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 13 

ABSTRACT 14 

The stable forms of carbon in Earth’s deep interior control storage and fluxes of carbon through 15 

the planet over geologic time, impacting the surface climate as well as carrying records of 16 

geologic processes in the form of diamond inclusions. However, current estimates of the 17 

distribution of carbon in Earth’s mantle are uncertain, due in part to limited understanding of the 18 

fate of carbonates through subduction, the main mechanism that transports carbon from Earth’s 19 

surface to its interior. Oxidized carbon carried by subduction has been found to reside in MgCO3 20 

throughout much of the mantle. Experiments in this study demonstrate that at deep mantle 21 

conditions MgCO3 reacts with silicates to form CaCO3. In combination with previous work 22 

indicating that CaCO3 is more stable than MgCO3 under reducing conditions of Earth’s 23 
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lowermost mantle, these observations allow us to predict that the signature of surface carbon 24 

reaching Earth’s lowermost mantle may include CaCO3.  25 

 26 

INTRODUCTION 27 

Carbon is not only key to life and Earth’s habitability, but also traces and modifies 28 

geological processes of subduction, partial melting, degassing, and metasomatism, providing 29 

valuable insights into Earth’s evolution1. Over the history of the planet, carbon transport between 30 

surface and deep reservoirs has impacted the atmospheric, oceanic and crustal CO2 budgets in 31 

tandem with the composition and redox state of the Earth’s mantle2, 3. Carbon is transported from 32 

Earth’s surface to its interior mainly as carbonate minerals in subduction zones, and is returned 33 

in carbon-bearing gas/fluid through volcanic degassing2, 3. These processes leave signatures in 34 

the mantle including depletion of incompatible elements4, 5, diamond formation (and inclusions)6, 35 

7, and isotopic abundances8, 9. Carbon flux via subduction to the deep mantle remains uncertain, 36 

with estimated magnitudes ranging from 0.0001 to 52 megatons/year3, 10. The wide range of 37 

these estimates is due in part to limited understanding of the physical and chemical responses of 38 

carbonates to mantle pressures, temperatures, and compositional environments. 39 

The dominant carbonates carried into the mantle by subducting slabs, dolomite 40 

CaMg(CO3)2, magnesite MgCO3, and calcite CaCO3
11, undergo changes in crystal structure or 41 

state and chemical reactions at depth. Carbonates are likely to be retained as solid minerals in 42 

subducting ocean crust until/unless the solidus of carbonated peridotite12, 13 or eclogite14, 15 43 

intersects with mantle geotherms, initiating melting. These slab-derived carbonatite melts will 44 

segregate to the overlying mantle due to low viscosity and density16, or be reduced to diamonds 45 

at depths greater than ~250 km via redox freezing7, 15, 17. However, carbonates are present in 46 
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transition zone and possibly lower mantle depths in some regions, based on direct evidence 47 

provided by carbonate minerals found in deep-sourced diamond inclusions18, 19. Additional 48 

evidence from thermodynamic modeling of devolatilization of carbonate-bearing subducting 49 

slab20, 21, and melting experiments on carbonates in the MgCO3-CaCO3 system up to 80 GPa22 50 

supports preservation of solid carbonates along low-temperature geotherms in subducting slabs 51 

in the lower mantle. However, temperature is not the only control on the fate of subducted 52 

carbonates: carbonates may also interact chemically with the major phases of the ambient mantle 53 

or basalt-rich subducted crust. In these compositions in the lower mantle, the silicates potentially 54 

reacting with carbonates are bridgmanite (bdg), post-perovskite (pPv), and Ca-perovskite (Ca-55 

Pv). 56 

The presence of the end-member carbonates, MgCO3 and CaCO3 (note that 57 

(Mg,Ca)(CO3)2 dolomite breaks down to these end-members above 5 GPa and 1200 K23), 58 

together with lower mantle silicates depends on the thermodynamics and kinetics of the 59 

carbonate-silicate exchange reaction: 60 

CaCO3 + MgSiO3 → MgCO3 + CaSiO3   (1) 61 

Previous experiments24, 25 indicate CaCO3 reacts with silicates to form MgCO3 via the forward 62 

reaction up to 80 GPa and 2300 K, i.e. at least to the mid-lower mantle. Theoretical studies 63 

further predict that MgCO3 + CaSiO3 are enthalpically favored over CaCO3 + MgSiO3 64 

throughout the lower mantle pressure and temperature regime26, 27, 28, 29, 30. However, although 65 

many studies have addressed the stability of individual carbonates up to higher pressures31, 32, 33, 66 

no experiments examined the carbonate-silicate cation exchange reaction up to core-mantle 67 

boundary conditions.  68 
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In this work, to assess the stability of MgCO3 and CaCO3 coexisting with lower mantle 69 

silicates, we conduct a series of experiments on the carbonate-silicate reaction along the lower 70 

mantle geotherm. Thin disks of carbonates and silicates were loaded together in laser-heated 71 

diamond-anvil cells (Table S1, see Methods for details). Laser heating at 1600-2800 K and 33-72 

137 GPa was applied for 10-400 mins. Run products were examined by in-situ synchrotron X-73 

ray diffraction (XRD) and ex-situ energy-dispersive X-ray spectroscopy (EDX) analysis with a 74 

scanning transmission electron microscope (STEM, see Methods for details). 75 

 76 

RESULTS 77 

 78 

Experiments assessed thermodynamic stability by using as reactants either (Mg,Ca)CO3 + 79 

(Mg,Fe)SiO3 (reactants for the forward reaction, hereafter referred to CaC-to-MgC) and 80 

(Mg,Fe)CO3 + CaSiO3 (reactants for the reverse reaction, hereafter referred to MgC-to-CaC). For 81 

reaction CaC-to-MgC, the criterion for determining whether the reaction takes place is the 82 

presence of newly-synthesized CaSiO3-perovskite in the run product. For reaction MgC-to-CaC, 83 

newly-synthesized MgSiO3 and CaCO3 indicate the reaction is favorable. The silicate reaction 84 

products are easier to observe through diffraction than carbonates due to higher diffraction 85 

intensity. 86 

Calcium carbonate reaction to form magnesium carbonate 87 

Experiments with CaC-to-MgC reactants indicate the forward reaction takes place in runs 88 

conducted below 83 GPa (runs #1-4), as determined via both EDX and XRD. For example, ex-89 

situ electron microscopic analysis of the sample recovered from 33 GPa and 1650 K (run #1) 90 

(Fig.1a-c) reveals a ~1-μm-thick layer of CaSiO3 between the silicate layer and the carbonate 91 
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layer, coexisting with SiO2, FeO, MgSiO3, and MgCO3. These observations are consistent with 92 

in-situ XRD patterns of run products after heating (Supplementary Fig. 3b, Supplementary Fig. 93 

5a), which exhibit several new sharp peaks compared to the pattern before heating 94 

(Supplementary Fig. 3a). The diffraction pattern of run products is consistent with the presence 95 

of Ca-Pv, magnesite, bdg, wüstite, stishovite, and monoclinic dolomite III (previously observed 96 

at presure above 36 GPa34). Ca-Pv can be observed in the run products of CaC-to-MgC up to 83 97 

GPa (Supplementary Fig. 3c, Supplementary Fig. 4a-b), in agreement with previous 98 

experimental observations24, 25.  99 

At higher pressures from 91 to 137 GPa, however, we observe no evidence of carbonate-100 

silicate exchange reaction in experiments with CaC-to-MgC reactants. Ca-Pv is not identified in 101 

the run products (runs #5-7) through either in-situ (Supplementary Fig. 3d-e, Supplementary Fig. 102 

4c-d, Supplementary Fig. 5b) or ex-situ analysis. New, sharp peaks from bdg and pPv can be 103 

observed in-situ in XRD patterns (Supplementary Fig. 3d-e), indicating the sample was 104 

sufficiently heated to transform starting materials to high-pressure silicate structures, but no 105 

carbonate-silicate exchange reaction occurs. Two hypotheses can explain these observations: (1) 106 

in contrast to theoretical predictions that the reversal of the carbonate-exchange reaction takes 107 

place at higher pressures and lower temperatures26, 27, 28, 29, 30, CaCO3 + MgSiO3 become more 108 

favorable than MgCO3 + CaSiO3 from 91-137 GPa and 2100-2800 K; (2) the reaction CaC-to-109 

MgC is hindered by reaction kinetics, and metastable starting materials are observed.  110 

Magnesium carbonate reaction to form calcium carbonate 111 

 In order to resolve the thermodynamically stable phase assemblage, three separate sets of 112 

experiments on the backward reaction (MgC-to-CaC, runs #8-11) were conducted at 35-133 GPa 113 

and 1800-2000 K. Elemental mapping of the run products of experiments at 88 GPa (run #10, 114 
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Fig. 1d-f) and 133 GPa (run #11, Fig. 1g-i) indicates that MgSiO3 layers formed along the 115 

carbonate-silicate interface, and newly-formed CaCO3 can be observed as well. At 35 GPa, 116 

neither EDX nor XRD shows MgSiO3 formed from MgC-to-CaC reactants (run #8, 117 

Supplementary Fig. 9). Observations of the reversal of the reaction confirm that MgCO3 is 118 

unstable and reacts with CaSiO3 producing CaCO3 and MgSiO3 at pressures higher than 88 GPa 119 

along a lower mantle geotherm.  120 

Our results agree with previous experimental constraints (Fig. 2) below 80 GPa showing: 121 

dolomite is unstable relative to CaCO3 and MgCO3 at lower mantle conditions23, 24, 25, 35; neither 122 

CaO nor MgO are observed in run products, indicating no decomposition of CaCO3 and MgCO3 123 

into oxides plus CO2
26, 27, 30; MgCO3 is more favorable in the lower mantle than CaCO3 up to ~80 124 

GPa due to the CaC-to-MgC reaction24, 25. Since similar previous studies were limited to 125 

pressures below 80 GPa, they did not observe the reversal reaction (MgC-to-CaC). Combining 126 

our new results with previous results24, 25 and theoretical predictions indicating a positive 127 

Clapeyron slope for this reaction28, 29, 30, we suggest a reaction boundary above 80 GPa with a 128 

positive slope (black dashed line in Fig. 2). We note that the experimental data allow for 129 

significant uncertainty in this boundary, but are inconsistent with theoretical predictions28, 29, 30 130 

(yellow region, Fig. 2). This discrepancy may have been produced by theoretical approximations 131 

at higher temperatures. If density functional perturbation theory and quasi-harmonic 132 

approximation have misestimated the volumes of the carbonate phases expected to be stable at 133 

~80 GPa and higher pressures, this could lead to the systematic overestimation of Gibbs free 134 

energy of CaCO3 + MgSiO3 relative to MgCO3 + CaSiO3 at higher temperatures. 135 

 136 

DISCUSSION 137 
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The pressure/temperature conditions of the reversal reaction as constrained by these 138 

experiments are similar to those of polymorphic phase transitions associated with sp2-sp3 139 

bonding changes in both MgCO3 and CaCO3, which suggests these transitions are related to the 140 

stabilization of a CaCO3 + MgSiO3 assemblage. The transition from sp2- to sp3-bonds in MgCO3 141 

has been identified at ~80 GPa with the stabilization of the C2/m structure32, 33, 36, and the 142 

resulting densification of MgCO3 supports the forward reaction to MgCO3 + CaSiO3. The 143 

transition in CaCO3 from sp2- to sp3-bonds in the P21/c-h structure was experimentally observed 144 

at ~105 GPa and 2000 K37. Computational studies predicted this boundary at ~7029 and ~100 145 

GPa38 at mantle-relevant temperatures (red shaded region in Fig. 3). While an earlier study that 146 

did not include the sp3 CaCO3-P21/c-h structure predicted a crossover in silicate-carbonate 147 

exchange reaction at 135 GPa and 0 K26, a later study that predicted the sp3 CaCO3-P21/c-h 148 

structure found a silicate-carbonate reaction reversal at 84 GPa and 0 K30. This would correspond 149 

to sp2-sp3 crossover and stabilization of CaCO3 + MgSiO3 in the mid-lower mantle.  150 

Whether a crossover in the carbonate-silicate exchange reaction takes place in the deep 151 

Earth depends on whether carbonates are preserved in Earth’s lower mantle to at least 1800 km 152 

depth. Previous studies have identified barriers to carbon subduction and stability in the lower 153 

mantle, particularly melting15, 39 and reduction40, 41, 42. If carried in cold subducting slabs, MgCO3 154 

and CaCO3 may avoid melting as their melting temperatures22 are higher than some predicted 155 

cold slab geotherms36. Any solid carbonate in the mantle will be in contact and may equilibrate 156 

with silicates in all mantle environments and with free silica in basalt-rich compositions. MgCO3 157 

and CaCO3 have been observed in experiments40, 41, 42 to undergo decarbonation reactions with 158 

free silica over a pressure range of ~40 to 60 GPa. However, the Clapeyron slope of CaCO3 + 159 

SiO2 → CaSiO3 + CO2 is positive and takes place at pressure/temperature conditions warmer 160 
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than the coolest slab geotherms40. Observations that MgCO3 is less thermally stable than CaCO3 161 

support the survival of CaCO3 rather than MgCO3 along a cold subducted slab geotherm to the 162 

lowermost mantle36, 41 (Fig. 3). In this study, we report a reversal in the Mg-Ca silicate-carbonate 163 

cation exchange reaction at ~90 GPa, making MgCO3 + CaSiO3 favorable in the upper part of 164 

the lower mantle, while CaCO3 + MgSiO3 is preferred in the lower part of the lower mantle (Fig. 165 

3). However, the question of whether any carbonate persists to these depths in the coldest 166 

subducting slabs remains unresolved. If MgCO3 remains present in cold slabs, and the reaction 167 

CaC-to-MgC proceeds throughout most of the mantle eliminating CaCO3, the reversal MgC-to-168 

CaC reaction may transform MgCO3 back to CaCO3 in the lowermost mantle (Fig. 4). CaCO3 169 

could thus be found in the lowermost mantle coexisting with silicates and reduced iron. 170 

The reduced nature of the Earth’s mantle, with oxygen fugacity inferred to be near the 171 

iron-wüstite buffer in the transition zone and greater depths43, stabilizes diamond or Fe-carbide 172 

as long-term hosts of carbon, owing to their chemical refractoriness and dynamic immobility44. 173 

Similarly, our experimental observations support CaCO3 as a refractory, stable host for oxidized 174 

carbon in the middle to lowermost mantle, in particular, the high-pressure polymorph of CaCO3 175 

(CaCO3-P21/c-h) with tetrahedral bonds37. Experimental observations also suggest CaCO3 is 176 

more resistant to redox breakdown reaction with iron under reduced conditions than MgCO3
35. In 177 

addition, due to the cation exchange between carbonate and silicate, the relative stability of 178 

MgCO3 or CaCO3 will change in the lowermost mantle, and depending on conditions one of 179 

these phases may buffer the redox state of the mantle through an influx of oxidized carbon in the 180 

form of solid carbonate45. 181 

The Mg-Ca silicate-carbonate exchange reactions along subduction pressure-temperature 182 

(P-T) conditions may impact observable signatures of Mg and Ca isotopes in mantle silicates 183 



9 
 

under certain special conditions, or in carbonate inclusions in diamonds. Subducting carbonates 184 

carry low-δ44/40Ca and low-δ26Mg signatures relative to the heavier mantle ratios, but although 185 

previous studies have observed heterogeneity in the Ca and Mg isotope signatures in basalts and 186 

mantle peridotites, these studies determined that lighter ratios cannot be simply interpreted as 187 

evidence of recycled marine carbonates46, 47. The Mg-Ca silicate-carbonate exchange reactions 188 

along subduction P-T conditions may contribute to these variable Mg and Ca isotopic 189 

compositions. The reaction CaC-to-MgC in the transition zone and upper part of the lower 190 

mantle would transfer light Ca isotopes from subducted CaCO3 to CaSiO3 (Ca-Pv) 191 

(Supplementary Note, Supplementary Fig. 12). Isotopically light Ca-Pv can then be trapped in 192 

diamond inclusions and return to the surface48, while the Ca isotopic signature of upwelling 193 

rocks would remain variable, as it undergoes continuous fractionation within peridotitic mantle 194 

lithologies46, 49, 50, 51. The modification of carbonate-silicate phase equilibria observed in this 195 

study provides a new process that could alter Mg and Ca isotopic composition in such lithologies 196 

(Supplementary Note, Supplementary Fig. 12). While the isotope signature of MgSiO3 produced 197 

by reaction MgC-to-CaC would not be observable due to the small masses involved relative to 198 

the vast lower mantle reservoir of MgSiO3, any CaCO3 produced in the deep lower mantle by 199 

this reaction would carry a heavier deep mantle δ44/40Ca signature that would distinguish it from 200 

surface-derived carbonate. If preserved in diamond inclusions and returned to the surface, heavy 201 

CaCO3 could be used to trace the presence of oxidized carbon in the lowermost mantle. The 202 

potential of CaCO3 to be a signature of an ultradeep carbon cycle reaching the core-mantle-203 

boundary region may help to reveal other mysteries of the deep mantle, such as heat budget 204 

related to radioactive elements stored in Ca-bearing silicates52, and compositions of 205 

heterogeneities that may record Earth’s early history48, 53. 206 
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 207 

METHODS 208 

To investigate phase equilibria in the carbonate-silicate system in Earth’s lower mantle 209 

and control for effects of reaction kinetics, both CaC-to-MgC and MgC-to-CaC experiments 210 

were carried out in symmetric diamond anvil cells with flat-top double-sided laser heating54. For 211 

CaC-to-MgC, natural dolomite with homogeneous composition of (Mg0.38Ca0.59Fe0.03)CO3 was 212 

used as a carbonate reactant, the composition and structure of which has been characterized by 213 

X-ray fluorescence spectroscopy and X-ray diffraction, respectively35. Fe-bearing enstatite 214 

synthesized at École Polytechnique Fédérale de Lausanne with a composition of (Mg0.5Fe0.5)SiO3 215 

was used as a silicate reactant55. For MgC-to-CaC, natural ferromagnesite (sample from 216 

Princeton University) was used as a carbonate reactant, with composition determined to be 217 

(Mg0.87Fe0.13)CO3 by wavelength dispersive X-ray spectroscopy in a Cameca SX100 Electron 218 

Probe Microanalyzer at University of Michigan. Pure calcium silicate (CaSiO3, Alfa Aesar) was 219 

used as a silicate reactant. The chief advantages to the abovementioned starting compositions are 220 

that recognition of a carbonate-silicate exchange reaction only requires identification of the 221 

presence of newly synthesized silicates in quenched run products, i.e., Ca-perovskite (Ca-Pv) in 222 

CaC-to-MgC and bridgmanite (bdg) in MgC-to-CaC; and Fe-bearing enstatite and 223 

ferromagnesite can serve as laser absorber during forward CaC-to-MgC and reversal MgC-to-224 

CaC experiments, respectively. 225 

The dolomite, enstatite, and calcium silicate samples were separately ground under 226 

acetone in an agate mortar for ~2 hours each to achieve homogenous, finely powdered samples 227 

with grain size typically less than ~2 µm. A single ferromagnesite crystal was double-side 228 

polished to ~10-micron thickness. All starting materials were dried in an oven at 120 °C 229 
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overnight before loading, and the powder samples were subsequently pressed in a diamond anvil 230 

cell to form thin foils approximately ~8-10 µm thick. The enstatite foils and ferromagnesite 231 

crystals were sandwiched between Fe-free dolomite and calcium silicate, respectively, serving as 232 

thermal insulators in symmetric diamond anvil cells for CaC-to-MgC and MgC-to-CaC 233 

(Supplementary Fig. 1-2). No other pressure standard or medium was loaded to prevent reactions 234 

with other components and contamination of the chemical system. The sample sandwiches were 235 

loaded in sample chambers with diameters approximately halves of the anvil culet sizes drilled 236 

into Re gaskets pre-indented to a thickness of ∼30μm, by using the laser drilling system at 237 

HPCAT (Sector 16) of the Advanced Photon Source (APS), Argonne National Laboratory 238 

(ANL)56. Diamond anvils with flat culets of 300 μm were used for experiments under 60 GPa, 239 

beveled culets of 150/300 μm for experiments under 100 GPa, and beveled culets of 75/300 μm 240 

for experiments up to 140 GPa.  241 

Before laser heating, each sample was compressed to the target pressure at 300 K, and 242 

after heating each sample was quenched to ambient pressure at 300 K to limit and preserve 243 

reactions at target conditions. Pressure was determined from the Raman shift of the singlet peak 244 

of the diamond anvil at the culet surface57, and post-heating pressures were typically within 3% 245 

of the pre-heating pressure. Thermal pressure during heating may be estimated to be ~10% GPa 246 

higher than the pre-heating pressure at the modest temperatures58, 59. High-temperature 247 

conditions were achieved by using a double-sided ytterbium fiber laser heating system at 248 

beamline 13-ID-D (GeoSoilEnviroCars) of APS, ANL54, with two 1.064 μm laser beams focused 249 

down to a flat-top spot with a diameter of 10-12 μm on both sides of the sample. Temperatures of 250 

the heated samples were determined by fitting the measured thermal radiation spectra using the 251 

Planck radiation function under the graybody approximation54. The temperature reported in 252 
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Table S1 is the temporal average of multiple temperatures measurements over the heating 253 

duration. Temperature fluctuations over this time scale were less than the specified uncertainty, 254 

which is derived from a standard deviation of temperature measurements from both sides of the 255 

laser-heated sample (typically ±100 K below 2000 K and ±150 K above 2000 K) (Supplementary 256 

Fig. 10, Supplementary Fig. 11). Experiments were held at temperatures between 1600 and 2800 257 

K for ~30 min in CaC-to-MgC experiments and up to 400 min in MgC-to-CaC experiments.  258 

Phases synthesized at high P/T and achievement of chemical steady-state were 259 

determined by in-situ angle-dispersive X-ray diffraction (XRD) measurements performed before, 260 

during and after heating at beamline 13-ID-D (GeoSoilEnviroCars) of APS, ANL. The incident 261 

X-ray beam was focused down to less than 3×4 μm2 with a monochromatic wavelength 262 

λ=0.3344 Å. Diffracted X-rays were recorded using a MAR 165 detector or Pilatus 1M CdTe 263 

pixel array detector. NIST standard LaB6 was used to calibrate the detector distance, tilt angle, 264 

and rotation angle of the image plane relative to the incident X-ray beam. Exposure times were 265 

typically 30 s. The XRD patterns were integrated to produce 2θ plots using the software 266 

DIOPTAS60.  267 

After complete pressure release, each sample was recovered from the LHDAC, and then 268 

sectioned along the compression axis through the laser-heated spot and over the entire thickness 269 

of the DAC sample (~5-20 μm), using a focused ion beam (FIB) coupled with a field emission 270 

scanning electron microscope (FE-SEM) at IPGP (Paris, France) or the Michigan Center for 271 

Materials Characterization at the University of Michigan (Ann Arbor, USA). A ~30-nm-thick Au 272 

layer was coated on each sample to reduce charging in the scanning electron microscope, and a 273 

2-μm-thick Pt layer was deposited across the center of each heated spot to protect the sample 274 
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from damage by the Ga+ ion beam. Thin sections of each heated spot were extracted and 275 

polished to electron transparency (∼100 nm thickness). 276 

Textural and chemical characterization of recovered samples was performed with 277 

scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy 278 

(EDX) in a JEOL 2200FS field emission TEM (Center for Advanced Microscopy, MSU), 279 

operated at 200 kV to image the sample in Bright-Field. EDX maps were scanned over 512 ×384 280 

pixel areas with a pixel dwell time of 50 microseconds. Typical count rates were ~2,000 counts 281 

per second. Chemical mapping rather than point measurement approach prevents migration of 282 

elements due to damage by the electron beam. Uncertainties in compositions were determined 283 

from standard deviations of EDX measurements obtained from selected regions within multiple 284 

grains.  285 

 286 

DATA AVAILABILITY 287 

Additional diffraction and spectroscopy data and metadata are available in the supplementary 288 

materials and from the corresponding authors upon request.  289 
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FIGURES 516 

 517 

Figure 1. Images of selected recovered sample cross-sections obtained using backscattered 518 

scanning electron microscopy (a, d, g), scanning transmitted electron microscopy (b, e, h) and 519 
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energy-dispersive X-ray mapping (c, f, i) of the cross-section show the silicate layer sandwiched 520 

by two carbonate layers, with the reaction region along the contacting interface. (a-c) Ex-situ 521 

analysis of sample quenched from 33 GPa and 1650 K heated for 15 min (run #1) demonstrates 522 

reaction CaC-to-MgC: CaSiO3 is not present in starting materials but is indicated in EDX map by 523 

colocation of Ca and Si, shown in magenta; (d-f) Ex-situ analysis of sample quenched from 88 524 

GPa and 1800 K heated for 150 min (run #9) demonstrates reaction MgC-to-CaC: MgSiO3 is not 525 

present in starting materials but is indicated in EDX map by colocation of Mg and Si, shown in 526 

blue-green. CaCO3 also appears as red (Ca, but no Si) ribbon within CaSiO3 starting material. (g-527 

i) Ex-situ analysis of sample quenched from 133 GPa and 2000 K heated for 400 min (run #10) 528 

demonstrates reaction MgC-to-CaC: MgSiO3 appears as Ca-depleted, Si-rich region (blue or 529 

blue-green) adjacent to CaSiO3 starting material (magenta). 530 

  531 
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 532 

 533 

Figure 2. Pressure-temperature conditions of carbonate-silicate exchange reaction (sketched as 534 

black dashed line with gray shadow as uncertainty) inferred based on experimental observations 535 

of CaC-to-MgC and MgC-to-CaC. Squares represent observations from this work starting with 536 

(Ca,Mg)CO3 and (Mg,Fe)SiO3, looking for newly-synthesized CaSiO3 to indicate the CaC-to-537 

MgC reaction takes place. Circle symbols represent observations from this work of experiments 538 

starting with (Mg,Fe)CO3 + CaSiO3, looking for identification of newly-synthesized MgSiO3 to 539 

indicate the MgC-to-CaC reaction takes place. Open symbols indicate nonreaction and filled for 540 

confirmed reaction, and blue and red colors correspond to the inferred stable phase assemblage 541 

based on reaction products. Triangles indicate the P-T conditions for CaC-to-MgC taking place 542 

reported by Seto et al.25, and blue shaded region indicates approximate conditions of four 543 

experiments conducted by Biellmann et al.24 using indirect methods for pressure and temperature 544 

calibration, which all produced the run products MgCO3 + CaSiO3. The error bars indicate 545 

uncertainties of pressure and temperature measurements (see Methods for details). 546 



23 
 

  547 



24 
 

 548 

 549 

Figure 3. Pressure-temperature diagram showing reactions between carbonate, silicates, and 550 

silica in the subducted oceanic crust to the lower mantle. The grey dotted line indicates the 551 

reversal boundary of the carbonate-silicate exchange reaction proposed by this study, whereas 552 

previous theoretical predictions are illustrated by yellow shaded region28, 29, 30. The cyan and 553 

orange lines indicate the decarbonation reactions of CaCO3 + SiO2
40 and MgCO3 + SiO2

41, 554 

respectively. The black dashed line shows the melting curve of MgCO3-CaCO3 system 555 

constrained by Thomson et al.22. Four typical mantle geotherms are modified from Maeda et 556 

al.36. The red shaded region indicates the transition boundary of CaCO3 from sp2- to sp3 structure 557 

predicted by density functional theory computations29, 38. 558 
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 560 

 561 

Figure 4. Schematic illustration of the fate of carbonates in the oceanic crust (dark blue) 562 

subducted to the lower mantle. Through subduction, the carbonates may undergo melting (red 563 

arrow), redox freezing with metallic iron (purple arrow), decarbonation reaction with free silica 564 

(blue arrow), and exchange reaction with lower mantle silicates (green arrow). Based on the 565 

observation of reversal of the carbonate-silicate cation exchange reaction at conditions relevant 566 

to cold subducted slabs at mid-lower-mantle depths, CaCO3 is the potential stable phase that 567 

hosts oxidized carbon in the lowermost mantle. 568 

 569 
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