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Regenerating codes on graphs

Adway Patra

Abstract—We estimate the communication complexity of node
repair for regenerating codes defined on graphs. Both determin-
istic and random graphs are considered.

I. INTRODUCTION

Applications of erasure-correcting codes in distributed stor-
age are focused on recovering a single erasure under the
constraint on the total amount of data “moved” from the
other coordinates to correct the erased (failed) coordinate.
This processing is commonly modeled by assuming that the
codeword coordinates are placed on different servers (storage
nodes), and aim at limiting the information communicated
between them for the recovery of the failed node. In this
paper we additionally assume that communication between
the nodes is constrained by a (connected) graph G(V, E),
where V' is an n-set of vertices and where the cost of sending
a unit of information from v; to v; is determined by the
graph distance p(v;,v;) in G. While it is still possible to
use the known methods of node repair, a natural question
to study is whether there are more economical ways of
accomplishing this goal given the structure of the graph G.
We give an affirmative answer by showing that, if the data
is encoded using a minimum storage regenerating (or MSR)
code, then under some conditions it is possible to save on
the communication cost of node repair compared to simple
relaying of the information. We also address the same question
for a random graph G from the standard Erdos-Rényi ensemble
Yn,p and determine a range of parameters under which the
communication cost of repair with intermediate processing is
advantageous over the repair scheme based on the relaying.

For a finite field ' = F, we consider a code € C F nl
whose codewords are represented by [ x n matrices over F.
We assume that each coordinate (a vector in F') is written
on a single storage node, and that a failed node amounts to
having its coordinate erased. The task of node repair can be
thought of as correcting a single erasure in the vector code
of length n over F. Throughout this work we assume that
the code is F'-linear and that any k coordinates suffice to re-
cover the codeword. Suppose moreover that for any codeword
(C1,C4,...,Cp) € Cand any ¢ € [n] the coordinate (node) C;
is a function of a subset of d helper nodes {C;,,j = 1,...,d},
where d, k < d <n —1 is some number, and that each of the
helper nodes provides {/(d — k + 1) symbols for the recovery
of C;. A number of families of MSR codes with the described
properties are known in the literature [4], [6]-[8], [10]-[12].
Below in our examples we consider product-matrix codes of
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[7] and MSR codes based on diagonal matrices [11], and we
also point out that the proposed distributed repair procedure
applies to any F'-linear MSR code.

II. NODE REPAIR ON GRAPHS

Let C be an (n,k,d,l) MSR code and suppose that each
coordinate of a codeword C' € C is written on a vertex of a
graph G(V, E),|V| = n. Suppose further that the coordinate
Cy, f € [n] is erased, or, as we will say, that the node vy
has failed. Let D C V\{vs},|D| = d be the set of helper
nodes. To repair the failed node, the helper nodes provide
information which is communicated to vy over the edges
in E. If one discounts the connectivity constraints, then to
accomplish the repair, each of the helper nodes sends the
information to the failed node over the shortest path in G, and
the intermediate nodes simply relay this information further,
possibly supplementing it with their own data. We call this
repair strategy accumulate and forward (AF). A potentially
more economical repair arises when the intermediate nodes
are allowed to process the information.

Lower bounds on the repair bandwidth: Before proceeding,
let us further specify our assumptions. In our analysis we
focus only on the node repair problem and do not study
the communication complexity of the “data collection” task
[3]. We assume that for the failed node vy, the helper nodes
D are chosen to be the d closest (in terms of the graph
distance) nodes from wvy. These nodes can be found by a
simple breadth-first search on G starting at vs. Denote by
Gsp = (Vi,p,Eyrp) the subgraph spanned by {v;} U D.
Let t = max,ep p(v, vy). We will use the following notation:
Uj(vp) ={v € Vo : p(v,vr) = 5}, Nilvy) = Uj_ T (vy).
The subset I';(vy) is formed of the helper nodes at distance j
from vy (the helper nodes in layer j). The case t = 1 corre-
sponds to the much-studied graph-agnostic repair scenario [3],
and therefore we exclude it from consideration. Observe that
the graph Gy p is not necessarily unique; in particular, there
may be multiple possible choices for the helper nodes in the
t-th layer.

In the next lemma, we derive lower bounds on the amount
of information contributed by a group of helper nodes for
the purposes of repair. The lemma is phrased in information-
theoretic terms. We assume that the information stored at the
vertices is given by random variables W;,i € [n] that have
some joint distribution on (F')" and satisfy H(W;) = [ for
all i, where H () is the entropy. For a subset A C V' we write
Wi = {W;,i € A}. Let S/ be the information provided to v
by the <th helper node in the traditional fully connected repair
setting and let S{) = {Szf,i € D}. The RV Sif is a function
of the contents of the node v;, or formally, H (Sf [W;) =0,
and the RVs Sif ,t € D determine the contents of vy, i.e.,
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H (I/I?\S,fj) = 0. From the cut-set bound [3], it follows that
H(S])>1/(d—k+1) and we assume that this is achieved
with equality, i.e., the codes we use have the MSR property.
The next lemma is a simple consequence of the definition of
MSR codes. The proofs are close to the arguments that have
previously appeared in the literature, see for instance [9].

Lemma IL1. Let vy, f € [n] be the failed node. For a subset
of the helper nodes E C D let Ré be a function of S}; such
that

H(Wy|R;, ST, ) = 0. (1)
DIf|E|>d—k+1, then
H(RL) > 1.
2)If |[E| < d—k, then
|E|l
“d—k+1

Proof. 1) By the assumption (1), given the contents of all the
nodes in D\ E, the information contained in Ré is sufficient
to repair vy, i.e.,

H(Rp) >

H(W|RE, W) = 0. )

We have |D\E| < k — 1. Consider a set A C E with |A| =
k —1— |D\E|. Now,

H(RY, Wp\p, Wa) = H(RL, W\, Wy, Wa) >kl (3)

where the equality in (3) follows from (2) and the chain rule,
and the inequality follows from the MDS property of MSR
codes because |D\F| + |A| + 1 = k. Next observe that

H(R};, Wp\g, Wa) < H(RY) + H(Wpy 5, Wa)
= H(RL) + (k — 1)l )

where the equality again uses the independence of any k£ — 1
coordinates in an MDS code. Combining (3) and (4), we obtain
the claimed inequality.

The proof of Part 2) is similar and will be omitted. O

As a consequence of this lemma, we obtain a lower bound
on the amount of information transmitted between the layers
in G f,D-

Proposition I1.2. Let R; be the random variable denoting the
information flow from the j-th layer to the (j — 1)-th layer.
Then .
| Uiz L (vy)] 'l}
d—Fk+1

Proof. Follows from Lemma IL1 by taking £ = Uj_,T;(vy).

Note that R]f- in the above proposition represents the joint
information transmitted by all the nodes in layer j to layer j—1
and hence does not account for any communication occurring
among the nodes in the same layer. For the special case when
Gy p is a rooted tree, we can get a more precise statement
on the total required communication for repair. Let Ty be a
rooted tree with root vy, then it defines the set of descendants
of each node in Ty. Let D(v;) be the set of descendants of
Uy, and let D*(’UZ) = D(Ui) @] {Uz}

H(R]) > min {l,

We will be interested in the communication complexity
(repair bandwidth) of the recovery of the erased nodes under
various repair algorithms. The simplest option is to use the AF
repair procedure of MSR codes, described in the beginning of
this section. Its repair bandwidth can be found as

l
— N1 (vy)] +Zz\r vy) )d T ©

The total communication complexity of node repair using the
tree T’y is bounded below in the following proposition.

Proposition IL3. Let J; = {v € V(Ty)\{vs} : [D*(v)| >
d — k + 2}. The total communication complexity 8 for the
repair of node vy on the repair tree Ty is bounded as

5> Z I+ Z |D*(v)|l

d—k+1
vEJy veV(Tr)\({vs}UJ¢) +

Proof. For every non-root node v ¢ Jy, we have |D*(v)| <
d — k. Since T} is a tree, any outflow of information out of
the subtree spanned by D*(v) passes through the node v, so it
needs to transmit at least | D*(v)|-1/(d—k+1) symbols to its
immediate parent in T’y by Lemma II.1. Similarly, every node
v € Jy needs to transmit at least [ symbols to its immediate
parent by virtue of Lemma II.1. O

Bar = (1(d

(6)

Note that for any node v ¢ Jy, the AF strategy is trivially
optimal. At the same time, for nodes v € Jy a better
communication strategy is not a priori ruled out. This problem
is addressed in the next section.

A. MSR constructions for repair of graph vertices

1) Product-matrix (PM) codes: Let us briefly recall the
product-matrix construction of [7]. We begin with fixing the
code length n and the dimension parameter k, and take
d =2k —21 =k —1. The code ¢ : Fk(k=1) _, pin
encodes k(k — 1) symbols of F into a codeword of length
n with each coordinate formed of k¥ — 1 symbols. To define
this mapping, form a matrix M = [S; | S5]”, where S;, Sy are
symmetric matrices of order /. The number of unique symbols
in M equals 2("5") = k(k — 1). Next let ¥ = [®, A®] be an
n X 2l matrix, where ® is a Vandermonde matrix with rows
of the form ¢; = (l,xi,...,xé_l), where x;,1 = 1,...,n
are distinct elements of F, and A = diag(\y,...,\,) with
N =zl i=1,...,n. A codeword of the code C, which is an
n x | matrix, is found as C = WM, and thus the contents of
the node v;,7 = 1,...,n is given by the product

Ci = [fi, 2] M = ¢:81 + Xighi S (7)

To describe the repair procedure from [7], suppose without
loss of generality that the helper nodes form the set D =
{1,...,d} and that the failed node’s index is f € [n]\[D]. The
original node repair (erasure correction) procedure proposed
in [7] proceeds as follows. The information downloaded by
the failed node v is given by (¢;S1 + A\;¢;52) fT, i.e., each
helper node provides one symbol of F'. Thus, the failed node
downloads a d-dimensional vector y = ¢ p given by

y=UpMeT =T {S ”b/}] ®)
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where Wp is the submatrix of ¥ formed of the first d
rows. The matrix ¥, is square d X d and it is invertible by
construction, so we can compute the vectors (S; d)}:)T =¢rS1
and (qu/)?)T = ¢S5. By (7) the sum ¢S+ Ay S equals
(', and this completes the repair process.

Now we will modify the repair procedure in a way that
supports processing the information received by the nodes in
the repair tree as it is passed to the failed node vy. Note that
by (8)

orM" = y" (WD)~ ©)

Using (7), (9), the contents of the node vy can be written as
_ | L | _ rogry-1] L
Cr=o¢sM [Afll =y (Yp) WAl

I
i . Ty—-1 l
Introduce a d x [ matrix U := (V) [)\fjl

rows by U;,i = 1,...,d, then we have

d
Cf = ZyiUi.
=1

Note that the matrix U does not depend on the codeword,
and can be precomputed. Overall this rewriting of the repair
process (8) enables us to separate the contributions of the
helper nodes, and offers savings in the communication cost of
repair. Recalling our notation D*(v;), suppose that, instead of
transmitting the symbol y; to its parent, the node transmits the
SUm . pe(,,) Y5 Uj- Since we are now moving vectors rather
than individual symbols along the edges of T, this may seem
wasteful; however remember that the symbols are relayed
many times, and that from some point on the repair process
has to move at least [ symbols along the edge by Lemma II.1.
To justify the savings, suppose that |D*(v;)| > d—k+2 =k,
then forwarding the symbols (y;,7 € D*(v;)) from v; to its
predecessor in Ty amounts to sending £ symbols, whereas
transmitting the sum ZjED*(vi)ijj requires | = k — 1
transmissions.

Therefore, the communication for repair can be summarized
as follows. First, the leaf nodes in T send their symbols y;
one level up, then the nodes that received these symbols send
them together with their symbols y;, etc. If at any stage a
node v; has d — k£ + 1 or more descendants, then it switches
to transmitting

} and denote its

(10)

> U (11)
JED*(v;)
Finally if a node v; received a vector Y jeD(vs) YiU; from

its immediate descendant, it adds to it the vector y;U; and
forwards it to its parent in T';.

In summary, we have shown that, for every node v; € T
with |D(v;)| > d — k + 1 descendants in T there exists a
repair procedure under which v; transmits exactly [ symbols
of I to its parent in T'. This proves the following theorem.

Theorem IL.4. Suppose a codeword of a PM code C is written
on the vertices of a graph G, and let Ty be the repair tree
of a failed node vy. There exists an explicit repair procedure
that achieves the lower bound in (6) with equality.

2) Examples of graphs: Let us give a few examples in
which the proposed repair procedure gains in communication
complexity over the AF repair. For simplicity we will assume
that each helper node provides one symbol of F' for the repair
of vy.

1. Suppose that the repair tree Ty is a star with d rays in
which vy is one of the leaves and the remaining d vertices
serve as the helper nodes. Using the AF repair, each of the
nonerased leaves sends its symbol to the center, which then
sends d symbols to v¢, so Sar = 2d—1 = 4k —5. At the same
time, Oip = 3k — 4 because the symbols of the helpers other
than the center are aggregated using (11) before relaying to vy.
Another elementary example, which also shows improvement,
arises when the repair tree T is a path on d + 1 vertices.

2. Regular tree. Suppose that G is an (r + 1)-regular graph,
and the repair tree Ty of every node is (r + 1)-regular as
shown in the figure. We need to take the depth ¢ of the tree to
satisfy (r + 1) Z:;é r® > d; suppose for simplicity that this
holds with equality. The communication complexity of the AF
repair is

[ V)

t7
ﬁAF :td—(r—i—l)

(2

Suppose that » > d — k + 1, then from the next
to last layer we can switch to uploading the linear
combination of the form (11), resulting in the repair
bandwidth Bip = d 4 (d — k)(r + 1) 212 r*. The difference

t—2

ﬁAF—ﬁIPZ(t—1)d_(T+1)Z((d—k)+(t_i_1))7’i

=0

(t—i—1)r"

Il
=)

is positive if d;dk is small, i.e., if d > k is close to k.

3. Galton-Watson tree. Having in mind a scenario in which
the helper nodes are chosen randomly and independently by
the nodes already included in the repair tree 1y, suppose that
it is constructed following a branching process with the root
vy, resulting in a Galton-Watson ensemble of random trees
T¢. In this example we choose a simple “offspring pmf”
under which a node in layer ¢ has 1 or 2 descendants with
probability p and 1 — p, respectively. Let Z; = |I';(vy)]
be the total number of vertices in layer ¢ of Jy. Thus,
Pr(Zy = 1) = p=1-"Pr(Z, = 2) where p € (0,1) is
chosen to satisfy m := E(Z;) = 2 —p > 1 so that we are
operating in the supercritical regime. Assuming that a tree of
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depth ¢ suffices for repair, we have

Bar = td — Z

If we assume that the intermediate processing technique can
be applied to layers ¢ : 1 < ¢ < s, then an easy calculation

Zm EﬁAF—td Zt—’é

yields
s t—1
E[Blp}:(t—s)d—k(d—k—i—l—t—&—s)Zmi— Z(t—i)m
i=1 i=st1

and so E[Bar — Bp] = sd— >0 1 (2—p)'(d—k+1+5s—1)
which is positive for small values of d — k and large d.

3) Diagonal-matrix MSR codes: While the product-matrix
codes are limited by the code rate k/n < 1/2, the construction
of [11] removes this limitation, providing explicit families of
exact-repair MSR codes for all possible values of n—1 > d >
k.

The codes in [11] are defined in terms of the parity-check
matrix which has a block diagonal structure. Below we assume
that the parameters of the (n,k,l) array code € are fixed,
and that d = n — 1, = r™, where r := n — k. The
code is defined over a finite field F' of size at least rn.
Let {\i j}ic[n],j=0,1,....,r—1 be rn distinct elements of F. For
an integer ¢ € {0,1,...,1 — 1} let a; be the i-th digit
of its r-ary expansion. For ¢ = 1,2,...,n define a matrix

= diag(Xi 4,0 = 0,...,1 —1). The code C is formed

of the codewords C' = (C4,...,C,) € (F!)" that satisfy the
following set of r parity-check equations:
S ATICi=0, t=1,...,n (12)
i=1
Let C; = (¢ia,a=0,...,0 —1)T. Since the matrices A; are

diagonal, the parity check equations (12) take the form

n

E t—1 _
/\i,ai Civa - 07

i=1

t=1,...,7ma=0,1,...,1—1. (13)

The node repair with no communication constraints
proceeds as follows. Assume that the node ¢ € [n]
has failed. Consider the set of indices a(i,u) =
(@ny ..oy Qip1, Uy Qi—1,...,a1), wherew = 0,1,...,7—1. The
information uploaded from the helper node j € [n]\{i} is
given by ug.ili) =5 Cj,a(i,u)- Writing (13) for each of the
indices a(i,u), we obtain

)‘g,ucﬁa(i,u) + Z A§7ajcj,a(i,u) = 07
JFi

Summing these equations on u and writing the result in matrix
form, we obtain the relation

t=0,1,...,r— 1.

(a)
11 .1 Cia(i.0) D uj,i( :
A R N Ci,a(i,1) B Zj;ﬁi )‘j,aj,uj,i
.—1 .—1 1 ’
Ao AT A:'r 1 Ci,a(i,r—1) Z]# A; ajl,u;az
(1

This equation permits recovery of the symbols ¢; 4(; ), 0 <
u < r — 1 of the failed coordinate, and the other symbols are
recovered similarly [11].

To adapt this procedure to repair on graphs, assume that the
failed node is © = n and write the vector on the right-hand

side of (14) as [/~L1 %,,uéar)” e ,u; 1alVi', where

) )\n_lxanfl )

is an 7 x (n — 1) Vandermonde matrix with columns defined
by the arguments. The matrix on the left in (14) is also
Vandermonde, denote it by V5. With these notations, (14) can
be rewritten as

Vy := Vandermonde (A1 4, A2,45, - - -

[Cn,a(n,0)7 Cn,a(n,1)y -5 Cna(n,r— 1)]‘/2T

(a)  (a) (a) T
[Ml n’/J’Q ny s Mp—1 n]vvl
or
[Cn,a(n,O): Cn,a(n,d)s -+ cn,a(n,rfl)} [ugaw)u :U‘éav)w s ’lu"E:l)l n}U

with U := VI (V,)~1. This representation is essentially the
same as (10), and hence the generic distributed repair scheme
described in Sec. II-A applies to the codes considered in this
section. This scheme will result in repair bandwidth gains for
each of the groups of the node components mentioned above.
4) Node repair for general linear array codes: From the
examples in the previous section it is clear that the graph-
based repair procedure defined in (11) applies to any F'-linear
MSR code for which the information downloaded from the
helper nodes is an F'-linear function of their contents (all the
known MSR codes are such). Indeed, the download operation
can be written as C'(D)U, where C(D) is the contents of the
helper nodes and U represents the linear transformation of the
form (11). Once we reach the helper nodes in T’y with at least
d — k + 1 descendants, then we can switch to relaying linear
combinations rather than the contents of the helper nodes.
Remark (MBR codes): For the other extremal point of the
storage-bandwidth trade-off [3], i.e., the Minimum Bandwidth
Regenerating (MBR) codes, the AF repair strategy is optimal
in terms of the repair bandwidth because the amount of
downloaded information is minimized by the code design.

III. NODE REPAIR ON RANDOM GRAPHS

In this section we analyze the distributed repair procedure in
the case when the underlying graph G(V, E) is a random graph
from the G, , ensemble, where 0 < p < 1. As before, we
assume that the coordinates C,...,C,, of a codeword of an
(n, k,d) MSR code are placed on the vertices v, ..., v,. The
main question that we address is to find the relation between
the parameters of the problem p,n, k, d such that graph-based
repair of the failed node with high probability results in lower
repair bandwidth than the AF strategy.

We will assume that p > og ™ because if G is not connected
then with positive probablhty the node vy is isolated, and
repair is not possible (the notation f(n) > g(n) means
that g(n) = o(f(n))). Furthermore, Pg, (deg(vy) > d) =
S  (Mp'(1 — p)"~i, which goes to zero for n — oo if
d > np. Thus, overall this is the parameter regime that may
make the graph-based repair (possible and) advantageous over
the agnostic AF repair procedure.

We will use the following two results regarding the random
Erd6s-Rényi graphs (below P =Pg, ).
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Lemma III.1 ([1], p.50; [5], Sec.7.1). (i) If p>n — 2logn —
o0, and n?*(1 — p) — oo, then P(diam(G) = 2) — 1.

(ii) Suppose that the functions t = t(n) > 3 and 0 < p =
p(n) < 1 satisfy

(logn)/t — 3loglogn — oo, p'n'~' —2logn — oo,
p' T Int2 — 2logn — —o0,
then P(diam(G) = t) — 1.
Lemma IIL.2 ([2], Lemma 3). Suppose that p > 10%. For
any € >0and all i =1,...,|logn|
P(Ti(z)] < (1 +€)(np)’) > 1 —1/log’n  (15)
P(IN;(x)| < (14 2¢)(np)’) > 1 —1/log*>n.  (16)

1) Repair threshold: We say that t-layer repair of the
failed node v is possible if

P(|N¢(v)| > d) = 1 as n — oo.

The next proposition establishes a threshold for t-layer
repair in terms of p for linear number of helpers.

Proposition IIL.3. Let d = 6n,0 < § < 1 and let t be a fixed
integer. Then t is the threshold depth for repair if

t—1

(np)=t =o(n), p'n'~' —2logn — oco. (17)

Proof. To show that ¢-layer repair is possible, we observe that
from Lemma III.1, P(diam(G) = ¢) — 1. This implies that for
any failed node v, all the other nodes in the graph are reachable
in at most ¢ steps, and in particular, | N;(v)| = n > d. To show
that ¢ is the smallest radius that supports repair, observe that
by (16) for any € > 0

P(|N—1(v)] < (14 2¢)(np)*~") = L. (18)
Since d is a linear function of n, the event
{{Ne—1(v)| = d} C {|Ne=1(v)[/n >0} (n— 00).

Together with (18) this implies that P(|N;—1(v)|/n > ) — 0
for any v > 0. O

Remark: Given t, the conditions (17) are satisfied if
n~ D/ g(n) < p(n) < n~E=2/ 1,

where g(n) > (2logn)!/t.

2) Repair bandwidth: In this section we estimate the com-
munication complexity of node recovery on a random graph.
Throughout this section we assume that ¢ is the threshold for
repair, i.e., conditions (17) hold for ¢,n, and p.

Proposition IIL.4. The repair bandwidth [ar satisfies
]P)(BAF > td — 0(77/)) —1

Remark: This proposition implies that for large n, “most”
of the helper nodes are at distance ¢ from the failed node.
Note that, assuming (17), Lemma III.2 along with Lemma 8
in [2] imply that the neighborhood Tt (v) with high probability
grows as c(np)t. for some constant ¢ < 1. This provides an
intuitive explanation of the claim of Prop. IIL.4 for d = ©(n)
and (np)~! = o(n), implying that the AF repair strategy

results in a t-fold increase of repair bandwidth compared to
full connectivity.

Proof. Rewriting the expression for Sap in (5), we obtain
t—1
Bar = td =Y (t = D)|Ti(f)].
i=1

{IT:i(f)] < (1 + €)(np)'} and notice that E :
C {Bar > (td —o(n))}. From Lemma II1.2 we know
that P(E¢) < 1/log?n for all 4, and thus
t—1
< ZPT(EZC) < t/log® n.
i=1

P(Bar > td — o(n)) > Pr(F) >

sjew
,_.,I_.
@ ,
N

Pr(U_{ EY)

Finally, O

The next proposition gives further insights into the relation-
ship between Sar and t. Its proof is similar to the proof of
Prop. III.4 and will be omitted.

Proposition IIL5. Ler d = dn,0 < § < 1 and let k(n) be a
Sunction of n such that ¢ < k(n)/n < € starting with some
n. Then for t > ¢/ we have P(Sar < k(n)) — 0. Further, if
t < /0, then P(Bar < k(n)) — 1.

Now let us show that the graph-based repair as given in (11)
with high probability has smaller repair bandwidth.

Theorem IIL.6. Let t be the threshold given in Prop III.3.
For d = 0O(n) let d — k = x(n) be a function of n such that

x(n)n*~1p* — 0 where s < t — 1 is the largest integer for
which this condition holds. Then P(fp < (t—s)d+o(n)) — 1.
Proof. Let Tt be the repair tree with the root v¢. By assump-
tion, the distance from the root to the leaves is ¢, and we will
assume that the helper nodes in I';(vy),t =t,t—1,...,s+1
simply relay their information along the edges, while the nodes
in Ng(vy) transmit [ = d — k + 1 symbols given by a linear
combination of the form given in (11).
Then, for the failed node vy, we have
t—s—1

Z (t—s—)|Tei(f)]

B = (t —s)(d -

4+ (d—k+1) Z|r

t—sd+Z|F Wd—k+1—(t—s))

_ZH‘

1=s+1 s
< (t—s)d+ Y [Tu(f
i=1

Proceeding similarly to the proof of Proposition II1.4, we
obtain

| Np—1(

(= 1)

Wd—k+1—t+s)).

P (6w <

t—sd—i—z np

1—t+s))

>1—s/log’n — 1.

Now using the assumption x(n)(np)® = o(n) finishes the
proof. O
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