Sequential Task Allocation with Connectivity
Constraints in Wireless Robotic Networks

Hongzhi Guo and Albert A. Ofori
Engineering Department
Norfolk State University, Norfolk, VA, USA, 23504
Email: hguo@nsu.edu; a.a.ofori@spartans.nsu.edu

Abstract—Compared with a single robot, the wireless robotic
network provides more reliable and efficient services. When tasks
are not independent and the movement of robots is constrained by
wireless connectivity, coordination and cooperation are required
to efficiently allocate tasks. Traditionally, the task allocation
problem is formulated as a mixed-integer quadratically con-
strained quadratic programming, which is difficult to solve and
the solution is not scalable. This paper studies the sequential task
allocation for wireless robotic networks, where robots are subject
to wireless connectivity constraints and the tasks are stochastic.
The objective of this paper is to reduce the task completion
time by using multiple robots. A one-dimensional motion along
a straight line with applications for pipeline monitoring and
tunnel exploration is considered. First, a baseline is developed
for sequential task allocation using the greedy algorithm. Then,
a deep reinforcement learning model with offline training is
introduced, which can efficiently reduce the task completion
time. To further improve the performance, the online rollout
for reinforcement learning is employed. Wireless communication
protocols and lower bounds of task completion time are also
developed. The results show that robots can gradually learn
the optimal policy and efficiently address the sequential task
allocation problem.

Index Terms—Connectivity, pipeline monitoring, reinforcement
learning, task allocation, wireless robotic networks.

I. INTRODUCTION

The multi-robot system is robust to robot failures, flexible to
task execution, and efficient in achieving overall performance.
Given an amount of tasks, a multi-robot system uses shorter
time to complete all the tasks than a single-robot system.
However, the task allocation in wireless robotic networks is
challenging. In this paper, we ask the question: if a single
robot uses T, time steps to complete all the tasks, can we
reduce the completion time to 7,/n, by using n, robots?

The answer to the above question depends on the tasks
and wireless robots. When tasks at the same location are
independent, and wireless robots can move freely without
any constraints and their actions do not affect each other, we
can reduce the overall completion time to 7,./n, by using
n, homogeneous wireless robots. However, in reality, tasks
are not independent and they are spatially distributed with
certain patterns and ordering. The task completion time can
be stochastic. Moreover, wireless robots are subject to some
constraints, e.g., connectivity and travel time uncertainty, and
their actions may be correlated. As a result, it is difficult, if
not impossible, to reduce the completion time to 7. /n, with
n, wireless robots.

This material is based upon work supported in part by the National Science
Foundation under Grant No. HRD 1953460 and The Thomas F. and Kate Miller
Jeffress Memorial Trust, Bank of America, Trustee.

In this paper, we study the distributed sequential task alloca-
tion under uncertainties of task completion time and wireless
connectivity constraints. Although task allocation for wireless
robotic networks has been extensively studied, the sequential
task allocation with task ordering and uncertain completion
time has not been addressed [1]. The sequential task allocation
for wireless robotic networks finds a large number of appli-
cations, such as underground/underwater pipeline monitoring,
tunnel exploration, and wireless charging for underground
sensors. Existing works mainly focus on tasks without ordering
[2]-[4], which is fundamentally different from the problem
studied in this paper.

Task allocation with connectivity or communication con-
straints are studied in [3], [4], where the tasks have no
ordering. Communication-free task allocation with central
controllers is investigated in [5]. Since central controllers are
not always available, we consider distributed task allocation
without central controllers in this paper. Task allocation with
ordering, temporal, and uncertainty constraints are presented
in [1], [2], [6], [7]. However, these constraints are not studied
jointly. The widely used approaches to solving the task allo-
cation problems include market-based coordination protocols
[8], mixed-integer quadratically constrained quadratic pro-
gramming [3], and optimization [9], [10]. Deep Reinforcement
learning has recently been used for various multiagent appli-
cations [11], including the task allocation [12], [13]. However,
in [12], [13], wireless connectivity and task ordering are not
considered. Moreover, existing works do not consider wireless
communication protocols, such as routing and interference. In
this paper, we will jointly consider these practical issues.

We first present the applications and the sequential task
allocation problem. Then, we explain why it is challenging
to solve and propose an approximation to the optimal solution
using a greedy algorithm. The performance of approximation
is analyzed and compared with the theoretical lower bound.
After that, we introduce a deep Q-network (DQN) based
reinforcement learning solution. Wireless robots first use the
greedy algorithm to accumulate experiences. Then, we per-
form offline training of a DQN model. To further improve
the performance, we employ the multiagent reinforcement
learning using rollout and policy iteration, which is based on
the theory proposed in [14] and adopted in [15]. The online
rollout ensures that the policy is no worse than the base policy
obtained by the offline-trained DQN. The main contributions
of this paper are:

o We solve the distributed sequential task allocation prob-
lem with an objective to reduce the overall task comple-

Rodl:otA Robot B Robot C
R W —
(.- -] ao
t \ N\ _/11 ¢
A4 \N=Z7/
-y Voo
Pipeline
Robot A Robot B Robot C
Y 30 30
R B R
R - L EEEE v SRR
= 1y ao 7/, a® 7/,
-7, -7/ -“s
<«== Communication 3;. Sensing 4 Charging/data
collection

3
©w
=~
o
Q
o

—
=2
3
o
1%
=g
I}

c

o

Distance

Fig. 1. (upper) Pipeline monitoring: robots are employed to perform leakage
sensing, collect data, and recharge underground sensors. (middle) Tunnel
exploration and monitoring: robots with sensing capabilities are used to
explore and monitor tunnels. (lower) The space is divided into discrete
segments; task loads at each segment are different depending on locations.

tion time for wireless robotic networks under connectivity
and uncertain task completion time constraints. We pro-
pose three approaches, including the greedy algorithm,
DQN, and DQN with online rollout.

e We design wireless communication protocols for pro-
posed solutions to collect necessary information.

o We provide theoretical performance analysis on the lower
bounds of task completion time and show that the task
completion time using DQN monotonically decreases in
O(1/n,). The results are validated through extensive
simulations.

The rest of this paper is organized as follows. In Section
II, we introduce the considered applications and the difficulty
of solving the problem. In Section III, we derive a lower
bound of the overall completion time and propose a greedy
algorithm to approximate the optimal policy. In Section IV,
we introduce the DQN and DQN with online rollout, as well
as the communication protocols. After that, we numerically
simulate and evaluate the proposed solutions in Section V.
Finally, this paper is concluded in Section VI.

II. SYSTEM MODEL AND RESEARCH CHALLENGES

We consider a one-dimensional (1D) sequential task al-
location problem. As shown in Fig. 1, it can find many
applications, e.g., pipeline inspection and underground tunnel
exploration and monitoring [16], [17]. Wireless robots can
be used for sensing, recharging underground sensors, and
data collection. In such harsh environments, using a single
robot is inefficient. It may experience robot failure and other
unexpected accidents. The use of multiple robots can improve
the resilience, but we may waste the resources if we cannot
efficiently allocate tasks. Next, we consider multiple robots
for 1D pipeline monitoring. Robots need to sense along the
pipeline (low-load tasks), recharge and collect data from
underground sensors (high-load tasks), and perform repair

or damage estimation if leakage occurs (leakage tasks). We
consider robots can coordinate their motion without collisions.

The sensing and monitoring are spatially continuous, i.e.,
data are collected along a pipeline or tunnel. For ease of
task allocation, we divide the 1D space with length L into
ns segments uniformly, as shown in the lower part of Fig. 1.
The task load is measured using the number of time steps,
e.g., if the completion time of the task at ¢th segment is m;
time steps, it takes a robot m,; time steps to complete the task.
This paper considers a practical and unique model due to the
following three characteristics.

o Sequential and heterogeneous tasks. Tasks are sequential,
i.e., a robot moves to the next task location after complet-
ing its current task. Also, task loads are heterogeneous,
i.e., there are complicated high-load tasks (recharging and
data collection) and simple low-load tasks (regular ground
sensing).

o Uncertain task completion time. We consider that a robot
does not know the completion time unless it completes
the task. Due to the dynamic environment and uncertain
travel time, the task completion time m; is not a constant.
For example, robots perform inspections weekly, and the
task completion time m; can be considered as a random
number for each week. In this paper, we consider the task
completion time is Gaussian distributed m; € N (j;, 0;),
for : = 1,2,--- ,ng, with mean value p; and standard
deviation o; [18]. For low-load and high-load tasks, mean
values are p; and pp,, respectively. The standard deviation
is defined as apu;, where « is a positive constant. Since
robots regularly inspect a pipeline or monitor a tunnel,
they have prior knowledge of p; and o;. In addition, a
rare event such as pipeline leakage will increase the task
load, i.e., robots may need to perform advanced sensing
to evaluate the leakage or even repair the pipe. This
is unexpected and prior information about the location
cannot be obtained, but the robot has knowledge of the
probability of leakage p;.r. The leakage task load is also
Gaussian distributed with mean value p.;, and standard
deviation afuep.

o Communication and networking constraints. Usually, a
long pipeline is mainly deployed in isolated areas with-
out wireless cellular service. This is also the case for
underground tunnels. Robots have to maintain wireless
connectivity to cooperate without using centralized wire-
less services. Also, robots can fast respond to unexpected
emergencies by sharing information and coordinate their
motion with wireless connectivity.

We consider single-robot tasks since sensing using RF
signals or ground penetration radar may interfere each other
if robots are close. Also, wireless charging for underground
sensors requires coordination between robots, otherwise the
charging efficiency may reduce. We assume it takes n; time
steps for a robot to move forward by one segment without
spending any time on a task. A robot can only move forward.
Robots are equipped with wireless radios, such as Zigbee, for
peer-to-peer communication. The communication range is Iy,
to ensure wireless connectivity [19].

To minimize the overall task completion time, we have to
solve a stochastic mixed integer problem [20]. The problem is

TABLE I
MATHEMATICAL NOTATION.

Symbol Description

L the pipeline/tunnel length

Ny the robot number

Na the number of robot available actions

Ng the number of space segments

ng the number of time steps that a robot uses to move forward

one segment

Ngh the number of high-load tasks

Nl the number of low-load tasks

m; the task load at the ¢th segment

Kh the mean value of high task load

w the mean value of low task load

Hiek the mean value of leakage/rare-event task load
Plek the probability of pipe leakage

seg the length of one segment

lwe the communication range

complicated due to the following reasons:

o It is a combinatorial minimax problem. We want to
minimize the maximum time that a robot uses to complete
all of its tasks.

o It is subject to spatio-temporal constraints. A robot can
only complete a task when its location is the same as the
task’s location.

o The task load is stochastic and a leakage may exist
without knowing where it is.

This problem itself is complicated. Since a single robot has
limited computation capability, it is not suitable for complex
computing. However, due to the lack of a centralized controller
in isolated environments, we cannot offload the computing to a
high-performance computer. Therefore, this problem calls for
a light-weight distributed solution. Next, we first introduce a
greedy algorithm as a baseline.

III. GREEDY ALGORITHM

First, we give a lower bound of the overall completion time
using n,. robots, which is

EY M m;
Tiower = M + ngny
Ny
_ (1 = prer) (nsiwg + ngpun) + NsPrekUick] i
Ny

D

nsng, (2)
where ng and ngj, are the number of low-load and high-load
tasks without leakage, respectively. The first term in (2) is the
time steps used to complete tasks and the second term is the
time steps used for moving forward n, segments, which is the
same for every robot. The lower bound is obtained by relaxing
connectivity constraints and equally distributing task loads
among n, robots. The lower bound will be used to evaluate
our proposed algorithms, i.e., a high-performance algorithm
should approach the lower bound closely. Next, we introduce
a heuristic greedy algorithm and analyze its performance.
The main idea of the greedy algorithm is that a robot moves
forward and is assigned to the first available task. When a
robot reaches the maximum communication range from the
neighbor behind it, it stops and waits until the neighbor moves
forward. This can ensure the connectivity. The details are given
in Algorithm 1. In the algorithm, set 7. contains the robots
that have not moved to the destination, and set 7, contains

Algorithm 1: Greedy Algorithm

Input: n,, p; fori =1,2,--- ng

Output: Actions [ay, a9, - ,a,,] at each time step
1 Init:

2 | rb € Te, Vi rbi € Toy Vi ts =0

3 while 7, # 0 do

4 ts =1ts+ 1;

5 for : < 1 to n, do

6 if rb; € 7, then

7 if task available within l,,. then

8 Assign the next available task;
9 Update location and neighbors, check

connectivity;

10 To = To \ by

11 else if tasks not completed then
12 | move forward ly,.;

13 else

14 | =T\ rbis

15 end

16 else

17 Check connectivity;

18 Update location, task completion status,

and neighbors;

19 if Assigned task is completed then
20 | Ta=TaU{rdb:};

21 end

22 end
23 end
24 end

the robots that are available for new task assignment. From
line 8 to 11, a robot will take the first available task within
its communication range. If there is no task available, in line
12 and 13, the robot move forward [,,. to get closer to the
destination. If all tasks are completed, the robots is removed
from 7. In line 18 to 23, when a robot has been given
an action, it updates its location, task completion status and
neighbors, and check connectivity in every time step until it
completes the current action.

Due to the connectivity constraint, some robots have to stop
and wait for their neighbors, which increases the overall task
completion time. The waiting time can be considered as that
the robot is taking virtual tasks. Therefore, the lower bound of
the overall task completion time using the greedy algorithm is

Tgreedy _ E(Z:l;l mi) + fgreedy

lower n,

+ s, 3)
where £97¢¢4Y is the overall expected time steps that robots
stop to maintain wireless connectivity. To explicitly obtain
£97eedy is challenging due to the stochastic and heterogeneous
task loads. Instead, we can obtain a lower bound of fgraedy.
The stop is mainly due to high-load tasks, which are not
completed before other robots move away. For example, in
Fig. 2, robot B is assigned with high-load task B, which takes
a long time to complete. Robot A is assigned with low-load
tasks. It may move from task A to task C while robot B is
working on task B. Since connectivity is always maintained,

(sd@3s swn)
peoj seL

Moving direction

-

Robot A Robot B

Fig. 2. Tllustration of robots’ location and task distribution. Robot B is
assigned with a high-load task and robot A is assigned with multiple low-load
tasks. Only within the connected region, robot A can communicate with robot
B.

when robot B moves to task B, in the worst case, there is
at least one robot at the location of task A. For the greedy
algorithm, the tasks between task A and task C are equally
allocated to the rest n,. — 1 robots (except for robot B). When
robot A moves to task C, if task B is not completed, robot A
has to wait for robot B to maintain connectivity. £y cedy [Nsh
is the time steps that robot A is waiting, where ngy, is the
overall number of high-load tasks. This is the same for all the
high-load tasks. Therefore, we have
Uy
o — 1) nl:| .
4)

le
ggreedy > ngp |:uh) (l _ 1) (nl +
seg

We implicitly assume the communication range is smaller
than the average interval between two high-load tasks. The
number of segments within the communication range is
lwc/lseg — 1. Note that, fgr@edy cannot be negative, i.e.,
goreedy — max(0, £97¢¢4), otherwise T7°* is smaller than
the ideal lower bound. As we can see from (4), as n,. increases,
the lower bound of fgreedy increases, which indicates that
if we use more robots, the waiting time increases. In other
words, as n, increases, the greedy algorithm is not efficient
in coordinating these robots. As n, becomes a large number,
£97e¢dy converges to a constant number, and Tl%:feef Y decreases
as n, increases.

IV. DEEP Q-NETWORK WITH ONLINE ROLLOUT

Reinforcement learning has been extensively used for se-
quential decision problems [21]. A robot gradually learns
the optimal actions to respond to environment dynamics by
maximizing its rewards. The action, state of the environment,
and rewards are defined based on specific applications. Let
A denote a discrete set of actions that a robot can take and
S denote the possible states of the environment. At time
step ¢, the state is st € S, and the robot takes an action
a' = w(alst), where m(a|s) is the policy and it is a probability
function with > _ ,m(als') = 1. Then, the environment
changes from state s’ to s'™1, and the robot receives a reward
ri*1(st,a'). Reinforcement learning aims to maximize the
long-term expected rewards. However, a robot can only obtain
the immediate reward without knowing the future rewards in

a stochastic environment. The value function representing the
future cumulative discounted reward at time step ¢ is [21],

VT(s') = E-{R'[s'} = E, (Z wfrt““(st“)) , (5)
7=0

where « € [0, 1] is the discount factor that aims to reduce the
impact of the long-term rewards. There are various approaches
to obtain the optimal policy 7. Next, we introduce the Deep
Q-Network (DQN) and a multiagent rollout with constraints.

A. Deep Q-Network

Model-free Q-learning can be used to obtain the optimal
7*(als¢). In a stationary setting, the action-state Q function is
given as

Q7 (s,a) =E, [Rt|3t =s,a' = a] i (6)

For state s*, the optimal policies share the same optimal action-
value function, which can be given as [21]

Q*(St,at) _ Z

sttleS rttleR

P(st+1,rt+1|st,at) @)

*(St-i-l at-i—l)

o ®

)

t4+1
X |\r max
{ N ’yaHleAQ

where P(st*! ri+l|st al) is the probability that by taking
action a’ the state changes from s’ to s‘™' with reward
P P(stHL it st al) is known, we can solve the above
equation in principle. However, for model-free environment,
the probability is unknown and we cannot directly obtain the
optimal policy. One of the efficient solutions is the off-policy
Temporal-Difference control algorithm, defined by [21]

Q(s',a") +(1 —a)Q(s",a")+)

o | by max Q(sTH e TH |, (10)

attleA

where o € (0,1] is the step size. This algorithm will form
a lookup table (a matrix) and iteratively update the values.
However, when the state space or action space becomes large,
most of the elements in lookup table are not visited and the
storage of lookup table is impractical. Rather than using a
lookup table, DQN can approximate the action-value functions
by training a neural network using previous experiences. More
details can be found in [22]. Generally, the function of DQN
can be given as

n(als’) = o (Sﬁ (O;ﬁ?icy‘:”(' o ‘p(az()lo)licyst))) ’

where o(x) is the softmax function, ¢(z) is the LeakyReLU
function, 7(alst) = [r(ab?t|s!), m(at?|st), - w(atma|st)]T,
7(abt|s?) is the ith available action out of the n, available
actions for the robot at time step ¢, (-)7 is the transpose of a
vector, @),1icy i the neural network parameters, and % is the
number of layers of the neural network.

DQN faces more challenges in robotic networks. First, the
system may be unstable. DQN trains optimal policies for
robots based on their observations. Robots take actions simul-
taneously. The action of a robot may immediately change the
environment and other robots’ actions are no longer optimal.

(1)

@ G @
= =
st st st st

t t
(al""'ans—l) &
ao

%

Fig. 3. Data communication for network connectivity-preserving DQNs.

The system may not converge to the optimal results. Second,
for large-scale robotic networks with a long pipeline/tunnel,
each robot only has limited observations of the state. Thus,
a single robot may not obtain the optimal policy. Because
of the above reasons, DQNs for robotic networks employ
the centralized learning and decentralized execution [11], as
shown in Fig. 4a. Robots send their observations to a central
controller that collects information from all the robots and
trains one or multiple DQNs to obtain optimal policies for
each robot. Then, each robot receives and executes the action.
At time step ¢, DQN aims to select the actions to maximize
the expected reward, and the optimal actions are

t Z
a = arg max Pst st+1 (a‘la ag, - 7anr)
ai,az,,an, €A
s St+1
t+1 t+1
X (r Vst)) (12)
where a' = [a},ab, - ,al,]*. However, the search space of

this approach is exponential, which is n[*. Since robots are in
isolated environments without wireless infrastructure, they do
not have access to a central controller for complex computing.
Thus, this approach is not practical here.

To address this issue, we use an offline-trained DQN with
online rollout. In the sensing process, robots save their ex-
periences in the format (s?,af, '+ s'*1) locally, as shown
in Fig. 4b. After they move to the next dispatch center,
robots upload their experiences to a central controller, which
will perform offline centralized training and generate optimal
policies for robots. Since robots are homogeneous with a
common goal, we can use experiences from all the robots to
train a DQN to obtain the optimal policy 7*(a|s?), which is
shared by all the robots.

The offline-trained DQN is used for online execution. To
maintain the network stability, robots update their actions and
states sequentially. As shown in Fig. 3, robots first use random
medium access protocols such as slotted Aloha to send their
local states to their neighbors. Once robot 1 (the robot at the
end) has sufficient state information, it uses (11) to generate an
optimal action atl, which is sent to robot 2. For the ith robot, it
generates a list of optimal actions using (11) and ranks those
actions based on their probabilities, i.e., the optimal action has
the largest probability. If the robot is assigned to a task which
has been assigned to other robots before, it will choose the
next action on the list.

DQN aims to maximize the long-term reward. Since waiting
will not receive any reward, the algorithm will gradually learn
that saving more tasks for robot A in Fig. 2 will result in larger
reward since this reduces the waiting time. The lower bound
of the task completion time using the DQN task allocation can
be given as

E(Z?;1 m;) + qun

Ty

qun _

lower

+ nsny, 13)

%

& Experience
7 —
1
4 & @
=2 @ B | offine |1t @ @ @
training an))

(a) Centralized learning and decen-(b) Offline training using previous experi-
tralized execution. ences.

Fig. 4. DQN learning approaches for robotic networks.

where £99" is the overall expected time steps that robots stop
to maintain wireless connectivity. Similarly, we can obtain a
lower bound of &44y,, Which is

ZU)C
gl > ng, [uh -2 (— 1) (nl + %) - nz] . (14

seg

If all the low-load tasks are saved for robot A, the connectivity
will soon be broken because robot A moves too slow. The low-
load tasks are completed by at least two robots, i.e., robots
take every other task. Note that, 2 is the minimum number.
Different from £97¢¢% in (4), £€99" does not change as the
robot number increases and Z}iﬂler monotonically decreases
as n, increases in O(1/n,.).

B. Online Rollout

The DQN model is offline-trained and it may not be robust
to online dynamic changes. Next, we introduce an online
model using rollout based on the model proposed in [14]. We
consider the offline-trained DQN as a base policy 7°(als).
The communication and message transmission protocols are
similar to the offline-trained DQN, as shown in Fig. 3. For
one-step look ahead rollout, the optimal actions can be found
by

tHl b ot ~t t41
(s*yay,as, - ,a, ,s)

t _
a; = arg maﬁ?" y A

ar€

+9Q(s", ")
+1(

15)

t t ~1 t+1
§,01,02, " ,Q 8)

al = arg max r' Lan,

az€A

+9Q(s" a'thy; (16)

at t+1(

= arg max r
o ang €

+9Q(s" a";

where the action a! is obtained using the base policy my and
the state-action function is approximated by using rollout.

The first robot only has the state information st, it will
estimate other robots action using the base policy 7. It will
select its best action to maximize the state-action value and
send its action a! to the second robot. The second robot uses
at and estimates other robots’ actions to obtain its optimal
action. This process will continue until the last robot obtains
its action.

Each robot has an offline-trained simulator. In Fig. 5, we use
the ith robot, for i € {1,2,--- ,n,}, as an example to explain
the simulation process. At time step t—1, the ith robot receives

t t 1 t+1
s7a17a27"'7an7v7s)

7)

t+m-1
i
s

t+m-1
¥

t+m—1
t+m—1

§t+m

Fig. 5. Illustration of the rollout scheme with m steps using the base policy
0.

Ghap) o Ghaiad) (hal - anco) G 0h - ana) o

b3

tgl an oo

st st

at t
54 st Sng-1 Sng

Fig. 6. Data communication for network connectivity-preserving DQN with
rollout.

reward 7' and moves into the state s’. Then, it receives other
robots actions and estimate other robots’ actions. It obtains a
new state vector §' = [s*,al,--- ,af_j,al,,,--- ,al,], which
is used to replace s in (11). Instead of proceeding with the
best action, the simulator chooses the top several actions (the
top 4 actions in Fig. 5) and continue to run the simulation.
States will be updated and the robot chooses the best action
predicted by the simulator in the following rounds to save
computation resources. The simulation will continue for m
steps. In the end, the simulation is truncated and V (s**™) is
used to approximate the rest of rewards. The value of V' (s'+"™)
can be obtained by training a neural network or simply using
zero [14]. In this paper, we consider V(s*™) = 0 since
the future rewards after multiple steps has limited impact on
current decisions. Finally, the ith robot will select the action
with the largest accumulated reward for state 5°.

The communication starts from the last robot. As shown in
Fig. 6, the last robot sends its observation or estimation of
the current local state 32,» including finished and unfinished
task status and its location, to the (n, — 1)th robot. Then,
the (n, — 1)th robot sends &, | = {s!, _, s } to the
(n, — 2)th robot. This process continues until the first robot
receives 55 = {sh,--- ,s!, _,s! }. Finally, the first robot will
combine its own observation with s% to obtain the complete
state s = {s{,sh---,sl, _;,sl, }. The first robot obtains
its optimal action using (11). After that, the first robot sends
(s, a!) to the second robot. In this way, the second robot also
obtains the s’. Due to the action a"i, the state of environment
will be changed. However, due to the uncertainty of the task
completion time, the second robot has no knowledge of the
location of the first robot at the end of the current round.
To address this issue, the robot uses prior knowledge of the

environment to simulate the task loads.

As discussed in [14], the online rollout using DQN performs
no worse than the base policy. However, the simulation of
online rollout is model-based. Its performance is affected
by the accuracy of the model. If the simulation model is
not accurate, the improvement of online rollout may not be
significant.

- [[[[T T[]
Neighbors Left task loads Right task loads

Robot location

Fig. 7. The state vector for a robot moving right with [y, /lseg = 4.

C. Algorithm Implementation

The offline-trained DQN and the online rollout need to be
optimized and adapted to solve the sequential task allocation
problem. In this section, we define the states, actions, and
rewards, introduce the training and rollout architecture, and
reduce the wireless communication overhead to make the
algorithms scalable.

Action. A robot’s action including moving forward and
being assigned to tasks. We define the action as a = [y, n2]7
where 7 stands for the location and 7y € {0,1} represents
being assigned to task or not. Note that, 71 € [0, lyc/lseq) is
an integer. When 72 = 0, it means a robot stops at a segment
without being assigned to the tasks at that location, e.g., the
robot may serve as a wireless relay. Since we require all the
robots maintain wireless connectivity, serving as a relay is not
considered as a specific action. When 7 = 1, it means the
robot is assigned to the tasks at that location. A robot will
not update its action until it finishes current one. Wireless
connectivity is checked at every time step. If a robot will break
the connectivity, its current action is paused.

State. Instead of using the whole environment to define
the state, we consider a partitioned state, i.e., a robot only
uses its local observation to estimate the state. We assume
the estimation is accurate. In other words, at time step t,
different robots have different states depending on their local
environment. The partitioned states only focus on a robot’s and
its immediate neighbors’ local environment, and they are not
affected by the overall robot number. Thus, the approach can
be generalized to arbitrary number of robots. For example, if
we train the DQN using 5 robots, the model can be applied to
any robotic network with 5 or more robots. Although the state
can be partitioned, robots still need the global task information
to ensure that a task will not be allocated to multiple robots.

Since the future reward is only affected by a robot’s nearby
environment; the reward of a robot is barely affected by the
robots who are far from it. Assume a robot’s location at the
time step ¢ is lo. The state is a vector st = R3lwe/lseatd Ag
shown in Fig. 7, the first four are the neighbor information
containing the location of the left two and right two nearest
neighbors. The neighbors’ locations are subtracted from [
to make them general. In other words, we are interested in
the relative location. Since these neighbors collaborate and
coordinate with the robot, they are more important than other
robots. The next part is the l,./ls, task loads behind the
robots, which can indicate the movement of neighbors behind
the robot. The next part is the 21,,./l;., task loads ahead of
the robot. This part is large because it will give the robot more
space to plan. If a task has been completed, the task load is
0, otherwise we need to use the prior statistical estimation.

Reward. Since the objective is to complete all the tasks with
minimum time steps, the reward obtained by the ith robot in
one time step is defined as 7/t* = x! 4 1;, where 2! is the
number of task units that is completed by the robot and 7; is
the segments that a robot moves forward. The overall reward

bl

(st,at, st+1,rt+1) DeepQ Policy gy
network >

training

Online
rollout

Greedy
algorithm

v

(St, a[,s”l,r”l)

Fig. 8. Learning architectures using offline DQN training and online rollout.

received by all robots is 7 +1(s!, a) = "1, i1, The reward
encourages robots to complete more tasks within one time step

and move towards the destination.

D. Learning Architectures

The greedy algorithm in Algorithm 1 is used as the baseline.
Robots first employ Algorithm 1 to accumulate 10,000 expe-
rience tuples, which will be saved and used for offline DQN
training. Then, DQN is used for online rollout and experience
tuples are also saved locally and used for updating the DQN
parameters when robots move to a dispatch center. The process
is shown in Fig. 8. DQN is trained using double Q learning
[23] in Pytorch, where the target network parameters are
updated using the policy network’s parameters every 10 steps.
The neural network consists of 4 layers with LeakyReLU
activation function. The neurons in each layer are 128, 64,
32, and 32. Softmax function is used at the output. The
local coordination and cooperation among robots are more
important than future because the environment is semi-periodic
and a maximum reward can be obtained only if local rewards
are maximized. Thus, we set v = 0.25 which is relatively
small. The rollout step number is l,,c/lseq. The parameters
are chosen to make the rollout step number an integer.

V. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section, we numerically simulate the task allocation
process and discuss the limitations of the proposed approach
and potential solutions for our future work.

A. Numerical Simulations

In the numerical simulation, we consider three algorithms,
namely, the greedy algorithm in Algorithm 1, the DQN without
online rollout, and the DQN with online rollout. We consider
n, = 5. At every time step, the robot can move forward by
n; = 1 segment. Every [,.,s segments, there is a high-load
task. The leakage probability is 0.005. The communication
range [, is 12 m and the length of each segment is 3 m.
To save the computation resources, we consider a 1000 m
pipeline with 333 segments. We notice that the robots using
DQN and DQN with rollout need to be trained specially to
stop at the destination. To avoid this issue, we compare their
task completion time for the first 300 tasks, i.e., when the last
robot passes by the 900 m task, we consider the whole robot
network’s tasks are completed. The mean value of the task load
for high-load task, low-load task, and leakage task are p; =
25, wy, and puer, = 50, respectively, and the standard deviations
are aip, oy, and aper, respectively. p; and « are given in
Table II. Next, we study four cases with the parameters in
Table II to analyze the performance of proposed algorithms.
We perform 20 simulations for each algorithm and the mean
values and standard deviation are presented.

Figure 9 shows the impact of high-load task density. The
interval between high-load tasks is 15 m in Fig. 9a, while it

TABLE 11
CASE STUDY PARAMETERS.

Symbol Case 1 Case 2 Case 3 Case 4
lsens 5 10 5 5

m 2 2 5 2

«a 0.2 0.2 0.2 0.02

9 a

1000 g900

° v

£ iR £

£ 900 = 800

g 1 1 s i I I
ki ki

S 800 3 700

£ £

8 8

i3 -

ﬁ 700 Greedy DQN DQN-Rollout EGOO Greedy DQN DQN-Rollout

(a) Overall task completion time
steps for case 1 in Table II.

(b) Overall task completion time
steps for case 2 in Table II.

Fig. 9. Effect of the interval between heavy task loads. The interval between
high-load tasks is 15 m in Fig. 9a, while it is 30 m in Fig. 9b.

is 30 m in Fig. 9b. For Fig. 9a, the greedy algorithm’s lower
bound using (3) is 889.0 and the DQN’s lower bound using
(13) is 853.0. Both the lower bounds and the simulation results
in Fig. 9a show that the DQN is about 30 to 40 time steps faster
than the greedy algorithm. The mean value of the DQN with
rollout is slightly better than DQN. As discussed before, the
accuracy of the simulation model affects the performance of
DQN with rollout. With such a short interval between high-
load tasks, the task load dynamics are high and the rollout
model using prior statistics are not accurate enough. For a
larger interval in Fig. 9b, the DQN with rollout has better
ability to simulate the task change since the high-load tasks
are less frequent. The performance of DQN with rollout is
much better than DQN compared with that in Fig. 9a.

In Fig. 10a, p; is increased from 2 to 5 compared with
Fig. 9a. This increases the overall task load and reduces the
difference between the high task load and the low task load.
The greedy algorithm’s lower bound using (3) is 978.3 and the
DQN’s lower bound using (13) is 888.3. As we can see from
Fig. 9a, the DQN has similar performance as the DQN with
rollout, but both of them use fewer time steps than the greedy
algorithm, which agrees with the lower bound. Thus, the gain
of using DQN and DQN with rollout increases as the task load
increases. In Fig. 10b, « is reduced from 0.2 to 0.02 compared
with that in Fig. 9a. A smaller o means smaller variances of
the task loads and, thus, the prior knowledge becomes more
accurate. As we can see from Fig. 10b, the gain of using
DQN with rollout becomes more significant compared with
that in Fig. 9a, which confirms that the online rollout is model-
based and its performance is significantly affected by model
accuracy.

In Fig. 11, we show the simulation using 7 and 9 robots.
The same as Fig. 9a, the DQN and DQN with rollout are
still trained by using 5 robots, but the robots number are
increased in the simulation. Since we use the local state and
the state includes four neighbors of a robot, the trained model
can be generalized to more robots. The lower bounds for
greedy algorithm and DQN using 7 robots are 729.3 and
695.0, respectively, and using 9 robots are 637.2 and 607.2,

o
[
o
o

1000

o

o

o
H

1000 I T

[t
o
o
e
=]
o

Task completion time steps
Task completion time steps
H
B

=+
o
o
~
[=3
o

Greedy DQN DQN-Rollout Greedy DQN DQN-Rollout

(a) Overall task completion time (b) Overall task completion time
steps for case 3 in Table II. The steps for case 4 in Table II. The
difference between low task load (5) variance of the task loads is smaller
and high task load (25) is smaller than that in Fig. 9a, which represents
compared with the parameters (2 and a smaller randomness.

25) in Fig. 9a.

Fig. 10. Effect of task loads and task load randomness.
2 1000
% 7 robots
g 900 9 robots
< 800
S L
-
7] €T
EL 700 — T
S 600 L €
v
[0}
\© 0
Greedy DQN DQN-Rollout

Fig. 11. Overall task completion time for 7 robots and 9 robots. The DQN
and DQN with rollout are trained by using 5 robots.

respectively.

To answer the question at the beginning of this paper, in
Fig. 12, we show the lower bounds (greedy algorithm (3),
DQN (13), and ideal theoretical lower bound (2)) of task
completion time for the number of high-load task n,;, being
60 and 30. As we can see, DQN is closer to the lower bound
than the greedy algorithm, but still there is a gap. As the robot
number increases, the gap between DQN and the ideal lower
bound becomes smaller. However, in this paper, we do not
consider collisions. As the robot number increases, collision
avoidance becomes more challenging. Also, the gap between
DQN and the greedy algorithm decreases as the robot number
increases. To qualitatively evaluate this change, in Fig. 13
we show the change of I“lfflj:fy - ﬂ(i(gber with robot number.
The difference indicates how inefficient the greedy algorithm
is compared with the DQN. When robot number is small,
there is no need to cooperate and both of them have similar
performance. When robot number is large, the tasks can be
completed quickly and the difference is also small. Only in
the middle, such as 5 and 6 robots as shown in the figure, the
algorithms have significant differences.

Besides task completion time, we also need to consider the
computation complexity. Since DQN model is trained offline,
we only focus on the computation complexity of online task
allocation that is performed by the robots. For the greedy
algorithm, the task allocation searches for the available tasks
within l,./lsqy and the overall complexity is O(n,lye/lseq)-
For the DQN, since we increase the state space and let a robot
choose the action based on neural network’s recommendations,
the computation complexity is O(n,-n,,), where n,, stands for
the computation complexity of the neural network. For DQN

103

6x 10?2

Task completion time steps

4% 10?2

45 6 7 8 9101112131415161718
Robot number
Fig. 12. The lower bounds (greedy algorithm, DQN, and ideal theoretical

lower bound) of task completion time for the number of high-load task ngp
being 60 and 30.

- Nsn=60
E
177} 30 nsh=30
a
E
“ 20
(=]
Q
(%)
=
g 10
Q
=
(]
0

45678 9101112131415161718
Robot number

Tgreedy _ qun

Fig. 13. The impact of robot number on T} lower

with rollout, we need to run simulations for each robot. The
complexity is O(n2n,lyc/ lseq). Here, for each simulation, we
need to update all the robots’ location and action and simulate
for the next lyc/lseq steps. As a result, the DQN with rollout
is the most complicated algorithm, but it can achieve the best
performance when the model is accurate.

B. Future Work

1) High Dimensional Space: In this paper, only the 1D
pipeline or tunnel is considered. For 2D, e.g., farming robots,
and 3D applications, e.g., underwater or aerial robots, robots
have more freedom in motion and connectivity becomes more
complicated. There are multiple potential solutions. First, we
can divide the 2D and 3D space into squares and cubes,
respectively. We consider them as matrix and tensors, then
vectorize them into 1D structure and apply the approach
developed in this paper. Second, we can redesign the reward
and state models to include more spatio-temporal information.
The framework will be the same as that in this paper, but we
need to increase the state information.

2) Scalable and Reliable Robotic Communication Net-
works: The communication protocol proposed in Fig. 6 is
based on a chain topology which incurs significant delay
for a large-scale robotic network. Although the development
of full-duplex wireless communication and ultra-reliable low-
latency communication may address this issue, the 1D chain
is not reliable nor scalable. By using the state partition,
we can reduce the state data transmission since a robot

t t t

Fig. 14. Action message transmission and updates. Robots rb; o and 7b; 1
are in PMG, and the other robots are in PIG. A robot in PMG only sends its
action information to the robot on its right-hand-side.

only needs its neighbor’s state information to estimate its
surrounding environment. In addition, we divide the robots
into two groups, namely, Policy Improvement Group Z (PIG)
and Policy Maintain Group M (PMG). The robots are aligned
along the pipeline or tunnel in sequence from left to right
{rby,rba, -+ ,rb,, }. For any robot, the probability of being
in PIG is pp and in PMG is 1 — pyg.

The communication and policy improvement include two
steps. In the first step, robots perform state aggregation which
is similar to the one in Fig. 6, but with a much smaller scale
due to the state partition. To reduce the delay, we allow random
medium access, such as slotted Aloha. Robots first send short
beacons randomly to estimate the node density. Then, based
on the estimation, a robot chooses the optimal transmission
probability to avoid collisions. By using random medium
access, a robot sends its state information to its neighbors and
receive state information from its neighbors to reconstruct a
better and broader view of the state.

Once robots obtain their neighbors’ states, the policy im-
provement will also be partitioned. As shown in Fig. 14, robots
are divided into multiple groups. All PIG robots between
two PMG robots are grouped with the left PMG robot. For
example, in Fig. 14, rb;_o and rb;;1 use the base policy
to obtain their optimal actions. Then, they send their actions
to rb;—1 and rb;;o, respectively. If the interference is low
enough, their transmission can be simultaneous. rb;_; and
rb;+2 use the action information they received to optimize
their actions and send their actions to the next robot. Finally,
rb; will update its action based on a!_; and the rb;1’s action
based on the base policy. Since the base policy is known by
every robot, 7b; can optimally plan its actions. Since rb;_o and
rb;+1 use the base policy, there is no policy improvement. On
the contrary, all other robots use policy improvement by using
rollout, their rewards are no smaller than the base policy. In
our future work, we will evaluate this approach and prove its
scalability.

VI. CONCLUSION

Sequential task allocation with connectivity constraints for
wireless robotic networks finds many important applications in
pipeline monitoring and tunnel exploration. It is a challenging
problem, especially when task loads are stochastic. In this
paper, we propose a greedy algorithm as a baseline and design
a deep Q-network (DQN) using offline training. To further
improve the performance, we adopt the online rollout for
DQN which is a model-based solution and its performance
depends on the accuracy of model. We also design wireless
communication protocols to transmit robot state information.
The simulation results show that the DQN and DQN with
rollout can significantly reduce the overall task completion
time.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

M. Gini, “Multi-robot allocation of tasks with temporal and ordering
constraints,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 31, no. 1, 2017.

M. Malencia, V. Kumar, G. J. Pappas, and A. Prorok, “Fair robust
assignment using redundancy,” IEEE Robotics and Automation Letters,
2021.

A. Wichmann, T. Korkmaz, and A. S. Tosun, “Robot control strategies
for task allocation with connectivity constraints in wireless sensor and
robot networks,” IEEE Transactions on Mobile Computing, vol. 17,
no. 6, pp. 1429-1441, 2018.

Z. Mi, Y. Yang, H. Ma, and D. Wang, “Connectivity preserving task
allocation in mobile robotic sensor network,” in 2014 IEEE International
Conference on Communications (ICC). 1EEE, 2014, pp. 136-141.

S. Berman, A. Haldsz, M. A. Hsieh, and V. Kumar, “Optimized stochas-
tic policies for task allocation in swarms of robots,” IEEE transactions
on robotics, vol. 25, no. 4, pp. 927-937, 2009.

S. Choudhury, J. Gupta, M. Kochenderfer, D. Sadigh, and J. Bohg,
“Dynamic multi-robot task allocation under uncertainty and temporal
constraints,” in Robotics: Science and Systems 2020, Corvalis, Oregon,
USA, 07 2020.

A. Prorok, “Robust assignment using redundant robots on transport
networks with uncertain travel time,” IEEE Transactions on Automation
Science and Engineering, vol. 17, no. 4, pp. 2025-2037, 2020.

N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Distributed
multi-robot task assignment and formation control,” in 2008 I[EEE
International Conference on Robotics and Automation. 1EEE, 2008,
pp. 128-133.

C. Liu and A. Kroll, “A centralized multi-robot task allocation for
industrial plant inspection by using a* and genetic algorithms,” in
International Conference on Artificial Intelligence and Soft Computing.
Springer, 2012, pp. 466-474.

C. H. Caicedo-Nunez and M. Zefran, “Distributed task assignment in
mobile sensor networks,” IEEE Transactions on Automatic Control,
vol. 56, no. 10, pp. 2485-2489, 2011.

T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,” IEEE transactions on cybernetics, vol. 50, no. 9, pp. 3826—
3839, 2020.

D. B. Noureddine, A. Gharbi, and S. B. Ahmed, “Multi-agent deep
reinforcement learning for task allocation in dynamic environment.” in
ICSOFT, 2017, pp. 17-26.

A. Elfakharany, R. Yusof, and Z. Ismail, “Towards multi robot task
allocation and navigation using deep reinforcement learning,” in Journal
of Physics: Conference Series, vol. 1447, no. 1. IOP Publishing, 2020,
p. 012045.

D. Bertsekas, “Multiagent reinforcement learning: Rollout and policy
iteration,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2, pp.
249-272, 2021.

S. Bhattacharya, S. Badyal, T. Wheeler, S. Gil, and D. Bertsekas,
“Reinforcement learning for pomdp: partitioned rollout and policy
iteration with application to autonomous sequential repair problems,”
IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 3967-3974,
2020.

L. Ivey-Burden, F. Morris et al., “Study of a pipe-scanning robot for use
in post-construction evaluation during horizontal directional drilling,”
Mid-Atlantic Universities Transportation Center, Tech. Rep., 2015.

C. Ekes and B. Neducza, “Robot mounted gpr for pipe inspection,”
in 2012 14th International Conference on Ground Penetrating Radar
(GPR). 1IEEE, 2012, pp. 160-164.

A. W. Palmer, A.J. Hill, and S. J. Scheding, “Multi-robot task allocation
with resource contention and uncertain timing,” CoRR, 2016.

M. Damsaz, D. Guo, J. Peil, W. Stark, N. Moayeri, and R. Candell,
“Channel modeling and performance of zigbee radios in an industrial
environment,” in 2017 IEEE 13th International Workshop on Factory
Communication Systems (WFCS). 1EEE, 2017, pp. 1-10.

S. S. Ponda, L. B. Johnson, and J. P. How, “Distributed chance-
constrained task allocation for autonomous multi-agent teams,” in 2072
American Control Conference (ACC). IEEE, 2012, pp. 4528-4533.
R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double qg-learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, 2016.

