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ABSTRACT

The stable forms of carbon in Earth’s deep interior control storage and fluxes of carbon through
the planet over geologic time, impacting the surface climate as well as carrying records of
geologic processes in the form of diamond inclusions. However, current estimates of the
distribution of carbon in Earth’s mantle are uncertain, due in part to limited understanding of the
fate of carbonates through subduction, the main mechanism that transports carbon from Earth’s
surface to its interior. Oxidized carbon carried by subduction has been found to reside in MgCOs
throughout much of the mantle. Experiments in this study demonstrate that at deep mantle
conditions MgCO; reacts with silicates to form CaCOs. In combination with previous work

indicating that CaCOj; is more stable than MgCOs; under reducing conditions of Earth’s
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lowermost mantle, these observations allow us to predict that the signature of surface carbon

reaching Earth’s lowermost mantle may include CaCOj;.

INTRODUCTION

Carbon is not only key to life and Earth’s habitability, but also traces and modifies
geological processes of subduction, partial melting, degassing, and metasomatism, providing
valuable insights into Earth’s evolution'. Over the history of the planet, carbon transport between
surface and deep reservoirs has impacted the atmospheric, oceanic and crustal CO, budgets in
tandem with the composition and redox state of the Earth’s mantle®>. Carbon is transported from
Earth’s surface to its interior mainly as carbonate minerals in subduction zones, and is returned
in carbon-bearing gas/fluid through volcanic degassing® . These processes leave signatures in
the mantle including depletion of incompatible elements* >, diamond formation (and inclusions)®
7, and isotopic abundances® . Carbon flux via subduction to the deep mantle remains uncertain,

3, 10

with estimated magnitudes ranging from 0.0001 to 52 megatons/year” . The wide range of

these estimates is due in part to limited understanding of the physical and chemical responses of
carbonates to mantle pressures, temperatures, and compositional environments.

The dominant carbonates carried into the mantle by subducting slabs, dolomite
CaMg(CO3),, magnesite MgCOj3, and calcite CaCOs'', undergo changes in crystal structure or

state and chemical reactions at depth. Carbonates are likely to be retained as solid minerals in

12, 13 14, 15

subducting ocean crust until/unless the solidus of carbonated peridotite or eclogite

intersects with mantle geotherms, initiating melting. These slab-derived carbonatite melts will

segregate to the overlying mantle due to low viscosity and density'®, or be reduced to diamonds

7, 15, 17

at depths greater than ~250 km via redox freezing . However, carbonates are present in
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transition zone and possibly lower mantle depths in some regions, based on direct evidence
provided by carbonate minerals found in deep-sourced diamond inclusions'® . Additional
evidence from thermodynamic modeling of devolatilization of carbonate-bearing subducting

Slab20, 21

, and melting experiments on carbonates in the MgCO;-CaCO; system up to 80 GPa*
supports preservation of solid carbonates along low-temperature geotherms in subducting slabs
in the lower mantle. However, temperature is not the only control on the fate of subducted
carbonates: carbonates may also interact chemically with the major phases of the ambient mantle
or basalt-rich subducted crust. In these compositions in the lower mantle, the silicates potentially
reacting with carbonates are bridgmanite (bdg), post-perovskite (pPv), and Ca-perovskite (Ca-
Pv).

The presence of the end-member carbonates, MgCO; and CaCO; (note that
(Mg,Ca)(CO3), dolomite breaks down to these end-members above 5 GPa and 1200 K>,
together with lower mantle silicates depends on the thermodynamics and kinetics of the
carbonate-silicate exchange reaction:

CaCOs + MgSi0; — MgCO; + CaSiOs (1)

Previous experiments24’ 25 indicate CaCO; reacts with silicates to form MgCO; via the forward
reaction up to 80 GPa and 2300 K, i.e. at least to the mid-lower mantle. Theoretical studies
further predict that MgCOs; + CaSiO; are enthalpically favored over CaCO; + MgSiOs

26, 27, 28, 29, 30

throughout the lower mantle pressure and temperature regime . However, although

many studies have addressed the stability of individual carbonates up to higher pressures®’ >,

no experiments examined the carbonate-silicate cation exchange reaction up to core-mantle

boundary conditions.
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In this work, to assess the stability of MgCO; and CaCOs coexisting with lower mantle
silicates, we conduct a series of experiments on the carbonate-silicate reaction along the lower
mantle geotherm. Thin disks of carbonates and silicates were loaded together in laser-heated
diamond-anvil cells (Table S1, see Methods for details). Laser heating at 1600-2800 K and 33-
137 GPa was applied for 10-400 mins. Run products were examined by in-situ synchrotron X-
ray diffraction (XRD) and ex-situ energy-dispersive X-ray spectroscopy (EDX) analysis with a

scanning transmission electron microscope (STEM, see Methods for details).

RESULTS

Experiments assessed thermodynamic stability by using as reactants either (Mg,Ca)COs +
(Mg,Fe)SiO; (reactants for the forward reaction, hereafter referred to CaC-to-MgC) and
(Mg,Fe)CO; + CaSiOs (reactants for the reverse reaction, hereafter referred to MgC-to-CaC). For
reaction CaC-to-MgC, the criterion for determining whether the reaction takes place is the
presence of newly-synthesized CaSiOs-perovskite in the run product. For reaction MgC-to-CaC,
newly-synthesized MgSiO3; and CaCOs indicate the reaction is favorable. The silicate reaction
products are easier to observe through diffraction than carbonates due to higher diffraction
intensity.

Calcium carbonate reaction to form magnesium carbonate

Experiments with CaC-to-MgC reactants indicate the forward reaction takes place in runs
conducted below 83 GPa (runs #1-4), as determined via both EDX and XRD. For example, ex-
situ electron microscopic analysis of the sample recovered from 33 GPa and 1650 K (run #1)

(Fig.1a-c) reveals a ~1-pum-thick layer of CaSiO; between the silicate layer and the carbonate
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layer, coexisting with SiO,, FeO, MgSiOs; and MgCOs. These observations are consistent with
in-situ XRD patterns of run products after heating (Supplementary Fig. 3b, Supplementary Fig.
5a), which exhibit several new sharp peaks compared to the pattern before heating
(Supplementary Fig. 3a). The diffraction pattern of run products is consistent with the presence
of Ca-Pv, magnesite, bdg, wiistite, stishovite, and monoclinic dolomite III (previously observed
at presure above 36 GPa’*). Ca-Pv can be observed in the run products of CaC-to-MgC up to 83
GPa (Supplementary Fig. 3c, Supplementary Fig. 4a-b), in agreement with previous
experimental observations™* .

At higher pressures from 91 to 137 GPa, however, we observe no evidence of carbonate-
silicate exchange reaction in experiments with CaC-to-MgC reactants. Ca-Pv is not identified in
the run products (runs #5-7) through either in-situ (Supplementary Fig. 3d-e, Supplementary Fig.
4c-d, Supplementary Fig. 5b) or ex-situ analysis. New, sharp peaks from bdg and pPv can be
observed in-situ in XRD patterns (Supplementary Fig. 3d-e), indicating the sample was
sufficiently heated to transform starting materials to high-pressure silicate structures, but no
carbonate-silicate exchange reaction occurs. Two hypotheses can explain these observations: (1)
in contrast to theoretical predictions that the reversal of the carbonate-exchange reaction takes
place at higher pressures and lower temperatures™® *" 2% %% CaCO; + MgSiO; become more
favorable than MgCO; + CaSiOs from 91-137 GPa and 2100-2800 K; (2) the reaction CaC-to-
MgC is hindered by reaction kinetics, and metastable starting materials are observed.
Magnesium carbonate reaction to form calcium carbonate

In order to resolve the thermodynamically stable phase assemblage, three separate sets of
experiments on the backward reaction (MgC-to-CaC, runs #8-11) were conducted at 35-133 GPa

and 1800-2000 K. Elemental mapping of the run products of experiments at 88 GPa (run #10,
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Fig. 1d-f) and 133 GPa (run #11, Fig. 1g-i) indicates that MgSiO; layers formed along the
carbonate-silicate interface, and newly-formed CaCO; can be observed as well. At 35 GPa,
neither EDX nor XRD shows MgSiO; formed from MgC-to-CaC reactants (run #8,
Supplementary Fig. 9). Observations of the reversal of the reaction confirm that MgCO; is
unstable and reacts with CaSiO; producing CaCOs3 and MgSiOs at pressures higher than 88 GPa
along a lower mantle geotherm.

Our results agree with previous experimental constraints (Fig. 2) below 80 GPa showing:
dolomite is unstable relative to CaCOs and MgCOj; at lower mantle conditions®> 2+ 2> 35; neither
CaO nor MgO are observed in run products, indicating no decomposition of CaCO3 and MgCOs3

into oxides plus CO,***"**; MgCOs is more favorable in the lower mantle than CaCOs up to ~80

24, 25

GPa due to the CaC-to-MgC reaction . Since similar previous studies were limited to

pressures below 80 GPa, they did not observe the reversal reaction (MgC-to-CaC). Combining

24, 25

our new results with previous results and theoretical predictions indicating a positive

28, 29, 30

Clapeyron slope for this reaction , we suggest a reaction boundary above 80 GPa with a

positive slope (black dashed line in Fig. 2). We note that the experimental data allow for
significant uncertainty in this boundary, but are inconsistent with theoretical predictions™ ** *
(yellow region, Fig. 2). This discrepancy may have been produced by theoretical approximations
at higher temperatures. If density functional perturbation theory and quasi-harmonic
approximation have misestimated the volumes of the carbonate phases expected to be stable at

~80 GPa and higher pressures, this could lead to the systematic overestimation of Gibbs free

energy of CaCOs + MgSiOs relative to MgCO; + CaSiOs at higher temperatures.

DISCUSSION

6
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The pressure/temperature conditions of the reversal reaction as constrained by these
experiments are similar to those of polymorphic phase transitions associated with sp’-sp’
bonding changes in both MgCOs; and CaCOs, which suggests these transitions are related to the
stabilization of a CaCO; + MgSiOs assemblage. The transition from sp*- to sp’-bonds in MgCO5

has been identified at ~80 GPa with the stabilization of the C2/m structure’> >3 3

, and the
resulting densification of MgCO; supports the forward reaction to MgCOs + CaSiOs. The
transition in CaCOj3 from sp*- to sp’-bonds in the P2,/c-h structure was experimentally observed
at ~105 GPa and 2000 K*’. Computational studies predicted this boundary at ~70* and ~100
GPa®® at mantle-relevant temperatures (red shaded region in Fig. 3). While an earlier study that
did not include the sp® CaCOs-P2,/c-h structure predicted a crossover in silicate-carbonate
exchange reaction at 135 GPa and 0 K*°, a later study that predicted the sp® CaCO;3-P2,/c-h
structure found a silicate-carbonate reaction reversal at 84 GPa and 0 K*°. This would correspond
to sp>-sp® crossover and stabilization of CaCOj; + MgSiOs in the mid-lower mantle.

Whether a crossover in the carbonate-silicate exchange reaction takes place in the deep

Earth depends on whether carbonates are preserved in Earth’s lower mantle to at least 1800 km

depth. Previous studies have identified barriers to carbon subduction and stability in the lower

15,39 40,41, 42

mantle, particularly melting and reduction . If carried in cold subducting slabs, MgCOs
and CaCO; may avoid melting as their melting temperatures™ are higher than some predicted
cold slab geotherms®. Any solid carbonate in the mantle will be in contact and may equilibrate
with silicates in all mantle environments and with free silica in basalt-rich compositions. MgCO3

. . 40, 41, 42
and CaCOs have been observed in experiments™ ™~

to undergo decarbonation reactions with
free silica over a pressure range of ~40 to 60 GPa. However, the Clapeyron slope of CaCO; +

Si0, — CaSiO; + CO; is positive and takes place at pressure/temperature conditions warmer
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than the coolest slab geotherms40. Observations that MgCOs is less thermally stable than CaCOs
support the survival of CaCOj; rather than MgCOs3 along a cold subducted slab geotherm to the
lowermost mantle®®*! (Fig. 3). In this study, we report a reversal in the Mg-Ca silicate-carbonate
cation exchange reaction at ~90 GPa, making MgCO; + CaSiO; favorable in the upper part of
the lower mantle, while CaCO3 + MgSiOs is preferred in the lower part of the lower mantle (Fig.
3). However, the question of whether any carbonate persists to these depths in the coldest
subducting slabs remains unresolved. If MgCOs remains present in cold slabs, and the reaction
CaC-to-MgC proceeds throughout most of the mantle eliminating CaCOs, the reversal MgC-to-
CaC reaction may transform MgCOs3 back to CaCOs in the lowermost mantle (Fig. 4). CaCOs
could thus be found in the lowermost mantle coexisting with silicates and reduced iron.

The reduced nature of the Earth’s mantle, with oxygen fugacity inferred to be near the
iron-wiistite buffer in the transition zone and greater depths®, stabilizes diamond or Fe-carbide
as long-term hosts of carbon, owing to their chemical refractoriness and dynamic immobility™.
Similarly, our experimental observations support CaCOs as a refractory, stable host for oxidized
carbon in the middle to lowermost mantle, in particular, the high-pressure polymorph of CaCOs3
(CaCO;3-P2/c-h) with tetrahedral bonds>’. Experimental observations also suggest CaCO; is
more resistant to redox breakdown reaction with iron under reduced conditions than MgCO335. In
addition, due to the cation exchange between carbonate and silicate, the relative stability of
MgCOs or CaCOj; will change in the lowermost mantle, and depending on conditions one of
these phases may buffer the redox state of the mantle through an influx of oxidized carbon in the
form of solid carbonate®.

The Mg-Ca silicate-carbonate exchange reactions along subduction pressure-temperature

(P-T) conditions may impact observable signatures of Mg and Ca isotopes in mantle silicates
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under certain special conditions, or in carbonate inclusions in diamonds. Subducting carbonates
carry low-8*"*"Ca and low-5°*Mg signatures relative to the heavier mantle ratios, but although
previous studies have observed heterogeneity in the Ca and Mg isotope signatures in basalts and
mantle peridotites, these studies determined that lighter ratios cannot be simply interpreted as
evidence of recycled marine carbonates*® *’. The Mg-Ca silicate-carbonate exchange reactions
along subduction P-T conditions may contribute to these variable Mg and Ca isotopic
compositions. The reaction CaC-to-MgC in the transition zone and upper part of the lower
mantle would transfer light Ca isotopes from subducted CaCO; to CaSiOs; (Ca-Pv)
(Supplementary Note, Supplementary Fig. 12). Isotopically light Ca-Pv can then be trapped in
diamond inclusions and return to the surface™, while the Ca isotopic signature of upwelling
rocks would remain variable, as it undergoes continuous fractionation within peridotitic mantle

46-49.30.51 ' The modification of carbonate-silicate phase equilibria observed in this

lithologies
study provides a new process that could alter Mg and Ca isotopic composition in such lithologies
(Supplementary Note, Supplementary Fig. 12). While the isotope signature of MgSiO; produced
by reaction MgC-to-CaC would not be observable due to the small masses involved relative to
the vast lower mantle reservoir of MgSiO;, any CaCOj; produced in the deep lower mantle by
this reaction would carry a heavier deep mantle 8***’Ca signature that would distinguish it from
surface-derived carbonate. If preserved in diamond inclusions and returned to the surface, heavy
CaCOs; could be used to trace the presence of oxidized carbon in the lowermost mantle. The
potential of CaCO; to be a signature of an ultradeep carbon cycle reaching the core-mantle-
boundary region may help to reveal other mysteries of the deep mantle, such as heat budget
related to radioactive elements stored in Ca-bearing silicates™”, and compositions of

heterogeneities that may record Earth’s early history™ >

9
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METHODS

To investigate phase equilibria in the carbonate-silicate system in Earth’s lower mantle
and control for effects of reaction kinetics, both CaC-to-MgC and MgC-to-CaC experiments
were carried out in symmetric diamond anvil cells with flat-top double-sided laser heating™. For
CaC-to-MgC, natural dolomite with homogeneous composition of (Mg 33Cag s9Fe 03)CO; was
used as a carbonate reactant, the composition and structure of which has been characterized by
X-ray fluorescence spectroscopy and X-ray diffraction, respectively®. Fe-bearing enstatite
synthesized at Ecole Polytechnique Fédérale de Lausanne with a composition of (Mg sFeq5)SiOs
was used as a silicate reactant’. For MgC-to-CaC, natural ferromagnesite (sample from
Princeton University) was used as a carbonate reactant, with composition determined to be
(Mgos7Fe0.13)COs by wavelength dispersive X-ray spectroscopy in a Cameca SX100 Electron
Probe Microanalyzer at University of Michigan. Pure calcium silicate (CaSiO;, Alfa Aesar) was
used as a silicate reactant. The chief advantages to the abovementioned starting compositions are
that recognition of a carbonate-silicate exchange reaction only requires identification of the
presence of newly synthesized silicates in quenched run products, i.e., Ca-perovskite (Ca-Pv) in
CaC-to-MgC and bridgmanite (bdg) in MgC-to-CaC; and Fe-bearing enstatite and
ferromagnesite can serve as laser absorber during forward CaC-to-MgC and reversal MgC-to-
CaC experiments, respectively.

The dolomite, enstatite, and calcium silicate samples were separately ground under
acetone in an agate mortar for ~2 hours each to achieve homogenous, finely powdered samples
with grain size typically less than ~2 um. A single ferromagnesite crystal was double-side

polished to ~10-micron thickness. All starting materials were dried in an oven at 120 °C

10
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overnight before loading, and the powder samples were subsequently pressed in a diamond anvil
cell to form thin foils approximately ~8-10 um thick. The enstatite foils and ferromagnesite
crystals were sandwiched between Fe-free dolomite and calcium silicate, respectively, serving as
thermal insulators in symmetric diamond anvil cells for CaC-to-MgC and MgC-to-CaC
(Supplementary Fig. 1-2). No other pressure standard or medium was loaded to prevent reactions
with other components and contamination of the chemical system. The sample sandwiches were
loaded in sample chambers with diameters approximately halves of the anvil culet sizes drilled
into Re gaskets pre-indented to a thickness of ~30um, by using the laser drilling system at
HPCAT (Sector 16) of the Advanced Photon Source (APS), Argonne National Laboratory
(ANL)*. Diamond anvils with flat culets of 300 pm were used for experiments under 60 GPa,
beveled culets of 150/300 um for experiments under 100 GPa, and beveled culets of 75/300 pm
for experiments up to 140 GPa.

Before laser heating, each sample was compressed to the target pressure at 300 K, and
after heating each sample was quenched to ambient pressure at 300 K to limit and preserve
reactions at target conditions. Pressure was determined from the Raman shift of the singlet peak
of the diamond anvil at the culet surface’’, and post-heating pressures were typically within 3%
of the pre-heating pressure. Thermal pressure during heating may be estimated to be ~10% GPa

higher than the pre-heating pressure at the modest temperatures™ >

. High-temperature
conditions were achieved by using a double-sided ytterbium fiber laser heating system at
beamline 13-ID-D (GeoSoilEnviroCars) of APS, ANL*, with two 1.064 pum laser beams focused
down to a flat-top spot with a diameter of 10-12 um on both sides of the sample. Temperatures of

the heated samples were determined by fitting the measured thermal radiation spectra using the

Planck radiation function under the graybody approximation’. The temperature reported in
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Table S1 is the temporal average of multiple temperatures measurements over the heating
duration. Temperature fluctuations over this time scale were less than the specified uncertainty,
which is derived from a standard deviation of temperature measurements from both sides of the
laser-heated sample (typically =100 K below 2000 K and £150 K above 2000 K) (Supplementary
Fig. 10, Supplementary Fig. 11). Experiments were held at temperatures between 1600 and 2800
K for ~30 min in CaC-to-MgC experiments and up to 400 min in MgC-to-CaC experiments.

Phases synthesized at high P/T and achievement of chemical steady-state were
determined by in-situ angle-dispersive X-ray diffraction (XRD) measurements performed before,
during and after heating at beamline 13-ID-D (GeoSoilEnviroCars) of APS, ANL. The incident
X-ray beam was focused down to less than 3x4 pum® with a monochromatic wavelength
2=0.3344 A. Diffracted X-rays were recorded using a MAR 165 detector or Pilatus 1M CdTe
pixel array detector. NIST standard LaBs was used to calibrate the detector distance, tilt angle,
and rotation angle of the image plane relative to the incident X-ray beam. Exposure times were
typically 30 s. The XRD patterns were integrated to produce 26 plots using the software
DIOPTAS®.

After complete pressure release, each sample was recovered from the LHDAC, and then
sectioned along the compression axis through the laser-heated spot and over the entire thickness
of the DAC sample (~5-20 um), using a focused ion beam (FIB) coupled with a field emission
scanning electron microscope (FE-SEM) at IPGP (Paris, France) or the Michigan Center for
Materials Characterization at the University of Michigan (Ann Arbor, USA). A ~30-nm-thick Au
layer was coated on each sample to reduce charging in the scanning electron microscope, and a

2-um-thick Pt layer was deposited across the center of each heated spot to protect the sample
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from damage by the Ga’ ion beam. Thin sections of each heated spot were extracted and
polished to electron transparency (~100 nm thickness).

Textural and chemical characterization of recovered samples was performed with
scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy
(EDX) in a JEOL 2200FS field emission TEM (Center for Advanced Microscopy, MSU),
operated at 200 kV to image the sample in Bright-Field. EDX maps were scanned over 512 x384
pixel areas with a pixel dwell time of 50 microseconds. Typical count rates were ~2,000 counts
per second. Chemical mapping rather than point measurement approach prevents migration of
elements due to damage by the electron beam. Uncertainties in compositions were determined
from standard deviations of EDX measurements obtained from selected regions within multiple

grains.

DATA AVAILABILITY
Additional diffraction and spectroscopy data and metadata are available in the supplementary

materials and from the corresponding authors upon request.
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Figure 1. Images of selected recovered sample cross-sections obtained using backscattered
scanning electron microscopy (a, d, g), scanning transmitted electron microscopy (b, e, h) and
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531

energy-dispersive X-ray mapping (c, f, 1) of the cross-section show the silicate layer sandwiched
by two carbonate layers, with the reaction region along the contacting interface. (a-c) Ex-situ
analysis of sample quenched from 33 GPa and 1650 K heated for 15 min (run #1) demonstrates
reaction CaC-to-MgC: CaSiOs is not present in starting materials but is indicated in EDX map by
colocation of Ca and Si, shown in magenta; (d-f) Ex-situ analysis of sample quenched from 88
GPa and 1800 K heated for 150 min (run #9) demonstrates reaction MgC-to-CaC: MgSiOj is not
present in starting materials but is indicated in EDX map by colocation of Mg and Si, shown in
blue-green. CaCOs also appears as red (Ca, but no Si) ribbon within CaSiO; starting material. (g-
1) Ex-situ analysis of sample quenched from 133 GPa and 2000 K heated for 400 min (run #10)
demonstrates reaction MgC-to-CaC: MgSiO; appears as Ca-depleted, Si-rich region (blue or

blue-green) adjacent to CaSiOs; starting material (magenta).
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Figure 2. Pressure-temperature conditions of carbonate-silicate exchange reaction (sketched as
black dashed line with gray shadow as uncertainty) inferred based on experimental observations
of CaC-to-MgC and MgC-to-CaC. Squares represent observations from this work starting with
(Ca,Mg)CO3 and (Mg,Fe)SiOs, looking for newly-synthesized CaSiO; to indicate the CaC-to-
MgC reaction takes place. Circle symbols represent observations from this work of experiments
starting with (Mg,Fe)CO; + CaSiOs, looking for identification of newly-synthesized MgSiOs to
indicate the MgC-to-CaC reaction takes place. Open symbols indicate nonreaction and filled for
confirmed reaction, and blue and red colors correspond to the inferred stable phase assemblage
based on reaction products. Triangles indicate the P-T conditions for CaC-to-MgC taking place
reported by Seto et al.”, and blue shaded region indicates approximate conditions of four
experiments conducted by Biellmann et al.** using indirect methods for pressure and temperature
calibration, which all produced the run products MgCO; + CaSiOs. The error bars indicate

uncertainties of pressure and temperature measurements (see Methods for details).
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Figure 3. Pressure-temperature diagram showing reactions between carbonate, silicates, and
silica in the subducted oceanic crust to the lower mantle. The grey dotted line indicates the
reversal boundary of the carbonate-silicate exchange reaction proposed by this study, whereas

previous theoretical predictions are illustrated by yellow shaded region® 2% *°

. The cyan and
orange lines indicate the decarbonation reactions of CaCO; + Si0240 and MgCO; + Si0241,
respectively. The black dashed line shows the melting curve of MgCO;-CaCOs3 system
constrained by Thomson et al.”>. Four typical mantle geotherms are modified from Maeda et
al.*. The red shaded region indicates the transition boundary of CaCOj; from sp*- to sp® structure

predicted by density functional theory computations™">*,
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561
562 Figure 4. Schematic illustration of the fate of carbonates in the oceanic crust (dark blue)
563 subducted to the lower mantle. Through subduction, the carbonates may undergo melting (red
564 arrow), redox freezing with metallic iron (purple arrow), decarbonation reaction with free silica
565 (blue arrow), and exchange reaction with lower mantle silicates (green arrow). Based on the
566 observation of reversal of the carbonate-silicate cation exchange reaction at conditions relevant
567 to cold subducted slabs at mid-lower-mantle depths, CaCOs; is the potential stable phase that
568 hosts oxidized carbon in the lowermost mantle.
569
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