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Validation of Methods for
Estimation of Knee Joint
Mechanical Impedance During
Locomotion Using a Torque-
Controllable Knee Exoskeleton
The mechanical impedance of the joints of the leg governs the body’s response to external
disturbances, and its regulation is essential for the completion of tasks of daily life. How-
ever, it is still unclear how this quantity is regulated at the knee during dynamic tasks. In
this work, we introduce a method to estimate the mechanical impedance of spring-mass
systems using a torque-controllable exoskeleton with the intention of extending these
methods to characterize the mechanical impedance of the human knee during locomotion.
We characterize system bandwidth and intrinsic impedance and present a perturbation-
based methodology to identify the mechanical impedance of known spring-mass systems.
Our approach was able to obtain accurate estimates of stiffness and inertia, with errors
under 3% and �13–16%, respectively. This work provides a qualitative and quantitative
foundation that will enable accurate estimates of knee joint impedance during locomotion
in future works. [DOI: 10.1115/1.4051843]

1 Introduction

Careful regulation of knee joint mechanics is an integral part of
successful balance, locomotion, and countless activities of daily
life. Knowledge of how these mechanics are regulated is essential
to understanding how humans achieve stable gait as muscles span-
ning the knee provide support to the body and decelerate the limb
during stance phase, deliver power to accelerate the trunk [1], and
absorb energy during terminal swing phase [2]. These
mechanics—collectively known as joint mechanical impedance—
govern the body’s instantaneous response to disturbances and reg-
ulate energy storage and exchange during movement [3–5]. Stud-
ies have demonstrated that humans are able to regulate joint
impedance consciously and subconsciously to adapt to unexpected
changes during dynamic tasks [6–8]. A thorough characterization
of knee impedance has significant implications for studying and
improving locomotion, including insights into human motor con-
trol, treatment of neuromotor pathologies, and development of
biomimetic assistive technologies.

While knee mechanical impedance has been extensively studied
under certain conditions, a holistic understanding of these proper-
ties during dynamic tasks is still lacking. The mechanical imped-
ance of the knee has been characterized during postural tasks and
shown to vary with joint angle and muscle activation level
[3,9,10]. Several studies have demonstrated that joint impedance
during dynamic tasks is different from what has been shown for
postural tasks [11–13]. While some studies have generated model-
based estimates of knee impedance during movement [14–16] or
characterized the torque-angle relationship of the knee during gait
[17] (which is different from the stiffness of the knee [18]), these
results have not yet been compared to data obtained from empiri-
cal biomechanical studies.

For a device to be capable of estimating joint mechanical
impedance, it must meet three functional requirements: the ability
to apply a torque or position perturbation to the joint, the ability to
measure the torque applied to the joint during the perturbation,

and the ability to measure the position displacement of the joint
during the perturbation. A number of exoskeletons have been
designed to perturb the knee during locomotion, and these exo-
skeletons employ a range of perturbation paradigms [19–22].
These paradigms include flexion/extension locking [19], knee
flexion torque assistance [20], and angular positional perturbations
[21,22]. However, these exoskeletons cannot provide perturba-
tions bidirectionally, with the exception of Tucker et al. [22]. Fur-
thermore, these devices were developed for different applications
(i.e., locomotor assistance) and have not been used to quantify
knee mechanical impedance in static or dynamic conditions.

Estimation of joint mechanical impedance from experimental
data is typically attained using linear techniques. Linear techni-
ques commonly describe joint impedance in terms of a nonpara-
metric impulse response function or a parameterized second-order
system consisting of stiffness, damping, and inertia [3]. Previous
works used a parametric approach to characterize the mechanical
impedance of the ankle throughout the gait cycle, which employed
both linear time varying [23] and linear time invariant methods
[4,24]. Lee et al. utilized a wearable ankle device to provide con-
trolled torque perturbations to the ankle directly and quantified
how ankle impedance varied during the swing phase of gait [23].
Rouse et al. and Shorter and Rouse took a different approach, lev-
eraging an instrumented walkway to apply kinematic perturba-
tions to the ankle indirectly to obtain impedance parameters
during the stance phase of gait [4,24].

The contribution of this paper is validating the novel combina-
tion of experimental and analytical methods for estimating knee
joint mechanical impedance with a torque-controllable exoskele-
ton. We propose the use of a torque perturbation paradigm with an
untethered, wearable knee exoskeleton that can apply bidirec-
tional torque perturbations. This exoskeleton measures the torque
applied to the knee joint and the displacement of the knee joint
while a perturbation occurs. We utilize parametric linear time
invariant methods to estimate the mechanical impedance of
known second order systems, consisting of an external spring and
moment of inertia. We demonstrate the efficacy of our methods
through characterization of the exoskeleton’s torque bandwidth
and intrinsic mechanical impedance properties. In addition, we
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validate the system identification capabilities of our approach
using a three-pronged comparison. First, we compare our results
to those independently measured via materials testing protocols.
Next, we compare our results to existing state of the art joint
impedance measurement devices. Finally, we compare our results
to the human body’s ability to sense changes in impedance. We
use the information from these three comparisons to adjudicate if
the combination of our device and methods are valid for estimat-
ing knee joint impedance during walking. Validation of our
approach will provide a foundation and reference for future stud-
ies to characterize the mechanical impedance of the human knee
joint during locomotion.

2 Methods

2.1 Torque-Controllable Exoskeleton. To apply a perturba-
tion, we must be able to mechanically interact with the knee joint.
To this end, we utilize a torque-controllable exoskeleton devel-
oped previously by our group; a full description of the device is
found in Shepherd and Rouse [25]. Briefly, a brushless dc motor
(EC30, Maxon Motor, Sachseln, Switzerland) drives a 2.5 mm
lead ball screw (Thomson Industries, Inc., Radford, VA) after a
2:1 belt drive (Fig. 1). A two force member connects the ballnut
to a cantilever fiberglass leaf beam (E-glass, Gordon Composites,
Montrose, CO). This fiberglass leaf spring functions as a series
elastic element between the transmission and the exoskeleton out-
put, with a translational stiffness of 274 N/mm to a perpendicular
load. Two submicron resolution optical encoders (ATOM;
Renishaw, Wotton-under-Edge, Gloucestershire, UK) placed
before and after the spring in the drivetrain measure the angular
deflection of the spring. This angular deflection is used to estimate
the applied torque (Fig. 2). Closed loop torque control of the exo-
skeleton is implemented in Python on a single board computer
(model: Raspberry Pi 3 Model B, Raspberry Pi Foundation, Cam-
bridge, UK).

2.2 Characterization of Exoskeleton Bandwidth and
Intrinsic Impedance. We characterized the system’s torque
bandwidth to understand the available frequency content of torque
perturbations. To determine system bandwidth, two Gaussian
white noise reference signals with amplitudes of 20 and 40 N�m,
low-pass filtered using a third-order Butterworth filter with a cut-
off frequency of 40 Hz, were provided as reference inputs for the
exoskeleton torque controller. We measured the output torque (s)
and then estimated the system’s frequency response from the input
and output data using Blackman-Tukey spectral analysis with a
500 sample Hann window in MATLAB (MathWorks, Natick, MA).
We determined bandwidth by locating the frequency at which the
magnitude dropped below �3 dB.

To characterize the intrinsic mechanical impedance of the
device (i.e., its own internal inertial (J), viscous (B), and elastic
(K) characteristics), a Gaussian white noise signal was used as the
reference input for closed-loop position control. The white noise
signal was low-pass filtered using a third-order Butterworth filter
with a cutoff frequency of 20 Hz. The filtered signal was provided
for three 10-second trials, during which actuator output position
(h(t)) and measured torque (s) were collected at a sample rate of
1 kHz. Following data collection, an interior point optimization
method was used to resolve impedance estimates in MATLAB. Final
estimates were determined by selecting values that minimized the
mean squared error of the estimated and measured torque signals,
where estimated torque is defined by the relationship in Eq. (1)

s tð Þ ¼ J€hðtÞ þ B _hðtÞ þ khðtÞ (1)

Following estimation of the parameters in Eq. (1), variance
accounted for (VAF) was used to compare the torque estimated
from the parameters to the measured response. VAF indicates
how adequately a model output predicts the variance of measured
data and is defined by Eq. (2) where sest(t) is the estimated torque
calculated from the impedance parameters as a function of time
and smeas(t) is the torque measured from the exoskeleton

VAF ¼ 1 �
P

sest tð Þ � smeas tð Þ2P
smeas tð Þ2

" #
�100 (2)

2.3 Computation of External Inertia and Spring Stiffness
Values. The tested inertias, I1 and I2, consisted of a top and bot-
tom bar constructed from 6061 aluminum and an interchangeable
center bar constructed from 6061 aluminum or 1018 low carbon
steel. Moments of inertia were determined by measuring the
dimensions of the top, bottom, and center bars as well as the cent-
roid distance of each bar from the axis of rotation, and the mass of
each component (Fig. 3). With this information, the closed form
solution of moment of inertia was used to calculate the values of
I1 and I2. Spring stiffness was experimentally determined by
measuring the deflection of two linear springs (McMaster-Carr,
Elmhurst, IL), k1 and k2, in their linear region of operation. Two
different weights (W1, W2) were applied to the spring, and the
elongated position of spring was measured. The magnitude of
each weight was determined by recording measurements from a
force plate for one second, sampled at 1000 Hz (Bertec Corpora-
tion, Columbus OH). Spring elongation was measured using a
motion capture system, sampled at 100 Hz for five seconds (Vicon
Motion Systems Ltd., Oxford, UK). The process to determine
spring stiffness was as follows: springs were loaded, the elonga-
tion was measured, and then, the spring was unloaded. This pro-
cess occurred three times for each spring at each weight level.

2.4 Dynamic Estimation of Mechanical Impedance. We
validated new methods for estimating mechanical impedance by
interacting with known mechanical systems and comparing our
estimated values with those independently measured. We matched

Fig. 1 Diagram of the Neurobionics torque-controllable exo-
skeleton. The fiberglass spring serves as the series elastic ele-
ment in the actuator, connecting the transmission to the output
shaft.

Fig. 2 Block diagram of exoskeleton torque calculation.
Deflection of the fiberglass spring is calculated as the differ-
ence between the position estimated by the linear encoder and
the position measured by the rotary encoder. This deflection is
multiplied by the position-dependent stiffness of the fiberglass
spring to provide an estimate of the torque applied by the
exoskeleton.
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two masses with known moments of inertia (I1, I2) to two springs
(k1, k2) to test four spring-inertia combinations. We chose inertia
values that correspond to one half (I1) and one (I2) times the iner-
tia of the human shank and foot [26]. We chose spring stiffness
values that span the range of human knee stiffness values in litera-
ture [9]. The spring-inertia combinations tested are denoted as
cases 1–4 hereafter, where case 1 is k1 matched with the I1, case 2
is k2 matched with I1, case 3 is k1 matched with I2, and case 4 is k2

matched with I2. During benchtop tests, the tested inertia was rig-
idly attached to the output shaft, and the tested spring was sus-
pended between the output shaft and a fixed testing jig (Fig. 3).
The viscous (i.e., damping) component of the system was not
externally imposed and instead includes only the viscous loss
incurred after the elastic element within the exoskeleton, bearing
friction, and other minor sources of velocity-dependent loss.

When a perturbation is applied during walking, the torques and
angles that result from the motion must be removed to enable
analysis of the perturbation response alone. To experimentally
replicate this scenario, a sinusoidal torque was prescribed to the
exoskeleton, upon which torque perturbations were superimposed.
Each case was matched to five underlying torque trajectories,
wA-E

, described in Eqs. (3)–(7). Each sine wave had the form
Asin(xt)þB where A is the amplitude in Nm, x is the frequency

in Hz, t is the time in seconds, and B is the torque offset in Nm.
The tested frequencies were chosen to encompass the known fre-
quency of able-bodied human walking [27], previous dynamic
impedance experiments [24,28], and the frequency of pathological
gait [29,30]. To ease descriptions of the case-trajectory combina-
tions, they are referred to hereafter by the spring inertia combina-
tion (case numbers: 1–4) followed by the trajectory type (A–E)
(1 A, 3D, etc.):

wA ¼ 5 sinð1:4tÞ þ 32 (3)

wB ¼ 5 sinð0:8tÞ þ 32 (4)

wC ¼ 5 sinð2:0tÞ þ 32 (5)

wD ¼ 6 sinð1:4tÞ þ 32 (6)

wE ¼ 1

2
5sin 1:4tð Þ þ 6sin 2:0tð Þ þ 40½ (7)

The perturbations superimposed on these underlying trajecto-
ries all had a magnitude of seven Nm and consisted of a ramp of
75 ms, a 100 ms hold, and a negative 75 ms ramp. The onset of
these perturbations was at 10%, 40%, 60%, or 90% of the sine
wave corresponding to the middle of the loading phase, midtermi-
nal stance, toe-off, and the transition from mid to terminal swing
phase of the gait cycle, respectively.

Perturbation extraction resulted from the subtraction of two tra-
jectories. The initial trajectory was a sinusoidal trajectory of the
form of wA–E. The following trajectory was the same initial trajec-
tory (wA–E) with perturbations overlaid on the initial trajectory.
By subtracting the initial trajectory from the following trajectory,
perturbation isolation was achieved (Fig. 4). This isolation process
occurred for both the output torque and output position measured
by the exoskeleton. Following extraction, the bootstrapping tech-
nique from Rouse et al. was used to estimate variability of the iso-
lated perturbations [31]. The bootstrapped perturbations were
segmented and analyzed in a 100-ms window following the onset
of the perturbation. The segmented position perturbations were
twice differentiated to obtain velocity and acceleration [32]. The
position, velocity, and acceleration segments were then combined
to form an n� 3 matrix while the segmented torque was placed in
a n� 1 vector to satisfy the form of Eq. (8) where y is the n� 1
vector of segmented torques, C is the n� 3 regressor matrix of
positions, velocities, and accelerations, and x is the 3� 1 vector of
unidentified impedance parameters. Least-squares system identifi-
cation was used to calculate the values of the 3� 1 vector, x,
where the values of x correspond to the values K, B, and J, respec-
tively. These values are used to fit a second-order model of imped-
ance according to Eq. (1)

Fig. 3 Diagram of the experimental setup. Labeled compo-
nents are the actuator and its axis of rotation, the spring and
the inertia.

Fig. 4 Diagram of the perturbation response extraction technique. The response to the ref-
erence trajectory (light blue) subtracted from the response to the perturbation-augmented
reference trajectory (dark blue) yields the response to the perturbations alone (gray).
The experiment featured four types of perturbations: a positive torque perturbation in the
same direction as the underlying trajectory (P-W), a negative torque perturbation in
the same direction as the underlying trajectory (N-W), a positive torque perturbation in the
opposite direction as the underlying trajectory (P-A), and a negative torque perturbation in
the opposite direction as the underlying trajectory (N-A). Each perturbation had a 75ms
ramp up from zero to seven Nm (pos. ramp), followed by a constant seven Nm output for
100ms (hold), and concluded with a 75ms ramp down from seven to zero Nm (neg. ramp).

Journal of Biomechanical Engineering APRIL 2022, Vol. 144 / 041005-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/biom

echanical/article-pdf/144/4/041005/6812692/bio_144_04_041005.pdf by U
niversity of M

ichigan user on 08 February 2022



y ¼ Cx (8)

We conducted seven trials for each reference trajectory, during
which the output shaft position and torque from were measured at
a sample rate of 900 Hz. Accuracy of stiffness and inertia esti-
mates were quantified using percent error to compare model-
estimated values to the known spring-inertia values.

2.5 Statistical Analysis of Impedance Estimates. Analysis
of variance was performed on the estimates of stiffness, damping,
and inertia to assess the significance of experimental factors on
the analysis. A general linear model was used to evaluate

stiffness, damping, and inertia for under all conditions. For the
analysis of stiffness and inertia, the perturbation direction (i.e., if
the perturbation was in the same or opposite direction of the
underlying trajectory), the perturbation type (i.e., whether the per-
turbation was a positive or negative torque perturbation), the
underlying trajectory frequency (0.8, 1.4, 1.7, or 2.0 Hz), and
parameter type (k1 or k2 for stiffness and I1 or I2 for inertia) were
treated as fixed factors. For the analysis of damping, parameter
type was not considered as a factor. Each of the three impedance
parameters were considered as a dependent variable, and a sepa-
rate analysis was completed for each. The length of the vector for
each response variable was 16,000 elements, which stemmed
from the multiplication of the number of bootstrap iterations at
each timing point (100), the number of timing points (8), the num-
ber of cases (4), and the number of trajectories (5). A Bonferronni
correction was used for all posthoc comparisons, and the signifi-
cance level for all tests was set at a¼ 0.05. VAF was calculated
for torque estimated from impedance parameters and the meas-
ured torque signal.

3 Results

3.1 Characterization of Exoskeleton Bandwidth and
Intrinsic Impedance. The system bandwidth was found to be
26.8 Hz for the 20 Nm reference input and 17.2 Hz for the 40 Nm
reference input (Fig. 5). The average intrinsic stiffness, damping,
and inertial components of the exoskeleton were found to be
0.56 0.2 Nm/rad, 0.26 0.0 Nms/rad, and 9.16 0.2 kgcm2,
respectively. The model fit showed an average VAF of
92.56 4.7% across all trials (Fig. 6).

3.2 Computation of External Inertia and Spring Stiffness
Values. The average, ground-truth measurements for each com-
ponent of the three part inertia are shown in Table 1. The inertia
with the aluminum center bar (I1) was 364.06 0.5 kgcm2, while
the inertia with the steel center piece (I2) was 700.06 2.0 kgcm2).
The weights used to calculate stiffness for k1 were W1¼ 182.7 N
and W2¼ 356 N. The weights used for k2 had magnitudes of
W1¼ 184 N and W2¼ 356 N. Final spring calculations showed the
stiffness of k1 to be 168.06 14.3 Nm/rad and k2 to be
273.06 13.9 N�m/rad.

3.3 Dynamic Estimation of Mechanical Impedance. Stiff-
ness estimates were more accurate than inertia values (Fig. 7). On
average, errors for the stiffness estimates were �2.96 3.8% for k1

and �2.56 5.8% for k2. Average errors for the inertia estimates
were �16.36 9.2% for I1 and �13.06 6.3% for I2. The spring
and inertia with greater magnitudes (i.e., k2 and I2) were estimated
more accurately than their smaller counterparts (i.e., k1 and I1),
with the most accurate average estimate stemming from k2 follow-
ing trajectory D (Table 2). The mean damping value across all tri-
als was 0.36 0.4 Nms/rad.

3.4 Statistical Analysis of Stiffness and Inertia Estimates.
The VAF values for all case-trajectory combinations were above

Fig. 5 Plot of the actuator’s torque bandwidth at 20 and 40
N�m. Bandwidth was determined by measuring the system’s tor-
que response to a filtered Gaussian white noise (FGWN) signal
with a cutoff frequency of 30Hz.

Fig. 6 Plot of estimated torque using mean estimated imped-
ance values and filtered measured torque for a representative
trial. VAF captures how similar the estimated signal is to the
original filtered signal. The top section shows the full signal
and the bottom section shows the boxed in portion of the top
plot; a one second window.

Table 1 Average dimensions, centroid distance to axis of rotation (AOR), and mass for each component of the three bar inertia

Component Length (cm) Width (cm) Height (cm) Centroid distance to AOR (cm) Mass (kg)

Top bar 1.06 0.0 25.06 0.0 2.06 0.0 21.56 0.1 0.16 0.0
Bottom bar 1.06 0.0 24.96 0.0 2.06 0.0 21.56 0.1 0.16 0.0
Middle aluminum 1.86 0.0 12.06 0.0 5.06 0.0 27.96 0.0 0.36 0.0
Bar
Middle steel bar 1.86 0.0 9.46 0.0 5.06 0.0 29.36 0.0 0.76 0.0

All distances and masses were determined through caliper and scale measurement, respectively. Measurements were taken three times and then averaged
to produce the results displayed.
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99% showing strong agreement between the estimated parameters
and the measured data. The analysis of variance results show that
almost all of the factors in all linear models had a statistically sig-
nificant effect. The exception to this would be parameter type for
the linear model of stiffness (p¼ 0.3, F1,15999¼ 1.1). The posthoc
analysis on the effect of frequency showed different levels of
stratification for each impedance estimate. Stiffness estimates
with wc as the underlying trajectory were significantly different
from all other estimates. Damping estimates were sectioned into
three distinct groups: estimates at 0.8 and 1.4 Hz, 1.7 Hz, and
2.0 Hz. Finally, the posthoc comparison of inertia showed that
each frequency yielded statistically different estimates from all
other frequencies, with the frequencies having the closest relation-
ship being 0.8 and 1.4 Hz.

4 Discussion

The objective of this study was to investigate the system identi-
fication capabilities of a torque-controlled knee exoskeleton for
future applications of characterizing human knee mechanical
impedance. Our methods included characterization of system tor-
que bandwidth and intrinsic impedance, as well as implementation
of perturbation-based system identification techniques to estimate
the mechanical impedance of external mass-spring systems. We
chose system parameters that could best emulate the characteristics of
human locomotion in a bench top setting. The system’s minimum

bandwidth was 17.6 Hz. The bandwidth is not expected to affect
high-fidelity tracking of our perturbation trajectories, which have
99% of their signal power below 9 Hz. The intrinsic impedance was
found to be low in comparison to the tested external mechanical sys-
tems. Estimated external impedance results were comparable to val-
ues seen in literature; stiffness estimate errors were under 3%, and
inertia estimate errors ranged from �13 to 16%.

4.1 Stiffness and Inertia Estimates. The accuracy of the
stiffness and inertia estimates from our approach are similar to or
better than previous works. The average stiffness errors for the
two tested springs (2.5% and 2.9%) were lower than the reported
average stiffness errors of other systems designed for determining
joint mechanical impedance (approximately 5% [4] and 15% for
13 of 18 trials [22] in the lower limb and 9% in the upper limb
[33]). The average inertia estimate errors from our system (13.0%
and 16.3%) were comparable to those reported by Tucker et al.
for the lower limb (15% for 16 of 18 trials [22]) and slightly
higher than the maximum error of 11% seen in the upper limb
[33].

For most of the tested trajectories, we noted better estimates of
stiffness and inertia at higher values of these parameters. The
exceptions to this trend were the inertia estimates for Trajectory A
and stiffness estimates for Trajectory C. We attribute these trends
to constant torque measurement error, whose effects become

Fig. 7 Plot of estimated torque using mean estimated impedance values and filtered meas-
ured torque for a representative trial. VAF captures how similar the estimated signal is to the
original filtered signal. The top section shows the full signal and the bottom section shows
the boxed in portion of the top plot; a one second window.

Table 2 Average percent error and standard deviation of stiffness (K) and inertia (I) estimates for each trajectory

K table Trajectory A Trajectory B Trajectory C Trajectory D Trajectory E

K1 3.26 0.2 �1.96 2.5 �6.26 1.6 �5.26 3.3 �4.76 5.4
K2 �0.46 0.4 �0.16 0.6 �12.86 1.9 0.36 0.8 1.16 1.4

I table Trajectory A Trajectory B Trajectory C Trajectory D Trajectory E

I1 �6.56 7.4 �10.76 0.2 �29.76 20.7 �13.36 7.7 �21.16 28.1
I2 �11.16 6.8 �5.96 8.2 �23.26 16.3 �11.66 0.7 �12.96 10.0

Average stiffness percent error estimates were determined through averaging stiffness results from cases 1 and 3 for K1 and cases 2 and 4
for K2. Average inertial percent error estimates were obtained after averaging results from cases 1 and 2 for I1 and cases 3 and 4 for I2.
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increasingly mitigated as externally applied torque increases (i.e.,
larger stiffness and inertia values). Our stiffness estimates were
more accurate when compared to estimates of inertia. Stiffness
estimates had both lower maximum and minimum errors, when
compared to inertia estimates, as well as reduced standard devia-
tions. Segmenting measured torque according to the relative con-
tributions of each component (Eq. (1)) offers insight into our
results; the kh component of torque is greater than the €Jh compo-
nent. Alternatively, a larger error in estimating the inertial torques
could be attributed to the numerical method used to determined
velocity and acceleration, which tends to lose fidelity with higher
order derivatives.

4.2 Statistical Analysis. Statistical analysis shows that the
parameter estimates accurately model measured torque behavior.
VAF was high in all cases (>99%), which is expected, given the
second order dynamics of mass-spring systems. Our VAF measure-
ments compare favorably to other joint impedance measurement
devices. Rouse et al. reported an average VAF of 99.1% during the
validation of their device while Tucker et al. reported VAF’s rang-
ing from 87.2% to 99.9% during their characterization process.
High model fit during these ideal conditions is important because
we would expect model fit to worsen with human subject testing.
The device used by Rouse and Shorter to measure dynamic ankle
impedance during stance saw, its average VAF results drop from
99.1% to 926 6.3% and 906 7.7%, respectively, during human
testing [4,24]. Lee saw an average VAF of 85.76 4.5 during their
characterization of ankle impedance during the swing phase of
walking [23]. Having a near perfect model fit under idealized con-
ditions increases confidence in this device’s ability to be deployed
in the field to estimate knee joint impedance during walking.

4.3 Experimental Implications. The results revealed that the
frequency of the applied reference trajectory affects the quality of
the resulting impedance estimate. Trajectories A, B, and D had
frequencies ranging from 0.8 to 1.4 Hz, which fall under slow
walking or pathological gait [4,23,29,30]. Trajectories C and E
had frequencies ranging from 1.7 to 2.0 Hz, which is more similar
to able-bodied human gait [27]. We found that impedance esti-
mates from trajectories at lower frequencies were more accurate,
with lower stiffness and inertia estimate errors and damping esti-
mates closer to zero. Performing experiments to measure joint
mechanical impedance at gait frequencies lower than those typi-
cally seen during able-bodied human gait is not unprecedented;
previous work characterizing human joint impedance during loco-
motion collected data at gait frequencies lower than the frequency
of able-bodied human gait [4,23,24].

The form that the results of how knee mechanical impedance
varies during walking will have is unclear; however, we can look
to literature to infer how our validation results will translate to
human experiments and if the error of these results is sufficient to
produce estimates during human experimentation that can be
trusted. We know that measurements of stiffness obtained during
locomotion are lower than what postural studies would predict.
Thus, we postulate that case 2 results may emulate human testing
conditions well, since it includes the lowest stiffness tested and
the full inertia of the leg [13]. For these conditions tested at gait
speeds at or below 1.4 Hz, we would expect stiffness errors of
below 1% and a max inertia error of �10%. Our percent errors for
stiffness and inertia estimates as well as the VAF associated with
these terms is equal to or better than other state of the art joint
mechanical impedance measurement tools. However, what is
unknown is if the error associated with our measurements is small
enough to permit the use of our results in other domains, such as
robotic control. Literature may provide us an insight into this
question. Azocar et al. showed that humans in a seated position
can, at best, perceive stiffness changes of 11.6% and 13.4% at the
knee and ankle, respectively. [34]. Our stiffness error measure-
ments of 3% are well under those numbers and lead us to believe

that our stiffness estimates will not only be accurate, but can also
be practically applied to robotic control of wearable devices like
prosthetic limbs, due to our errors being below the threshold of
human perception.

4.4 Limitations. Although experimental methods and device
encumbrances did affect our results, this device shows promise
for obtaining estimates of mechanical impedance using the pro-
posed methods. The bench top setup did not include an explicit
damper, and validation of the system identification capabilities of
the device was limited to measures of stiffness and inertia. We
did, however, report a damping estimate in our results. We
hypothesized that our estimates of damping should reflect the lack
of an explicit damper in the system, resulting in a mean damping
estimate close to zero with some noise. The average damping esti-
mate was close to zero, at 0.36 0.4 Nms/rad, which was an
encouraging result, as it aligned with our initial expectations.
While we cannot make any definitive claims on the damping esti-
mation abilities of our system, we interpret these data to reflect
positively on the potential of our approach to measure human
knee damping in future studies.

Another limitation to consider is that impedance estimates
tended to fall below the true values. Inertia values revealed a nota-
ble skew toward underestimation; inertia estimates for 100% of
tested trajectories and case-trajectory combinations were underes-
timates of the true value. Examining stiffness estimates by trajec-
tory revealed that 80% of the estimates fell below the true value.
Examining stiffness estimates by case and trajectory, however,
revealed that 43% of the underestimates were within 1% of their
true value. We conclude that while inertia estimates were skewed
toward underestimation, stiffness estimates were not as strongly
skewed in a single direction. Underestimation could be attributed
to inherent variation in the torque applied by the exoskeleton; in a
prior study characterizing the exoskeleton, output torque varied
by up to � 10%. This may arise from inaccuracies in the equation
describing the series leaf spring stiffness or from nonlinearities of
the leaf spring that are not captured by the linear model imple-
mented in our approach. Overall, the accuracy of impedance esti-
mates reported here, particularly for stiffness and damping,
indicates that this issue can be overcome.

4.5 Future Directions. Knowledge of knee mechanical
impedance can be used to further rehabilitative practices, pros-
thetic design, and robotic control. By determining knee impedance
values for physically impaired and able-bodied individuals alike,
we can use impedance as a metric for rehabilitation. Knowing
how an individual’s joint impedance varies after a medical inter-
vention or rehabilitative protocol can be a tool for benchmarking
patient progress. Knowledge of how mechanical impedance varies
can also be used for intelligent design of passive or quasi-passive
prosthetic devices. Previous Work shows how biological data can
be used to design quasi-passive devices that perform comparably
to their powered counterparts but show notable savings in weight
and complexity [35,36]. Using a similar approach with knee
impedance data could prove beneficial in informing design
requirements for the next generation of knee prostheses. Finally,
task-based knowledge of knee mechanical impedance provides
opportunities for new control methodologies. Using our approach,
we can definitively replicate the mechanical impedance of human
joints, accurately and simultaneously replicating knee torque,
angle, and mechanical impedance.

5 Conclusion

In this work, we validated the system identification capabilities
of a torque-controllable knee exoskeleton and proposed a pertur-
bation paradigm for the identification of the impedance known
mass-spring systems with the intention of extending this work to
estimate the mechanical impedance of the human knee during
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locomotion. Our proposed methods yielded stiffness estimate
errors of �2 to 3% damping values centered around zero and
dominated by variability and inertia estimate errors ranging from
�13 to 16%. We also learned that our analysis techniques tend to
underestimate impedance parameters and that experimental fac-
tors such as the frequency of the underlying trajectory and type of
perturbation applied by the exoskeleton have an effect on the effi-
cacy of the results of our approach. From the conclusions, we
believe that this tool can be utilized to characterize human knee
joint mechanical impedance during locomotion in future studies.
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