverge from this assumption by allowing multiple riders per vehicle and transfers between vehicles 
(see e.g., Stiglic et al. (2015; Masoud and Jayakrishnan 2017a; Chen et al. 2019)). Moreover, a number of 
studies incorporate the choice of ride-back home guarantee in their models, which motivates rider 
participation, and increases the level-of-service offered by the system (see e.g., Regue, Masoud, and Recker 
(2016; Lloret-Batlle, Masoud, and Nam 2017; Chen et al. 2019; Hasan, Van Hentenryck, and Legrain 2020)). 

Based on the definitions above, the community-based ridesharing proposed in this paper can be categorized 
as a static one-to-one ridesharing system with ride-back guarantee. The choice of a static system is supported 
by the outcome of a ridesharing survey in Berkeley, CA, which concludes that commuters prefer to learn about 
their ride-share arrangements at least a night before (Deakin, Frick, and Shively 2010). Also, given the 
assumption that all users select the shortest travel time path as their selected route, one-to-one ride-matching 
ensures that (𝑖) riders do not experience any detour during their travel, and (𝑖𝑖) drivers’ inconvenience due to 
pick-ups and drop-offs are minimized. Finally, the results of a behavioral study by Brownstone and Golob 
(1992) indicates that the option of ride-back home guarantee motivates a high percentage of commuters to 
engage in ridesharing programs. 

2.2 Incentives in Shared Mobility 
Since the introduction of shared mobility services, several studies have emphasized the need for designing 
incentives to motivate solo drivers to participate in ride-share programs. The proposed incentives can roughly 
fall into two categories of indirect and direct (a.k.a. financial subsidies) incentives. The employer-provided 
parking discounts for high occupancy vehicles (HOV) is an example of an indirect incentive that can 
significantly incentivize daily commuters to shift toward ridesharing (Brownstone and Golob 1992; Su and 
Zhou 2012). Another indirect incentive that proves useful in practice is the possibility of using freeway HOV 
lanes that leads to savings in commute times (Brownstone and Golob 1992; Lloret-Batlle, Masoud, and Nam 
2017). Finally, integrating ridesharing with public transit and/or other transport programs can reduce the travel 
cost of commuting and encourage a higher number of commuters to share their rides (Deakin, Frick, and 
Shively 2010; Nam et al. 2018; Bian and Liu 2019). 

Aside from indirect incentives, many studies stress the necessity of adopting various form of financial 
subsidiary schemes to promote ridesharing among commuters (Chan and Shaheen 2012; Agatz et al. 2012). 
The ultimate goal of financial (or direct) incentives is to maximize fleet utilization, and thereby reduce traffic 
congestion. Stiglic et al. (2016) conduct a comprehensive case study to evaluate the effect of time flexibility 
on the matching rate in one-to-one ridesharing systems. Based on the results of their experiments, they 
emphasize the importance of adopting an incentive scheme that provides monetary benefits to commuters to 
increase their time flexibility. In a study that focuses on the role of rider-driver cost-sharing strategies in the 
success of ridesharing programs, Xiaolei Wang, Yang, and Zhu (2018) show that providing ridesharing users 
with sufficient subsidies can reduce the cost of participation and turn ridesharing into a viable alternative to 
public transit. They further emphasize the need for designing appropriate subsidizing schemes. 

The consideration of financial subsidies is not limited to ridesharing systems and has been studied in other 
types of shared mobility services. Qian et al. (2017), for instance, introduce ride incentives for groups of 
passengers in a shared-taxi service as discounts towards their trip fares. They further propose different 
algorithms that find the best ride incentives to improve total saved mileage. For the operation of ride-sourcing 
platforms such as Uber and DiDi Chuxing, Zhao and Chen (2019) compare the ex-ante and ex-post destination 
information models and show the effectiveness of subsidies in attracting more participants under the latter 
model. They further design a subsidy scheme based on the income of drivers that motivates them to serve 
farther distant passengers. Luo et al. (2019) develop a new dynamic games approach to find the optimal 
subsidy policy that accelerates the adoption of automated vehicles (AV’s). In their approach, adaptive 
subsidies are computed based on the state of the AV market penetration process under uncertainty. They claim 
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that the optimal subsidies further incentivize the AV manufacturers to improve their technology, and offer 
pricing incentives to potential consumers. 

More recently, through a joint simulation of car-sharing, bike-sharing and ride-hailing for a city-scale 
transport system, Becker et al. (2020) found that the highest system-level impacts can be achieved when the 
operations of shared modes are subsidized. More interestingly, they showed that the total amount of subsidies 
required for these shared modes is lower than the amount paid for current regular public transport services. 
Finally, Xiong et al. (2020) propose an integrated system that provides personalized travel alternatives and 
monetary incentives for travelers. As a part of their system, to reduce traffic congestion, they offer alternative 
departure times for commuters and compensate them with monetary subsidies. This incentive scheme has been 
commercialized as a mobile app, called incenTrip, and is currently used in the Washington area. Finally, Li, 
Nie, and Liu (2020) considered a ridesharing system in which riders and drivers bid on their sensitivity to 
schedule displacement, and introduce a VCG mechanism which is individually rational, truthful, and both 
computationally and economically efficient. They further introduce a one-sided reward pricing policy that 
sacrifices truthfulness to satisfy weakly budget-balancedness. 

Based on the findings of these studies, we propose two types of monetary incentives that can help improve 
the social welfare of a community adopting a ridesharing system. The first incentive is targeted toward 
changing travelers’ schedules to increase their chance of being matched. The other incentive attempts to 
compensate the negative externalities of riders and drivers sharing rides together. 

2.3 Our Contributions 
The contributions of this paper are as follows: 

• We introduce a traveler incentive program for a ridesharing system with guaranteed ride-back, and 
present a mixed integer nonlinear optimization model that determines the optimal matching, scheduling, 
and incentive allocation. 

• We decompose the mixed integer nonlinear optimization model into a linear model that determines the 
optimal amount of incentives to each rider-driver pair, and a budget-constrained min-cost flow problem, 
which is known to be NP-complete. 

• We propose a polynomial-time Lagrangian Relaxation method to efficiently find near-optimal solutions 
for large-scale instances of the problem, and provide a worst-case optimality bound for its performance. 

• We propose a budget-balanced variant of the incentive program, which could be solved in polynomial 
time. 

• We perform a comprehensive set of numerical experiments to showcase the impact of the proposed 
incentive program on serving the mobility needs in a city. 

Comparing to the existing literature, this study is among the first to introduce an incentive program that 
promotes community-based ridesharing among daily commuters. We present the mathematical formulation 
for this problem, and devise a polynomial time methodology based on Lagrangian Relaxation to solve it. Also, 
to the best of our knowledge, we are the first to present a bounded solution for the budgeted min-cost max 
flow problem as a part of our proposed methodology. 

3 Problem Statement 
The main focus of this paper is a static one-to-one ridesharing system for commuters (although In section 5 
we will investigate a dynamic setting). This program guarantees ride-back services for the riders who register 
both their morning and evening trips in the system. Let 𝑁 denote the set of all participants (users) that register 
their trips in a given day. A participant in the system can be either a driver or a rider in a given day. Therefore, 
set 𝑁 can be further partitioned into two disjoint sets of riders, denoted by 𝑅, and drivers, denoted by 𝐷. We 
assume that the ridesharing system knows the following information regarding each user 𝑛 ∈ 𝑁: 

• 𝖥(𝑛): the value of every unit of time spent on traveling 
• 𝖧(𝑛): the value of every unit of distance driven 

https://www.incentrip.org/
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These values can either be specified directly by having the users answer a short survey, or estimated based on 
the provided information upon registration for the first time in the system (e.g., occupation, place of residence, 
vehicle’s make and model, etc.). Every user 𝑛 ∈ 𝑁 may register a trip in the morning, represented by 𝑛′, a trip 
in the evening, represented by 𝑛″, or both. Let 𝑁′ = 𝑅′ ∪ 𝐷′ and 𝑁″ = 𝑅″ ∪ 𝐷″ respectively denote the sets of 
all trips in the morning and evening. Also, let 𝐷‴ ⊂ 𝐷, 𝑅‴ ⊂ 𝑅, 𝑁‴ = 𝑅‴ ∪ 𝐷‴ denote the set of drivers, 
riders, and users who register both their morning and evening trips in the system, respectively. Due to the 
similarities between the characteristics of morning and evening trips, we describe our assumptions using only 
the morning trips in the rest of this section. Table A.1 summarizes the notation used in this paper. 

It is assumed that the study region consists of a large number of stations from/at which trips originate/end. 
Thus, every trip 𝑛′ ∈ 𝑁′ can be characterized by the following information: 

• 𝖨(𝑛′): the origin station for the morning trip of user 𝑛 
• 𝖩(𝑛′): the destination station for the morning trip of user 𝑛 
• 𝖳(𝑛′): the desired earliest departure time of user 𝑛 from the origin station in the morning 
• 𝖰(𝑛′): the desired latest arrival time of user 𝑛 from the destination station in the morning 

We further assume that the shortest-path travel time and driving distance between every pair of stations during 
the morning period are known and stored in the hash tables 𝜏 and 𝜌, respectively. Thus, 𝜏𝑖,𝑗/𝜌𝑖,𝑗 represent the 
shortest-path travel time/distance from station 𝑖 to station 𝑗. We refer to [𝖳(𝑛′), 𝖰(𝑛′)] as the morning time 
window of user 𝑛. The length of this time window is rather tight, but always greater than or equal to 𝜏𝖨(𝑛′),𝖩(𝑛′). 

To provide a high quality of service for both riders and drivers participating in the ridesharing system, we 
assume that in a given time period (e.g., morning), each driver will give a ride to at most one rider, and riders 
complete their trips with at most one driver. This limits the length of detours incurred by drivers, and 
guarantees no detour and transfer for riders. 

3.1 Static One-to-One Ridesharing with Ride-Back Guarantee 
The problem of one-to-one ridematching with guaranteed ride-backs was first considered by Agatz et al. 
(2011), where they formulated it as a weighted matching problem with the addition of a set of bundle 
constraints that relate riders’ inbound trips to their outbound trips. In general, this problem may no longer have 
the unimodularity property, and thus, requires an MIP solver to solve. However, in the cases where inbound 
and outbound trips occur in two non-overlapping periods (e.g., all the outbound trips occur in the morning 
peak hours and inbound trips occur in the evening peak hours), Lloret-Batlle, Masoud, and Nam (2017) show 
that the ridematching problem can be formulated as a min-cost max flow problem in a weighted directed graph 
𝐺 = (𝑉, 𝐸), where the set of nodes is denoted by 𝑉 = {𝗌,  𝗍} ∪ 𝑁′ ∪ 𝑁″, and the edge set is denoted by 𝐸. 
Figure 1 shows an example of such a graph with 11 users. The auxiliary nodes 𝗌 and 𝗍 respectively represent 
the source node and the target node. The edge set 𝐸 consists of two edge subsets: (𝑖) the auxiliary edges with 
capacity of 1 unit and 0 units of cost, and (𝑖𝑖) the potential matching edges with capacity of 1 unit and −𝖶 
units of cost. The auxiliary edges connect (𝑖) node 𝗌 to all driver trips 𝑑′ ∈ 𝐷′ and all rider trips 𝑟 ∈ 𝑅″ when 
𝑟 ∉ 𝑅‴, (𝑖𝑖) all driver trips 𝑑″ ∈ 𝐷″ and all rider trips 𝑟′ ∈ 𝑅′ when 𝑟 ∉ 𝑅‴ to target node 𝗍, and (𝑖𝑖𝑖) every 
rider trip 𝑟′ ∈ 𝑅′ to rider trip 𝑟″ ∈ 𝑅″ when 𝑟 ∈ 𝑅‴. The potential matching edges connect the morning drivers 
to the morning riders and the evening riders to the evening drivers. A potential match edge exists in graph 𝐺 
if (𝑖) the match is spatio-temporally feasible, and (𝑖𝑖) both parties prefer the match to their other available 
options outside the ridesharing system, i.e., the match is individually rational. 

In what follows, we develop the mathematical equations for spatio-temporal feasibility and individual 
rationality conditions for the morning period. Similar equations can be derived for the evening period. Spatio-
temporal feasibility requires a driver to be capable of providing a ride to a rider within the rider’s time window, 
while completing their own trip within their time window. Thus, the following two equations must be satisfied 
simultaneously: 

 max{𝖳(𝑑′) + 𝜏𝖨(𝑑′),𝖨(𝑟′) , 𝖳(𝑟′)} + 𝜏𝖨(𝑟′),𝖩(𝑟′) ≤ 𝖰(𝑟′) , (1a) 
 

max{𝖳(𝑑′) + 𝜏𝖨(𝑑′),𝖨(𝑟′) , 𝖳(𝑟′)} + 𝜏𝖨(𝑟′), 𝖩(𝑟′) + 𝜏𝖩(𝑟′), 𝖩(𝑑′) ≤ 𝖰(𝑑′) . (1b) 
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Figure 1. Graph 𝐺 = (𝑉, 𝐸) for a ridesharing system with 11 users where 𝐷′ = {1′, 2′, 3′, 4′}, 𝐷″ = {1″, 2″, 5″, 6″}, 
𝑅′ = {7′, 8′, 9′, 10′}, and 𝑅″ = {7″, 8″, 9″, 11″}. 

 
Equations (1a) and (1b) respectively ensure that the match allows rider 𝑟 and driver 𝑑 to complete their 

trips within their specified time windows. While these equations describe the spatio-temporal feasibility of a 
match, for a match to be deemed valuable and accepted by both parties, the fare for the ride should be set to 
an amount that is acceptable by both the driver and the rider. Let  𝖴(𝑟′|𝑑′) and 𝖴(𝑑′|𝑟′) respectively denote 
the valuations of rider 𝑟 and driver 𝑑 of sharing a ride together. This valuation can be defined as the difference 
between the cost of sharing the ride and the cost of driving alone (in case the rider does not own a car, this 
cost is set to the cost of taking a taxi cab). Based on the elicited information from both parties, these valuations 
can be found as: 

 𝖴(𝑟′|𝑑′) = 𝖧(𝑟) 𝜌𝖨(𝑟′),𝖩(𝑟′)  , (2a) 
𝖴(𝑑′|𝑟′) = −𝖧(𝑑) (𝜌 + 𝜌 + 𝜌 (2b) 𝖨(𝑑′),𝖨(𝑟′) 𝖨(𝑟′),𝖩(𝑟′) 𝖩(𝑟′),𝖩(𝑑′) − 𝜌𝖨(𝑑′),𝖩(𝑑′)) 

−𝖥(𝑑) (𝜏𝖨(𝑑′),𝖨(𝑟′) + 𝜏𝖨(𝑟′),𝖩(𝑟′) + 𝜏𝖩(𝑟′),𝖩(𝑑′) − 𝜏𝖨(𝑑′),𝖩(𝑑′)) ,

where 𝖥(𝑛) > 0 and 𝖧(𝑛) > 0 respectively denote the values of time (in $ per unit of time) and distance (in 
$ per unit of distance) for user 𝑛 ∈ 𝑁. The statements in parentheses in Equations (2b) respectively represent 
the distance and time of the detour incurred by driver 𝑑 to serve rider 𝑟 in the morning. If we assume that all 
users follow a quasi-linear utility, then the sum of valuations in (2a) and (2b) yields the potential monetary 
saving (gain) due to driver 𝑑 providing a ride to rider 𝑟, denoted as 𝖶(𝑑′, 𝑟′) = 𝖴(𝑑′|𝑟′) + 𝖴(𝑟′|𝑑′). If the 
gain for a match is non-negative, that is, if 𝖶(𝑑′, 𝑟′) > 0, then there exists a pricing mechanism to split the 
benefits between users 𝑟 and 𝑑 so as to ensure they both have non-negative utilities, i.e., both choices are 
individually rational (e.g., they share the profit based on the length of the two trips).  Note that 𝖶(𝑟″, 𝑑″) =
𝖴(𝑟″|𝑑″) + 𝖴(𝑑″|𝑟″) can be computed similarly for the evening trips. 

3.2 Incentive Design 
The graph corresponding to the ridesharing problem with guaranteed ride-back can be sparse, as demonstrated 
in the example in Figure 1. This sparsity is partly due to individuals’ rather tight travel time windows, and 
partly a result of the heterogeneity in their valuations of options. It is not surprising to see trip requests with 
tight time windows, as this ensures the rides to be in congruence with travelers’ preferences. Furthermore, it 
is realistic to assume that individuals who own cars are in a superior financial status than those who do not. 
As such, having drivers with higher values of time, and possibly distance, get compensated for their detours 
by riders may lead to the ridesharing option not being affordable for a large portion of riders. To tackle these 
issues, we introduce two types of incentives to increase the number of edges between trip nodes in graph 𝐺, 
eventually leading to higher percentage of matches, and possibly higher levels of social welfare in the 
community. 

3.2.1 Behavioral Adjustment (BA) Incentives. 
When registering a trip, the desired earliest departure time and latest arrival time are two of the trip 
characteristics that a participant has to specify. A wider time window for a driver implies a potentially longer 
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detour and more flexibility in departure time. For riders, a wider time window only implies higher flexibility 
in departure time, as a rider’s travel duration would be that of their shortest-path travel time. Clearly, by 
providing tighter time windows, participants would receive matches that are more congruent with their 
preferences. A behavioral adjustment (BA) incentive encourages participants to be more flexible with their 
travel time windows. Let us subsidize user 𝑛 by an incentive rate of 𝖥(𝑛), equal to their value of time, to widen 
their morning trip time window for 𝛾(𝑛′) units, with the assumption that their disutility from leaving earlier 
than 𝖳(𝑛′) and arriving later than 𝖰(𝑛′) are the same and are proportional to 𝖥(𝑛). If we let 𝛾−(𝑛′) and 𝛾+(𝑛′) 
respectively denote the amount of time extension in time window of trip 𝑛′ from left and right, the adjusted 
time window can be shown as [𝖳(𝑛′) − 𝛾−(𝑛′),  𝖰(𝑛′) + 𝛾+(𝑛′)] subject to the constraint 𝛾−(𝑛′) + 𝛾+(𝑛′) =
𝛾(𝑛′).  We further assume that the total extension in a trip time window cannot exceed a pre-defined threshold, 
denoted by 𝛤, which can be defined as the maximum time window extension offered to a participant, and can 
be either specified by the user as a part of their trip information during trip registration or set by the system 
operator based on the targeted level-of-service (LoS). Note that the right value for 𝛾(𝑛′) depends on other 
users’ trip information; hence, it must be determined by the system operator as a part of the ridematching 
problem. 

3.2.2 Individual Rationality (IR) Incentives. 
Consider a rider-driver pair (𝑑′, 𝑟′) for whom spatio-temporal conditions (i.e., Equations (1a) and (1b)) are 
satisfied, but the individual rationality conditions are violated (i.e., 𝖶(𝑑′, 𝑟′) < 0). An individual rationality 
(IR) incentive, denoted by 𝜆(𝑑′, 𝑟′), provides subsidies that allow for introducing such a link in graph 𝐺 with 
a non-negative gain. 

The consideration of these incentives in our ridesharing system has two important consequences. First, the 
Equations in (1) can no longer be used to determine the spatio-temporal feasibility of a match, since the 
adjusted time windows depend on the unknown values of the BA incentives. Secondly, the rider and driver 
valuations from sharing a ride in (2) as well as the gains of potential matches are dependent upon the unknown 
values of both incentive types. These consequences clearly suggest that no longer can we find the optimal 
ridematching using the min-cost max flow problem described above. As such, in this paper we develop a 
ridematching problem that determines the optimal matching, trip scheduling, and incentive allocation that 
maximizes the social welfare given a monetary budget of 𝖡 dollars. In order to make sure that the available 
budget is used wisely, we further require that every dollar spent on subsidy contributes more than one dollar 
to the system’s social welfare. 

4 Solution Methodology 
 In this section, we first present the mathematical formulation of the TIP for a simpler system involving only 
one-time trips with no ride-back guarantee (e.g., the morning trips) given the assumptions provided in the 
previous section. Next, we modify this mathematical formulation to model the TIP for a system that includes 
both the morning and evening trips. We propose an efficient algorithm to solve large-scale instances of this 
problem in a timely manner, and prove a worst-case optimality bound for its performance. Finally, we propose 
a budget-balanced counterpart of the TIP through taxation. 

4.1 Mathematical Formulation For the Morning Trips 
Let us consider a ridesharing system that includes only the morning trips 𝑁′. Also, let 𝐴′ denote the set of all 
driver-rider trip pairs in the morning, i.e., 𝐴′ = {(𝑑′, 𝑟′) ∈ 𝐷′ × 𝑅′}. Based on the assumptions provided in 
Section 3, the optimal matching, scheduling, and incentive allocation of the system can be obtained by solving 
the mixed integer nonlinear program (MINLP) presented in (3). In this formulation, there are eight sets of 
decision variables. The decision variable 𝑥(𝑎′) is a binary variable that holds the value 1 if the pair of trips in 
𝑎′ ∈ 𝐴′ share their rides together, and the value 0 otherwise. The continuous decision variables 𝑡(𝑛′) and 𝑞(𝑛′) 
denote the start and end time of the trip 𝑛′ ∈ 𝑁′, respectively. The decision variable 𝛾(𝑛′) can be defined as 
the amount of extension in the time window of trip 𝑛′. We further define two variables, 𝛾−(𝑛′) and 𝛾+(𝑛′), 
to denote the amount of extension in the time window of the morning trip 𝑛′ from the left and the right, 
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respectively. Finally, the decision variables 𝜆(𝑎′) and 𝑤(𝑎′) respectively represent the IR incentive and the 
gain for the match between a driver-rider trip pair 𝑎′ ∈ 𝐴′. 

Let 𝜖 be an infinitesimal positive value. The objective in (3a) maximizes the difference between the 
system’s social welfare and the total amount of subsidies spent on the BA and IR incentives. Choosing this 
objective enables us to maximize social welfare while allocating subsidies only when the added value to social 
welfare is strictly higher than the amount of subsidy; that is, for each dollar spent on subsidy, a return-to-
investment of more than one dollar can be obtained in social welfare. Constraint (3b) defines the adjusted gain 
of match (𝑑′, 𝑟′) in the morning as the sum of the original savings due to driver 𝑑 sharing their ride with rider 
𝑟 and the subsidies allocated to these participants and their coalition. Constraint (3c) ensures that if users 𝑟 
and 𝑑 are determined to share a ride in the morning, i.e., if 𝑥(𝑑′, 𝑟′) = 1, then their coalition is individually 
rational, i.e., 𝑤(𝑑′, 𝑟′) ≥ 0. Constraints (3d) and (3e) together guarantee that every trip starts and ends within 
its adjusted time windows. Constraint (3f) states that if driver trip 𝑑′ is matched with rider trip 𝑟′, the difference 
between their trips’ start times must be at least equal to the shortest-path travel time between their origin 
stations. Constraint (3g) defines the end time of rider trip 𝑟′ as the sum of its start time and the duration of the 
trip. Constraint (3h) ensures that the difference between the end time of driver trip 𝑑′ and rider trip 𝑟′, if 
matched together, must be equal to the shortest-path travel time from the rider’s destination station to driver’s 
destination station. Constraint (3i) defines the total extension in a trip’s time window as the sum of the 
extensions from the left and the right. Constraint (3j) ensures that the time window extension cannot exceed 
its maximum limit. Constraints (3k) and (3l) respectively ensure that every rider is matched with at most one 
driver, and each driver serves at most one rider in the morning. Finally, Constraint (3m) ensures that the total 
amount of allocated subsidy is lower than the available budget. Constraints (3n)-(3p) are the non-negativity 
and integrality constraints. 

 (3a) max  ∑ 𝑤 (𝑎′) 𝑥(𝑎′) − (1 + 𝜖) ( ∑ 𝖥 (𝑛) 𝛾(𝑛′) + ∑ 𝜆 (𝑎′))
 𝑎′∈𝐴′ 𝑛′∈𝑁′ 𝑎′∈𝐴′

s.t.  𝑤(𝑑′, 𝑟′) = 𝖶(𝑑′, 𝑟′) + 𝜆(𝑑′, 𝑟′) , ∀ (𝑑′, 𝑟′) ∈ 𝐴′ , (3b) 
𝑤(𝑎′) 𝑥(𝑎′) ≥ 0 , ∀ 𝑎′ ∈ 𝐴′ , (3c) 
𝑡(𝑛′) ≥ 𝖳(𝑛′) − 𝛾−(𝑛′) , ∀ 𝑛′ ∈ 𝑁′ , (3d) 
𝑞(𝑛′) ≤ 𝖰(𝑛′) + 𝛾+(𝑛′) , ∀ 𝑛′ ∈ 𝑁′ , (3e) 
𝑥(𝑑′, 𝑟′) (𝑡(𝑟′) − 𝑡(𝑑′) − 𝜏𝖨(𝑑′),𝖨(𝑟′)) ≥ 0 , ∀ (𝑑′, 𝑟′) ∈ 𝐴′ , (3f) 
𝑞(𝑟′) = 𝑡(𝑟′) + 𝜏𝖨(𝑟′),𝖩(𝑟′) , ∀ 𝑟′ ∈ 𝑅′ , (3g) 
𝑥(𝑑′, 𝑟′) (𝑞(𝑑′) − 𝑞(𝑟′) − 𝜏𝖩(𝑟′),𝖩(𝑑′)) = 0 , ∀ (𝑑′, 𝑟′) ∈ 𝐴′ , (3h) 
𝛾(𝑛′) = 𝛾−(𝑛′) + 𝛾+(𝑛′) , ∀ 𝑛′ ∈ 𝑁′ , (3i) 

 
𝛾(𝑛′) ≤ 𝛤 , ∀ 𝑛′ ∈ 𝑁′ , (3j) 

(3k) ∑ 𝑥 (𝑑′, 𝑟′) ≤ 1 , ∀ 𝑟′ ∈ 𝑅′ ,

𝑑′∈𝐷′  
(3l) ∑ 𝑥 (𝑑′, 𝑟′) ≤ 1 , ∀ 𝑑′ ∈ 𝐷′ ,

 𝑟′∈𝑅′

(3m) 
∑ 𝖥 (𝑛) 𝛾(𝑛′) + ∑ 𝜆 (𝑎′) ≤ 𝖡 ,

 
𝑛′∈𝑁′ 𝑎′∈𝐴′

𝑡(𝑛′),  𝑞(𝑛′), 𝛾−(𝑛′), 𝛾+(𝑛′) ≥ 0 , ∀ 𝑛′ ∈ 𝑁′ , (3n) 
𝜆(𝑎′) ≥ 0 , ∀ 𝑎′ ∈ 𝐴′ , (3o) 
𝑥(𝑎′) ∈ {0,1} , ∀ 𝑎′ ∈ 𝐴′ . (3p) 

The formulation in model (3) involves nonlinear statements in both the objective function and constraints, 
which make the ridematching problem intractable to solve, especially for real-size networks. However, there 
are a few properties of this formulation that help us reduce its size considerably. First, let us emphasize the 
fact that the objective function in (3a) implies that the unmatched users in any feasible solution will not receive 
any subsidy. Additionally, this objective function indicates that the optimal solution never assigns any IR 



 

 9 

incentive to any user, as one unit of IR incentive would decrease the objective function by 𝜖. (Note that IR 
incentives will not be trivially zero when we introduce the ride-back guarantee component in section 4.2). 
Another observation is that Constraints (3b)-(3i) indicate that the optimal solutions for the incentives and trip 
start and end times depend on the matching variables. As such, we present a pre-processing procedure in 
Algorithm 1 that allows us to reduce the problem in (3) to a well-known combinatorial problem. 

This algorithm takes the trip information of all users and the original gains of all pairs of drivers and riders 
as its input. The primary goal of this algorithm is to determine the set of all potential matches in the morning, 
denoted by 𝐴′, the optimal values of incentives required for driver 𝑑 and rider 𝑟 to have a feasible match, 
denoted by Ψ(𝑑′, 𝑟′), and the objective coefficient of this pair, denoted by 𝖢(𝑑′, 𝑟′). The algorithm starts with 
letting 𝐴′ be an empty set. Next, it iterates over all pairs of riders and drivers to check whether they can be a 
potential match and if the answer is yes, further find the optimal required subsidies for such pairs. More 
specifically, in lines 3 to 6, we check the spatio-temporal feasibility of pair (𝑑′, 𝑟′) by solving a linear problem, 
and storing the optimal trip start times and BA incentives of driver 𝑑 and rider 𝑟 conditional on 𝑥(𝑑′, 𝑟′) = 1, 
denoted by 𝑡(𝑑′|𝑟′), 𝛾(𝑑′|𝑟′), 𝑡(𝑟′|𝑑′), and 𝛾(𝑟′|𝑑′), respectively. Next, in lines 7, we determine the optimal 
IR incentive, which is only positive if the corresponding original gain is negative. Finally, we calculate the 
objective coefficient 𝖢(𝑑′, 𝑟′) as the difference between the original gain and incurred dis-utilities of driver 𝑑 
and rider 𝑟 from sharing their morning rides together. Also, the total allocated subsidy to (𝑑′, 𝑟′) conditional 
on them sharing their rides together, denoted by Ψ(𝑑′, 𝑟′), can be computed as the sum of the optimal BA and 
IR incentives. 

Upon this polynomial-time pre-processing procedure, the problem in (3) reduces to a budget-constrained 
matching problem presented in (5). Note that this formulation clearly implies that those pairs of trips whose 
IR incentives are positive cannot be a part of the optimal solution. 

   
Algorithm 1: The pre-processing procedure for the morning trips 

Input: 𝖨, 𝖩, 𝖳, 𝖰, 𝖥, 𝖶 .   Output: 𝐴′, 𝖢, Ψ . 
1 Initialize 𝐴′ ← ∅   ;  
2 for (𝑑′, 𝑟′) ∈ 𝐷′ × 𝑅′ do  
3 Solve the following linear problem:  
 min    z = 𝖥(𝑑)(𝛾−(𝑑′) + 𝛾+(𝑑′)) + 𝖥(𝑟)(𝛾−(𝑟′) + 𝛾+(𝑟′)) (4a) 
 s.t.    𝑡(𝑛′) ≥ 𝖳(𝑛′) − 𝛾−(𝑛′) , ∀ 𝑛′ ∈ {𝑑′, 𝑟′} , (4b) 
  𝑡(𝑑′) + 𝜏 ( ′) −( ′)  (4c) 𝖨(𝑑′),𝖨(𝑟′) ≥ 𝖳 𝑟 − 𝛾 𝑟 , 

 𝑡(𝑑′) + 𝜏 + 𝜏 ( ′ + ′ 𝖨(𝑑′ ) ( )  (4d) ),𝖨(𝑟′) 𝖨(𝑟′),𝖩(𝑟′) ≤ 𝖰 𝑟 + 𝛾 𝑟  
 𝑡(𝑑′) + 𝜏  𝖨(𝑑′  (4e)),𝖨(𝑟′) + 𝜏𝖨(𝑟′),𝖩(𝑟′) + 𝜏𝖩(𝑟′),𝖩(𝑑′) 

≤ 𝖰(𝑑′) + 𝛾+(𝑑′) 
  𝛾(𝑛′) ≤ 𝛤 , ∀ 𝑛′ ∈ {𝑑′, 𝑟′} , (4f) 
  𝑡(𝑑′), 𝑡(𝑟′), 𝛾−(𝑑′), 𝛾+(𝑑′), 𝛾−(𝑟′), 𝛾+(𝑟′) ≥ 0 .  (4g) 

    
 if (the problem in (4) is FEASIBLE) then 

∗ ∗
4  ∗ ∗

Retrieve optimal solution (𝑡∗(𝑑′), 𝑡∗(𝑟′), 𝛾−(𝑟′), 𝛾+(𝑟′), 𝛾−(𝑑′), 𝛾+(𝑑)) and objective 𝑧∗ ; 
5  Let 𝑡(𝑑′|𝑟′),  𝑡(𝑟′|𝑑′) ← 𝑡∗(𝑑′), 𝑡∗(𝑟′) ;   

∗ ∗
6  ∗ ∗

− + − +  Let 𝛾(𝑑′|𝑟′),  𝛾(𝑟′|𝑑′) ← 𝛾 (𝑑′) + 𝛾 (𝑑′),  𝛾 (𝑟′) + 𝛾 (𝑟′) ; 
7  Let 𝜆(𝑑′, 𝑟′) ← max{0, −𝖶(𝑑′, 𝑟′)} ;    
8  Let 𝖢(𝑑′, 𝑟′) = 𝖶(𝑑′, 𝑟′) − (1 + 𝜖) 𝑧∗ − 𝜖 𝜆(𝑑′, 𝑟′) ;    
9  Let Ψ(𝑑′, 𝑟′) ← 𝖥(𝑑) 𝛾(𝑑′|𝑟′) + 𝖥(𝑟) 𝛾(𝑟′|𝑑′) + 𝜆(𝑑′, 𝑟′) ;   

10  Update 𝐴′ ← 𝐴′ ∪ {(𝑑′, 𝑟′)} ;  
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(5a)  max  ∑ 𝖢 (𝑎′) 𝑥(𝑎′)
 

𝑎′∈𝐴′

(5b) s.t.  ∑ 𝑥 (𝑑′, 𝑟′) ≤ 1 , ∀ 𝑟′ ∈ 𝑅′ ,
 

𝑑′∈𝐷′

 (5c) 
∑ 𝑥 (𝑑′, 𝑟′) ≤ 1 , ∀ 𝑑′ ∈ 𝐷′ ,

 
𝑟′∈𝑅′

(5d) 
∑ Ψ (𝑎′) 𝑥(𝑎′) ≤ 𝖡 ,

 
𝑎′∈𝐴′

𝑥(𝑎′) ∈ {0,1} , ∀ 𝑎′ ∈ 𝐴′ . (5e) 
 

By a reduction from the knapsack problem, the problem in (5) can be shown to be NP-hard. As such, Berger 
et al. (2011) propose a polynomial time approximation scheme (PTAS) to solve the problem. The core of this 
PTAS is a Lagrangian relaxation-based method, the solution of which has an objective that is different from 
the optimal one by at most 2 𝖢max, where 𝖢max denotes the largest weight. In Section 4.3, we extend this 
method to find a near-optimal solution for the problem involving both the morning and evening trips. 

4.2 Mathematical Formulation For the Morning and Evening Trips 
Let 𝐴″ denote the set of all rider-driver trip pairs in the evening, i.e., 𝐴″ = {(𝑟″, 𝑑″) ∈ 𝑅″ × 𝐷″}. This set can 
be generated by applying the pre-processing procedure described in Algorithm 1 to the evening trips. As a 
result, the ride-matching problem with the morning and evening trips can be formulated as the binary program 
in (6). The objective function in (6a) seeks to maximize social welfare while ensuring that each dollar spent 
on subsidy returns more than a dollar in social welfare. Constraints (6b)-(6e) ensure that all users are served 
at most once both in the morning and in the evening. Constraint (6f) ensures that any rider in 𝑅‴ is served in 
the evening if and only if served in the morning. Constraint (6h) sets a limit on the allocated budget. 

 (6a) max  ∑ 𝖢 (𝑎) 𝑥(𝑎)
 𝑎∈𝐴′∪𝐴″

(6b) s.t.  ∑ 𝑥 (𝑑′, 𝑟′) ≤ 1 , ∀ 𝑟′ ∈ 𝑅′ ,
 𝑑′∈𝐷′

(6c) ∑ 𝑥 (𝑑′, 𝑟′) ≤ 1 , ∀ 𝑑′ ∈ 𝐷′ ,
 𝑟′∈𝑅′

(6d) ∑ 𝑥 (𝑟″, 𝑑″) ≤ 1 , ∀ 𝑟″ ∈ 𝑅″ ,
 𝑑″∈𝐷″  

(6e) ∑ 𝑥 (𝑟″, 𝑑″) ≤ 1 , ∀ 𝑑″ ∈ 𝐷″ ,

𝑟″∈𝑅″  
(6f) ∑ 𝑥 (𝑑′, 𝑟′) = ∑   𝑥(𝑟″, 𝑑″) , ∀ 𝑟 ∈ 𝑅‴ ,

𝑑′∈𝐷′ 𝑑″∈𝐷″  
(6g) ∑ Ψ (𝑎) 𝑥(𝑎) ≤ 𝖡 ,

𝑎∈𝐴′∪𝐴″  
𝑥(𝑎) ∈ {0,1} , ∀ 𝑎 ∈ 𝐴′ ∪ 𝐴″ . (6h) 

 

Following our discussion in Section 3, we observe that the problem in (6) is similar to that of Lloret-Batlle, 
Masoud, and Nam (2017) with the addition of Constraint (6g). Thus, by defining a set of auxiliary nodes and 
edges, we can construct a min-cost max flow network similar to the one explained in Section 3 with the 
exception that the cost of potential matching edges can be set as −𝖢. Now, if for every potential matching 
edge we define a new cost, namely the usage fee, and set it to Ψ, problem (6) turns out to be a budget-
constrained min-cost flow problem (Holzhauser, Krumke, and Thielen 2016) as follows: 
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 (7a) max  ∑ 𝖢 (𝑒) 𝑥(𝑒)
 𝑒∈𝐸

(7b) s.t.  ∑ 𝑥 (𝑒) − ∑ 𝑥 (𝑒) = 0 , ∀ 𝑣 ∈ 𝑁′ ∪ 𝑁″ ,

𝑒∈𝛿+(𝑣) 𝑒∈𝛿−(𝑣)   
(7c) ∑ Ψ (𝑒) 𝑥(𝑒) ≤ 𝖡 ,

 𝑒∈𝐸

𝑥(𝑒) ∈ {0,1} , ∀ 𝑒 ∈ 𝐸 (7d) 
 

where 𝐴‴ is the set of auxiliary edges as described in Section 3, 𝐸 = 𝐴′ ∪ 𝐴″ ∪ 𝐴‴, and 𝛿+(𝑣) and 𝛿−(𝑣) 
denote the set of in-going and out-going edges of node 𝑣 in graph 𝐺, respectively. It is worth mentioning that, 
unlike the previous case, the IR incentives are not always equal to zero. Consider the case that 𝖢(𝑑1′, 𝑟′) < 0, 
𝖢(𝑟″, 𝑑2″) > 0, and 𝖢(𝑑1′, 𝑟′) + 𝖢(𝑟″, 𝑑2″) > 0 for arbitrary users 𝑑1, 𝑟, 𝑑2. In this case, we may have 
𝑥∗(𝑑1′, 𝑟′) = 𝑥∗(𝑟″, 𝑑″2) = 1 which implies that 𝜆∗(𝑑′1, 𝑟′) > 0. 

This problem is clearly a generalization of the problem in (5), and thus, can be shown to be NP-hard. Due 
to the similarities of these two problems, we present a solution methodology that extends the method proposed 
by Berger et al. (2011) to find near-optimal solutions for large-scale instances of problem (7). This method 
solves in polynomial time and does not require a commercial optimization engine. 

We finalize this section by describing a post-processing procedure to find the optimal trip start time, trip 
end time, incentives, and gains for the original MINLP based on the optimal matching 𝑥∗. For any pair (𝑑′, 𝑟′) 
such that 𝑥∗(𝑑′, 𝑟′) = 1, the optimal values of these variables can be calculated as: 

 𝑡∗(𝑟′) = 𝑡(𝑟′|𝑑′) , (8a) 
𝑞∗(𝑟′) = 𝑡∗(𝑟′) + 𝜏𝖨(𝑟′),𝖩(𝑟′) , (8b) 
𝛾∗(𝑟′) = 𝛾(𝑟′|𝑑′) , (8c) 
𝑡∗(𝑑′) = 𝑡(𝑑′|𝑟′) , (8d) 
𝑞∗  

(𝑑′) = 𝑡(𝑑′) + 𝜏𝖨(𝑟′),𝖩(𝑟′) + 𝜏𝖩(𝑟′),𝖩(𝑑′)  , (8e) 
𝛾∗(𝑑′) = 𝛾(𝑑′|𝑟′) , (8f) 
𝑤∗(𝑑′, 𝑟′) = 𝖶(𝑑′, 𝑟′) + 𝜆(𝑑′, 𝑟′) , (8g) 
𝜆∗(𝑑′, 𝑟′) = 𝜆(𝑑′, 𝑟′) , (8h) 

4.3 A Lagrangian Relaxation-Based Method 
Lagrangian Relaxation (LR) is a well-known decomposition technique that proves to be useful in finding an 
upper bound (in maximization problems) for large MIP problems (Fisher 1981). The MIP problems usually 
involve some complicating constraints that make them hard to solve. LR takes advantage of such constraints 
by dualizing them in the objective function and solving an easier subproblem that does not include these 
constraints.  In problem (7), for instance, removing the budget constraint leaves us with a min-cost max flow 
problem. Since the solution of the LR subproblem is usually infeasible with respect to the relaxed constraint(s), 
the LR decomposition is usually coupled with a heuristic algorithm to find a high-quality feasible solution. In 
what follows, we first present the LR subproblem, followed by a patching method that turns the optimal 
solution of the LR subproblem into a feasible solution with a worst-case optimality bound on the optimal 
objective of problem (7) in polynomial time. This procedure is summarized in Algorithm 2. For illustrative 
purposes, consider the small min-cost max flow network 𝐺 in Figure 2. 

4.3.1 The LR Subproblem.  
The LR subproblem can be defined by relaxing Constraint (7c) and dualizing it in the objective function with 
a non-negative Lagrange multiplier, denoted by 𝛽, as follows: 

 max  ∑ 𝖢 (𝑒) 𝑥(𝑒) − 𝛽 (∑ Ψ (𝑒) 𝑥(𝑒) − 𝖡) (9a) 
 𝑒∈𝐸 𝑒∈𝐸  

s.t.  (7b) and 0 ≤ 𝑥(𝑒) ≤ 1,  ∀ 𝑒 ∈ 𝐸 .
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Figure 2: A small example of graph G. 
 

The objective function in (9a) can be simply written as: 

 𝖫𝖱(𝛽) = ∑ 𝖢𝛽 (𝑒) 𝑥(𝑒) + 𝛽 𝖡 , (10) 
𝑒∈𝐸

where 𝖢𝛽(𝑒) = 𝖢(𝑒) − 𝛽 Ψ(𝑒). Therefore, given the value of 𝛽, the cost of the potential matching edge 𝑒 in 
graph 𝐺 can be set to −𝖢𝛽(𝑒), and the difference between the constant 𝛽 𝖡 and the optimal cost of network 
yields an upper bound for the original problem in (7). We know that 𝖫𝖱 is a convex piecewise linear function 
of 𝛽, and thus, this upper bound will be minimized at 𝛽∗. Also note that the min-cost max flow problem in a  
directed acyclic graph (DAG) with unit capacities can be solved in strongly polynomial time of 𝒪(|𝑉|2|𝐸|) 
using the successive shortest path algorithm (Ahuja, Magnanti, and Orlin 1988). These two facts lead us to 
the conclusion that 𝛽∗ can be found in polynomial time of 𝒪(|𝑉|4|𝐸|2) using the parametric search method 
proposed by (Megiddo 1978).  Considering the value of 𝖫𝖱(𝛽), 𝛽∗ lies at the intersection of two types of 
hyperplanes, those with positive slopes induced by budget-feasible flows and those with negative slope 
induced by budget-infeasible flows. If we let 𝜖 be a positive infinitesimal number, solving the min-cost max 
flow in graph 𝐺 with costs respectively set as 𝖢𝛽∗−𝜖 and 𝖢𝛽∗+𝜖 gives rise to  a budget-infeasible flow denoted 
by 𝑆𝑙 ⊂ 𝐸, and  a budget-feasible flow denoted by 𝑆ℎ ⊂ 𝐸  both of which minimize the LR subproblem. For 
our small example, for instance, this search can result in two flows 𝑆ℎ and 𝑆𝑙  presented in Figures 3(a) and 
3(b). 

It is easy to show that, unless the two flows are the same, which implies optimality, 𝑆𝑙  violates the budget 
constraint, while 𝑆ℎ satisfies it, and hence, attributes to a feasible solution for the problem in (7).  The main 
issue is that the objective of flow 𝑆ℎ may be arbitrarily far from the optimal one, denoted by OPT. In order to 
tackle this issue, in the next part, we present a patching method to construct a solution based on two flows 𝑆𝑙  
and 𝑆ℎ. 

 

 
(a) 𝑆ℎ                                                                            (b) 𝑆𝑙  

Figure 3: A budget-feasible and -infeasible optimal flow for LR subproblem of the small example. 
 

4.3.2 The Patching Method. 
As mentioned earlier, (Berger et al. 2011) proposed a solution method that yields a worst-case optimality of 
2 𝖢max for a budgeted matching problem. They introduce a patching technique that takes the following steps 
to derive an approximate solution from Lagrangian optimal solutions 𝑆𝑙  and 𝑆ℎ: 
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1. Turning 𝑆𝑙  and 𝑆ℎ into two adjacent extreme solutions such that the difference between the solutions 
reduces to a single cycle or path. 

2. Modifying 𝑆ℎ with a subsequence of the remaining cycle or path using the Gasoline Lemma to yield 
a budget-feasible high-quality solution. 

In this part, we show that this procedure can be generalized to a budgeted min-cost max flow problem. Further, 
in the next part, we prove that this approach provides us with a worst-case optimality of 3 𝖢max for the 
budgeted min-cost max flow problem. Our generalization is summarized in lines 2-19 of Algorithm 2. 

First, let us show how one can turn 𝑆𝑙  and 𝑆ℎ into two adjacent extreme flows of the solution polytope of 
the LR subproblem. Let us define the set of forward edges, 𝐸𝑓, as all edges in 𝑆𝑙  that are not in 𝑆ℎ, and the  set 
of backward edges, 𝐸𝑏, as all edges in 𝑆ℎ that are not in 𝑆𝑙 . Also, denote the set of reversed edges in 𝐸𝑏 by 𝐸𝑏. 
Two flows 𝑆𝑙  and 𝑆ℎ are adjacent if and only if the graph induced by edges in 𝐸𝑏 ∪ 𝐸𝑓, denoted by 𝐺′, has 
only one cycle (Gallo and Sodini 1978). The following claim states that 𝐸𝑏 ∪ 𝐸𝑓 contains a set of simple paths 
and cycles.  
Claim 1: Graph 𝐺′ contains a non-empty collection of simple path(s) between source 𝗌 and target 𝗍 and/or 
simple cycle(s). 
Proof. Based on the definition of 𝐸𝑏 ∪ 𝐸𝑓 and the fact that both 𝑆𝑙  and 𝑆ℎ satisfy Constraint (7b), we infer that 
all nodes in 𝑉 except the source and target node have in-degrees and out-degrees of either 1 or 0. We further 
infer that the net outflow of 𝗌 is equal to the net inflow of 𝗍. As a result, 𝐸𝑏 ∪ 𝐸𝑓 can be decomposed into a 
combination of cycles and paths that include at least one of the following: 

• simple path(s) from 𝗌 to 𝗍 , 
• simple path(s) from 𝗍 to 𝗌 , 
• simple cycle(s) . 

 
Algorithm 2: A near-optimal solution for P2P ridesharing with ride-back guarantee 

Input: 𝖢, Ψ, 𝐺 = (𝑉, 𝐸) .   Output: 𝑆̃ . 
1 Find the optimal Lagrangian multiplier 𝛽∗ and two sets of matching edges 𝑆ℎ and 𝑆𝑙  such that 

𝖢𝛽∗(𝑆ℎ) = 𝖢𝛽∗(𝑆𝑙)  and Ψ(𝑆ℎ) ≤ 𝖡 < Ψ(𝑆𝑙)  ; 
2 Let 𝐸𝑓, 𝐸𝑏 ← 𝑆𝑙\𝑆ℎ, 𝑆ℎ\𝑆𝑙 ;  
3 Find the set of alternating cycles 𝒞 in Graph 𝐺′ = (𝑉, 𝐸𝑏 ∪ 𝐸𝑓)  ;  
4 repeat  
5  Pick an arbitrary cycle 𝑋 ∈ 𝒞  ; 
6  Let 𝑋𝑓 , 𝑋𝑏 ← 𝑋 ∩ 𝐸𝑓, 𝑋 ∩ 𝐸𝑏 ; 
7  Let 𝑆 ← (𝑆ℎ ∪ 𝑋𝑓)\𝑋𝑏   ; 
8  if Ψ(𝑆) ≤ 𝖡 then 
9   Update 𝑆ℎ ← 𝑆  ; 

10  else 
11   Update 𝑆𝑙 ← 𝑆  ; 
12  Update 𝐸𝑓, 𝐸𝑏 ← 𝑆𝑙\𝑆ℎ, 𝑆ℎ\𝑆𝑙 ; 
13  Find the set of alternating cycles 𝒞 in Graph 𝐺′ = (𝑉, 𝐸𝑏 ∪ 𝐸𝑓)  ; 
14 until(|𝒞| = 1) 
15 if Ψ(𝑆ℎ) = 𝖡 then 
16  Let 𝑆̃ ← 𝑆ℎ   ; 
17 else 
18  Find sequence 𝑌 = 𝑌𝑓 ∪ 𝑌𝑏 in cycle 𝑋 using the Gasoline Lemma  ; 
19  Find 𝑆̃ by solving a min-cost max flow in graph 𝐺″ = (𝑉, (𝑆ℎ ∪ 𝑌𝑓)\𝑌𝑏) with costs 𝖢  ;  
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(a) 𝐸𝑏 ∪ 𝐸𝑓                                                     (b) 𝑆ℎ after cancelling a cycle 

Figure 4: The cycles in 𝒞 = {𝑋1, 𝑋2} and the flow 𝑆ℎ  after cancelling cycle induced by the edges in 
𝑋1 = {(2′, 8′), (8′, 3′), (3′, 9′), (9′, 4′), (4′, 10′), (10′, 2′)}. In part (a), the solid arrows denote edges in 𝐸𝑓 and 
the dashed arrows denote the edges in 𝐸𝑏. 

 

 Note that a path from 𝗌 (𝗍) to 𝗍 (𝗌) in graph 𝐺′ can turn into a cycle using an auxiliary edge from 𝗍 (𝗌) to 𝗌 
(𝗍) with cost 0 and capacity 1. Thus, we conclude that graph 𝐺′, with minor adjustments, consists of a non-
empty set of cycles denoted by 𝒞. If the cardinality of 𝒞 is one, by definition 𝑆𝑙  and 𝑆ℎ are adjacent. Otherwise, 
until the cardinality of 𝒞 is equal to one, we repeat the process described in lines 4 to 13 of Algorithm 2. More 
specifically, we draw one arbitrary cycle from 𝒞 at a time and add its forward edges to 𝑆ℎ and remove its 
backward edges from 𝑆ℎ. This yields a new feasible flow, denoted by 𝑆, the Lagrangian objective of which is 
equal to those of 𝑆ℎ and 𝑆𝑙 . Now, depending on whether this flow satisfies the budget constraint, we replace 
it by 𝑆ℎ or 𝑆𝑙 . At the end of this process, if flow 𝑆ℎ depletes all the budget, we claim that it is the optimal 
solution. Otherwise, we continue to the patching method described below. In Figure , we show that 𝒞 consists 
of  two  cycles  𝑋1 = {(2′, 8′), (8′, 3′), (3′, 9′), (9′, 4′), (4′, 10′), (10′, 2′)}  and  𝑋2 = {(𝗌, 1′), (1′, 7′), (7′, 7″),     
(7″, 1″), (1″, 11″), (11″, 5″), (5″, 9″), (9″, 6″), (6″, 𝗍)} in our small example. Note that 𝑋2 is indeed a path 
from 𝗌 to 𝗍 which can turn into a cycle by adding the auxiliary edge (𝗍, 𝗌). Since |𝒞| = 2, we need to cancel 
one of these cycles using the procedure described above. Note that the forward edges in 𝑋1 and 𝑋2 are shown 
by solid lines and backward edges are shown by dashed lines. In Figure , we show the result of cancelling 
cycle 𝑋1 which provides a new flow 𝑆ℎ, assuming that the budget constraint remains feasible. 

Now, let us denote the last remaining cycle in 𝒞 by 𝑋 = 𝑋𝑓 ∪ 𝑋𝑏, where 𝑋𝑓  and 𝑋𝑏 respectively denote the 
forward edges and backward edges in 𝑋. If we use the procedure described above to remove the last cycle 𝑋, 
flow 𝑆ℎ will turn into flow 𝑆𝑙 , i.e., the two solutions will collapse, providing an infeasible solution with respect 
to the budget constraint. Also note that: 

𝖢(𝑆ℎ) ≥ 𝖮𝖯𝖳 − 𝛽∗ (𝖡 − Ψ(𝑆ℎ)) . 
Therefore, finding a solution whose subsidy is closer to 𝖡 improves the optimality bound of our solution for 
problem (7). To this end, we present a method to alter flow 𝑆ℎ using a subsequence of edges in cycle 𝑋. Similar 
to the patching method in (Berger et al. 2011), the core of our method is based on the Gasoline Lemma, 
presented in Appendix B. 

In order to apply the Gasoline Lemma, we define the following weights for edges 𝑒 = (𝑖, 𝑗) in 𝑋: 

 𝖢𝛽∗(𝑖, 𝑗) ,  if (𝑖, 𝑗) ∈ 𝑋𝑓  ,
𝛼(𝑖, 𝑗) = {  (11) 

−𝖢𝛽∗(𝑗, 𝑖) ,  if (𝑖, 𝑗) ∈ 𝑋𝑏  .

For any rider 𝑟 ∈ 𝑅‴ in 𝑋, we further adjust the weight of the edge that starts from or ends at 𝑟″ as follows: 

 𝛼(𝑟″, 𝑗) = 𝛼(𝑟″, 𝑗) + max{𝖢(𝑑′𝑙(𝑟′), 𝑟′),  𝖢(𝑑′ℎ(𝑟′), 𝑟′),  0} , (12)  
𝛼(𝑖, 𝑟″) = 𝛼(𝑖, 𝑟″) − max{𝖢(𝑑′𝑙(𝑟′), 𝑟′),  𝖢(𝑑′ℎ(𝑟′), 𝑟′),  0} , (13) 

where 𝑑′𝑙(𝑟′), 𝑑′ℎ(𝑟′) respectively denote the driver trips that are matched with rider trip 𝑟′ in flows 𝑆𝑙  and 
𝑆 . If there is no such matches in either of these flows, we let the corresponding 𝖢 value be zero. Also, note ℎ

that the 𝛼 values for edges in 𝑋 add up to zero. Next, we apply the Gasoline Lemma to the edges in 𝑋 with the 
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weights set as 𝛼. This lemma gives us an edge 𝑒1 in 𝑋 such that any subsequence 𝑋′ of 𝑋 that starts with edge 
𝑒1 has the following property: 

 ∑ 𝛼 (𝑒) ≥ 0 , (14) 
𝑒∈𝑋′

Let 𝑌 = 𝑌𝑓 ∪ 𝑌𝑏 be the longest subsequence 𝑋′ such that adding the edges in 𝑌𝑓 to 𝑆ℎ and removing the edges 
in 𝑌𝑏 from it do not violate the budget constraint. We further remove edges from the start and end of 𝑌 that 
originate from or end at the source and target nodes, respectively. (Note that doing so does not affect the 
property in (14) since the value of 𝛼 is zero for all such edges.) Let 𝑆 denote the flow built by adding edges in 
𝑌𝑓 to 𝑆ℎ and removing the edges in 𝑌𝑏 from it. Note that flow 𝑆 satisfies the budget constraint due to the choice 
of 𝑌. However, it may not attribute to a feasible flow as it may violate the flow conservation constraints in 
(7b). Therefore, we solve a min-cost max flow in graph 𝐺″ = (𝑉, 𝑆), with costs of edges set as 𝖢, to obtain a 
feasible flow 𝑆̃. This implies that 𝑆̃ ⊆ 𝑆. 

Let us implement this procedure for our small example. In Figure 5(a), we show the remaining cycle 𝑋 =
𝑋2 after removing cycle 𝑋1. We further show a possible case for subsequence 𝑌 of 𝑋, which is represented by 
the edges in red, starting from node 9″ and ending at node 11″. Figure 5(b) demonstrates graph 𝐺′ = (𝑉, 𝑆). 
Note that 𝑆 does not satisfy the flow conservation for nodes 9″ and 11″. By solving a min-cost max flow in 
graph 𝐺, we obtain flow 𝑆̃ which can be obtained by removing the edges in red from flow 𝑆. 

 
(a) 𝑋and 𝑌                                                                     (b) 𝑆̃ 

Figure 5: Cycle 𝑋, subsequence 𝑌, graph 𝐺′ = (𝑉, 𝑆) and the final flow 𝑆̃ 
 
 

4.3.3  Properties of the LR-based Method. 
In this part, we show that 𝑆 yields a worst-case optimality bound, and solves in strongly polynomial time. 
Proposition 1: Algorithm 2 provides a solution for problem (7) with worst-case optimality bound of 3 𝘊𝑚𝑎𝑥, 
i.e. 𝘊(𝑆̃) ≥ 𝘖𝘗𝘛 − 3 𝘊𝑚𝑎𝑥 . 
Remark 1: Algorithm 2 provides a solution for the problem in (7) in strongly polynomial time. 
Proof. As mentioned earlier, the value of 𝛽∗ can be found in 𝒪(|𝑉|4|𝐸|2) using the Megiddo’s parametric 
search technique. Also, all simple cycles in graph 𝐺′ can be found in 𝒪(|𝑉|2) using the algorithm proposed 
by Johnson (1975), given the fact that at most 𝒪(|𝑉|) simple cycles can exist in this graph. After each loop, 
at least one cycle can be cancelled. Thus, the whole cycle-cancelling process takes 𝒪(|𝑉|3). The Gasoline 
Lemma can be applied in 𝒪(|𝑉|), and flow 𝑆̃ can be found by solving a min-cost max flow in 𝒪(|𝑉|3), given 
the fact 𝒪(|𝐸|) = 𝒪(|𝑉|) in graph 𝐺″. Thus, the running time of Algorithm 2 is bounded by that of the 
parametric search and the result follows.  

We finalize this section by stating that one can turn Algorithm 2 into a PTAS by guessing the heaviest 
edges that will be in the optimal solution similar to the procedure described by Berger et al. (2011). However, 

̃

in large-scale instances of our problem 𝖢max is sufficiently small compared to 𝖮𝖯𝖳, which implies that the 
optimality gap is reasonably low and we do not need such an expensive procedure. 
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4.4 A Budget-Balanced Variant of the Incentive Program 
In Section 3, we assumed that the ridesharing system relies on an external budget of size 𝖡 to incentivize the 
participants. In this subsection, we introduce a budget-balanced variant of our traveler incentive program 
whose funding comes from taxing the matches with positive adjusted gain. As such, let 𝜙 denote a flat tax rate 
that will be applied to any matched pair whose gain after adding subsidies is positive. In this case, we can 
replace the budget constraint in (7c) with the following constraint: 

 

 ∑ Ψ (𝑒) 𝑥(𝑒)   ≤ 𝜙  ∑ ( 𝖶(𝑒) + 𝜆(𝑒)) 𝑥(𝑒) . (15) 
𝑒∈𝐸 𝑒∈𝐸

 

In problem (7), we chose to maximize the difference between system’s social welfare and allocated subsidy 
to ensure that every external dollar added to the system generates a positive return on investment. In the case 
of a budget-balanced system, however, the budget will be provided internally, and thus, we choose to 
maximize the system’s social welfare. As a result, the after-tax social welfare of the budget-balanced system 
can be calculated: 

 (1 − 𝜙) ∑ ( 𝖶(𝑒) + 𝜆(𝑒)) 𝑥(𝑒) , (16) 
𝑒∈𝐸

Note that the pre-processing procedure in Algorithm 1 is still valid in this case, since taxing affects neither 
the spatio-temporal feasibility nor the individual rationality of any pair. Hence, given a constant value for 𝜙, 
we can find the optimal solution to the new problem using the methodology proposed in the previous 
subsection with minor adjustments. 

For a budget-balanced system, an important question that needs to be addressed is that “what would be an 
appropriate value for 𝜙?”. On the one hand, increasing the value of 𝜙 raises our available budget to subsidize 
more users, which leads to a higher matching rate and system-level social welfare. On the other hand, raising 
the tax rate adversely affects the social welfare of those participants who could be matched with lower values 
of 𝜙. In what follows, we present a proposition that helps us answer this question. 
Proposition 2: The optimal flat tax rate that yields the maximum social welfare for the budget-balanced 
variant of the traveler incentive program can be found as: 
 

 ∑𝑒∈𝐸 𝛹 (𝑒) 𝑥𝑚𝑎𝑥(𝑒)
𝜙𝑚𝑎𝑥 =  , (17) 

∑𝑒∈𝐸 ( 𝘞(𝑒) + 𝜆(𝑒)) 𝑥𝑚𝑎𝑥(𝑒)
 

where 𝑥𝑚𝑎𝑥 denotes the optimal solution to problem (7) when Constraint (7c) is relaxed. 
Proof. Let us rewrite the objective function in (16) as: 
 

max  ∑ 𝖢 (𝑒) 𝑥(𝑒) + (∑ Ψ (𝑒) 𝑥(𝑒) − 𝜙  ∑ ( 𝖶(𝑒) + 𝜆(𝑒)) 𝑥(𝑒))  . 
𝑒∈𝐸 𝑒∈𝐸 𝑒∈𝐸

 

Note that the statement inside the parentheses is always non-positive due to the budget constraint in (15). 
Therefore, its value will be maximized if Constraint (15) is binding. Thus, solution (𝑥max, 𝜙max) maximizes 
both the statements inside and outside the parentheses and the result follows. This proposition further implies 
that the budget-balanced variant of our program is no longer NP-hard as stated in the following remark. 
Remark 2: The optimal solution to the budget-balanced variant of the traveler incentive program as a 
function of 𝜙 can be found in strongly polynomial time. 
Proof. Since problem (7) without Constraint (7c) can be modeled as a min-cost max flow and thus the worst-
case running time complexity of finding 𝑥max is 𝒪(|𝑉|2|𝐸|). Also, the pre-processing procedure has a time 
complexity of 𝒪(|𝑉|2). Hence, the overall complexity of the budget-balanced variant of the incentive program 
is the same as that of the min-cost max flow problem which is fully polynomial in the input size and the result 
follows. 
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5 Numerical Experiment 
In this section we conduct a comprehensive set of numerical studies using the New York City taxi dataset 
(http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml) to evaluate the performance of the proposed 
traveler incentive program for a ridesharing system. In the next three subsections, we carefully define our 
dataset, parameter settings, and several performance metrics that help us quantify the impact of the proposed 
methodology. Afterwards, we present the result of various experiments. 

All the experiments are implemented on a 3.50 GHz Intel Xeon machine with a 64-bit version of the 
Windows 10 operating system with 128.0 GB RAM. The data preparation and the LR-based algorithm are 
coded in Python 3.7, and all the optimization problems are solved using GUROBI 9.0. 

5.1 Dataset 
In our numerical experiments, we assume that the proposed ridesharing system is practiced by the travelers in 
the Manhattan area of the New York City. Therefore, the road network of the Manhattan area is extracted from 
Open Street Map, which consists of 4500 nodes (stations) and 9800 transportation links. We further use the 
Google Map API to find the shortest-path travel time and driving distance between every pair of stations in 
the morning and evening. For the morning and evening trip information of the participants, we use the daily 
average of the historical trips in the New York City taxi dataset from Feb 1, 2016 to Feb 10, 2016 subject to 
the following assumptions and modifications: 

• For a user that participates in the system only in the morning or evening peak hours, the origin and 
destination stations as well as the desired earliest departure time are obtained directly from the 
dataset. 

• To construct the set of users who are interested in both the morning and evening trips, we pick the 
trip information of their morning trips from the dataset. For the evening trip, we randomly pick a 
desired earliest departure time from the evening peak hour period and flip the origin and destination 
of their morning trip to form the origin and destination of the evening trip. 

• In order to obtain a tight time window for every trip, we generate a random number following a 
Normal distribution with mean of 5 minutes and standard deviation of 1 as the trip time flexibility. 
As a result, the desired latest arrival time of every trip can be set as the sum of desired earliest 
departure time, the shortest-path travel time between their origin and destination stations, and the 
trip time flexibility. 

• We only consider trips whose shortest-path travel times are at least 10 minutes. 
• We randomly generate the user’s values of time and distance from Normal distributions with means 

𝜇(𝖥) and 𝜇(𝖧) and standard deviations 𝜇(𝖥)/5 and 𝜇(𝖧)/5, respectively. 
• For every trip, the maximum allowed extension in the time window, 𝛤, is set to 15 minutes. 

5.2 Experiment setup and Parameter Settings 
In our numerical experiments, we consider different scenarios of the ridesharing network with parameters 
defined as follows: 

• |𝑁| : the total number of participants in the system, 
• |𝑅|/𝑁 : the percentage of riders, 
• |𝑁‴|/𝑁 : the percentage of participants with both morning and evening trips, 
• 𝖡 : the total available budget for subsidy, 
• 𝜇(𝖥) : the mean of a user’s time valuation, 
• 𝜇(𝖧) : the mean of a user’s distance valuation, 
• 𝖬 and 𝖤 : the morning and evening peak hour periods, respectively. 

We define a base scenario whose parameters are shown in Table 1. We define other scenarios by changing the 
value of a single parameter in the base scenario at a time. 

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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Table 1: The parameter settings for the base scenario. 

|𝑁| |𝑅|/𝑁 |𝑁‴|/𝑁 𝖡 𝜇(𝖥) 𝜇(𝖧) 𝖬 𝖤 

 (%) (%) ($) ($/min.) ($/mile) (am/am) (pm/pm) 

6000 50 50 1000 0.35 3.0 [7: 00, 10: 00] [5: 00, 8: 00] 

 
Let us first describe how we generate the different sets, used in developing our methodology, based on the 

value of the first three parameters in Table 1. Consider the base scenario where the set of all users can be 
shown as 𝑁 = {1, … ,6000} based on the first parameter. The set of all riders and drivers can be respectively 
shown as 𝑅 = {1, … ,3000} and 𝐷 = {3001, … ,6000} based on the value of 50% for the second parameter. 
Finally, the value of 50% for the third parameter allows us to find all other sets as 𝑅′ = {1′, … ,2250′}, 𝑅″ =
{751″, … ,3000″}, 𝑅‴ = {751, … ,2250}, 𝐷′ = {3001′, … ,5250′}, 𝐷″ = {3751″, … ,6000″}, and 𝐷‴ =
{3751, … ,5250}. We also set 𝜖 in the parametric search to 10−6. 

5.3 Performance Metrics 
In order to quantify the performance of the proposed methodology, we introduce the following performance 
metrics: 

• Social Welfare (SW) = ∑ 𝑤∗
𝑒∈𝐸 (𝑒) 𝑥∗(𝑒) , 

• Subsidy Impact Rate (SIR) = (SW − SW without Subsidy)/(∑ Ψ𝑒∈𝐸 (𝑒) 𝑥∗(𝑒)) , 
• Subsidized Matches Rate (SMR) = 100 × (∑ 1Ψ(𝑒)>0𝑒∈𝐸 )/(∑ 𝑥∗

𝑒∈𝐸 (𝑒))  , 
• Time Window Extension (TWE) = (∑ 𝛾∗

𝑛∈𝑁′∪𝑁″ (𝑛))/(∑ 1𝛾∗(𝑛)>0𝑛∈𝑁′∪𝑁″ )  , 
where “Social Welfare without Subsidy” and “Matching Rate without Subsidy” respectively represent the 
negated total flow cost and matching rate of the original min-cost flow problem in Section 3 without 
considering any subsidy. 

5.4 The Performance of the LR-Based Solution Method 
In this study, we show the merits of our proposed solution method in solving the budget-constrained min cost 
flow problem in (7). To this end, we compare the computation time and the quality of the solution obtained 
by the proposed LR-based method with that of solving the problem in (7) directly using a MIP solver. For this 
comparison, we generated 10 random instances of the problem using the parameters in the base scenario and 
applied both methods to solve them. We also repeated our experiments with the number of users set as 2000, 
4000, 6000, 8000, 10000, and 12000. Figure shows the computation time of both methods for different number 
of users averaged over 10 instances. Figure shows the average optimality gap of our solution method for 
different number of users. The shaded region in both figures demonstrate the 95% confidence intervals of the 
average values. 

 

        
(a) Computation time                                                  (b) Optimality gap 

Figure 6: The comparison between the performance of the MIP solver and the LR-based Method 
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Figure (6a) indicates that the MIP solver takes almost half an hour to solve the problem with 12000 
customers while the proposed method in Algorithm 2 takes less than 3 minutes to find a near-optimal solution. 
Also, this figure clearly shows that the rate of increase in the computation time of the MIP solver is super-
linear while the computation time of our solution method increases fairly linearly with the number of users, 
highlighting the scalability of the proposed method. Also, Figure 6(b) suggests that, in general, the quality of 
the solutions obtained using Algorithm 2 improves with the number of system participants. Finally, it is worth 
mentioning that we observed that the MIP solver uses different heuristics to solve the problem in the reported 
times. Without these heuristics, the pure Branch-and-Cut algorithm takes a considerable amount of memory 
and hours of computation time to provide any high quality solution to any instance of the problem with more 
than 6000 users. 

5.5 The Impact of the Two Proposed Incentives 
In this paper, we consider two types of incentives, namely the behavioral adjustment and the individual 
rationality incentives. Here, we compare the performance of a ridesharing system with guaranteed-ride-back 
under four different cases of “no subsidy”, “only the BA incentive”, “only the IR incentive”, and “both the 
BA and IR incentives” using 10 different randomly-generated instances of the base scenario. Figure 
demonstrates the average system-level social welfare over 10 runs for these four cases. Clearly, no subsidy 
yields the lowest values in social welfare. Subsidizing the system only using the BA incentive type shows a 
promising increase in the social welfare. However, this figure suggests that the IR incentive does not change 
the social welfare in the absence of the BA incentive, and improves the social welfare in the presence of the 
BA incentive only minusculely. There are two main reasons for this observation. First, the IR incentive cannot 
turn a spatio-temporally infeasible pair into a feasible pair by itself. That is the reason why in Algorithm 1 we 
first check the spatio-temporal feasibility of a pair, and only when a pair is spatio-temporally feasible do we 
inspect the individual rationality of that pair. Secondly, we stated in Section 4.2 that the IR incentive can be 
positive only if the served rider is in 𝑅‴ and one of their trips in the morning or evening has negative original 
gain and the other has positive original gain, with sum of their original gains being positive. Otherwise, the 
IR incentive cannot add a higher value than its magnitude to the system. This fact highly narrows down the 
number of edges with positive IR incentive, and thus, its impact on the system-level social welfare diminishes. 

From the experiments above, one may come to the conclusion that the IR incentive seems to be useless and 
should not be considered. In order to show the merit of such an incentive in promoting a ridesharing system, 
we change the objective function in problem (7) to maximizing the matching rate as follows: 

max 
100 × 2

|𝑁′| + |𝑁″|
 ∑ 𝑥

𝑒∈𝐸

(𝑒) . 

 

            
(a) Maximize the social welfare                            (b) Maximize the matching rate 

Figure 7: The comparison between the performance of the ridesharing under different cases of subsidy for the 
objective of (a) maximizing the social welfare, and (b) maximizing the matching rate. 

It is easy to show that under this objective, we can still use the pre-processing procedure in Algorithm 1. 
Figure demonstrates the result of maximizing the matching rate under the four cases. This figure indicates that 
the IR incentive can increase the new objective, i.e., the matching rate, in a statistically significant manner 
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compared to the no subsidy case, even in the absence of the BA incentive. However, this figure also suggests 
that the BA incentive has more benefits than the IR incentive to offer due to the first reason discussed above. 
This figure also shows that in the presence of the BA incentive, introducing the IR incentive does not add 
considerable value. 

5.6 The Impact of Tax Rate in the Budget-Balanced Incentive Program 
In Section 4.4, we introduced a budget-balanced variant of our incentive program in which the required subsidy 
is collected internally through taxing the matches with positive adjusted gain. We further showed that the 
optimal flat tax rate 𝜙max can be found analytically. In this experiment, we demonstrate the empirical results 
for an arbitrary instance of the base scenario for different values of 0 ≤ 𝜙 ≤ 100. Figure 3 shows the after-
tax social welfare in (16) against the tax rate. This figure clearly shows that the social welfare of the budget-
balanced variant of the incentive program increases sub-linearly until it reaches 𝜙max = 16.87%, and then it 
starts to collapse until it gets to zero at 100%. Overall, this figure suggests that subsidizing the system 
internally can significantly increase its social welfare from less than $6000 (without subsidy) to more than 
$20,000. Also, it indicates that even a small tax rate as low as 1% can double the system’s social welfare. 

 

 

Figure 8: The social welfare for different values of tax rate in a budget-balanced incentive program  
 

5.7 The Distribution of the BA Incentive Based on Trip Origins and Destinations 
In this experiment, we are interested in learning the characteristics of the users who are more likely to change 
their travel behavior, and thus, receive the BA incentive. To this end, we investigate the chance of receiving 
the BA incentive as well as the average amount of subsidy based on the origin and destination geo-coordinates 
of participants. Figure 9 presents three heat maps that help us analyze the distribution of the BA incentive 
among participants for an arbitrary instance of the base scenario. Note that due to having a large number of 
stations, we aggregate them into larger zones that represent different neighborhoods in the Manhattan area. 

Figure 9(a) shows the number of trips in the morning and evening whose origin or destination stations falls 
within each zone. This figure clearly shows that most trips originate/end form/at the lower Manhattan area, 
more specifically in the neighborhood where the Time Square is located. Figure (9b) shows the percentage of 
the subsidized users for each neighborhood. This figure suggests that those users who start or end their trips 
in less popular zones are more likely to receive the BA incentive. This is not surprising, because the chances 
of finding users with compatible trips is lower for such trips. Therefore, they are more likely to extend their 
time windows to match with other users. Figure (9c) shows the average amount of the BA incentive per number 
of users that received such an incentive for each neighborhood. This figure clearly indicates that as the 
popularity of a neighborhood decreases, the trips whose origin and/or destination stations fall into that region 
should expand their time windows by a larger extent. Overall, this experiment suggests that those users who 
are located in the areas that are poorly supported by public transit can benefit more from the introduction of 
such an incentive program. 
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(a) Frequency of the Origin and 
Destination Zones                                                               

(b) Relative frequency of  
subsidized zones                      

c) Average subsidy per subsidized 
users of zones 

Figure 9: The heatmap of the origin and destination zones 

5.8 A Dynamic Implementation of the Incentive Program 
Throughout this paper, we considered a static ridesharing system for which all trip information for a given day 
is known prior to solving the ride-matching problem. This requires all users to announce their trips before the 
start of the morning period. In this experiment, we relax this requirement by considering a dynamic system in 
which users are allowed to announce their trip information shortly before their desired earliest departure times. 
Let 𝖫(𝑛) denotes the trip announcement time for user 𝑛 ∈ 𝑁. Note that we assume that users in 𝑁‴ announce 
both of their trips at the same time in the morning. In order to solve the dynamic ride-matching problem, we 
adopt the rolling horizon approach that re-optimizes the static ride-matching problem in short time intervals, 
say every 1 minute, using all the available trip information collected by the onset of each interval (see 
e.g., Agatz et al. (2011)). There are two important considerations for applying the rolling horizon approach in 
the existence of an incentive program: (𝑖) how to allocate the total budget 𝖡 to the re-optimization intervals, 
and (𝑖𝑖) when to finalize the matches between riders and drivers. Let us denote the re-optimization points 
(i.e., the starting times of the re-optimization intervals) by set 𝑃 = 𝑃′ ∪ 𝑃″, where 𝑃′ and 𝑃″ respectively 
denote the re-optimization points in the morning and evening. It is easy to show that the pre-processing (with 
a minor adjustment) and solution method can still be applied in this case. More specifically, we only need to 
add the following constraint to the problem in (4): 

 

𝑡(𝑛′) ≥ 𝑝 + 1 , ∀ 𝑛 ∈ 𝑑, 𝑟 . 
 

This constraint ensures that the trip’s start time is always after the end of the re-optimization interval. In 
what follows, we introduce two different policies for each of these considerations and evaluate their impacts 
on the system’s social welfare. 

For allocating the budget to the intervals, we consider two policies: (1) a naive policy that allows for using 
the entire available budget in each interval, and (2) dividing the total budget among intervals in a two-step 
process. In the first step, we divide the total budget between the morning and the evening intervals according 
to a pre-determined rate 𝜋 ∈ (0,1). In the second step, we divide 𝜋 𝖡 dollars uniformly among the intervals in 
𝑃′, and (1 − 𝜋) 𝖡 dollars uniformly among the intervals in 𝑃″. Also, we roll over the unused budget in each 
interval to the next interval. 

For finalizing the matches found after solving the problem in [eq:P] at each time 𝑝 ∈ 𝑃, we consider two 
policies: (1) we finalize the matches for users as soon as they got matched in a re-optimization interval, (2) 
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we postpone the matching finalization for any user as much as possible. More precisely, in the second policy 
we only finalize the matching between pairs of riders and drivers who cannot get matched together in the next 
re-optimization interval, or when the amount of subsidy allocated to them needs to increase in the next interval. 
This can be done by solving the problem in (4) once for 𝑝 + 1, and once for 𝑝 + 2 at every re-optimization 
point 𝑝 ∈ 𝑃. 

Figure 4 demonstrates the results of applying these policies to 10 randomly-generated instances of the base 
scenario. For each scenario, the trip announcement times are calculated by subtracting a random number 
following the Normal distribution with mean 5 and standard deviation of 1 from the corresponding desired 
earliest departure times. Moreover, for partial budget allocation policy, we consider different values of 𝜋 from 
0.5 to 1. The scenario “whole” in this figure corresponds to the naive budget allocation strategy of using as 
much of the budget as desired in the earlier intervals, and only using the roll-over budget in the subsequent 
ones. Scenarios “Partial𝜋” indicate the results for the fraction 𝜋 of the total budget being allocated to the 
morning period. Under each scenario, the blue and red bars indicate the total social welfare for the two match 
fixing policies of finalizing the matches as early and late as possible, respectively. 

Figure 10 clearly indicates that the combination of a partial budget allocation and latest time to finalize the 
matches yields the highest system-level social welfare. This is due to the following facts: under the Whole 
budget policy, the available budget will be depleted in the first few re-optimization points, which results in a 
huge opportunity cost of not being able to subsidize the ride-matching problems in the following intervals. 
Additionally, postponing the matching finalization to the latest possible interval enables us to obtain more 
information on future trips, and thus, find possibly more beneficial matches (with higher welfare and lower 
subsidy) for each user. This figure further demonstrates that the highest social welfare can be obtained by 
setting 𝜋 to 0.8, which is slightly higher than the rate of the morning trips in the system (0.75 in the base 
scenario) in the base scenario. One possible explanation for this observation is that all the available budget 
will not be used in each interval, and hence, letting 𝜋 be slightly larger than the rate of the morning trips in 
the system can help us distribute the total available budget more uniformly between the morning and evening 
trips; i.e., if there is no need for the extra 5% of budget, it will be rolled over to the next interval, but not 
proving the possibly of using this budget may lead to an opportunity cost. 

 

 

Figure 10: The social welfare a dynamic incentive program under different policies for allocating bidget and 
finalizing matches. 
 

5.9 Sensitivity Analysis 
In this subsection, we consider different scenarios, by changing one parameter of the base scenario at a time, 
to analyze the sensitivity of the performance metrics (see Section 5.3) on parameter values (see Section 5.2). 
The results of this analysis are plotted in Figures 11, 12, D.1, D.2, D.3, D.4, and D.5. Each plot shows the 
average and the 95% CI of the corresponding performance metric over 10 instances. In what follows, we 
analyze the results of Figures 11 and 12. The rest of Figures and their interpretations are presented in Appendix 
D. 
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In the base scenario, we assumed that the user’s value of time, 𝜇(𝖥), has a mean of $0.35 per minute. In 
order to study the relation between different values of this parameter and the performance metrics, we change 
the value to $0.1, $0.2, $0.5 and $0.6 per minute. The results are presented in Figure 11. In this figure, we 
observe that all the performance metrics decrease sublinearly with an increase in the value of 𝜇(𝖥). This is not 
surprising because the amount of subsidy allocated to a user to change their travel behavior is a linear function 
of their value of time. Therefore, as a user’s value of time increases, the system has to compensate them with 
more subsidy to change their travel behavior, i.e. expand their time window. 

    
(a) Social welfare (b) Subsidy impact rate (c) Subsidized matches rate (d) Time window extension 

Figure 11: Impact of average value of time 

 
Next, we consider the impact of changes in the average user’s value of distance, denoted by 𝜇(𝖧), on the 

performance metrics. Figure 12 presents the results of changing this value from $3 per mile in the base scenario 
to $1, $2, $4 and $5 per mile. Figure 12(c) shows no significant changes in the percentage of subsidized 
matches, which is due to the fact that the BA incentive allocated to users does not get affected by the value of 
this parameter, and that most of the available budget is spent on the BA incentive (see Section 5.5). However, 
Figures 12(a) and 12(b) indicate that both the social welfare and the subsidy impact rate increase linearly as a 
result of an increase in the value of 𝜇(𝖧). The main reason behind these increasing trends is that an increase 
in the valuation of distance linearly increases the savings due to matching, which leads to a higher number of 
individually rational matches. Also, this increase in the number of individually rational matches allows users 
to find matches that not only have higher gains but also require smaller changes in their time windows, as 
shown in Figure 12(d). 

    
(a) Social welfare (b) Subsidy impact rate (c) Subsidized matches rate (d) Time window extension 

Figure 12: Impact of average value of distance 
 

6 Conclusion and Future Work 
In this paper, we consider a community-based ridesharing system with guaranteed-ride-back for commuters. 
To promote such a ridesharing system among commuters, we introduce a traveler incentive program (TIP) 
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that offers two types of incentives, namely the behavioral adjustment (BA) and the individual rationality (IR) 
incentives. We formulate the joint problem of matching, scheduling, and incentive allocation as a mixed 
integer nonlinear program (MINLP). Using a pre-processing procedure and by utilizing linear programming, 
we reduce the MINLP problem to a budget-constrained min-cost flow problem. For solving large-scale 
instances of this problem, we devise a polynomial-time Lagrangian Relaxation-based algorithm, and obtain a 
worst-case optimality bound for its performance. We further introduce a budget-balanced variant of the 
incentive program that does not require external budget. Finally, we conduct several experiments using the 
New York City taxi dataset to evaluate different aspects of the TIP and the solution methodology. Our findings 
from the results of these experiments can be summarized as follows: 

3. The proposed TIP considerably increases the social welfare by tripling that of the system without 
subsidy. Also, every dollar spent on subsidy increases the social welfare by 12 dollars and matching 
rate by more than 40%. 

4. The proposed LR-based solution method significantly reduces the computational effort needed to 
solve the large-scale instances of the problem when compared to a MIP solver. Also, the relative 
optimality gap of the LR method does not exceed 0.15% for any larges-scale instance, and converges 
to zero as the size of the problem increases. 

5. When the objective of the system is to maximize social welfare, the impact of the IR incentive is 
negligible. However, we show that this type of incentive can be effective when the system operator 
aims to maximize the matching rate. Nonetheless, when BA incentives are introduced, adding IR 
incentives to the incentive basket improves neither the social welfare nor the matching rate in a 
statistically significant manner. This signifies the importance of using limited resources to change 
travel behavior, rather than providing direct monetary subsidies to travelers. 

6. Those users who start or end their trips in regions that are less populated and/or farther away from the 
business districts are more likely to receive subsidies. In addition, these users experience larger 
increases in their time windows. 

7. For dynamic implementation of the incentive program, it is more beneficial to separate the budget for 
the morning and evening peak hours and distribute the available budget among re-optimization 
intervals. 

There are at least three directions to extend the work in this paper. First, the fare paid by riders and the 
compensation received by drivers depend on their personal information (the valuations of time and distance), 
which we assumed could be estimated from their historical information. However, this information can also 
be directly solicited from the participants upon registration. In this case, it is essential to design a mechanism 
that ensures incentive compatibility, i.e., the individuals cannot benefit by not being truthful in reporting their 
private information (i.e., gaming the system). For future work, we consider designing a mechanism to 
determine the fare paid/received by riders/drivers based on their marginal contributions to social welfare (i.e., 
fairness), and also guarantees incentive compatibility (i.e., truthfulness). Moreover, this paper assumes the 
simplest form of ride-matching problem, i.e., the one-to-one ride-matching problem. As a result of this 
assumption, we observe that the IR incentive does not contribute much to improving social welfare. However, 
in case of allowing multiple riders or the possibility of transfers between vehicles, we might observe significant 
impacts by both types of incentives. Finally, this paper considers a simple linear model to incorporate the 
effect of subsidies on a user’s utility. It is interesting to consider more complicated forms of subsidization in 
ridesharing, as Fang, Huang, and Wierman (2020) shows that the multi-threshold subsidy programs are more 
effective in practice. Additionally, participants’ valuations of expanding their time windows from right or left 
(leaving later or earlier, respectively) could be different, especially for commuter trips. 
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Appendix A Table of Notations 
Table A. 1. List of notations. 

Notation Definition 
Sets: 
𝑁 = {𝑛} 
𝑅 = {𝑟} 
𝐷 = {𝑑} 
𝑁′ = {𝑛′} 
𝑅′ = {𝑟′} 
𝐷′ = {𝑑′} 
𝑁‴ 
𝑅′ = {𝑟′} 
𝐷′ = {𝑑′} 
𝐴′ = {𝑎′} 
𝑉 = {𝑣} 
𝐸 = {𝑒} 
Parameters: 
𝖨(𝑛′) 
𝖩(𝑛′) 
𝖳(𝑛′) 
𝖰(𝑛′) 
𝖥(𝑛) 
𝖧(𝑛) 
𝛤 
𝖡 
𝖴(𝑟′|𝑑′) 
𝖴(𝑑′|𝑟′) 
𝖶(𝑒) 
𝛾(𝑑′|𝑟′) 
𝛾(𝑟′|𝑑′) 

 
 
 
𝑁″ = {𝑛″} 
𝑅″ = {𝑟″} 
𝐷″ = {𝑑″} 
 
 
 
𝐴″ = {𝑎″} 
 
 

the set of all users 
the set of all riders 
the set of all drivers 
the set of trips in the morning/evening 
the set of rider trips in the morning/evening 
the set of driver trips in the morning/evening 
the set of users with trips both in the morning and evening 
the set of riders with trips both in the morning and evening 
the set of drivers with trips both in the morning and evening 
the set of potential morning/evening trip matches 
the set of nodes in the min-cost max flow network 
the set of edges in the min-cost max flow network 

𝖨(𝑛″) 
𝖩(𝑛″) 
𝖳(𝑛″) 
𝖰(𝑛″) 
 
 
 
 
𝖴(𝑟″|𝑑″) 
𝖴(𝑑″|𝑟″) 
 
𝛾(𝑑″|𝑟″) 
𝛾(𝑟″|𝑑″) 

the origin station of user 𝑛 in the morning/evening 
the destination station of user 𝑛 in the morning/evening 
the desired earliest departure time of user 𝑛 in the morning/evening 
the desired latest arrival time of user 𝑛 in the morning/evening 
the valuation of every minute of travel time for user 𝑛 
the valuation of every mile driven for user 𝑛 
the maximum time window extension offered to a participant 
the total budget available for monetary incentives 
the valuation of rider 𝑟 if matched to driver 𝑑 in the morning/evening 
the valuation of driver 𝑑 if matched to rider 𝑟 in the morning/evening 
the original gain of pair of trips 𝑒 
the optimal BA incentive of driver 𝑑 if matched with rider 𝑟 in the morning/evening 
the optimal BA incentive of rider 𝑟 if matched with driver 𝑑 in the morning/evening 

𝜆(𝑑′, 𝑟′) 𝜆(𝑟″, 𝑑″) the optimal IR incentive of pair (𝑑′, 𝑟′)/(𝑟″, 𝑑″) if matched in the morning/evening 
𝑡(𝑑′|𝑟′) 𝑡(𝑑″|𝑟″) the optimal trip start time of driver 𝑑 if matched with rider 𝑟 in the morning/evening 
𝑡(𝑟′|𝑑′) 

Ψ(𝑑′, 𝑟′) 

𝗌 
𝜖 
𝖢(𝑒) 
𝖢  max

𝖮𝖯𝖳 
𝛽 
𝖢𝛽(𝑒) 
𝛼(𝑒) 
𝜙 
𝜋 
Functions: 
𝐺 
𝐺′ 
𝐺″ 
𝛿+(𝑣) 

𝑡(𝑟″|𝑑″) 

Ψ(𝑟″, 𝑑″) 

𝗍 
 
 
 
 
 
 
 
 
 

 
 
 
𝛿−(𝑣) 

the optimal trip start time of rider 𝑟 if matched with driver 𝑑 in the morning/evening 
the optimal subsidy allocated to the pair (𝑑′, 𝑟′)/(𝑟″, 𝑑″) if matched in the 
morning/evening 
the source/target node in the min-cost max flow network 
an infinitesimal positive, real number 
the difference between the adjusted gain and subsidy of pair of trips 𝑒 
the largest value of 𝖢 
the optimal objective of the problem in (7) 
the Lagrange multiplier 
the coefficient of pair of trips 𝑒 in LR subproblem for a given 𝛽 
the weight of edge 𝑒 in the Gasoline Lemma 
a flat tax rate for budget balanced variant of TIP 
a rate for dividing the budget between the morning and evening periods 

the min-cost flow network of a ridesharing system with ride-back guarantee 
the graph containing the cycles between two flows 𝑆𝑙  and 𝑆ℎ  
the min-cost flow network of an infeasible flow 𝑆 
the in-going and out-going edges of node 𝑣 in 𝐺 
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Tables: 
𝜏  the shortest-path travel times matrix for the stations 
𝜌  the shortest-path driving distances matrix for the stations 
Variables: 
𝑥(𝑒)  1 if the driver and rider trip in 𝑒 are matched, and 0 otherwise 
𝑡(𝑛′) 𝑡(𝑛″) the morning/evening trip start time of user 𝑛 
𝑞(𝑛′) 𝑞(𝑛″) the morning/evening trip end time of user 𝑛 
𝛾−(𝑛′) 𝛾−(𝑛″) the morning/evening time extension of the earliest departure time for user 𝑛 
𝛾+(𝑛′) 𝛾+(𝑛″) the morning/evening time extension of the latest arrival time for user 𝑛 
𝛾(𝑛′) 𝛾(𝑛″) the BA incentive for the trip of user 𝑛 in the morning/evening 
𝜆(𝑒)  the IR incentive for the pair of trips 𝑒 
𝑤(𝑒)  the adjusted gain of pair of trips 𝑒 including the subsidies 
𝑆ℎ = {𝑒} 𝑆𝑙 = {𝑒} A budget-feasible/infeasible flow that maximizes the LR subproblem 
𝑆̃ = {𝑒}  A near-optimal solution obtained from Algorithm 2 

 

Appendix B Gasoline Lemma 
Lemma 1. ((Lin and Kernighan 1973)) Given a sequence of 𝑘 real numbers 𝛼0, . . . , 𝛼𝑘−1 such that ∑ 𝛼𝑗

𝑘−1
𝑗=0 =

0, there is an index 𝑖 ∈ {0, . . . , 𝑘 − 1} such that, for any 0 ≤ ℎ ≤ 𝑘 − 1, 

∑ 𝛼𝑗( mod 𝑘)

𝑖+ℎ

𝑗=𝑖

≥ 0 , ∀ ℎ ∈ {0, . . . , 𝑘 − 1} . 

Proof. Let 𝑖′ ∈ {0, . . . , 𝑘 − 1} be the index for which ∑ 𝛼𝑗
𝑖′
𝑗=0  is minimum and let 𝑖 be (𝑖′ + 1)( mod 𝑘). Thus, 

we have: 

∑ 𝛼𝑗( mod 𝑘)

𝑖+ℎ

𝑗=𝑖

= ∑ 𝛼𝑗( mod 𝑘)

𝑖+ℎ

𝑗=0

− ∑ 𝛼𝑗( mod 𝑘)

𝑖′

𝑗=0

≥ 0 , ∀ ℎ ∈ {0, . . . , 𝑘 − 1} . 

 

Appendix C Proof of Proposition 1 
Let us consider different possible scenarios of subsequence 𝑌 and show that in each scenario we can obtain a 
feasible flow by removing a set of edges from 𝑆. Let us denote the first and last edges of subsequence 𝑌 as 
𝑒1 = (𝑖1, 𝑗1) and 𝑒2 = (𝑖2, 𝑗2), respectively. For any node in subsequence 𝑌 which is not incident to these 2 
edges, it is easy to show that the flow conservation constraint is satisfied in 𝑆 = (𝑆ℎ ∪ 𝑌𝑓)\𝑌𝑏. However, this 
is not the case for 𝑖1 and 𝑗2. 

From the assumptions on 𝑌 and the procedure described in the proof of the Gasoline Lemma, we infer that 
𝑒1 is one of the following six scenarios: (𝑖) (𝑑′, 𝑟′),  (𝑖𝑖)(𝑟′, 𝑑′),  (𝑖𝑖𝑖)(𝑑″, 𝑟″),  (𝑖𝑣)(𝑟″, 𝑑″),  (𝑣)(𝑟′, 𝑟″), and 
 (𝑣𝑖)(𝑟″, 𝑟′). In scenario (𝑖), by adding (𝑑′, 𝑟′) to 𝑆ℎ the flow conservation will be violated if 𝑑′ is matched to 
another rider trip in 𝑆ℎ. Therefore, we must remove edge (𝑑′, 𝑟′) from 𝑆. Moreover, if 𝑟 ∈ 𝑅‴, we may have 
to remove (𝑟″, 𝑑𝑠(𝑟″)) from 𝑆 in the worst case. Note that 𝑑𝑠(𝑟″) is the driver trip matched with rider 𝑟 in the 
evening. In scenario (𝑖𝑖), removing (𝑑′, 𝑟′) from 𝑆ℎ will violate flow conservation for node 𝑟″ in 𝑆 if 𝑟 ∈ 𝑅‴. 
Therefore, we may have to remove edge (𝑟″, 𝑑𝑠(𝑟″)) in the worst case. Using the same line of reasoning as in 
scenario (𝑖𝑖), we can show that we have to remove (𝑟″, 𝑑″) for the fourth scenario, and (𝑟″, 𝑑𝑠(𝑟″)) for the 
fifth and sixth scenarios from 𝑆 in the worst-case. Note that scenario (𝑖𝑖𝑖) does not require removing any edges 
from 𝑆. It is worth mentioning that we may also need to remove some of the auxiliary edges in 𝑆 which involve 
the source and target nodes, but those edges have no effect on the objective function value. 
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From the fact that 𝑌 is the longest subseqence in 𝑋, we conclude that 𝑒2 cannot be of type (𝑑′, 𝑟′), (𝑟″, 𝑑″), 
and (𝑟″, 𝑟′), because their following edges in 𝑋 will have to be included in 𝑌. As such, 𝑒2 can only follow one 
of the following scenarios: (𝑖)(𝑟′, 𝑑′),  (𝑖𝑖)(𝑑″, 𝑟″), and (𝑖𝑖𝑖)(𝑟′, 𝑟″). In the first case, we do not need to remove 
any edge from 𝑆 other than the auxiliary edges. In the next two scenarios, however, we have to remove 
(𝑑𝑠(𝑟′), 𝑟′) if 𝑟 ∈ 𝑅‴. 

Let 𝑟″1 and 𝑟2″ be two rider trips in the evening for 𝑟1 ∈ 𝑅‴ and 𝑟2 ∈ 𝑅‴. Now, let us consider the 
following possible cases for 𝑌 based on the scenarios for 𝑒1 = (𝑖1, 𝑗1) and 𝑒2 = (𝑖2, 𝑗2): 

8. 𝑖1 ≠ 𝑟″1 and 𝑗2 ≠ 𝑟″2: In this case, the property of 𝑌 in (14) implies that: 
 

∑ 𝛼

𝑒∈𝑌

(𝑒) = ∑ 𝖢𝛽∗

𝑒∈𝑌𝑓

(𝑒) − ∑ 𝖢𝛽∗

𝑒∈𝑌𝑏

(𝑒) ≥ 0 . 

  By adding 𝖢𝛽∗(𝑆ℎ) and 𝛽∗  Ψ(𝑆) to both sides of the inequality, we have: 
   

𝖢(𝑆) ≥ 𝖢𝛽∗(𝑆ℎ) + 𝛽∗  Ψ(𝑆) . 
 

  Also, based on the scenarios discussed above, at most two edges will be removed from 𝑆 to get a 
feasible solution for the min-cost max flow in graph 𝐺″ in this case. Therefore, 𝖢(𝑆̃) ≥ 𝖢(𝑆) − 2 𝖢max, 
because 𝑆̃ is a feasible solution that maximizes the costs in graph 𝐺″. Thus, we conclude that 𝖢(𝑆̃) ≥

𝖢𝛽∗(𝑆ℎ) + 𝛽∗ Ψ(𝑆) − 2 𝖢max . 
9. 𝑖1 = 𝑟1″ and 𝑗2 ≠ 𝑟2″: In this case, the property in (14) implies that: 
 

𝖢(𝑆) ≥ 𝖢𝛽∗(𝑆ℎ) + 𝛽∗  Ψ(𝑆) − max{𝖢(𝑑′𝑙(𝑟1′), 𝑟1′),  𝖢(𝑑′ℎ(𝑟1′), 𝑟1′),  0} . 
 

  Also, based on the scenarios discussed above, at most one edge will be removed in this case which 
yields 𝖢(𝑆̃) ≥ 𝖢(𝑆) −  𝖢max. Thus, we again conclude that 𝖢(𝑆̃) ≥ 𝖢𝛽∗(𝑆ℎ) + 𝛽∗ Ψ(𝑆) − 2 𝖢max. 

10. 𝑖1 ≠ 𝑟″1 and 𝑗2 = 𝑟″2: In this case, the property in (14) implies that: 
 

𝖢(𝑆) ≥ 𝖢𝛽∗(𝑆ℎ) + 𝛽∗  Ψ(𝑆) + max{𝖢(𝑑′𝑙(𝑟2′), 𝑟2′),  𝖢(𝑑′ℎ(𝑟2′), 𝑟2′),  0} . 
 

  Based on the scenarios discussed above, at most two edges will be removed due to 𝑖1 and edge 
(𝑑𝑠(𝑟2′), 𝑟2′) due to 𝑗2 in this case. As a result, we have 𝖢(𝑆̃) ≥ 𝖢(𝑆) − 2 𝖢max − 𝖢(𝑑𝑠(𝑟2′), 𝑟2′). Note 
that 𝑑𝑠(𝑟2′) is either 𝑑ℎ(𝑟2′) or 𝑑𝑙(𝑟2′). Thus, we again conclude that 𝖢(𝑆̃) ≥ 𝖢𝛽∗(𝑆ℎ) + 𝛽∗ Ψ(𝑆) −

2 𝖢max. 
11. 𝑖1 = 𝑟1″ and 𝑗2 = 𝑟2″: In this case, the property in (14) implies that: 

 

𝖢(𝑆) ≥ 𝖢𝛽∗(𝑆ℎ) − 𝛽∗ Ψ(𝑆) − max{𝖢(𝑑′𝑙(𝑟1′), 𝑟1′),  𝖢(𝑑′ℎ(𝑟1′), 𝑟1′),  0} +

max{𝖢(𝑑′𝑙(𝑟2′), 𝑟2′),  𝖢(𝑑′ℎ(𝑟2′), 𝑟2′),  0} .
 

 

Based on the scenarios discussed above, at most one edge will be removed due to 𝑖1 and edge (𝑑𝑠(𝑟2′), 𝑟2′) 
due to 𝑗2 in this case. Therefore, 𝖢(𝑆̃) ≥ 𝖢(𝑆) − 2 𝖢max − 𝖢(𝑑𝑠(𝑟2′), 𝑟2′). Using the same reasoning as in the 
last two cases, we can again conclude that 𝖢(𝑆̃) ≥ 𝖢𝛽∗(𝑆ℎ) + 𝛽∗  Ψ(𝑆) − 2 𝖢max. 

In all the cases above, we have that 𝖢(𝑆̃) ≥ 𝖢𝛽∗(𝑆ℎ) + 𝛽∗  Ψ(𝑆) − 2 𝖢max. Let us rewrite this inequlaity as: 
 

 

𝖢(𝑆̃) ≥ 𝖢𝛽∗(𝑆ℎ) + 𝛽∗ 𝖡 − 𝛽∗ 𝖡 + 𝛽∗ Ψ(𝑆) − 2 𝖢max . (19) 
 

We know that 𝖢𝛽∗(𝑆ℎ) + 𝛽∗ 𝖡 is a solution to the LR subproblem, and thus, we have: 
 

 𝖢𝛽∗(𝑆ℎ) + 𝛽∗  𝖡 ≥ 𝖮𝖯𝖳 . (20) 
 

Also, from the fact that 𝑌 is the longest subsequence in 𝑋 for which Ψ(𝑆) ≤ 𝖡, we know that there always 
exist an edge 𝑒3 ∈ 𝑋\𝑌 such that Ψ(𝑒3) + Ψ(𝑆) > 𝖡. Now, consider the two following cases for edge 𝑒3: 
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12. 𝖢𝛽∗(𝑒3) ≥ 0: In this case, 𝖢(𝑒3) ≥ 𝛽∗Ψ(𝑒3) which yields −𝛽∗Ψ(𝑒3) ≥ −𝖢(𝑒3) ≥ −𝖢max. 
13. 𝖢𝛽∗(𝑒3) < 0: Due to the fact that 𝑒3 is a part the min-cost max flow solution in graph 𝐺 with costs set 

as −𝖢𝛽∗, this case can happen only if there exists an edge 𝑒4 such that 𝖢𝛽∗(𝑒3) + 𝖢𝛽∗(𝑒4) ≥ 0 which 
implies that 𝖢(𝑒4) ≥ 𝛽∗Ψ(𝑒3). Thus, again, we have −𝛽∗Ψ(𝑒3) ≥ −𝖢(𝑒4) ≥ −𝖢max. 

From the cases above, we conclude that 
 

 −𝛽∗ 𝖡 + 𝛽∗Ψ(𝑆) ≥ −𝖢max . (21) 
 

Combining the inequalities in (19), (20), and (21) yields 𝖢(𝑆̃) ≥ 𝖮𝖯𝖳 − 3 𝖢max and the result follows. 
 

Appendix D Sensitivity Analysis (Cont’d) 
In the base scenario, we assume that the total number of participants in the ridesharing system during the 
morning and evening peak hours is 6000. In order to study the impact of the number of participants on different 
performance metrics, we change its value to 2000, 4000, 6000, 8000, and 10,000. The results are presented in 
Figure D.1. Figure D.1(a) suggests that the social welfare of the system increases significantly as the 
penetration rate of the system increases. Also, the rate of increase in these figures is linear, which is not 
surprising because the system is not saturated and adding more users increases the possibility of matching, 
and thereby, increasing the system’s social welfare. The upward trend of the subsidy impact rate in Figure D. 
1(b) indicates that the added value to the system per one dollar spent on subsidy significantly increases with 
the number of participants. This is due to the fact that as the number of participants grows, the spatio-temporal 
proximity of trips increases, which results in (𝑖) fewer users requiring the BA incentive to get matched, and 
(𝑖𝑖) a smaller amount of the BA incentive for those who need it (see Figure D.1(d)). Finally D.1 (c) and D.1(d) 
suggest that at least 50% of the matches are subsidized while the average time window extension for those 
that received the BA incentive does not exceed 5 minutes. The higher spatio-temporal proximity of trips that 
follows from a higher penetration rate allows the system to subsidize fewer rides and the participants to 
experience less deviation from their preferred time windows. 

    
(a) Social welfare (b) Subsidy impact rate (c) Subsidized matches rate (d) Time window extension 

Figure D. 1: Impact of number of participants 

 
The number of riders and drivers are assumed to be the same in the base scenario. Next, we investigate the 

impact of changing the percentage of riders from 50 to 25, 33, 67 and 75, respectively. Figure D.2 displays the 
results of these scenarios for different performance metrics. Figure D.2(a) clearly shows that the social welfare 
decreases when the percentage of riders diverges from 50%, especially when the percentage of riders is greater 
than the percentage of drivers. This is partly due to the fact that we are implementing a one-to-one system 
where a single driver carries at most a single rider in each peak period, and therefore the best results are 
obtained when there is a balance between the number of riders and drivers. When we have fewer riders than 
drivers, more drivers are available to serve them, and therefore the percentage of matched riders will be higher 
than the case where we have more riders than drivers due to (1) more resources to match the riders, and (2) 
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fewer riders to be served. This trend can also be partly explained by the assumption of ride-back guarantees, 
as 50% of riders in these scenarios register both their morning and evening trips in the system and will be 
served if and only if both of their trips are served by the drivers in the system. Since this type of requests are 
harder to satisfy, we expect that the matching rate and social welfare decrease with a higher rate for scenarios 
above 50%. On top of having a smaller social welfare, Figure D.2(c) shows that a higher percentage of matches 
need to be subsidized when the percentage of riders is higher than 50. This is why the subsidy impact rates are 
lower for these scenarios compared to the base scenario, as shown in Figure D.2(b). 

 

    
(a) Social welfare (b) Subsidy impact rate (c) Subsidized matches rate (d) Time window extension 

Figure D. 2: Impact of percentage of riders 
 

The base scenario assumes that 50% of users register both their morning and evening trips in the system. 
In this part, we investigate the impact of having lower percentages (25% and 33%) or higher percentages 
(67%, 75%) of participants be present in both the morning and evening peak hours. Figure D.3 demonstrates 
how different performance metrics change as this parameter increases from 25% to 75%. Given a fixed number 
of participants, increasing the value of this parameter clearly increases the number of users (both riders and 
drivers) in the morning and in the evening. Thus, the number of matches and hence the social welfare increases 
as shown in Figure D.3(a). Also, the upward trend of the subsidy impact rate in Figure D.3(b) implies that the 
proposed incentive program is more beneficial when users register both trips in the system. The downward 
trend of subsidized matched users in Figure D.3(c) originates from the fact that with a higher number of riders 
and drivers in the morning or evening, the likelihood of finding a match without the help of the BA incentive 
increases, because of the higher spatio-temporal proximity between trips. Higher spatio-temporal proximity 
between trips further explains the linearly decreasing trend in D.3(d), as users will be required to expand their 
time window less when this parameter increases. 

 

    
(a) Social welfare (b) Subsidy impact rate (c) Subsidized matches rate (d) Time window extension 

Figure D. 3: Impact of percentage of ride-back trips 
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Figure D.4 demonstrates the results of changing the available budget for subsidy from $1,000 in the base 
scenario to $100, $500, $1500 and $2,500. Figure D.4(a) shows that the social welfare increases sublinearly 
as we increase the value of 𝖡. This is consistent with our earlier results in Section 5.6, where we observed that 
social welfare grows sublinearly until it converges to the maximum possible social welfare. More interestingly, 
the same trend is also observed in Figure D.4(c). Moreover, the subsidy impact rate in Figure D.4(b) has the 
reverse trend: we can initially make a huge impact by investing a small amount of budget, but the rate of 
return-on-investment diminishes as we increase the budget. However, as we try to incentivize higher number 
of matches, we have to invest more, and the margin of profit gets smaller. Finally, we reach a point that either 
no further matches can become feasible with the help of the BA incentive or the required budget becomes 
higher than its subsequent added social welfare. Figure D.4(d) shows an interesting result where the time 
window expansion decreases slightly as we increase the budget from $100 to $500 and then increases from 
$500 to $2500. One possible explanation would be that from $100 to $500, the rate of increase in the number 
of subsidized matches is very high (more than 20%) while the amount of increase in time windows for those 
users is not that much higher, and thus, the average time window expansion slightly decreases. 

 

    
(a) Social welfare (b) Subsidy impact rate (c) Subsidized matches rate (d) Time window extension 

Figure D. 4: Impact of total budget 
 

Finally, Figure D.5 displays the impact of the length of peak hour periods in the morning and the evening 
on the performance metrics. In the base scenario, we assume that the length of both peak hour periods is 3 
hours. Here, we consider tighter periods (1 and 2 hours) and wider periods (4 and 5 hours). Obviously, 
increasing the length of the peak hour periods causes the trips to spread over a larger horizon, which results in 
reducing the temporal proximity of trips. This is the main reason behind the descending trend in the social 
welfare presented in Figures D.5(a). Also, for the same reason, more participants need the BA incentive (see 
Figure D.5(c)), and the magnitude of allocated incentive per user increases as shown in Figure D.5(d). 
Moreover, since trips become more temporally sparse, the savings due to sharing rides decreases, which 
consequently decreases the impact of each dollar spent on subsidy, as shown in Figure D.5(b). 

 

    
(a) Social welfare (b) Subsidy impact rate (c) Subsidized matches rate (d) Time window extension 

Figure D. 5: Impact of the morning and evening peak hours’ lengths 
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