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Abstract—We estimate the communication complexity of node
repair for regenerating codes defined on graphs. Both determin-
istic and random graphs are considered.

I. INTRODUCTION

Applications of erasure-correcting codes in distributed stor-
age are focused on recovering a single erasure under the
constraint on the total amount of data “moved” from the
other coordinates to correct the erased (failed) coordinate.
This processing is commonly modeled by assuming that the
codeword coordinates are placed on different servers (storage
nodes), and aim at limiting the information communicated
between them for the recovery of the failed node. In this
paper we additionally assume that communication between
the nodes is constrained by a (connected) graph G(V,E),
where V is an n-set of vertices and where the cost of sending
a unit of information from vi to vj is determined by the
graph distance ρ(vi, vj) in G. While it is still possible to
use the known methods of node repair, a natural question
to study is whether there are more economical ways of
accomplishing this goal given the structure of the graph G.
We give an affirmative answer by showing that, if the data
is encoded using a minimum storage regenerating (or MSR)
code, then under some conditions it is possible to save on
the communication cost of node repair compared to simple
relaying of the information. We also address the same question
for a random graphG from the standard Erdös-Rényi ensemble
Gn,p and determine a range of parameters under which the
communication cost of repair with intermediate processing is
advantageous over the repair scheme based on the relaying.

For a finite field F = Fq we consider a code C ⊂ Fnl

whose codewords are represented by l × n matrices over F .
We assume that each coordinate (a vector in F l) is written
on a single storage node, and that a failed node amounts to
having its coordinate erased. The task of node repair can be
thought of as correcting a single erasure in the vector code
of length n over F. Throughout this work we assume that
the code is F -linear and that any k coordinates suffice to re-
cover the codeword. Suppose moreover that for any codeword
(C1, C2, . . . , Cn) ∈ C and any i ∈ [n] the coordinate (node) Ci

is a function of a subset of d helper nodes {Cij , j = 1, . . . , d},
where d, k ≤ d ≤ n− 1 is some number, and that each of the
helper nodes provides l/(d− k+1) symbols for the recovery
of Ci. A number of families of MSR codes with the described
properties are known in the literature [4], [6]–[8], [10]–[12].
Below in our examples we consider product-matrix codes of

The authors are with Dept. of ECE and ISR, University of Maryland,
College Park, MD 20742. Emails: {apatra,abarg}@umd.edu. A. Barg is also
with IITP, Russian Academy of Sciences, 127051 Moscow, Russia.

This research was supported by NSF grant CCF1814487.

[7] and MSR codes based on diagonal matrices [11], and we
also point out that the proposed distributed repair procedure
applies to any F -linear MSR code.

II. NODE REPAIR ON GRAPHS

Let C be an (n, k, d, l) MSR code and suppose that each
coordinate of a codeword C ∈ C is written on a vertex of a
graph G(V,E), |V | = n. Suppose further that the coordinate
Cf , f ∈ [n] is erased, or, as we will say, that the node vf
has failed. Let D ⊂ V \{vf}, |D| = d be the set of helper
nodes. To repair the failed node, the helper nodes provide
information which is communicated to vf over the edges
in E. If one discounts the connectivity constraints, then to
accomplish the repair, each of the helper nodes sends the
information to the failed node over the shortest path in G, and
the intermediate nodes simply relay this information further,
possibly supplementing it with their own data. We call this
repair strategy accumulate and forward (AF). A potentially
more economical repair arises when the intermediate nodes
are allowed to process the information.
Lower bounds on the repair bandwidth: Before proceeding,

let us further specify our assumptions. In our analysis we
focus only on the node repair problem and do not study
the communication complexity of the “data collection” task
[3]. We assume that for the failed node vf , the helper nodes
D are chosen to be the d closest (in terms of the graph
distance) nodes from vf . These nodes can be found by a
simple breadth-first search on G starting at vf . Denote by
Gf,D = (Vf,D, Ef,D) the subgraph spanned by {vf} ∪ D.
Let t = maxv∈D ρ(v, vf ). We will use the following notation:
Γj(vf ) = {v ∈ Vf,D : ρ(v, vf ) = j}, Ni(vf ) = ∪i

j=1Γj(vf ).
The subset Γj(vf ) is formed of the helper nodes at distance j
from vf (the helper nodes in layer j). The case t = 1 corre-
sponds to the much-studied graph-agnostic repair scenario [3],
and therefore we exclude it from consideration. Observe that
the graph Gf,D is not necessarily unique; in particular, there
may be multiple possible choices for the helper nodes in the
t-th layer.
In the next lemma, we derive lower bounds on the amount

of information contributed by a group of helper nodes for
the purposes of repair. The lemma is phrased in information-
theoretic terms. We assume that the information stored at the
vertices is given by random variables Wi, i ∈ [n] that have
some joint distribution on (F l)n and satisfy H(Wi) = l for
all i, where H(·) is the entropy. For a subset A ⊂ V we write
WA = {Wi, i ∈ A}. Let Sf

i be the information provided to vf
by the ith helper node in the traditional fully connected repair
setting and let Sf

D = {Sf
i , i ∈ D}. The RV Sf

i is a function
of the contents of the node vi, or formally, H(Sf

i |Wi) = 0,
and the RVs Sf

i , i ∈ D determine the contents of vf , i.e.,
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H(Wf |Sf
D) = 0. From the cut-set bound [3], it follows that

H(Sf
i ) ≥ l/(d − k + 1) and we assume that this is achieved

with equality, i.e., the codes we use have the MSR property.
The next lemma is a simple consequence of the definition of
MSR codes. The proofs are close to the arguments that have
previously appeared in the literature, see for instance [9].

Lemma II.1. Let vf , f ∈ [n] be the failed node. For a subset
of the helper nodes E ⊂ D let Rf

E be a function of Sf
E such

that
H(Wf |Rf

E , S
f
D\E) = 0. (1)

1) If |E| ≥ d− k + 1, then

H(Rf
E) ≥ l.

2) If |E| ≤ d− k, then

H(Rf
E) ≥

|E|l
d− k + 1

.

Proof. 1) By the assumption (1), given the contents of all the
nodes in D\E, the information contained in Rf

E is sufficient
to repair vf , i.e.,

H(Wf |Rf
E ,WD\E) = 0. (2)

We have |D\E| ≤ k − 1. Consider a set A ⊂ E with |A| =
k − 1− |D\E|. Now,

H(Rf
E ,WD\E ,WA) = H(Rf

E ,WD\E ,Wf ,WA) ≥ kl (3)

where the equality in (3) follows from (2) and the chain rule,
and the inequality follows from the MDS property of MSR
codes because |D\E|+ |A|+ 1 = k. Next observe that

H(Rf
E ,WD\E ,WA) ≤ H(Rf

E) +H(WD\E ,WA)

= H(Rf
E) + (k − 1)l (4)

where the equality again uses the independence of any k − 1
coordinates in an MDS code. Combining (3) and (4), we obtain
the claimed inequality.

The proof of Part 2) is similar and will be omitted.

As a consequence of this lemma, we obtain a lower bound
on the amount of information transmitted between the layers
in Gf,D.

Proposition II.2. Let Rf
j be the random variable denoting the

information flow from the j-th layer to the (j − 1)-th layer.
Then

H(Rf
j ) ≥ min

{
l,
| ∪t

i=j Γi(vf )| · l
d− k + 1

}
Proof. Follows from Lemma II.1 by taking E = ∪t

i=jΓi(vf ).
Note that Rf

j in the above proposition represents the joint
information transmitted by all the nodes in layer j to layer j−1
and hence does not account for any communication occurring
among the nodes in the same layer. For the special case when
Gf,D is a rooted tree, we can get a more precise statement
on the total required communication for repair. Let Tf be a
rooted tree with root vf , then it defines the set of descendants
of each node in Tf . Let D(vi) be the set of descendants of
vi, and let D∗(vi) = D(vi) ∪ {vi}.

We will be interested in the communication complexity
(repair bandwidth) of the recovery of the erased nodes under
various repair algorithms. The simplest option is to use the AF
repair procedure of MSR codes, described in the beginning of
this section. Its repair bandwidth can be found as

βAF =
(
t(d− |Nt−1(vf )|) +

t−1∑
i=1

i|Γi(vf )|
) l

d− k + 1
. (5)

The total communication complexity of node repair using the
tree Tf is bounded below in the following proposition.

Proposition II.3. Let Jf = {v ∈ V (Tf )\{vf} : |D∗(v)| ≥
d − k + 2}. The total communication complexity β for the
repair of node vf on the repair tree Tf is bounded as

β ≥
∑
v∈Jf

l +
∑

v∈V (Tf )\({vf}∪Jf )

|D∗(v)|l
d− k + 1

. (6)

Proof. For every non-root node v /∈ Jf , we have |D∗(v)| ≤
d − k. Since Tf is a tree, any outflow of information out of
the subtree spanned by D∗(v) passes through the node v, so it
needs to transmit at least |D∗(v)| · l/(d−k+1) symbols to its
immediate parent in Tf by Lemma II.1. Similarly, every node
v ∈ Jf needs to transmit at least l symbols to its immediate
parent by virtue of Lemma II.1.

Note that for any node v /∈ Jf , the AF strategy is trivially
optimal. At the same time, for nodes v ∈ Jf a better
communication strategy is not a priori ruled out. This problem
is addressed in the next section.

A. MSR constructions for repair of graph vertices

1) Product-matrix (PM) codes: Let us briefly recall the
product-matrix construction of [7]. We begin with fixing the
code length n and the dimension parameter k, and take
d = 2k − 2, l = k − 1. The code C : F k(k−1) → F ln

encodes k(k − 1) symbols of F into a codeword of length
n with each coordinate formed of k − 1 symbols. To define
this mapping, form a matrix M = [S1 |S2]

T , where S1, S2 are
symmetric matrices of order l. The number of unique symbols
in M equals 2

(
l+1
2

)
= k(k − 1). Next let Ψ = [Φ,ΛΦ] be an

n × 2l matrix, where Φ is a Vandermonde matrix with rows
of the form ϕi = (1, xi, . . . , x

l−1
i ), where xi, i = 1, . . . , n

are distinct elements of F, and Λ = diag(λ1, . . . , λn) with
λi = xl

i, i = 1, . . . , n. A codeword of the code C, which is an
n× l matrix, is found as C = ΨM , and thus the contents of
the node vi, i = 1, . . . , n is given by the product

Ci := [ϕi, x
l
iϕi]M = ϕiS1 + λiϕiS2. (7)

To describe the repair procedure from [7], suppose without
loss of generality that the helper nodes form the set D =
{1, . . . , d} and that the failed node’s index is f ∈ [n]\[D]. The
original node repair (erasure correction) procedure proposed
in [7] proceeds as follows. The information downloaded by
the failed node vf is given by (ϕiS1 + λiϕiS2)ϕ

T
f , i.e., each

helper node provides one symbol of F . Thus, the failed node
downloads a d-dimensional vector y = yf,D given by

y = ΨDMϕT
f = ΨD

[
S1ϕ

T
f

S2ϕ
T
f

]
, (8)
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where ΨD is the submatrix of Ψ formed of the first d
rows. The matrix ΨD is square d × d and it is invertible by
construction, so we can compute the vectors (S1ϕ

T
f )

T = ϕfS1

and (S2ϕ
T
f )

T = ϕfS2. By (7) the sum ϕfS1+λfϕfS2 equals
Cf , and this completes the repair process.

Now we will modify the repair procedure in a way that
supports processing the information received by the nodes in
the repair tree as it is passed to the failed node vf . Note that
by (8)

ϕfM
T = yT (ΨT

D)−1. (9)

Using (7), (9), the contents of the node vf can be written as

Cf = ϕfM
T

[
Il

λfIl

]
= yT (ΨT

D)−1

[
Il

λfIl

]
.

Introduce a d× l matrix U := (ΨT
D)−1

[
Il

λfIl

]
and denote its

rows by Ui, i = 1, . . . , d, then we have

Cf =
d∑

i=1

yiUi. (10)

Note that the matrix U does not depend on the codeword,
and can be precomputed. Overall this rewriting of the repair
process (8) enables us to separate the contributions of the
helper nodes, and offers savings in the communication cost of
repair. Recalling our notation D∗(vi), suppose that, instead of
transmitting the symbol yi to its parent, the node transmits the
sum

∑
j∈D∗(vi)

yjUj . Since we are now moving vectors rather
than individual symbols along the edges of Tf , this may seem
wasteful; however remember that the symbols are relayed
many times, and that from some point on the repair process
has to move at least l symbols along the edge by Lemma II.1.
To justify the savings, suppose that |D∗(vi)| ≥ d−k+2 = k,
then forwarding the symbols (yj , j ∈ D∗(vi)) from vi to its
predecessor in Tf amounts to sending k symbols, whereas
transmitting the sum

∑
j∈D∗(vi)

yjUj requires l = k − 1
transmissions.

Therefore, the communication for repair can be summarized
as follows. First, the leaf nodes in Tf send their symbols yi
one level up, then the nodes that received these symbols send
them together with their symbols yi, etc. If at any stage a
node vi has d − k + 1 or more descendants, then it switches
to transmitting ∑

j∈D∗(vi)

yjUj . (11)

Finally if a node vi received a vector
∑

j∈D(vi)
yjUj from

its immediate descendant, it adds to it the vector yiUi and
forwards it to its parent in Tf .

In summary, we have shown that, for every node vi ∈ Tf

with |D(vi)| ≥ d − k + 1 descendants in Tf there exists a
repair procedure under which vi transmits exactly l symbols
of F to its parent in Tf . This proves the following theorem.

Theorem II.4. Suppose a codeword of a PM code C is written
on the vertices of a graph G, and let Tf be the repair tree
of a failed node vf . There exists an explicit repair procedure
that achieves the lower bound in (6) with equality.

2) Examples of graphs: Let us give a few examples in
which the proposed repair procedure gains in communication
complexity over the AF repair. For simplicity we will assume
that each helper node provides one symbol of F for the repair
of vf .
1. Suppose that the repair tree Tf is a star with d rays in

which vf is one of the leaves and the remaining d vertices
serve as the helper nodes. Using the AF repair, each of the
nonerased leaves sends its symbol to the center, which then
sends d symbols to vf , so βAF = 2d−1 = 4k−5. At the same
time, βIP = 3k − 4 because the symbols of the helpers other
than the center are aggregated using (11) before relaying to vf .
Another elementary example, which also shows improvement,
arises when the repair tree Tf is a path on d+ 1 vertices.
2. Regular tree. Suppose that G is an (r+1)-regular graph,

and the repair tree Tf of every node is (r + 1)-regular as
shown in the figure. We need to take the depth t of the tree to
satisfy (r + 1)

∑t−1
i=0 r

i ≥ d; suppose for simplicity that this
holds with equality. The communication complexity of the AF
repair is

βAF = td− (r + 1)

t−2∑
i=0

(t− i− 1)ri.

Suppose that r > d − k + 1, then from the next
to last layer we can switch to uploading the linear
combination of the form (11), resulting in the repair
bandwidth βIP = d+ (d− k)(r + 1)

∑t−2
i=0 r

i. The difference

βAF − βIP = (t− 1)d− (r + 1)
t−2∑
i=0

((d− k) + (t− i− 1))ri

is positive if d−k
d is small, i.e., if d ≥ k is close to k.

vf

Γ1(vf )

Γ2(vf )

3. Galton-Watson tree. Having in mind a scenario in which
the helper nodes are chosen randomly and independently by
the nodes already included in the repair tree Tf , suppose that
it is constructed following a branching process with the root
vf , resulting in a Galton-Watson ensemble of random trees
Tf . In this example we choose a simple “offspring pmf”
under which a node in layer i has 1 or 2 descendants with
probability p and 1 − p, respectively. Let Zi = |Γi(vf )|
be the total number of vertices in layer i of Tf . Thus,
Pr(Z1 = 1) = p = 1 − Pr(Z1 = 2) where p ∈ (0, 1) is
chosen to satisfy m := E(Z1) = 2 − p > 1 so that we are
operating in the supercritical regime. Assuming that a tree of
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depth t suffices for repair, we have

βAF = td−
t−1∑
i=1

(t− i)Zi; E[βAF] = td−
t−1∑
i=1

(t− i)mi.

If we assume that the intermediate processing technique can
be applied to layers i : 1 ≤ i ≤ s, then an easy calculation
yields

E[βIP] = (t− s)d+ (d− k + 1− t+ s)

s∑
i=1

mi −
t−1∑

i=s+1

(t− i)mi

and so E[βAF − βIP] = sd−
∑s

i=1(2− p)i(d− k+1+ s− i)
which is positive for small values of d− k and large d.

3) Diagonal-matrix MSR codes: While the product-matrix
codes are limited by the code rate k/n < 1/2, the construction
of [11] removes this limitation, providing explicit families of
exact-repair MSR codes for all possible values of n−1 ≥ d ≥
k.

The codes in [11] are defined in terms of the parity-check
matrix which has a block diagonal structure. Below we assume
that the parameters of the (n, k, l) array code C are fixed,
and that d = n − 1, l = rn, where r := n − k. The
code is defined over a finite field F of size at least rn.
Let {λi,j}i∈[n],j=0,1,...,r−1 be rn distinct elements of F. For
an integer a ∈ {0, 1, . . . , l − 1} let ai be the i-th digit
of its r-ary expansion. For i = 1, 2, . . . , n define a matrix
Ai = diag(λi,ai , a = 0, . . . , l − 1). The code C is formed
of the codewords C = (C1, . . . , Cn) ∈ (F l)n that satisfy the
following set of r parity-check equations:

n∑
i=1

At−1
i Ci = 0, t = 1, . . . , r. (12)

Let Ci = (ci,a, a = 0, . . . , l − 1)T . Since the matrices Ai are
diagonal, the parity check equations (12) take the form

n∑
i=1

λt−1
i,ai

ci,a = 0, t = 1, . . . , r, a = 0, 1, . . . , l − 1. (13)

The node repair with no communication constraints
proceeds as follows. Assume that the node i ∈ [n]
has failed. Consider the set of indices a(i, u) =
(an, . . . , ai+1, u, ai−1, . . . , a1), where u = 0, 1, . . . , r−1. The
information uploaded from the helper node j ∈ [n]\{i} is
given by µ

(a)
j,i =

∑r−1
u=0 cj,a(i,u). Writing (13) for each of the

indices a(i, u), we obtain

λt
i,uci,a(i,u) +

∑
j ̸=i

λt
j,aj

cj,a(i,u) = 0, t = 0, 1, . . . , r − 1.

Summing these equations on u and writing the result in matrix
form, we obtain the relation

1 1 . . . 1
λi,0 λi,1 . . . λi,r−1

...
...

. . .
...

λr−1
i,0 λr−1

i,1 . . . λr−1
i,r−1




ci,a(i,0)
ci,a(i,1)

...
ci,a(i,r−1)

 = −


∑

j ̸=i µ
(a)
j,i∑

j ̸=i λj,ajµ
(a)
j,i

...∑
j ̸=i λ

r−1
j,aj

µ
(a)
j,i

 .

(14)
This equation permits recovery of the symbols ci,a(i,u), 0 ≤
u ≤ r− 1 of the failed coordinate, and the other symbols are
recovered similarly [11].

To adapt this procedure to repair on graphs, assume that the
failed node is i = n and write the vector on the right-hand
side of (14) as [µ(a)

1,n, µ
(a)
2,n, . . . , µ

(a)
n−1,n]V

T
1 , where

V1 := Vandermonde(λ1,a1 , λ2,a2 , . . . , λn−1,an−1)

is an r × (n− 1) Vandermonde matrix with columns defined
by the arguments. The matrix on the left in (14) is also
Vandermonde, denote it by V2. With these notations, (14) can
be rewritten as
[cn,a(n,0), cn,a(n,1), . . . , cn,a(n,r−1)]V

T
2

= −[µ
(a)
1,n, µ

(a)
2,n, . . . , µ

(a)
n−1,n]V

T
1

or
[cn,a(n,0), cn,a(n,1), . . . , cn,a(n,r−1)] = −[µ

(a)
1,n, µ

(a)
2,n, . . . , µ

(a)
n−1,n]U,

with U := V T
1 (V T

2 )−1. This representation is essentially the
same as (10), and hence the generic distributed repair scheme
described in Sec. II-A applies to the codes considered in this
section. This scheme will result in repair bandwidth gains for
each of the groups of the node components mentioned above.
4) Node repair for general linear array codes: From the

examples in the previous section it is clear that the graph-
based repair procedure defined in (11) applies to any F -linear
MSR code for which the information downloaded from the
helper nodes is an F -linear function of their contents (all the
known MSR codes are such). Indeed, the download operation
can be written as C(D)U , where C(D) is the contents of the
helper nodes and U represents the linear transformation of the
form (11). Once we reach the helper nodes in Tf with at least
d− k + 1 descendants, then we can switch to relaying linear
combinations rather than the contents of the helper nodes.
Remark (MBR codes): For the other extremal point of the

storage-bandwidth trade-off [3], i.e., the Minimum Bandwidth
Regenerating (MBR) codes, the AF repair strategy is optimal
in terms of the repair bandwidth because the amount of
downloaded information is minimized by the code design.

III. NODE REPAIR ON RANDOM GRAPHS

In this section we analyze the distributed repair procedure in
the case when the underlying graph G(V,E) is a random graph
from the Gn,p ensemble, where 0 < p < 1. As before, we
assume that the coordinates C1, . . . , Cn of a codeword of an
(n, k, d) MSR code are placed on the vertices v1, . . . , vn. The
main question that we address is to find the relation between
the parameters of the problem p, n, k, d such that graph-based
repair of the failed node with high probability results in lower
repair bandwidth than the AF strategy.
We will assume that p ≫ log n

n because if G is not connected
then with positive probability the node vf is isolated, and
repair is not possible (the notation f(n) ≫ g(n) means
that g(n) = o(f(n))). Furthermore, PGn,p(deg(vf ) ≥ d) =∑n

i=d

(
n
i

)
pi(1 − p)n−i, which goes to zero for n → ∞ if

d ≫ np. Thus, overall this is the parameter regime that may
make the graph-based repair (possible and) advantageous over
the agnostic AF repair procedure.
We will use the following two results regarding the random

Erdös-Rényi graphs (below P = PGn,p ).
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Lemma III.1 ([1], p.50; [5], Sec.7.1). (i) If p2n− 2 log n →
∞, and n2(1− p) → ∞, then P(diam(G) = 2) → 1.

(ii) Suppose that the functions t = t(n) ≥ 3 and 0 < p =
p(n) < 1 satisfy

(log n)/t− 3 log log n → ∞, ptnt−1 − 2 log n → ∞,

pt−1nt−2 − 2 log n → −∞,

then P(diam(G) = t) → 1.

Lemma III.2 ([2], Lemma 3). Suppose that p ≥ log n
n . For

any ϵ > 0 and all i = 1, . . . , ⌊log n⌋

P(|Γi(x)| ≤ (1 + ϵ)(np)i) ≥ 1− 1/log2 n (15)

P(|Ni(x)| ≤ (1 + 2ϵ)(np)i) ≥ 1− 1/log2 n. (16)

1) Repair threshold: We say that t-layer repair of the
failed node v is possible if

P(|Nt(v)| ≥ d) → 1 as n → ∞.

The next proposition establishes a threshold for t-layer
repair in terms of p for linear number of helpers.

Proposition III.3. Let d = δn, 0 < δ < 1 and let t be a fixed
integer. Then t is the threshold depth for repair if

(np)t−1 = o(n), ptnt−1 − 2 log n → ∞. (17)

Proof. To show that t-layer repair is possible, we observe that
from Lemma III.1, P(diam(G) = t) → 1. This implies that for
any failed node v, all the other nodes in the graph are reachable
in at most t steps, and in particular, |Nt(v)| = n > d. To show
that t is the smallest radius that supports repair, observe that
by (16) for any ϵ > 0

P(|Nt−1(v)| ≤ (1 + 2ϵ)(np)t−1) → 1. (18)

Since d is a linear function of n, the event

{|Nt−1(v)| ≥ d} ⊂ {|Nt−1(v)|/n > 0} (n → ∞).

Together with (18) this implies that P(|Nt−1(v)|/n ≥ γ) → 0
for any γ > 0.

Remark: Given t, the conditions (17) are satisfied if

n−(t−1)/tg(n) ≪ p(n) ≪ n−(t−2)/(t−1),

where g(n) ≫ (2 log n)1/t.
2) Repair bandwidth: In this section we estimate the com-

munication complexity of node recovery on a random graph.
Throughout this section we assume that t is the threshold for
repair, i.e., conditions (17) hold for t, n, and p.

Proposition III.4. The repair bandwidth βAF satisfies
P(βAF ≥ td− o(n)) → 1

Remark: This proposition implies that for large n, “most”
of the helper nodes are at distance t from the failed node.
Note that, assuming (17), Lemma III.2 along with Lemma 8
in [2] imply that the neighborhood Γt(v) with high probability
grows as c(np)t. for some constant c < 1. This provides an
intuitive explanation of the claim of Prop. III.4 for d = Θ(n)
and (np)t−1 = o(n), implying that the AF repair strategy

results in a t-fold increase of repair bandwidth compared to
full connectivity.

Proof. Rewriting the expression for βAF in (5), we obtain

βAF = td−
t−1∑
i=1

(t− i)|Γi(f)|.

Let Ei = {|Γi(f)| ≤ (1 + ϵ)(np)i} and notice that E :=
∩t−1
i=1Ei ⊆ {βAF ≥ (td− o(n))}. From Lemma III.2 we know

that P(Ec
i ) ≤ 1/ log2 n for all i, and thus

Pr(∪t−1
i=1E

c
i ) ≤

t−1∑
i=1

Pr(Ec
i ) ≤ t/log2 n.

Finally, P(βAF ≥ td− o(n)) ≥ Pr(E) ≥ 1− t
log2 n

→ 1.

The next proposition gives further insights into the relation-
ship between βAF and t. Its proof is similar to the proof of
Prop. III.4 and will be omitted.

Proposition III.5. Let d = δn, 0 < δ < 1 and let κ(n) be a
function of n such that c ≤ κ(n)/n ≤ c̄ starting with some
n. Then for t > c̄/δ we have P(βAF ≤ κ(n)) → 0. Further, if
t ≤ c/δ, then P(βAF ≤ κ(n)) → 1.

Now let us show that the graph-based repair as given in (11)
with high probability has smaller repair bandwidth.

Theorem III.6. Let t be the threshold given in Prop III.3.
For d = Θ(n) let d− k = χ(n) be a function of n such that
χ(n)ns−1ps → 0 where s ≤ t − 1 is the largest integer for
which this condition holds. Then P(βIP ≤ (t−s)d+o(n)) → 1.

Proof. Let Tf be the repair tree with the root vf . By assump-
tion, the distance from the root to the leaves is t, and we will
assume that the helper nodes in Γi(vf ), i = t, t− 1, . . . , s+1
simply relay their information along the edges, while the nodes
in Ns(vf ) transmit l = d − k + 1 symbols given by a linear
combination of the form given in (11).
Then, for the failed node vf , we have

βIP = (t− s)(d− |Nt−1(f)|) +
t−s−1∑
i=1

(t− s− i)|Γt−i(f)|

+ (d− k + 1)
s∑

i=1

|Γi(f)|

= (t− s)d+
s∑

i=1

|Γi(f)|(d− k + 1− (t− s))

−
t−1∑

i=s+1

|Γi(f)|(t− i)

≤ (t− s)d+

s∑
i=1

|Γi(f)|(d− k + 1− t+ s)).

Proceeding similarly to the proof of Proposition III.4, we
obtain

P
(
βIP ≤ (t− s)d+

s∑
i=1

(np)i(χ(n) + 1− t+ s)
)

≥ 1− s/log2 n → 1.

Now using the assumption χ(n)(np)s = o(n) finishes the
proof.
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[5] A. Frieze and M. Karońsky, Introduction to Random Graphs. Cam-
bridge University Press, 2016.

[6] S. Goparaju, A. Fazeli, and A. Vardy, “Minimum storage regenerating
codes for all parameters,” IEEE Trans. Inf. Theory, vol. 63, no. 10, pp.
6318–6328, 2017.

[7] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–
5239, 2011.

[8] N. Raviv, N. Silberstein, and T. Etzion, “Constructions of high-rate
minimum storage regenerating codes over small fields,” IEEE Trans.
Inf. Theory, vol. 63, no. 4, pp. 2015–2038, 2017.

[9] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Dis-
tributed storage codes with repair-by-transfer and nonachievability of
interior points on the storage-bandwidth tradeoff,” IEEE Trans. Inf.
Theory, vol. 58, no. 3, pp. 1837–1852, 2012.

[10] I. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes for
storage,” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2028–2037, 2014.

[11] M. Ye and A. Barg, “Explicit constructions of high-rate MDS array
codes with optimal repair bandwidth,” IEEE Trans. Inf. Theory, vol. 63,
no. 4, pp. 2001–2014, 2017.

[12] M. Ye and A. Barg, “Explicit constructions of optimal-access MDS
codes with nearly optimal sub-packetization,” IEEE Trans. Inf. Theory,
vol. 63, no. 10, pp. 6307–6317, 2017.

2202
Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 08,2022 at 19:07:24 UTC from IEEE Xplore.  Restrictions apply. 


