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Abstract

Cooperative or non-additive effects contribute to the pairwise non-covalent interac-

tion of two molecules in a cluster or the condensed phase in ways that depend on the

specific arrangements and interactions of the other surrounding molecules that consti-

tute their environment. General expressions for an effective two-body interaction are

presented, which are correct to increasing orders in the many-body expansion. The

simplest result, correct through third order, requires only seven individual calcula-

tions, in contrast to a linear number of three-body contributions. Two applications

are presented. First, an error analysis is performed on a model (H2O)8 cluster which

completes the first solvation shell of a central water-water hydrogen bond. Energy

decomposition analysis is performed to show that the largest effects of cooperativity

on the central hydrogen bond arise from electrical polarization. Second, the nature of

cooperative effects on proton transfer in an HCl + (H2O)4 cluster is characterized.

1

mhg@cchem.berkeley.edu


1 Introduction

Molecular gases, clusters and liquids have structural and thermodynamic properties that are

dictated by the character of their intermolecular interactions.1 Intermolecular forces include

long-range electrostatic and dispersion interactions, as well as short-range Pauli repulsions

and charge transfers, which have their origins in properties of the individual molecules (the

electrical moments, polarizabilities, charge density, donor and acceptor levels, etc). Perma-

nent electrostatics is by definition a pairwise additive effect, whilst induced electrostatics

(polarization) depends on the local electric field on each molecule, which itself depends on

how other nearby molecules are polarized, leading to many-body (i.e. cooperative or antico-

operative) effects. Dispersion also includes significant many-body effects, whilst short-range

Pauli repulsion and charge-transfer are predominantly two-body with small higher order

corrections. Whilst the different long-range components of intermolecular interactions have

textbook expressions in the non-overlapping regime,1 computational tools such as energy

decomposition analysis (EDA)2 are needed to disentangle these contributions (and connect

them to experimental observables) when there is overlap of molecular densities, as in com-

plexes, clusters and the condensed phase.

In order to systematically explore the pairwise additive, and non-additive contributions to

intermolecular interaction energies and forces, it is natural to examine the interaction energy

of supramolecular systems using a many-body expansion (MBE), where the components are

the individual molecules, i:

Etot =
N∑
i

Ei +
N∑
i<j

∆Eij +
N∑

i<j<k

∆Eijk +
N∑

i<j<k<l

∆Eijkl + · · · (1)

Ei are the energies of the single bodies, and ∆Eij, ∆Eijk, ∆Eijkl, etc. are the two-body

(2-B), three-body (3-B), and four-body (4-B), etc., interaction energies. The first two of

2



these are explicitly defined as:

∆Eij = Eij − Ei − Ej (2)

∆Eijk = Eijk − Eij − Eik − Ejk + Ei + Ej + Ek (3)

with similar construction for the higher order terms.

The utility of the MBE derives from the fact that even for strongly interacting molecules,

intermolecular interactions are far weaker than intramolecular interactions (chemical bonds).

Furthermore, since they decay either polynomially with distance (electrostatics and disper-

sion) or exponentially (Pauli repulsions and charge-transfer), the MBE exhibits reasonably

rapid convergence.

The MBE has a long history which we cannot adequately do justice to here. Early

on, 3-B contributions to dispersion were identified,3,4 followed later by explorations of 3-B

interactions in water.5,6 Water exhibits large 3-B effects due to polarization (the effective

dipole moment of water in the liquid is about 20% higher than in gas7–9). As computer

power developed, the behavior of the MBE has been studied using computational quantum

chemistry methods applied to diverse molecular clusters. Perhaps the most important of

these are water clusters,10–15 which established the significance of 3-B polarization effects.

Water clusters containing ions such as halides,16–18 alkali metal ions,18,19 hydroxide,20 and

hydronium21 have also been studied as models for many-body effects on ions in solution.

Cooperative, many-body effects (meaning ≥ 3-B) are naturally included in quantum

mechanical (QM) calculations of interaction energies, but must be explicitly incorporated

as part of molecular mechanics (MM) potentials.22 Thus, one major motivation for under-

standing the many-body character of intermolecular interactions is to permit development

of better MM potentials.23,24 By contrast, early MM development focused on developing

effective pair potentials25 (for tractability). This was first performed for simple dispersion-
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bound systems,26,27 and then later for water and solutes in water where electrostatics are

critical.28 However, inclusion of non-additive terms is essential for describing heterogeneous

environments (i.e., for transferability) and is driving the development of polarizable MM

force fields which build in that most important cooperative effect.24,29–31 The MBE is also

the foundation of fragment-based quantum chemistry.32,33

From the view-point of understanding cooperative effects34,35 in complex chemical envi-

ronments, it is natural to ask how the 2-B interaction between a pair of tagged molecules,

A and B, ∆EAB, is modified by the presence of other molecules to become ∆Eeff
AB. The

definition of cooperative effects, ∆Ecoop
AB on the A−B interaction is simply:

∆Ecoop
AB = ∆Eeff

AB −∆EAB (4)

Comparing ∆EAB against ∆Eeff
AB addresses, for example, how the direct interaction of two

ions is screened by a solvent, or how the interaction of a first solvent shell molecule with

a solute is mediated by the presence of the remainder of the first solvation shell. Beyond

the history, and the on-going MM developments touched on already, cooperative effects

in non-bonded interactions are a subject of intense interest.34 Some further reasons for

this interest include understanding cooperative binding,34,36,37 control over supramolecular

chemistry and self-assembly,38 and the ability to direct chemistry and catalysis through local

electric fields39,40 or other means.41,42

With characterizing cooperativity as the goal, this paper presents what we believe to be a

new approach to evaluating the effective 2-B interaction, ∆Eeff
AB, between 2 tagged molecules

in a complex system. ∆Eeff
AB is defined such that the MBE terminates at the 2-B term. In

other words:

Etot =
N∑
i

Ei +
N∑
i<j

∆Eeff
ij (5)

In Section 2, a family of expressions are developed which systematically converge to ∆Eeff
AB,
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such that correctness through P th order of the MBE is obtained while performing only

O(NP−3) separate calculations. In other words, to evaluate ∆Eeff
AB correct through 3rd order

requires only O(N0) calculations, whilst 4th order correctness requires only O(N1) separate

calculations, and so on. This approach is convenient, as well as efficient, if one is only

interested in one or a few pairwise interactions.

With the theory in hand, its application to the environment effect on a model of the

water-water hydrogen bond43 is examined in Sub-section 3.1. This model adds 6 solvating

H2O molecules to a central dimer. It is interesting to revisit this model to address the

practical issue of error analysis in the family of approximate expressions for ∆Eeff
AB, not

least because the previous study43 used an expression which turns out to be only correct

through second order in the MBE. The last part of the paper, Sub-section 3.2, considers

the use of ∆Eeff
AB to analyze solvent effects on HCl dissociation in a small (H2O)4 cluster.

This nanodroplet is interesting because it appears to be the smallest cluster in which HCl

dissociation can occur.44–46

2 Methods

Our goal is to define the effective pairwise interaction energy, ∆Eeff
AB, between two tagged

molecules within the system in such a way that Eq. 5 is satisfied. Of course one will not

want to exactly evaluate Eq. 5 as this would require explicit treatment of all interactions

through N -body. Instead it is better to seek a family of expressions that are correct through

a given order, P in the MBE. Such an expression will be denoted as ∆Eeff
AB(P ). We shall

present two families of valid expressions for ∆Eeff
AB(P ); one that follows directly from the

MBE, and one that looks superficially quite different.

Comparing Eqs. 1 and 5, it is evident that a definition of ∆Eeff
AB directly from the MBE
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is:

∆Eeff
AB = ∆EAB +

1

3

∑
k1 6=A,B

∆EABk1 +
1

6

∑
k1<k2 6=A,B

∆EABk1k2 + · · ·

=
N∑
p=2

2

p(p− 1)

∑
k1<k2<...<k(p−2) 6=A,B

∆EABk1k2···k(p−2)
(6)

The prefactors for each p-body contribution ensure that Eq. 5 is satisfied. For example, one

third of a given 3-B contribution is assigned equally to each of the 3 pairs within the “ABk1”

subsystems (three possible pairs); one sixth of the 4-B increments is assigned to each of the

6 pairs contained within the “ABk1k2” subsystems, etc. Truncation of Eq. 6 order by order

gives rise to a sequence of approximate expressions, complete through P th order (P ≥ 3) in

the MBE:

∆Eeff
AB(P ) =

P∑
p=2

2

p(p− 1)

∑
k1<k2<...<k(p−2) 6=A,B

∆EABk1k2···k(p−2)
(7)

At lowest order, P = 3, there are O(N) 3-B contributions that correct each direct A − B

interaction, followed by O(N2) 4-B interactions at P = 4, and so on. A and B are naturally

chosen to be the two atoms or molecules of interest.

Likewise the environment is most logically treated as the other distinguishable molecules

of the cluster or condensed phase environment, as implicitly assumed above. However, it is

also possible to lump together everything that is not A and B into a single composite body

that is their environment, R (the “rest” of the system). Indeed, it has been suggested43 that

the following easy-to-evaluate quantity:

∆Eenv
AB ≡ EABR − EAR − EBR + ER (8)

will capture the effective two-body A−B interaction. This is an appealing expression, which

is trivially correct through second order, as shown by setting R = 0. However, no analysis
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of its accuracy to higher orders has been presented.

To properly analyze Eq. 8 in terms of higher orders of the MBE, one can expand the

environment, R into its component molecules, leading to:

∆Eenv
AB = EAB − EA − EB +

∑
k

EABk − EAk − EBk + Ek

+
∑
k<l

EABkl − EAkl − EBkl + Ekl + · · ·
(9)

Comparing equivalent p-body contributions to Eq. 9 against the corresponding contributions

to the exact effective interaction energy, ∆Eeff
AB, given in Eq. 6, it can be seen that the p-body

terms in ∆Eenv
AB are overcounted by factors of

(
p
2

)
. Specifically, while the second order term

is correct, the 3-B contributions are overcounted by a factor of three. Thus, use of ∆Eenv
AB

is worse than not correcting the 3-B interactions at all (i.e., approximating the cooperative

energy as zero is better than overestimating its leading terms by a factor of three). The

situation at higher orders will be worse: for instance, the 4-B terms will be overcounted by

a factor of 6. Direct use of Eq. 8 is clearly not a good idea.

However, a modified expression that is correct through 3rd order in the MBE, ∆Eeff
AB(3)′,

can be obtained easily. We take 1/3 of ∆Eenv
AB to capture the 3-B terms correctly, which in

turn captures 1/3 of the 2-B terms. We then explicitly add the remaining 2/3 of the 2-B

terms to be complete through 3rd order:

∆Eeff
AB(3)′ =

1

3
∆Eenv

AB +
2

3
∆EAB (10)

Eq. 10 maintains the appealing aspect of Eq. 8, which is that regardless of system size, only

a constant number of separate calculations are required. The new total is 7, consisting of

4 to evaluate Eq. 8, and an additional 3 for the 2-B interaction itself, ∆EAB. By contrast,

for an N -molecule system, 4N − 5 separate calculations are required to directly evaluate the
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original 3rd order expression:

∆Eeff
AB(3) = ∆EAB +

1

3

∑
k 6=A,B

∆EABk (11)

This process can be continued for the higher p-body terms. Eq. 10 has its leading error in

the 4-B terms, which are overcounted by a factor of two (i.e. 6 · 1
3
). Thus we can take 1/2 of

∆Eeff
AB(3)′ to capture the 4-B terms fully, as well as half the lower order terms. Augmenting

with 1
2
∆Eeff

AB(3) provides the other half, leading to:

∆Eeff
AB(4)′ =

1

2
∆Eeff

AB(3)′ +
1

2
∆Eeff

AB(3) (12)

Evidently evaluation of Eq. 12 requires (4N − 1) separate calculations as opposed to the

O(N2) separate calculations required to evaluate ∆Eeff
AB(4). It has its leading error in the

5-B terms.

With some additional algebra, it can be shown that the higher order corrections can be

written recursively as

∆Eeff
AB(P )′ =

P − 2

P
∆Eeff

AB(P − 1)′ +
2

P
∆Eeff

AB(P − 1) (13)

The recursion is valid for P ≥ 3, starting from the base case, namely ∆Eeff
AB(2)′ ≡ ∆Eenv

AB .

P is of course the order in the MBE to which the expression is correct. Unrolling the

recursion, we see that ∆Eeff
AB(P )′ involves calculating EABR, EAR, EBR, and ER first (i.e.,

the environment interactions), irrespective of the target order (P ) of the effective 2-B energy.

Then, for the desired P -body accuracy, all MBE terms p ≤ (P − 1) containing both A and

B need to be calculated. This contrasts with the direct evaluation of ∆Eeff
AB(P ) via Eq. 6,

which requires all MBE terms p ≤ P containing both A and B.

Likewise, a general expression for the leading error in the (P + 1)-body terms associated
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with ∆Eeff
AB(P )′ is given by:

∆Eeff
AB(P )′−∆Eeff

AB(P+1) =
4

(P − 1)P (P + 1)

∑
k1<k2<...<k(P−1) 6=A,B

∆EABk1k2···k(P−1)
+· · · (14)

Alternatively, expressed as a ratio, the (P + 1)-body terms are overcounted in ∆Eeff
AB(P )′ by

a factor of:

FP =
(P + 1)

(P − 1)
(15)

This overcounting diminishes as F2 = 3, F3 = 2, F4 = 5
3
, etc, as P is increased.

3 Results

3.1 Convergence of the effective 2-body interaction energy for a

model water-water hydrogen bond

The effect of environment on the hydrogen bond between water molecules has been exten-

sively analyzed via statistical mechanical theory and simulations. For example, the O-O

radial distribution function, g(rO-O), relates to the thermal average of an orientationally

averaged effective pair potential, v(rO-O) .47,48 Alternatively, the detailed anisotropic effect

of a given environment on the hydrogen bond between a pair of tagged water molecules

can be examined via the effective 2-B interaction energy theory presented above. Here we

adopt a model (H2O)8 cluster used previously for this purpose,43 which completes the first

solvation shell of a central dimer with 3 additional H2O molecules in a tetrahedral geometry

per central H2O. The resulting structure is provided in Figure 1 (see also Figures 2 and 4 of

Ref. 43). Single point energy calculations are performed here using the def2-TZVPPD49,50

basis set with the ωB97X-V density functional51 (which is known to perform very well for

non-covalent interactions52,53). All calculations were performed with the Q-Chem program
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package.54

Figure 1 (bottom panel) presents the (exact) effective 2-B interaction energy (i.e. Eq. 6)

of the reference hydrogen bond as a function of coordination shell size, n. With n ranging

from the bare dimer (n = 0), to one environment molecule (six possible choices), two envi-

ronment molecules (15 choices), etc, through six environment molecules. This same analysis

was performed in Ref. 43, with the critical difference that cooperative effects were evaluated

via Eq. 8, which is only correct through second order in the MBE, and overcounts the 3-B

terms by a factor of three. Use of Eq. 8 is reproduced in the upper panel of Figure 1,

and strong differences with the exact expression for ∆Eeff
AB are visually evident. Indeed the

deviations (a mean absolute error of 4.1 kJ/mol and maximum error of 10.1 kJ/mol), and

are larger than the errors that would arise from simply using the n = 0 value. These large

errors associated with use of Eq. 8 to approximate ∆Eeff
AB are as anticipated, and indicate a

substantial overestimation of the effects of the environment.

Nevertheless, the correct values of ∆Eeff
AB display the same trends as use of ∆Eenv

AB , and so

qualitative conclusions from Ref. 43 remain valid. The addition of the first solvent molecule

(n = 1) shows positive cooperativity (i.e. a strengthened H-bond) when an oxygen of the

solvent molecule couples to the hydrogen of the acceptor water molecule (left water of the

central dimer in Fig. 1), or a proton donor of the solvent molecule couples to the oxygen of

the donor water (right water of the central dimer in Fig. 1). In order to explore the origin

of the cooperativity effects, the effective 2-B interaction energy can also be broken down

into separate physical components via a variational energy decomposition analysis (EDA)

using absolutely localized orbitals.2,55 EDA is applied here to separate ∆Eeff
AB values from the

bottom panel of Fig. 2 into effective frozen (Pauli exclusion + electrostatics + dispersion),

polarization, and charge transfer (CT) contributions. The positive cooperativity has its

origin in enhanced polarization (through dipole alignment) and charge-transfer (through

forming a water wire).
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Figure 1: Effective 2-B interaction energy of the reference hydrogen bond in a model cluster as
a function of the number of coordinating water molecules (the local environment), n, which range
from 0 to 6.
Top: Use of Eq. 8, ∆Eenv

AB , to model the effective 2-B interaction energy, following reference 43.
Bottom: Exact evaluation of the effective 2-B interaction energy, ∆Eeff

AB, via Eq. 6. Large
differences relative to the approximation used in the top panel can be seen.
Inset: The geometry of the model (H2O)8 cluster from reference 43, which consists of a central
H2O dimer whose hydrogen bond interaction is modulated by up to 6 solvating water molecules
(shown in grey) that complete the first solvent shell of the dimer.
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Figure 2: Energy decomposition analysis (EDA) of the effective two-body interactions from the
bottom panel of Fig. 1. From top to bottom: frozen energy, polarization energy and charge transfer
contributions. The sum of these contributions (which are all attractive) yields the total effective two-
body interaction energy. It is evident that cooperativity and anticooperativity effects are strongest
for the polarization contribution, and those for charge transfer track those for polarization.
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There is negative cooperativity (i.e. a weakened H-bond) when a hydrogen of the solvent

molecule couples to the oxygen of the acceptor water molecule, or the oxygen of a solvent

molecule couples to a hydrogen of the donor water. Negative cooperativity has its origin

in attenuated polarization (through dipole anti-alignment) and diminished charge-transfer

(through forward CT to a single water molecule from two others). While CT is a larger

contributor to the effective 2-B interaction energy than polarization, it is only moderately

sensitive to cooperativity. Polarization however, is found to be the most sensitive to co-

operativity. Starting at n = 4, polarization begins to compete with CT for dominance,

and by n = 6 they are nearly equal. Conversely, the frozen contribution is found to have

comparatively little to no cooperativity. The balance of contributions mirrors those reported

previously:14,56 no single term dominates the hydrogen bond, although the largest many-body

effects are due to polarization.

Let us turn next to an assessment of the errors incurred by approximating ∆Eeff
AB by the

approximate expressions, ∆Eeff
AB(3)′ (Eq. 10), ∆Eeff

AB(4)′ (Eq. 12), and the general result,

∆Eeff
AB(P )′ (Eq. 13). In order to estimate an acceptable choice of order, P , for the effective

2-B energy calculation, the mean absolute error over coordination numbers from n = 1 − 6

is evaluated here for each order, P = 2 − 7 (of course when P = n it is exact). Figure 3

plots the MAE in kJ/mol for each order (∆Eeff
AB(P )′ and ∆Eeff

AB(P )) as a function of cluster

size relative to ∆Eeff
AB(8) (note ∆Eeff

AB(8) equals ∆Eeff
AB(8)′ in this example, i.e., at the full

system size). A drop of two orders of magnitude in the MAE is observed when moving

from ∆Eeff
AB(2)′ to ∆Eeff

AB(3)′ (4.1 kJ/mol to 0.047 kJ/mol), followed by drops of roughly

one order of magnitude for every increase in P beyond three. A slight increase in error is

observed for increasing cluster size. This is to be expected, since the error originates from

overcounting the higher order contributions, and larger systems have many more higher body

terms. From this analysis, P = 3 can be seen to be already useful, and P = 4 or certainly

P = 5 should be adequate for computations. A similar pattern is observed for ∆Eeff
AB(P ),
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with order of magnitude drops in MAE between successive orders. Note that as anticipated,

∆Eeff
AB(2) performs quantitatively better than ∆Eeff

AB(2)′, despite ∆Eeff
AB(2) containing zero

environmental effects. At third order and beyond, both ∆Eeff
AB(P )′ and ∆Eeff

AB(P ) appear to

perform similarly.
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Figure 3: The errors associated with various orders of approximation, P , to the effective 2-B
energies, ∆Eeff

AB, for a central hydrogen bond in the model (H2O)8 cluster shown in Fig. 1, for each
possible selection of a solvation shell of size 1 ≤ n ≤ 6.
Top: ∆Eeff

AB(P )′ (equation 13)
Bottom: ∆Eeff

AB(P ) (equation 6)
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3.2 Example application: Hydrated HCl clusters

As another example of using the effective 2-B interaction energies, we turn next to considering

the role of solvation on a proton transfer pathway for dissociation of HCl in a cluster of

stoichiometry HCl(H2O)4. Acid dissociation in H2O is a fundamental process in chemistry,

and a nanodroplet of HCl and four H2O molecules is particularly interesting because it is

believed to be the smallest system where structures with dissociated HCl are stable.44–46,57–59

Even in a system as small as this, there are numerous local minima, and so we restrict our

attention to a single well-defined reaction coordinate for proton transfer from HCl to H2O.

As illustrated in Figure 4 below, this is a relaxed potential energy scan where the distance

R(O· · ·H) (between the acidic proton and hydronium oxygen) is constrained to have values

between 0.9 Å and 2.7 Å. The scan was performed at the ωB97M-V/def2-TZVPD level of

theory, using the Q-Chem program package.54 The cluster at R(O· · ·H)= 1.44 Å corresponds

to the equilibrium structure of our selected isomer of undissociated HCl(H2O)4, where the

proton-accepting water (W1) acts as a double H-bond donor and two water molecules (W3

and W4) form hydrogen-bonds with the chlorine atom (see annotated cluster in Figure 4).

The fourth water molecule (W2) is not directly interacting with HCl, but completes the

ring-like structure of the water tetramer.

For purposes of many-body expansion analysis, the cluster is regarded as being composed

of six species: an H+ cation, a Cl− anion, and four neutral H2O molecules. This choice of

fragments acts as a necessary compromise, since a reference involving an HCl or hydronium

ion fragment can only be well-defined for portions of the proton-transfer potential energy

surface (PES). Since this system is undergoing a chemical reaction (i.e., acid dissociation),

there is an important role for the interactions beyond 2-B, which can stabilize the separa-

tion of the ions. The total 2-B contribution is significantly greater than 100% of the total

interaction energy (see Fig. 5). It is stronger (i.e., more negative) in the isolated pairs, with

a maximum of 147%, and a value of 142% at equilibrium (vertical dashed line). The 3-B
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Figure 4: Top: Relaxed potential energy surface scan (blue) regarding the proton-transfer from
HCl to W1 at the ωB97M-V/def2-TZVPD level of theory. The corresponding energies are given
relative to the equilibrium structure of the undissociated cluster. Additionally, the H-Cl distance
(orange) is shown for each point of the PES scan. Bottom: Equilibrium structure of the undisso-
ciated HCl(H2O)4 used in the main text. The blue labels refer to the individual water molecules.
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contribution counteracts this bare 2-B term with a repulsive anti-binding contribution, that

has a maximum value of -66%, and a value of -54% at equilibrium. The total 4-B contri-

bution has a maximum value of 29%, and a value of 18% at equilibrium. The 5-B and 6-B

total ∼ 5% together, and show only marginal dependence on the O· · ·H distance.
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Figure 5: The percent contribution of the many-body terms to the total interaction energy of
HCl(H2O)4 of a PES scan of a proton transfer. The red dashed line represents the strongest
interacting hydronium cluster, the black dashed line is a stable undissociated equilibrium, and the
green dashed line contains the shortest HCl bond observed.

The interaction energy change along this relaxed scan is relatively small, and is shown

in the purple curve of Figure 6, indicating that the arrangement of the three solvating

water molecules plays a critical role in stabilizing the otherwise quite unfavorable ion pair

configuration. In order to illustrate this, a step-wise solvation is performed by incrementally

incorporating each water molecule in its position at the cluster geometry, which does not

involve a re-optimization of the PES. For clarity, only one possible step-wise solvation is

shown: W2, W3, followed by W4. All other possible solvation sequences have similar trends,

and the results can be found in the Supporting Information. The cluster geometries of the

relaxed scan can also be found in the Supporting Information. Compared to the interaction

of H+ and Cl– , the introduction of the proton-accepting water W1 lowers the interaction
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energy overall, whereby the largest gain in interaction energy occurs in the dissociated regime

(red dashed line) due to the stabilization of the bare proton by W1. The incorporation of W2

and W3 further lowers the total interaction energy and follows the same trend of stronger

interactions in the dissociated regime as compared to the undissociated structures. Upon

addition of W4 the interaction energy is for the first time lower for the dissociated cluster

than the undissociated equilibrium structure. This finding supports the reported minimum

number of four water molecules required for dissociation.44–46
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Figure 6: The total interaction energy of a PES scan of a proton transfer in an HCl(H2O)4 cluster.
The individual curves represent successive solvations in the geometry of the cluster (see Figure 4,
and text for details). The red dashed line represents the strongest interacting hydronium cluster,
the black dashed line is a stable undissociated equilibrium, and the green dashed line contains the
shortest HCl bond observed.

The role which the 3-B and 4-B, etc., contributions play in facilitating the proton transfer

can be illustrated best through comparing effective 2-B interaction energies. Figure 7a plots

the sum of the effective 2-B energies of the proton-transfer subsystem (∆Eeff
Cl− H++∆Eeff

Cl− W1
+

∆Eeff
H+ W1

) as the solvation shell is filled.
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(a) Total effective 2-B energy of the solute subsystem
(Cl– · · ·H+· · ·H2O)
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(b) Total effective 2-B energy of the solvent
((H2O)n−1)

Figure 7: The total effective 2-B energies of the PES of an HCl(H2O)4 cluster plotted for the
solute (a) and solvent (b) separately. The individual curves represent successive solvation in the
geometry of the full cluster (see Figure 4, and text for details). The red dashed line represents the
strongest interacting hydronium cluster, the black dashed line is a stable undissociated equilibrium,
and the green dashed line contains the shortest HCl bond observed. N.B., the sum of the curves of
(a) and (b) equals the total interaction energies plotted in Figure 6.
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As can be seen, the addition of solvating H2O molecules does not stabilize the dissociated

product within the sub-cluster of Cl– · · ·H+· · ·H2O. In fact, the solvation has the opposite

effect, leading to an increase in the interaction energy with successive solvation; contrary to

the total interaction energy observed in Figure 6.

Another interesting feature of Fig. 7a is that the effective interaction energy for the dis-

sociated cluster (r(OH) = 1.0 Å) is almost independent of the number of spectator water

molecules in the system. Closer inspection of the contributing terms finds that while the

additional 3-B and higher order terms are non-zero, they cancel each other out in the dis-

sociated regime. At the undissociated equilibrium structure (r(OH) = 1.44 Å) and larger

O-H separations, however, the additional terms appearing in the effective 2-B energy do not

cancel and are net positive leading to an attenuated effective interaction.

Although the effective interaction energy, i.e., sum of effective 2-B energies, in the proton-

transfer subsystem becomes less stable with the addition of spectator water molecules, the

difference with respect to the dissociated (red dashed line in Fig. 7) and undissociated (black

dashed line) cluster geometry decreases. For the bare Cl– · · ·H+· · ·H2O subsystem this

difference amounts to 102.6 kJ/mol. Including interactions with spectator water W2, the

difference reduces to 90.4 kJ/mol. Successively adding the two remaining water molecules

(W3, W4) the difference is further reduced to 81.7 kJ/mol and 65.8 kJ/mol, respectively.

Figure 7b plots the sum of the effective 2-B energies of the solvating H2O molecules along

the PES with successive solvation. The effective interaction energies of the solvating H2O

molecules is found to decrease across all O· · ·H distances, and across all degrees of solvation;

although the decrease is greater at shorter O· · ·H distances, and with higher solvation num-

ber. The difference in effective 2-B energy with respect to the dissociated (red dashed line

in Fig. 7b) and undissociated (black dashed line) geometries with the addition of successive

water molecules W2, W3, and W4, are −38.7, −74.3, and −89.3 kJ/mol respectively.

Conveniently, due to the definition of the effective 2-B interaction energies, the sum of the
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individual curves of Figures 7a and 7b equals the individual curves of Figure 6. Therefore,

the effective 2-B interaction energies effortlessly shows that the proton transfer is not being

driven by the lowering of the energy of the proton transfer itself (Fig. 7a), but instead due to

the lowering of the energy of the hydrogen-bond network (7b) in the presence of hydronium.

Interestingly, at the dissociated limit, there is actually one less hydrogen-bond present, yet

the interaction energy continues to increase, highlighting the importance of cooperativity in

the hydrogen-bonds.

In other words, the dissociation of HCl is found to be increasingly unfavorable to the

solute, but increasingly favorable to the solvent with increasing solvation. This mechanism

suggests why the smallest nanodroplet size for HCl dissociation contains four H2O molecules;

the hydrogen bond network must be large enough such that the advantage to the network

overcomes the disadvantage of HCl dissociation itself.

4 Conclusions

The main purpose of this paper was to use the many-body expansion (MBE) to define

effective two-body (2-B) interaction energies in a molecular cluster or condensed phase system

composed of molecules that interact via potentials that are not pairwise additive, such as

the energies from quantum chemistry calculations or advanced force fields. The effective

2-B interaction energies, ∆Eeff
AB, sum correctly to the total interaction energy at a given

geometry, reflecting Eq. 5. We believe that examination of ∆Eeff
AB may be useful for various

applications, such as understanding cooperativity effects on bare 2-B interactions, and how

they vary from environment to environment. Additionally, the effective 2-B interaction

energies allow for a straight forward, intuitive, description of higher n-body interactions;

avoiding the arduous task of interpreting the myriad of higher order contributions.

Two classes of expressions were developed for ∆Eeff
AB which each achieve correctness to a
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given target order, P in the MBE. One class, ∆Eeff
AB(P ), corresponds simply to truncating

the MBE at P -th order and democratically dispersing the higher-body contributions to each

pairwise contribution they are associated with. To find a particular effective 2-B interaction,

∆Eeff
AB, in a system of N molecules, the expression correct through 3rd order, ∆Eeff

AB(3), in-

volves O(N) separate calculations, while the expression correct through 4th order, ∆Eeff
AB(4),

requires O(N2) separate calculations, and so on.

The other class of expressions for ∆Eeff
AB(P )′ is rather different and is based on a cal-

culation on the whole system plus corrections on subsystems. Interestingly, the alternative

expression correct through 3rd order, ∆Eeff
AB(3)′, involves only O(N0) separate calculations,

while the alternative expression correct through 4th order, ∆Eeff
AB(4)′, requires only O(N)

separate calculations, and so on. Expressions for the leading error associated with truncation

at P -th order are given.

A model (H2O)8 cluster that completes the first solvation shell around a central water-

water hydrogen bond was used as a first example, and as a vehicle for evaluating the errors

associated with truncating the two classes of expressions for ∆Eeff
AB at finite order in the

MBE: P = 2, 3, 4 . . . . P = 3 is the first useful approximation, and ∆Eeff
AB(3)′ yields a mean

absolute error (MAE) of 0.05 kJ/mol for the water clusters examined. ∆Eeff
AB(4)′ reduces

those errors in the effective 2-B interaction energies by another factor of roughly 5-10, which

yields errors below 0.01 kJ/mol for our test system.

An example application of the effective 2-B interaction energy is shown to be useful in

describing the physics of a proton transfer in HCl + (H2O)4 cluster. The successive solvation

of HCl + H2O was found to remain disadvantageous for proton transfer, rather the energetic

advantage was found to occur within the strengthening of the hydrogen-bond network itself.

This points towards a possible mechanism to explain the minimum solvation shell size in order

to dissociate HCl; the hydrogen-bond network must be large enough to become energetically

advantageous over the disadvantageous HCl dissociation. Further investigation with various
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cluster sizes and conformers using effective 2-B interaction energies is warranted in order to

confirm this finding.

5 Supporting Information

Geometry of model water cluster. Plots of all solvation sequences of HCl(H2O)4 PES scans.

Cluster geometries of HCl(H2O)4 PES scans.
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