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Laplacian (−Δ)s for s ∈ ( 3

4 , 1), and we provide a new 
bootstrapping scheme that makes it possible to analyse 
weak solutions locally in space-time. This includes several 
homogeneous Kato-Ponce type commutator estimates which 
we localize in space, and which seems applicable to other 
parabolic systems with fractional dissipation. We also provide 
a new estimate on the pressure, ‖(−Δ)sp‖H1 � ‖(−Δ) s

2 u‖2
L2 . 

We apply our main result to prove that any suitable weak 
solution u satisfies ∇nu ∈ Lp,∞

loc (R3 × (0, ∞)) for p = 2(3s−1)
n+2s−1 , 

n = 1, 2. As a corollary of our local regularity theorem, we 
improve the partial regularity result of Tang-Yu (2015) [26], 
and obtain an estimate on the box-counting dimension of the 
singular set S, dB(S ∩ {t ≥ t0}) ≤ 1

3 (15 − 2s − 8s2) for every 
t0 > 0.
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1. Introduction

We consider three-dimensional incompressible Navier-Stokes equations with fractional 
Laplacian dissipation, {

∂tu + (−Δ)su + (u · ∇)u + ∇p = 0,
div u = 0,

(1.1)

for s > 0, in the whole space R3 × (0, T ), T ∈ (0, ∞). The system is supplemented with 
initial data u|t=0 = u0 ∈ L2(R3) that is divergence free. The fractional Laplacian is 
defined as the Fourier multiplier with symbol |ξ|2,

(−Δ)sf̂(ξ) = |ξ|2sf̂(ξ) ∀f ∈ D′(R3).

From the physical point of view, this model, for 0 < s < 1, describes fluids with 
internal friction in [20] and has also been obtained from a stochastic Lagrangian particle 
approach by [31]. From the analytical point of view, (1.1) has special importance as a 
generalization of the classical Navier-Stokes equations (i.e. when s = 1). Lions [18] first 
studied (1.1) and has established the existence and uniqueness of global-in-time classical 
solution when s ≥ 5

4 , satisfying the energy inequality,

ˆ

R3

|u(t)|2dx + 2
tˆ

0

ˆ

R3

|Λsu|2dx dτ ≤
ˆ

R3

|u0|2dx, ∀t ≥ 0, (1.2)

where Λ ≡ (−Δ)1/2. In the case of s < 5
4 , the existence of global-in-time classical solution 

remains open. In particular, this question for the classical Navier-Stokes equations (s = 1) 
remains one of the Millennium Problems. One of the important developments of the 
regularity theory is the celebrated ε-regularity theory of Caffarelli-Kohn-Nirenberg [3], 
who showed that the 1-dimensional parabolic Hausdorff measure of the singular set 
(i.e. the set of point (x, t) such that u is unbounded in any neighborhood of (x, t)) 
vanishes for every suitable weak solution (see [3] for the definition). Recently, Tang-
Yu [26] have extended this result to the hypodissipative case 3

4 < s < 1, by showing 
that the (5 − 4s)-dimensional Hausdorff measure of the singular set vanishes for every 
suitable weak solution.1 They also showed existence of a suitable weak solution for given 
divergence-free initial data u0 ∈ L2. In the case of hyperdissipation 1 < s ≤ 5

4 , a similar 
result has recently been obtained by Colombo-De Lellis-Massaccesi [2] (see also [15] and 
[21]). We note that these results cover, at most, Hölder continuity of solutions outside 
of the singular set, and any regularity aspects of derivatives of suitable weak solutions 
have remained an open question for s 	= 1, s < 5/4.

1 See Definition 2.2.
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The regularity of derivatives of the Navier-Stokes equations with fractional dissipation 
is an interesting open problem. In the case of classical Navier-Stokes equations one can 
deduce boundedness of higher derivatives using the classical procedure, which we now 
briefly sketch. (It is described in detail in Section 13 and Section D.3 in [22], for example.)
Consider the vorticity ω = curlu and let us focus on the vorticity formulation ∂tω−Δω =
(ω · ∇)u − (u · ∇)ω. Set W := ωφ, where φ ∈ C∞

c (R3 × (0, ∞)) is a cutoff function. Then 
W satisfies an equation which is, roughly speaking, of the form

∂tW − ΔW = ∂(Wu) + Wu + ∂W + W

(where ∂ denotes any spatial partial derivative). Considering only the leading order term 
“∂(Wu)” on the right-hand side, and applying standard parabolic regularity estimates 
gives

‖W‖Lr � ‖Wu‖La � ‖W‖Lm‖u‖Lq

for 5/a ≤ 5/r + 1, where Lr ≡ Lr(R3 × (0, ∞)), and we also applied Hölder’s inequality 
with 1/a = 1/m + 1/q. This gives the condition

5
(

1
m

− 1
r

)
< 1 − 5

q
,

from which it is clear that if u ∈ Lq for some q > 5 then the right hand side of the 
above inequality is strictly positive, and so one can choose r > m, which improves 
local regularity of ω. Therefore, using the “initial regularity” ω ∈ L2 obtained from 
the energy inequality, one can use a bootstrapping argument (with decreasing cutoff 
functions φ) together with the Biot-Savart estimates to obtain local boundedness of all 
spatial derivatives of u.

Considering the case s 	= 1, it is clear that the hypodissipative case (s < 1) is dras-
tically more complicated as we do not necessarily have vorticity ω ∈ L2. Indeed the 
energy inequality (1.2) gives only Λsu ∈ L2, and so it is not even clear that ω = curlu
is a well-defined quantity. Therefore one cannot use the vorticity equation to bootstrap 
regularity. On the other hand using the equations (1.1) directly becomes much more dif-
ficult as one needs to take into account both the nonlocality of the fractional Laplacian 
(−Δ)s and the nonlocality of the pressure function p. This gives rise to two important 
open questions:

Question 1. If a Leray-Hopf weak solution u to (1.1) is bounded on some cylinder Q2

then are the derivatives of u bounded, on some smaller cylinder Q1?

Question 2. Do derivatives of solutions u to (1.1) admit any a priori estimates?



4 H. Kwon, W.S. Ożański / Journal of Functional Analysis 282 (2022) 109370
In this work we provide positive answers to both questions in the hypodissipative case

3
4 < s < 1.

Namely, we answer the first question in our first result (Theorem 1.1 below), and we show 
(in Theorem 1.2 below) that derivatives of u admit local estimates in weak Lebesgue 
spaces with an optimal exponent for any suitable weak solution u (see Definition 2.2).

Theorem 1.1. Suppose that a Leray-Hopf weak solution u to (1.1) for 3
4 < s < 1 satisfies

‖u‖L∞
t,x(Q1) + ‖u‖L2

tW
s,2
x (Q2) + ‖p‖L1

t,x(Q1) + ‖∇p‖L1
t,x(Q1)

+ ‖M(Λsu)‖L2(Q2) + ‖M|Λsu| 2
1+δ ‖L1+δ(Q2)

+ ‖M4|Λ2s−1∇p|‖L1(Q2) ≤ c < ∞

(1.3)

for δ = 2s
6−s . Then the velocity u satisfies

sup
Q1

|u(x, t)| + |∇u(x, t)| + |∇2u(x, t)| ≤ C0

for some constant C0 = C0(c, s) > 0.

Here p stands for the pressure function of a weak solution u (see Definition 2.1 below), 
M denotes the Hardy-Littlewood maximal function and M4 denotes the grand maximal 
function of order 4. We give the precise definitions in Section 2.6 below. We note that 
the assumptions of Theorem 1.1 imply that supQ1

|∇ku| ≤ Ck(c, s) for all k ≥ 0, where 
Ck = Ck(c, s) > 0, which can be shown using the same method (see Section 6.1). For 
simplicity, we restrict ourselves to k ≤ 2.

In order to prove Theorem 1.1 we develop a new bootstrapping scheme which provides 
a robust method of dealing with all nonlocalities. In fact, introducing an arbitrary space-
time cut-off φ one needs to estimate a number of commutators of the form [(−Δ)s, φ]v :=
(−Δ)s(vφ) − φ(−Δ)sv. Here, v can be u, ∇u, Λγu (for γ ∈ (s, 1)), u · ∇u or ∇p. In 
contrast to the usual Kato-Ponce type estimates (see [14,12,17]), such commutators need 
to be localized in the sense that the right hand sides can involve only local information 
of some controlled quantities, and they all appear to be new. Each instance of v =
u, ∇u, Λγu, u · ∇u, ∇p brings new challenges to our analysis, which we discuss in more 
detail in Section 6.2.

A remarkable property of our commutator estimates, presented in Lemmas 6.5–6.12, 
is that merely local information of u, p, M(Λsu) and M4(Λ2s−1∇p) suffices to control all 
the tail terms related to the fractional Laplacian (−Δ)s. In this sense the commutators 
are well-suited to the local regularity result of Theorem 1.1 above. We discuss the main 
new ideas (i.e. “tricks”) of this control of the tail terms in Lemma 6.3, for the reader’s 
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convenience. We explain the reason for the use of the grand maximal function (as opposed 
to some simpler notion of a maximal function) below (above Corollary 1.4).

We note that the theorem above is still valid with the grand maximal function M4
replaced by the Hardy-Littlewood maximal function M and with δ = 0, but in any of 
these simplifications the boundedness of the last two terms appearing in (1.3) cannot be 
guaranteed in general, as Mf /∈ L1 for any f ∈ L1, f 	= 0. In this sense Theorem 1.1
gives an optimal answer to Question 1 above.

The boundedness of derivatives of u requires some minimal local control of p, ∇p, as 
well as local L1 control of M4(Λ2s−1∇p), as stated in Theorem 1.1. We show that these 
quantities are finite for any weak solution since the pressure is given via the singular 
integral (2.11). While for the classical Navier-Stokes equations one has a classical global 
estimate for ∇2p, based on the fact that −Δp = ∂iuj∂jui as well as the Coifman-Lions-
Meyer-Semmes [4] estimate and the Fefferman-Stein [10] estimate, the analogous result 
has been unknown for the hypodissipative Navier-Stokes equations (1.1). In contrast 
with the classical Navier-Stokes equations, we now have

(−Δ)sp = (−Δ)2s−2(∂iuj∂jui),

which involves the non-local operator (−Δ)2s−2, and so distributing it equally to ∂iuj and 
∂jui is not possible in general. We get around this issue by generalizing the technique of Li 
[17] for the Kenig-Ponce-Vega-type commutator estimates [16] and using the divergence-
free condition of u to obtain that

‖Rn(−Δ)sp‖L1(R3) �s,n ‖Λsu‖2
L2(R3) (1.4)

for every n ≥ 0 (where R = Λ−1∇ denotes the Riesz transform), which is another main 
result of this paper, see Proposition 4.2. Thanks to this global estimate, the global inte-
grability of M4(Λ2s−1∇p) follows (see (2.20)), and so using a Poincaré-type Lemma 5.3
and the Calderón-Zygmund inequality gives boundedness of all pressure terms appearing 
in (1.3) above.

As a corollary of Theorem 1.1 we obtain an improved statement of the partial regu-
larity result of Tang-Yu [26]: if a suitable weak solution (u, p) is such that

lim sup
r→0+

r−5+4s
ˆ

Q∗
r

ya|∇u∗|2 < ε0,

then, for some ρ > 0, ∇ku ∈ L∞(Qρ) for every k ≥ 0 (rather than merely for k = 0). 
As mentioned above, such boundedness result of derivatives is well-known in the case of 
classical Navier-Stokes equations (see Theorem 1.4 in [22], for example), but has been 
an open problem in the case of fractional dissipation.

Our second result is concerned with an application of Theorem 1.1 that provides an 
answer to Question 2.
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Theorem 1.2 (Derivatives of suitable weak solutions). Let u be a suitable weak solution 
of (1.1) for 3

4 < s < 1 (see Definition 2.2). Then

‖∇nu‖pLp,∞(t0,T ;Lp,∞(K))�n,s‖u0‖2
L2(R3) + |K|

t
2− 1

s
0

for every t0 ∈ (0, T ) and every open and bounded subset K ⊂ R3, where p := 2(3s−1)
n+2s−1

and n ∈ {1, 2}.

We note that the restriction n ∈ {1, 2} comes from the fact that only these values of 
n > 0 give that p ≥ 1 for s ∈ (3/4, 1)

Theorem 1.2 is related to the study of second derivatives in the case of the classical 
Navier-Stokes equations, which was initiated by Constantin [5]. He showed the existence 
of global-in-time Leray-Hopf weak solution (i.e. weak solution that satisfies the strong 
energy inequality2) satisfying a priori estimate for ∇2u in Lp for every p < 4

3 in a periodic 
setting. Then Lions [19] improved this result to ∇2u ∈ L

4
3 ,∞(R3 × (0, T )) for any Leray-

Hopf weak solution u. On the other hand, Vasseur [27] suggested a new approach for the 
analysis of higher derivatives based on the ε-regularity theory, and obtained bounds for 
‖∇nu‖Lp,∞

loc (R3×(0,T )) for p < 4
n+1 , n ∈ N, that are uniform up to the putative blow-up 

time of a smooth solution u. The latter result was improved to ‖∇nu‖
L

4
n+1 ,∞
loc (R3×(0,T ))

by 

Choi-Vasseur [7], who also obtained the estimates on fractional derivatives. Very recently, 
Vasseur and Yang [28] improved this result to ∇2u ∈ L

4
3 ,q

loc (R3×(0, T )) for q > 4
3 , and for 

any suitable weak solution. In this context, Theorem 1.2 is the first result concerned with 
the higher derivatives of solutions to Navier-Stokes equations with fractional dissipation.

The value of the exponent p = 2(3s − 1)/(n + 2s − 1) in Theorem 1.2 is determined 
by the energy scaling, which can be made precise by noting that the hypodissipative 
Navier-Stokes equation (1.1) is invariant under the scaling

uλ(x, t) := λ2s−1u(λx, λ2st), pλ(x, t) := λ4s−2p(λx, λ2st) (1.5)

for any λ > 0. The energy functional, defined by

E(u) := sup
t≥0

ˆ

R3

|u(t)|2dx + 2
∞̂

0

ˆ

R3

|Λsu|2dx dt,

of the rescaled velocity uλ for λ > 0 satisfies

E(uλ) = λ4s−5E(u).

2 We refer the reader to [22] for the definition of Leray-Hopf weak solutions as well as other notions of 
solutions.
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We say that a pivot quantity that is integrated over a cylinder has the energy scaling if it 
scales with the same exponent as the energy. For example |Λsu|2 has the energy scaling 
because

ˆ

Q1

|Λsuλ|2dx dt = λ4s−5
ˆ

Qλ

|Λsu|2dx dt,

where Qλ = Bλ× (−λ2s, 0). The exponent p in Theorem 1.2 is chosen for |∇nu|p to have 
the energy scaling.

Our proof of Theorem 1.2 is inspired by the approach of Vasseur [27], which is based 
on an ε-regularity theorem and Galilean invariance, that is the invariance of (1.1) under 
a transformation

uc(x, t) := c′(t) + u(x− c(t), t), pc(x, t) := p(x− c(t), t) (1.6)

for c(t) ∈ R3. To be more precise, suppose that we can obtain local boundedness of 
|∇nu(x, t)| under the smallness assumption only on the pivot quantities over Qλ(x, t) that 
obey the energy scaling. For example, suppose that −́

Qλ(x,t) |Λsu|2 ≤ ε2λp for p := 2(3s−1)
2s

implies boundedness of |∇nu(x, t)| on Qλ/2(x, t) if ε > 0 is sufficiently small. Then the 
Lebesgue measure of the super level set {(x, t) ∈ R3 × (λ2s,∞) :|∇u(x, t)| ≥ λ} can be 
estimated using Chebyshev’s inequality, provided that |Λsu|2 is integrable in the whole 
domain R3× (0, T ), which results in ∇u ∈ Lp,∞

loc . The point here is that the desired value 
of p comes from using the pivot quantities that are globally integrable and have the 
energy scaling. Such quantities will be called scale optimal. For instance the quantities 
|Λsu|2 and |(−Δ)sp| are scale optimal.3 Thus one would wish for an ε-regularity result 
that implies local boundedness of spatial derivatives of u from a smallness assumption 
that involves only scale optimal quantities.

Although such a result is currently unknown, using the Galilean invariance (1.6) it 
turns out sufficient to prove such ε-regularity result under the assumption that the 
velocity has zero ψ-mean, 

´
R3 u(t)ψdx = 0, for every t. Here, ψ is a function in C∞

c (B1)
with 

´
R3 ψ dx = 1, which we now fix (and it will remain fixed throughout the paper). 

Under such assumption, we obtain the following ε-regularity result.

Theorem 1.3 (Local regularity). Let s ∈ (3
4 , 1). There exists ε = ε(s, ψ) > 0 such that 

if (u, p) is a suitable weak solution of (1.1) such that 
´
u(x, t)ψ(x)dx = 0 for all t ∈

(−52s, 0) and

3 A suitable weak solution u satisfies the energy inequality (1.2) (see Section 2.4), which gives the global 
integrability of |Λsu|2. For the global integrability of (−Δ)sp, recall (1.4).
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ˆ

Q∗
5

ya|∇u∗|2dx dy dt +
0ˆ

−52s

ˆ

B5

ˆ

B5

|u(x, t) − u(y, t)|2
|x− y|3+2s dx dy dt

+
ˆ

Q5

(
(M|Λsu| 2

1+δ )1+δ + |Λ2s−1∇p| + |M4(Λ2s−1∇p)|
)

dx dt ≤ ε,

(1.7)

where δ := 2s
6−s , then

sup
Q 1

2

(|u| + |∇u| + |∇2u|) ≤ C0

for some positive constant C0 = C0(s).

Here, a := 1 − 2s and u∗ = u∗(x, y) denotes the Caffarelli-Silvestre extension of u, 
which gives rise to the extended cylinder Q∗

5 ⊂ R5 of Q5 and the gradient ∇ with respect 
to (x, y). We give the precise definitions in Section 2.2 below. We note that, in order 
to prove the above theorem, only local boundedness of u needs to be shown, as local 
boundedness of |∇u| and |∇2u| follows from Theorem 1.1.

An important ingredient of the proof of Theorem 1.3 is a new Poincaré-type inequality 
for the pressure function,

‖∇p− (∇p)ψ‖
L

6
5 (B 5

4
)
� ‖Λ2s−1∇p‖L1(B5) + ‖M4(Λ2s−1∇p)‖L1(B3), (1.8)

where (g)ψ :=
´
R3 gψ dx, which we develop in Lemma 5.3. Such inequality is necessary 

in the local regularity argument (see (5.8)) to control the pressure function using only 
scale-optimal quantities. As above, such inequality is also valid with the grand maximal 
function M4 replaced by the Hardy-Littlewood maximal function M, but in that case 
the global integrability would be lost, and so would be the scale-optimality of the local 
regularity result of Theorem 1.3. In fact, one could suspect that perhaps employing the 
smooth maximal function or the non-tangential maximal function would be sufficient to 
get around this difficulty. This has been demonstrated, for example, by Choi-Vasseur 
[7] whose application of the smooth maximal function allowed them to obtain the end-
point integrability exponent 4/3. In fact, it is also true of (1.8), for which we show (in 
Lemma 5.3) the stronger estimate with M4 replaced by the smooth maximal function.

The reason for the necessity to use of the grand maximal function M4 comes from 
our first result, Theorem 1.1, where it is needed to estimate the commutator involving 
the pressure function, [Λγ , φ]∇p (where γ ∈ (s, 1)). It is our most challenging estimate, 
and we present it in Lemma 6.12. Its difficulty comes from the fact that this commutator 
involves both the nonlocality caused by the pressure function p and the nonlocality of Λγ , 
and, as above, its estimate needs to be strong enough to involve only local information 
of a scale-optimal quantity. This is where the flexibility allowed by the grand maximal 
function becomes essential as, in some sense, it allows to control, in L1, a family of double 
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convolutions with uniform estimates (see (6.40) and Lemma 6.13). We discuss it in more 
detail below (6.38), but we point out that it is the main reason why we are able to prove 
a scale-optimal result of the form of Theorem 1.3. In other words, we show that one can 
obtain the endpoint integrability exponent p = 2(3s − 1)/(n + 2s − 1) in Theorem 1.2
thanks to the grand maximal function M4.

Furthermore, as a corollary of Theorem 1.3, we prove that the local regularity of 
suitable weak solutions is still valid if the zero ψ-mean condition is replaced by a smallness 
assumption on |u|3 + |p| 32 .

Corollary 1.4. There exists ε > 0 such that if a suitable weak solution (u, p) of (1.1)
satisfies

ˆ

Q∗
5

ya|∇u∗|2dX dt +
0ˆ

−52s

ˆ

B5

ˆ

B5

|u(x, t) − u(y, t)|2
|x− y|3+2s dx dy dt

+
ˆ

Q5

(
(M|Λsu| 2

1+δ )1+δ + |Λ2s−1∇p| + |M4(Λ2s−1∇p)| + |u|3 + |p| 32
)
≤ ε,

where δ := 2s
(6−s) . Then

sup
Q 1

2

(
|u| + |∇u| + |∇2u|

)
≤ C1

for some constant C1 > 0.

The corollary makes it possible to estimate the box-counting dimension of singular 
set, whose upper bound is consistent with a similar result in the hyperdissipative case [2, 
Corollary 1.4] that is concerned with Hölder continuity of solutions (regularity of higher 
derivatives in the hyperdissipative case remains an open problem).

Corollary 1.5 (The box-counting dimension). Let (u, p) be a suitable weak solution in 
R3 × (0, T ), and let

S :={(x, t) ∈ R3 × (0, T ) : some spatial derivative of u

is unbounded in any neighborhood of (x, t)}

denote the singular set of u. Then, for any t0 > 0, the box-counting dimension of the 
singular set satisfies

dB(S ∩ {t > t0}) ≤
1
3(15 − 2s− 8s2)

for every t0 ∈ (0, T ).
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Fig. 1. Sketch of the currently known estimates on the dimension of the singular set. The curve of the box-
counting bound is described by the polynomial (−8s2 −2s +15)/3. The dashed line represents the bound on 
the box-counting dimension of the singular set in space of any Leray-Hopf weak solutions (i.e. not necessarily 
suitable weak solutions) and is described by the polynomial (−16s2 + 16s + 5)/3. ([2,3,15,21,23,26,29])

In Fig. 1, we sketch the currently known estimates on the dimension of the singular 
set for the Navier-Stokes equations with different powers of dissipation.

Finally, let us briefly comment why we only consider s > 3/4. If s < 3/4 then it is not 
clear how one should interpret the local energy inequality (2.12), since the cubic term on 
the right-hand side can no longer be well-defined using the a priori estimates. (Note that 
the a priori estimates u ∈ L∞

t L2
x, Λsu ∈ L2

tL
2
x give only that u ∈ L2(2s+3)/3(R3× (0, T )); 

and 2(2s + 3)/3 > 3 iff s > 3/4.) In fact, the existence of suitable weak solutions is not 
clear if s ≤ 3/4, as one can no longer use compactness in L3. In the range s ∈ (3/4, 1)
we control ‖u‖L4(B5/4) using the L2 norm of the extension u∗ (see (5.11)) as well as the 
L1
tL

2
x norm of the pressure function (see (5.8) and (5.11)), which are crucial elements of 

the proof of Theorem 1.3.
The structure of the article is as follows. In Section 2, we first introduce notations 

and some preliminary concepts. Then, in Section 3, we prove Theorem 1.2 using the 
global estimate (1.4) on the pressure and the local regularity, Theorem 1.3, which are 
consequently proved in Section 4 and Sections 5, respectively. Section 5 is the central part 
of the paper, where we first prove a Poincaré-type inequality for the pressure function 
in Section 5.1, and then obtain the local boundedness of u in Section 5.2. Section 5.3
discusses the proof of Corollary 1.4 and Corollary 1.5. Section 6.1 is dedicated to the 
proof of Theorem 1.1 via the new bootstrapping scheme and Section 6.2 contains the 
required commutator estimates.

2. Preliminaries and notations

2.1. Notations

For any quantities A and B, we will write A � B if A ≤ CB for some positive constant 
C > 0. Similarly, we will write A � B if A ≥ CB and A ∼ B if A � B and A � B.
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We let Br(x) := {x′ ∈ R3 : |x′−x| < r} be the Euclidean ball in R3 centred at x with 
radius r > 0 and B∗

r (x) be its extension B∗
r (x) := Br(x) × [0, r) in R4. We denote the 

parabolic cylinder centred at (x, t) with radius r by Qr(x, t) := Br(x) × (t − r2, t] and its 
extension by Q∗

r(x, t) := B∗
r (x) × (t − r2, t]. For brevity, when the centres are origin, i.e., 

either x = 0 or (x, t) = (0, 0), we use the abbreviations Br, B∗
r , Qr, and Q∗

r , respectively.
Given a sequence {aj}, we use the sequence space lp with its norm (aj)lpj = (

∑
j |aj |p)

1
p

for p ∈ [1, ∞) and (aj)l∞j = supj |aj |. We denote the usual Lebesgue spaces by Lp(Ω), 
where Ω is a subset of either R3 or R3 ×R. When Ω is whole space R3 we simply write 
Lp ≡ Lp(R3) (and similarly for other function spaces) and ‖ ·‖Lp ≡ ‖ ·‖p. Given a cylinder 
Q = B × I ⊂ R3 × R we use the abbreviation Lp′

t Lp
x(Q) := Lp′(I; Lp(B)). Moreover, 

given a domain K, we denote the weak Lp-space (or the Lorentz space) by Lp,∞(K), 
with the norm

‖f‖Lp,∞(K) := inf
{
C > 0: |K ∩ {f > λ}| ≤ Cp

λp
for every λ > 0

}
.

We follow the usual definition of the Sobolev space W k,p(Ω) for integer k and p ∈ [1, ∞]. 
(As mentioned above, if Ω = R3 then we simply write W k,p := W k,p(R3).) We denote 
the collection of all smooth functions with the compact support in Ω by C∞

c (Ω). For 
brevity we omit the integral region if it is R3, i.e. we write 

´
fdx :=

´
R3 fdx. We denote 

the Lebesgue measure of a set E by |E| and we let (u)E denote the average of u over E, 
(u)E ≡ −́

E
u dx := 1

|E|
´
E
u dx.

We use the following the Fourier transform convention,

f̂(ξ) =
ˆ

f(x)e−ix·ξdx, f(x) = 1
(2π)3

ˆ
f̂(ξ)eix·ξdξ;

then f̂g(ξ) = 1
(2π)3

´
f̂(ξ − η)ĝ(η)dη. We follow the standard convention regarding the 

Littlewood-Paley operators: we let ρ(ξ) be a radial smooth function supported in B2
which is identically 1 on B1. For any integer j and distribution f in R3, we set

̂P≤jf(ξ) := ρ
(
2−jξ

)
f̂(ξ), ̂P>jf(ξ) :=

(
1 − ρ

(
2−jξ

))
f̂(ξ),

P̂jf(ξ) :=
(
ρ
(
2−jξ

)
− ρ

(
2−(j−1)ξ

))
f̂(ξ) =: �

(
2−jξ

)
f̂(ξ). (2.1)

2.2. Fractional Laplacian and its extension

We first introduce several characterizations of the fractional Laplacian. The fractional 
Laplacian (−Δ)s for s ∈ (0, 1) can be represented as

(−Δ)su(x) = Cs p.v.
ˆ

u(x) − u(y)
|x− y|3+2s dy (2.2)

for some normalization constant Cs, and for s ∈ (−3 , 0) as
2
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(−Δ)su(x) = Cs

ˆ
u(y)

|x− y|3−2s dy.

See [25] for the details. Moreover the fractional Laplacian for s ∈ (0, 1) can be charac-
terized using the Caffarelli-Silvestre [6] extension

u∗(x, y) :=
ˆ

P (x− z, y)u(z)dz, (2.3)

where P (x, y) := cs y
2s(|x|2 + |y|2)−(3+2s)

2 for some normalization constant cs > 0. It is 
a solution of the extension problem

{
∇ · (ya∇u∗) = 0, (x, y) ∈ R4

+

u∗(x, 0) = u(x)
(2.4)

where a := 1 − 2s and ∇ is the gradient with respect to (x, y). The fractional Laplacian 
can be recovered using the extension by the formula

(−Δ)su(x) = −Cs lim
y→0+

ya∂yu
∗(x, y) (2.5)

in the sense of distributions where Cs is a constant depending only on s. We note that we 
will sometimes use the same notation φ∗ to denote any extension to R4

+ of a function φ
defined on R3, but in such case, we will specify it. What is more, considering the energy 
functionals, we also have

ˆ

R4
+

ya|∇u∗|2dX =
ˆ

|Λsu|2dx, (2.6)

where we set X := (x, y). Moreover, the Caffarelli-Silvestre extension of rescaled solution 
uλ, defined as in (1.5), can be written as a rescaled extended solution,

(uλ)∗(x, y, t) = λ2s−1u∗(λx, λy, λ2st).

Furthermore, we introduce fractional Leibniz rules [16,12,17]: for α > 0, β1, β2 ≥ 0, 
β = β1 + β2 ∈ (0, 1),

‖Λα(fg)‖Lr �α,r,p1,p2,q1,q2 ‖Λαf‖Lp1‖g‖Lq1 + ‖f‖Lp2‖Λαg‖Lq2 , (2.7)

‖Λβ(fg) − gΛβf − fΛβg ‖Lr �β,β1,β2,r,p1,q1 ‖Λβ1f‖Lp1‖Λβ2g‖Lq1 (2.8)

provided that 1 ≤ r < ∞, and 1 < p1, p2, q1, q2 ≤ ∞ satisfying 1 = 1 + 1 = 1 + 1 ,
r p1 q1 p2 q2
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2.3. Sobolev-Slobodeckij space

In this subsection, we introduce fractional order Sobolev spaces. For a given Lipschitz 
domain Ω ⊂ R3, k ∈ N ∪ {0}, γ ∈ (0, 1), p ∈ [1, ∞) we define the Sobolev–Slobodeckij 
space

W k+γ,p(Ω)

:=

⎧⎨⎩f ∈ W k,p(Ω): ‖f‖p
Ẇk+γ,p(Ω) :=

ˆ

Ω

ˆ

Ω

|∇kf(x) −∇kf(y)|p
|x− y|3+γp

dx dy < +∞

⎫⎬⎭ .

We define the Sobolev-Slobodeckij space norm by

‖f‖Wγ,p(Ω) = ‖f‖Ẇγ,p(Ω) + ‖f‖Lp(Ω).

In case of p = 2, we also use the notation W γ,2 = Hγ and Ẇ γ,2 = Ḣγ .
When Ω = R3 and γ > 0, the Sobolev-Slobodeckij space is related to the Lp norm of 

the fractional derivatives,

‖f‖Ẇγ,p � ‖Λγf‖Lp + ‖f‖Lp for p ∈ [2,∞),

‖Λγf‖Lp � ‖f‖Wγ,p for p ∈ (1, 2],
(2.9)

see Theorem 5.5 in [24] for a proof. Furthermore, if p = 2 and 0 < γ < 1, then

‖f‖Ẇγ,2 ∼ ‖Λγf‖L2 , (2.10)

see, for example, in [8, Proposition 3.4] for a proof.

2.4. Suitable weak solutions

In this section we introduce the notion of a suitable weak solution to (1.1). We first 
define Leray-Hopf weak solutions.

Definition 2.1 (Leray-Hopf weak solution). Let u0 ∈ L2(R3) be divergence-free. We say 
that a function u is a weak solution of (1.1) with initial data u0 on R3 × (0, T ) if

(1) u belongs to the space

u ∈ L∞(0, T ;L2) ∩ L2(0, T ; Ḣs)

and is divergence free in the sense of distributions.
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(2) u satisfies (1.1) in a weak sense,

T̈

0

u · (∂tξ − (−Δ)sξ) + u⊗ u : ∇ξ dx dt = −
ˆ

u0 · ξ|t=0dx

for any divergence-free ξ ∈ C∞
c (R3 × [0, T )).

(3) u satisfies the strong energy inequality,

ˆ
|u(t)|2dx + 2

ẗ

t0

|Λsu|2dx dτ ≤
ˆ

|u(t0)|2dx

for almost all t0 ≥ 0 (including 0) and all t > t0.

Using the energy inequality it is clear that the initial data is achieved as the strong 
limit u(·, t) → u0 in L2 as t → 0+. Given u the corresponding pressure is given by the 
singular integral

p(x) :=
ˆ

R3

3∑
i,j=1

∂iuj(y)∂jui(y)
4π|x− y| dy, (2.11)

as in the case of classical Navier-Stokes equations.
We now define suitable weak solutions.

Definition 2.2 (Suitable weak solution). We say that a Leray-Hopf weak solution (u, p)
of (1.1) on R3 × (0, T ) is suitable if

(1) (u, p) satisfy (1.1) in the sense of distributions,
(2) for every ξ = ξ(x, y, t) ∈ C∞

c (R4 × (0, T ); [0, ∞)), the local energy inequality

ˆ
|u(t)|2ξ(t)|y=0dx + 2Cs

tˆ

t0

ˆ

R4
+

ya|∇u∗|2ξdX dτ

≤
ˆ

|u(t0)|2ξ(t0)|y=0dx + Cs

tˆ

t0

ˆ

R4
+

|u∗|2div(ya∇ξ)dX dτ

+
ẗ

t0

(u · ∇ξ|y=0)
(
2p + |u|2

)
dx dτ

+
ẗ

|u|2
(
∂tξ|y=0 + Cs lim

y→0+
ya∂yξ

)
dx dτ (2.12)
t0
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holds for all 0 < t0 < t < T (recall a := 1 − 2s), where div denotes the divergence 
operator with respect to X = (x, y) and Cs is defined as in (2.5).

(Analogously one can define a suitable weak solution on any open time interval.) 
As mentioned in the introduction, the existence of a suitable weak solution to (1.1) on 
R3 × (0, T ) has been obtained by [26, Theorem 4.1] for any divergence-free initial data 
u0 ∈ L2. The proof is based on dissipative regularization.

We note that any suitable weak solution (u, p) defined on R3 × (0, T ) satisfies u ∈
Lr(0, T ; Lq) and p ∈ Lr/2(0, T ; Lq/2) for any r, q ∈ [2, ∞] × [2, 6

3−2s ] with

2s
r

+ 3
q

= 3
2 .

This follows from interpolation and the Calderón-Zygmund estimate. In particular, u ∈
L3(R3 × (0, T )) and p ∈ L3/2(R3 × (0, T )), so that the second last integral in the local 
energy inequality is well-defined.

2.5. Poincaré inequality

Here we introduce two Poincaré inequalities that involve the Caffarelli-Silvestre ex-
tension.

Lemma 2.3 (Poincaré inequality using the extension). If u satisfies 
´
u(x)φ(x)dx = 0 for 

some non-zero smooth cut-off φ supported in B1, then it satisfies

‖u‖
L

6
3−2s (B1)

� ‖y a
2 ∇u∗‖L2(B∗

2 )

Remark 2.4. The domains B1 and B∗
2 can be easily replaced by Br and B∗

R any r < R; 
a suitable factor involving r and R then appears to respect the scaling of the inequality.

Proof. We note that we have the Poincaré-type inequality

‖u− (u)B1‖L 6
3−2s (B1)

� ‖y a
2 ∇u∗‖L2(B∗

2 ), (2.13)

which was introduced in [26, Proposition 2.2]. Then the desired estimate follows from

‖(u)B1‖L 6
3−2s (B1)

∼ |(u)B1 | =
∣∣∣∣(u)B1 −

1
Aφ

ˆ
uφ dx′

∣∣∣∣ =
∣∣∣∣ 1
Aφ

ˆ
(u− (u)B1)φ dx′

∣∣∣∣
� ‖u− (u)B1‖L 6

3−2s (B1)
� ‖y a

2 ∇u∗‖L2(B∗
2 ), (2.14)

where Aφ :=
´
φ(x)dx. �
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We will also use the weighted Poincaré inequality
ˆ

B∗
1

ya|u∗ − (u∗)B∗
1 |

2 �
ˆ

B∗
1

ya|∇u∗|2, (2.15)

where (u∗)B∗
1

:= |B∗
1 |−1 ´

B∗
1
yau∗, proved by [9] (see also (2.10) in [26]).

We will later show (in Section 5.1) another Poincaré-type inequality, which will use 
the smooth maximal function (see (2.17) below) instead of the extension.

2.6. The Hardy space and the grand maximal function

The Hardy space H1 is defined by

H1(R3) := {f ∈ L1(R3) : Rf ∈ L1(R3)}

with the Hardy norm

‖f‖H1 := ‖f‖1 + ‖Rf‖1,

where R := Λ−1∇ is the Riesz transform.
The Hardy norm can be characterized in various ways; first of all, using the Littlewood-

Paley projection operator Pj , we have that

‖f‖H1 ∼ ‖(Pjf)l2j ‖1, (2.16)

see (2.1.1) in [13]. Moreover, it can be characterized using the grand maximal function. 
To this end we first consider several types of maximal functions. To be more precise, the 
Hardy-Littlewood maximal function is defined by

Mf(x) := sup
r>0

−
ˆ

Br(x)

|f(y)|dy.

Given Ψ ∈ S(R3) we denote the smooth maximal function of f with respect of Ψ by

M(f ; Ψ)(x) := sup
t>0

|Ψt ∗ f(x)| , (2.17)

where Ψt(x) := t−3Ψ(t−1x). Furthermore, we denote the non-tangential maximal func-
tion with aperture 1 with respect to Ψ by

M∗
1(f ; Ψ)(x) := sup

t>0, |y−x|≤t

|Ψt ∗ f(y)| .

The grand maximal function is defined as
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MN (f)(x) := sup

⎧⎨⎩M∗
1(f ; Ψ)(x) : Ψ ∈ S,

ˆ
(1 + |x|)N

∑
|α|≤N+1

|∂αΨ(x)|dx ≤ 1

⎫⎬⎭ ,

where N ≥ 4. By definition, we clearly have

M(f,Ψ) ≤ M∗
1(f ; Ψ) for all Ψ ∈ S.

Using the grand maximal function, the Hardy norm can be characterized as

‖f‖H1 ∼ ‖M4(f)‖1. (2.18)

For a proof we refer the reader to [13, Theorem 2.1.4].
In particular, we have

‖M(f ; Ψ)‖1 �Ψ ‖f‖H1 (2.19)

for any given Ψ ∈ S. The benefit of the grand maximal function is that it is bounded 
as an operator H1(R3) → L1(R3), while the Hardy-Littlewood maximal function is not. 
Furthermore, (2.18) and (1.4) imply that

‖M4(Λ2s−1∇p)‖1 � ‖R(−Δ)sp‖H1 � ‖R2(−Δ)sp‖1 � ‖Λsu‖2
2 � C(u0) (2.20)

for any weak solution u to (1.1).
We conclude this section by introducing several properties [17] of the Hardy-

Littlewood maximal function.

Lemma 2.5. Suppose f ∈ S ′(R3) and supp(f̂) ⊂ Br for some r > 0. Then

sup
z∈R3

|f(x− z)|
(1 + r|z|)3 � M|f |(x) for x ∈ R3.

Lemma 2.6. For any Ψ ∈ S and f ∈ L1
loc(R3), we have

M(f ; Ψ)(x) �Ψ Mf(x), for x ∈ R3. (2.21)

Proof. For every t > 0, we let Ψt(x) := t−3Ψ(t−1x) and note that

|Ψt ∗ f(x)| ≤ t−3

⎛⎜⎝ ˆ

|y|≤t

+
∑
l≥0

ˆ

2lt<|y|≤2l+1t

⎞⎟⎠ |Ψ(t−1y)||f(x− y)|dy

≤ ‖Ψ‖∞t−3
ˆ

|f(x− y)|dy

|y|≤t
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+ sup
x′

|x′|4|Ψ(x′)|t−3
∑
l≥0

ˆ

2lt<|y|≤2l+1t

1
t−4|y|4 |f(x− y)|dy

�Ψ −
ˆ

|y|≤t

|f(x− y)|dy +
∑
l≥0

2−l −
ˆ

|y|≤2l+1t

|f(x− y)|dy

� Mf(x). �
2.7. Parabolic regularity

Here we mention several facts regarding regularity of solutions to the initial value 
problem {

∂tv + (−Δ)sv = g R3 × (0, T )
v|t=0 = 0,

(2.22)

where T ∈ (0, ∞) and g is given. We let e−t(−Δ)s denote that fractional heat semigroup 

define in the Fourier space by e−t(−Δ)s ĝ(ξ) = e−t|ξ|2s ĝ(ξ). The fractional heat semigroup 
satisfies the following Lp-Lp estimate.

Lemma 2.7. For any s > 0, α ≤ α, and 1 ≤ p ≤ p ≤ ∞, we have

‖Λαe−t(−Δ)sf‖p � t−
α−α
2s −σ‖Λαf‖p

where σ = 3
2s

(
1
p − 1

p

)
.

We refer the reader to Lemma 2.2 in [30] for a proof. The lemma shows that if v is 
defined by the Duhamel formula

v :=
tˆ

0

e−(t−τ)(−Δ)sg(x, τ)dτ, (2.23)

then

‖Λαv‖Lr(0,T ;Lp) � ‖Λαg‖Lr(0,T ;Lp) (2.24)

for any T > 0, provided that 1 ≤ r ≤ r̄ ≤ ∞ satisfies

α− α

2s + σ +
(

1
r
− 1

r

)
< 1.

Moreover, in the case of σ = 0 (i.e. p = p) and α = α, we have
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‖v‖L∞(0,T ;Lp) � ‖g‖L1(0,T ;Lp) (2.25)

for every T > 0. Furthermore, we note that v defined by (2.23) for g ∈ Lp(R3 × (0, T )), 
where p ∈ [1, ∞), is the unique distributional solution to (2.22) in the space Lr(0, T ; Lp)
for any r, p ∈ [1, ∞], that is if w ∈ Lr(0, T ; Lp) and

T̂

0

w(φt − (−Δ)sφ) = 0 (2.26)

for every φ ∈ C∞
c (R3 × [0, T )) then w = 0, which can be proved in the same way as 

Theorem 4.4.2 in [11].

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. First, we denote by

uλ(x, t) :=
ˆ

u(x + λy, t)ψ(y)dy

the mollified velocity, where ψ is defined as in Theorem 1.3. We now fix (x, t) ∈ R3 ×
((5λ)2s, T ). We define the flow map Φt(x, τ) corresponding to the mollified velocity uλ, 
starting from a point x at time t;{

∂τΦt(x, τ) = uλ(Φt(x, τ), τ), τ ∈ (t− 52s, t].
Φt(x, t) = x,

The flow map Φt(x, τ) is well defined (since uλ is smooth in space, uniformly in time) 
and | detDΦt(·, τ)| = 1 at each time τ ∈ (t − 52s, t] (as div uλ = 0). We define vλ, qλ by 
applying the Galilean transformation

vλ(z, τ) := λ2s−1u(Φt(x, t + λ2sτ) + λz, t + λ2sτ)

− λ2s−1uλ(Φt(x, t + λ2sτ), t + λ2sτ),

qλ(z, w, τ) := λ4s−2p(Φt(x, t + λ2sτ) + λz, t + λ2sτ)

+ λ2s−1z∂τ (uλ(Φt(x, t + λ2sτ), t + λ2sτ))

and we define the extension

v∗λ(z, w, τ) := λ2s−1u∗(Φt(x, t + λ2sτ) + λz, λw, t + λ2sτ)

− λ2s−1
ˆ

u∗(Φt(x, t + λ2sτ) + λz′, λw, t + λ2sτ)ψ(z′)dz′,
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where u∗ is the Caffarelli-Silvestre’s extension of u (recall (2.3)). By the Galilean invari-
ance of (1.1) we can easily see that (vλ, qλ) also solves (1.1) on R3 × (−52s, 0). Indeed, 
the purpose of the construction (vλ, qλ) comes from the mean-zero property of vλ;

ˆ
vλ(z, τ)ψ(z)dz = 0, ∀τ ∈ (−52s, 0).

Now, we set

F (x, t) := (M|Λsu(x, t)| 2
1+δ )1+δ + |Λ2s−1∇p(x, t)| + |M4(Λ2s−1∇p)(x, t)|

G(x, y, t) := ya|∇u∗(x, y, t)|2
(3.1)

(recall δ := 2s/(6 − s)), and

Hλ(x, t) :=
ˆ

Q5λ(0,t)

F (Φt(x, τ) + z, τ)dz dτ +
ˆ

Q∗
5λ(0,t)

G(Φt(x, τ) + z, y, τ)dz dy dτ

+
tˆ

t−(5λ)2s

ˆ

B5λ

ˆ

B5λ

|u(Φt(x, τ) + z, τ) − u(Φt(x, τ) + z′, τ)|2
|z − z′|3+2s dz dz′ dτ.

For each t ∈ ((5λ)2s, T ) we define

Ωλ
ε (t) := {x ∈ R3 : Hλ(x, t) ≤ ελ5−4s}, (3.2)

where ε is a sufficiently small constant given by Theorem 1.3. By a simple change of the 
variables, we obtain the following lemma.

Lemma 3.1. Given λ > 0 and t ∈ ((5λ)2s, T ), let x ∈ Ωλ
ε (t). Then (vλ, qλ) =

(vλ,x,t, pλ,x,t) and the extension v∗λ satisfy (1.7);

ˆ

Q∗
5

wa|∇v∗λ|2dZdτ +
0ˆ

−52s

ˆ

B5

ˆ

B5

|vλ(z, τ) − vλ(z′, τ)|2
|z − z′|3+2s dzdz′dτ

+
ˆ

Q5

(M|Λsvλ|
2

1+δ )1+δ + |Λ2s−1∇qλ| + |M4(Λ2s−1∇qλ)|dZdτ ≤ ε.

(3.3)

Proof. The claim follows by applying the change of variables (λz, λw, t +λ2sτ) �→ (z, w, τ)
to the left hand side of (3.3) and then using the definition (3.2). �

As a consequence of Lemma 3.1 and Theorem 1.3, we obtain

sup
Q 1

2

(
|∇vλ| + |∇2vλ|

)
≤ C0
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for some C0 > 0. In particular, using (Φt(x, t + λ2sτ) + λz, t + λ2sτ)|(z,τ)=(0,0) =
(Φt(x, t), t) = (x, t), we have

λ2s|∇u(x, t)| + λ2s+1|∇2u(x, t)| ≤ C0,

so that {
x : |∇2u(x, t)| ≥ C0

λ2s+1

}
,

{
x : |∇u(x, t)| ≥ C0

λ2s

}
⊂ (Ωλ

ε (t))c. (3.4)

We now estimate |(Ωλ
ε (t))c|.

Lemma 3.2. For given λ > 0 and t ∈ ((5λ)2s, T ), the set Ωλ
ε (t) (defined by (3.2)) satisfies

|(Ωλ
ε (t))c| � λ6s−2

ε
−
tˆ

t−(5λ)2s

ˆ
|Λsu(x, τ)|2dx dτ.

Proof. The claim follows from Chebyshev’s inequality and the fact that

ˆ

R4
+

ya|∇u∗|2dX +
¨ |u(x, t) − u(x′, t)|2

|x− x′|3+2s dxdx′

+
ˆ

(M|Λsu| 2
1+δ )1+δ + |Λ2s−1∇p| + |M4(Λ2s−1∇p)|dx �

ˆ
|Λsu(x, t)|2dx,

(3.5)

which we verify below. Indeed, assuming (3.5),

ˆ
Hλ(x, t)dx

=
ˆ ⎡⎢⎣ ˆ

Q5λ(0,t)

F (Φt(x, τ) + z, τ)dz dτ +
ˆ

Q∗
5λ(0,t)

G(Φt(x, τ) + z, y, τ)dz dy dτ

⎤⎥⎦dx

+
ˆ tˆ

t−(5λ)2s

ˆ

B5λ

ˆ

B5λ

|u(Φt(x, τ) + z, τ) − u(Φt(x, τ) + z′, τ)|2
|z − z′|3+2s dz dz′ dτ dx

≤
¨

Q5λ(0,t)

F (x + z, τ)dx dz dτ +
¨

Q∗
5λ(0,t)

G(x + z, y, τ)dx dz dy dτ

+
tˆ

2s

ˆ ˆ ˆ |u(x + z, τ) − u(x + z′, τ)|2
|z − z′|3+2s dx dz′ dz dτ
t−(5λ) B5λ
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= |B5λ|

⎡⎢⎣ tˆ

t−(5λ)2s

⎛⎜⎝ˆ
F (x, τ)dx +

ˆ

R4
+

G(x, y, τ)dX +
¨ |u(x, τ) − u(x′, τ)|2

|x− x′|3+2s dxdx′

⎞⎟⎠ dτ

⎤⎥⎦

� (5λ)3
ẗ

t−(5λ)2s

|Λsu(x, τ)|2dx dτ ,

where the first inequality follows from Tonelli’s theorem and the change of variables 
Φt(x, τ) �→ x, the second equality follows from the change of variables x + z �→ x in the 
first two terms and z′ + x �→ x′ and x + z �→ x in the last term, and the last inequality 
follows from (3.5). This together with Chebyshev’s inequality give

|(Ωλ
ε (t))c| = |{x : Hλ(x, t) ≥ ελ5−4s}|

≤ λ4s−5

ε

ˆ
Hλ(x, t)dx � λ6s−2

ε
−
tˆ

t−(5λ)2s

ˆ
|Λsu(x, τ)|2dx dτ,

as required.
It remains to verify (3.5). Using the equivalence between norms, (2.6) and (2.10), we 

have
ˆ

R4
+

ya|∇u∗|2dX +
¨ |u(x, t) − u(x′, t)|2

|x− x′|3+2s dx dx′ �
ˆ

|Λsu|2dx

Since the maximal operator M is bounded on Lq(R3)-space for any 1 < q < ∞, we take 
q := 1 + δ to obtain

ˆ
(M|Λsu| 2

1+δ )1+δdx �
ˆ

(|Λsu| 2
1+δ )1+δdx =

ˆ
|Λsu|2dx.

On the other hand, using the characterization (2.18) and the definition of the Hardy 
norm, we have

ˆ
|M4(Λ2s−1∇p)|dx � ‖Λ2s−1∇p‖1 + ‖R(Λ2s−1∇p)‖1

Furthermore, writing Λ2s−1∇p = R(−Δ)sp and applying (1.4) (see Proposition 4.2 be-
low), we get

ˆ
|Λ2s−1∇p| + |M4(Λ2s−1∇p)|dx �

2∑
n=1

‖Rn(−Δ)sp‖1 � ‖Λsu‖2
2, (3.6)

which concludes the proof of (3.5) �
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We now verify that Theorem 1.2 follows from (3.4) and Lemma 3.2. For any λ > 0
and t ∈ ((5λ)2s, T ), we have

∣∣∣∣{x ∈ K : |∇2u(x, t)| ≥ C0

λ2s+1

}∣∣∣∣ ≤ |(Ωλ
ε (t))c| �s λ

6s−2 −
tˆ

t−(5λ)2s

ˆ
|Λsu(x, τ)|2dxdτ

� λ6s−2M(‖Λsu‖2
21(0,T ))(t)

and analogously∣∣∣∣{x ∈ K : |∇u(x, t)| ≥ C0

λ2s

}∣∣∣∣ � λ6s−2M(‖Λsu‖2
21(0,T ))(t),

where 1E denotes the characteristic function of a set E ⊂ R. In other words, by letting 
R := C0λ

−2s−(n−1) (n = 1, 2) we obtain

|{x ∈ K : |∇nu(x, t)| ≥ R}| � R−pM(‖Λsu‖2
L2(R3)1(0,T ))(t) for Rp > c0t

− 2(3s−1)
2s ,

where n = 1, 2 and c0 := Cp
052(3s−1) (recall that p = 2(3s−1)

n+2s−1 ). Thus

Rp |{x ∈ K : |∇nu(x, t)| ≥ R}| ≤
{
Rp|K| Rp ≤ c0t

− 2(3s−1)
2s ,

CM(‖Λsu‖2
21(0,T ))(t), Rp > c0t

− 2(3s−1)
2s

for some constant C > 0, and hence

‖∇nu(·, t)‖pLp,∞(K) � max
(

|K|
t

2(3s−1)
2s

,M(‖Λsu‖2
21(0,T ))(t)

)
≤ M(‖Λsu‖2

21(0,T ))(t) + |K|
t3−

1
s

.

Including time dependence this gives

‖∇nu‖pLp,∞(((t0,T )×K) � ‖M(‖Λsu‖2
21(0,T ))‖L1,∞

t (R)

+ |K|
t
2− 1

s
0

� ‖Λsu‖2
L2((0,T )×R3) + |K|

t
2− 1

s
0

� ‖u0‖2 + |K|
t
2− 1

s
0

,

as required, where we used the fact that the maximal operator M : L1(R) → L1,∞(R) is 
bounded in the second inequality, as well as the energy inequality (1.2) in the last step.
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4. Global integrability of the pressure

In this section we show (in Proposition 4.2) that for each integer n ≥ 0

‖Rn(−Δ)sp‖1 ≤ cs,n‖Λsu‖2
2,

which we have used above in (3.6).
We first introduce some decay estimate, required in the proof of Proposition 4.2.

Lemma 4.1. Let g ∈ S(R3). Then for any n ∈ N ∪ {0} and s > 0,

|RnΛ2sg(x)| �g,s,η,n
1

(1 + |x|)3+η

for every η ∈ (0, 2s), x ∈ R3, where R is the Riesz transform defined by R̂g(ξ) = −iξ
|ξ| ĝ(ξ).

Proof. The case n = 0 follows from the pointwise decay estimate proved in [12, Lemma 1],

|Λ2sg(x)| �g,s
1

(1 + |x|)3+2s . (4.1)

For n ≥ 1 the proof follows by induction: we fix n ∈ N and η ∈ (0, 2s), and define 
ηi := 2s − (2s−η)i

n for i = 0, 1, · · · , n. In particular, η0 = 2s, ηn = η, and ηi+1 < ηi. We 
claim that for each i, we have

|RiΛ2sg(x)| �g,s,i
1

(1 + |x|)3+ηi
. (4.2)

The base step (when i = 0) holds true by (4.1). Assume (4.2) holds for i. We will write

f := RiΛ2sg

for brevity. We first recall the integral expression of the Riesz transform of f ,

Rf(x) ∼ p.v.
ˆ

f(y) x− y

|x− y|4 dy. (4.3)

In order to estimate |Rf(x)|, we split the integral region in (4.3) into three parts by 
writing

ˆ
=

ˆ

|y|≤|x|/2

+
ˆ

|y−x|≤|x|/2

+
ˆ

|y|≥|x|/2
|y−x|≥|x|/2

.

As for the first part,
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∣∣∣∣∣∣∣p.v.
ˆ

|y|≤|x|/2

f(y) x− y

|x− y|4 dy

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣p.v.
ˆ

|y|≤|x|/2

f(y)
(

x− y

|x− y|4 − x

|x|4
)

dy

∣∣∣∣∣∣∣+
1

|x|3
ˆ

|y|≤|x|/2

|f(y)|dy

� 1
|x|3

ˆ

|y|≤|x|/2

|f(y)|dy

�g,s,i
1

|x|3
ˆ

|y|≤|x|/2

1
(1 + |y|)3+ηi

dy �i
1

|x|3+ηi+1
,

where we used the fact that

∣∣∣∣ x− y

|x− y|4 − x

|x|4

∣∣∣∣ �
1ˆ

0

|y|
|x− θy|4 dθ � |y|

|x|4 � 1
|x|3 for |y| ≤ |x|

2

(since |x − θy| ≥ |x| − |y| ≥ |x|
2 ) in the second inequality, and (4.2) in the last line.

As for the second part,∣∣∣∣∣∣∣∣∣
ˆ

|y|≥|x|/2
|y−x|≥|x|/2

f(y) xi − yi
|x− y|4 dy

∣∣∣∣∣∣∣∣∣ � 1
|x|3

ˆ

|y|≥|x|/2
|y−x|≥|x|/2

|f(y)|dy

� 1
|x|3+ηi+1

ˆ
|f(y)||y|ηi+1dy �i

1
|x|3+ηi+1

.

As for the last part,∣∣∣∣∣∣∣p.v
ˆ

|y−x|≤|x|/2

f(y) xi − yi
|x− y|4 dy

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣p.v
ˆ

|y−x|≤|x|/2

(f(x) − f(y)) xi − yi
|x− y|4 dy

∣∣∣∣∣∣∣
≤

ˆ

|y−x|≤|x|/2

|f(x) − f(y)|θ
|x− y|θ

(|f(x)| + |f(y)|)1−θ

|x− y|(3−θ) dy

� ‖∇f‖θ∞
|x|(3+ηi)(1−θ)

ˆ

|y−x|≤|x|/2

|x− y|−(3−θ)dy

�θ
1

|x|(3+ηi)(1−θ)−θ
= 1

|x|3+ηi+1
,
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where θ := 2s−η
n(2+3ηi) ∈ (0, 1). Indeed, the third line follows from the inductive assumption 

and the fact that |y| ≥ |x| − |x − y| ≥ |x|/2, and the last line is obtained by noting that

‖∇f‖∞ ≤
ˆ

|ξ|1+2s|ĝ(ξ)|dξ �
ˆ

|ξ|≤1

|ξ|1+2s|ĝ(ξ)|dξ

+
ˆ

|ξ|≥1

|ξ|1+2s

(1 + |ξ|)7 (1 + |ξ|)7|ĝ(ξ)|dξ �g 1.

Therefore, since a similar calculation gives Rf ∈ L∞, the decay estimate ∼ |x|3+ηi+1 for 
each of the parts above give (4.2) for i + 1. �
Proposition 4.2 (Global estimate on (−Δ)sp). Let s ∈ (0, 1). Suppose that f and g are 
divergence-free. Then, for any n ∈ N ∪ {0}, it satisfies

‖RnΛ2s−2 div div(f ⊗ g)‖1 �s,n ‖Λsf‖2‖Λsg‖2,

where R is the Riesz transform defined by R̂f(ξ) = −iξ
|ξ| f̂(ξ). In particular, if p is a 

solution to (−Δ)p = div div(u ⊗ u), we have a global bound of (−Δ)sp,

‖Rn(−Δ)sp‖1 �s,n ‖Λsu‖2
2.

Proof. Note that when F and G are divergence-free, we have

3∑
l,k=1

Λ2s−2∂lk(F lGk) =
3∑

l,k=1

[Λ2s−2∂lk, F
l]Gk =

3∑
l,k=1

[Λ2s−2∂lk, G
k]F l,

where [A, B] = AB−BA and F l and Gk are lth and kth components of vector functions 
F and G, respectively. Using this together with Bony’s paraproduct decomposition, we 
get

Λ2s−2 div div(f⊗g) =
3∑

l,k=1

∑
j∈Z

Λ2s−2∂lkf
l
j g̃

k
j +[Λ2s−2∂lk, f

l
≤j−3]gkj +[Λ2s−2∂lk, g

k
≤j−3]f l

j ,

where hj := Pjh, h≤j := P≤2jh, and h̃j := P̃jh =
∑j+2

k=j−2 P2jh. For convenience, we 
drop the indices l and k in f l and gk.

Step 1. We estimate the diagonal piece, that is we show that

‖Rn
∑
l,k

∑
j

Λ2s−2∂lk(fj g̃j)‖1 � ‖Λsf‖2‖Λsg‖2. (4.4)

We consider the case n = 0 first. Let χ ∈ C∞
0 (B25) be such that χ = 1 on B24 . We 

have from Fourier series expansion
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zkzl
|z|2−2sχ(z) =

∑
m∈Z3

χm,se
iπm· z

25 , (4.5)

where χm,s = χl,k
m,s satisfies

|χm,s| ∼
∣∣∣∣ˆ zlzk

|z|2−2sχ(z)e−iπm·z/25
dz
∣∣∣∣ ∼ ∣∣∣ (Λ2s−2∂lkχ̂)

(πm
25

)∣∣∣ �s (1 + |m|)−3−s,

(4.6)

where the last inequality follows from Lemma 4.1 (applied with η := s). Then for each 
j ∈ Z

− Λ2s−2∂lk(fj g̃j)(x)

= 1
(2π)6

¨ (
(ξl + ηl)(ξk + ηk)

|ξ + η|2−2s

)
f̂j(ξ)̂̃gj(η)ei(ξ+η)·xdξdη

= 22js

(2π)6

¨ (
2−2js (ξl + ηl)(ξk + ηk)

|ξ + η|2−2s

)
χ(2−j(ξ + η))f̂j(ξ)̂̃gj(η)ei(ξ+η)·xdξdη

= 22js

(2π)6
∑

m∈Z3

χm,s

ˆ
f̂j(ξ)eiξ·xeiπm· 2

−jξ

25 dξ
ˆ ̂̃gj(η)eiη·xeiπm· 2

−jη

25 dη

= 22js
∑

m∈Z3

χm,sP
m
j fP̃m

j g, (4.7)

where we set ̂Pm
j f(ξ) := �(2−jξ)f̂(ξ)eiπm· 2

−jξ

25 (� is defined as in (2.1)). Indeed, the 
second line follows from the facts that |ξ| ≤ 2j+1 and |η| ≤ 2j+3 (so that |ξ + η| ≤
2j+1 + 2j+3 ≤ 2j+4, which gives χ(2−j(ξ + η)) = 1). Therefore we have

‖
∑
j

Λ2s−2∂lk(fj g̃j)‖1 ≤
∑

m∈Z3

|χm,s| ‖(2jsPm
j f)l2j ‖2‖(2jsP̃m

j g)l2j ‖2

�s ‖Λsf‖2‖Λsg‖2
∑
m∈Z

log2(10 + |m|)
(1 + |m|)3+s

�s ‖Λsf‖2‖Λsg‖2,

where the second line follows from (4.6) and the fact that Pm
j is bounded on L2(R3, l2)

with constant C log(10 + |m|) (see [17]).
The estimate (4.4) for n ∈ N follows from the same argument as above. Indeed, with 

additional Riesz transform Rn the definition (4.5) of χm,s will include additional factor of 
(−iz|z|−1)⊗n, which will then also appear in the integrands in (4.7) and (4.6). However, 
since Lemma 4.1 gives the same bound (1 + |m|)−3−s for |χm,s| up to constant multiple, 
(4.4) follows in the same way for all n ∈ N.
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Step 2. We estimate the low-high and high-low pieces, by showing that

‖
∑
j

Rn[Λ2s−2∂lk, f≤j−3]gj‖1 �s ‖Λsf‖2‖Λsg‖2. (4.8)

(Then one can obtain the same bound for the high-low piece.) This together with Step 
1 proves the lemma.

Consider the case n = 0, 1 first. For each j ∈ Z, we have

|
[
Λ2s−2∂lk, f≤j−3

]
gj(x)|

≤ 2j(3+2s)
ˆ

|ψ(2jy)(f≤j−3(x− y) − f≤j−3(x))gj(x− y)|dy

≤ 2j(3+2s)
ˆ

|ψ(2jy)| max
θ∈[0,1]

|∇f≤j−3(x + θy)| |y| |gj(x− y)|dy

� 2j(3+2s)M(∇f≤j−3)(x)M(gj)(x)
ˆ

|ψ(2jy)||y|(1 + 2j |y|)6dy

� 2j(−1+2s)M(∇f≤j−3)(x)M(gj)(x),

where ψ̂(ξ) := ξlξk|ξ|2s−2�̃(ξ) (here �̃(ξ) :=
∑

|j|≤3 �(2−jξ) and � is defined as in (2.1)) 
and we used Lemma 2.5 in the third line.

Therefore, using the characterization (2.16) of the Hardy norm, we obtain

‖
∑
j

[Λ2s−2∂lk, f≤j−3]gj‖H1

∼ ‖(Pm

∑
j

[Λ2s−2∂lk, f≤j−3]gj)l2m‖1

= ‖(Pm

m+2∑
j=m−2

P̃j [Λ2s−2∂lk, f≤j−3]gj‖1 � ‖
(
[Λ2s−2∂lk, f≤j−3]gj

)
l2j
‖1

� ‖ M(sup
j

(2j(−1+s)|∇f≤j−3|))‖2‖(M(2jsgj))l2j ‖2

� ‖ sup
j

(2j(−1+s)|∇f≤j−3|)‖2‖Λsg‖2 � ‖Λsf‖2‖Λsg‖2

� ‖Λsu‖2
2,

where the fifth line follows from ‖(M(2jsgj))l2j ‖2 = (‖M(2jsgj)‖2)l2j � ‖(2jsgj)l2j ‖2 �
‖Λsg‖2, and the second last inequality follows from

|2j(s−1)∇f≤j−3(x)|

= 2j(s−1)|∇Λ−sP≤j−3Λsf(x)| ≤ 2j(s−1)
∑

|∇Λ−sPkΛsf(x)|

k≤j−3
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= 2j(s−1)
∑

k≤j−3

2k(1−s)|�k ∗ (Λsf)(x)| � 2j(s−1)
∑

k≤j−3

2k(1−s)M(Λsf ; �)(x)

� M(Λsf)(x),

where �k(z) := 2−3k�(2−kx), �̂(ξ) := ξ|ξ|−s(ρ(ξ) − ρ(2ξ)), and we have used (2.21) in 
the last line. It then follows that ‖(2j(s−1)∇f≤j−3)l∞‖2 � ‖M(Λsf)‖2 � ‖Λsf‖2, as 
required.
In the case of the integer n ≥ 2, we can obtain the same estimate (4.8) simply by 
modifying the definition of ψ̂ to include the additional factor of (−iξ|ξ|−1)⊗n. Then we 
still have ψ ∈ S, and so the rest of the calculation remains the same. �
5. Local study

In this section, we prove Theorem 1.3, which gives a local regularity condition in terms 
of scale-optimal quantities for a suitable weak solution of (1.1) with zero ψ-mean. For 
the reader’s convenience, we restate Theorem 1.3.

Theorem 5.1 (Local regularity). Let s ∈ (3
4 , 1). There exists ε = ε(s, ψ) > 0 such that 

if (u, p) is a suitable weak solution of (1.1) such that 
´
u(x, t)ψ(x)dx = 0 for all t ∈

(−52s, 0) and

ˆ

Q∗
5

ya|∇u∗|2dx dy dt +
0ˆ

−52s

ˆ

B5

ˆ

B5

|u(x, t) − u(y, t)|2
|x− y|3+2s dx dy dt

+
ˆ

Q5

(
(M|Λsu| 2

1+δ )1+δ + |Λ2s−1∇p| + |M4(Λ2s−1∇p)|
)

dx dt ≤ ε,

(5.1)

where δ := 2s
6−s , then

sup
Q 1

2

(|u| + |∇u| + |∇2u|) ≤ C0

for some positive constant C0 = C0(s).

In the statement, ε > 0 is determined by Proposition 5.7.

Remark 5.2. The conclusion of the theorem could be easily extended to the boundedness 
of |∇ku| on Q 1

2
for any k ≥ 0, see the comment below Theorem 1.1. Indeed, the proof of 

Theorem 5.1 is based on a bootstrapping argument that could be continued for higher 
derivatives. However, we only cover the case k = 2 for the purposes of our main a priori 
bound, Theorem 1.2.
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5.1. A Poincaré-type inequality for the pressure function

In this subsection, we discuss a Poincaré-type inequality, which will be used to estimate 
the pressure (applied with g := ∇p) in the proof of Theorem 5.1.

Lemma 5.3 (Poincaré-type inequality). For s ∈ (3
4 , 1), ψ ∈ C∞

c (B1) satisfying ´
ψ(x)dx = 1, we have

‖g − (g)ψ‖
L

6
5 (B 5

4
)
�s,ψ ‖Λ2s−1g‖L1(B5) + ‖M(Λ2s−1g; η)‖L1(B3)

for some η ∈ C∞
c (R3), where (g)ψ =

´
gψdy. In particular

‖g − (g)ψ‖
L

6
5 (B 5

4
)
�s,ψ ‖Λ2s−1g‖L1(B5) + ‖M4(Λ2s−1g)‖L1(B3). (5.2)

Remark 5.4. The oscillation g − (g)ψ can be also controlled by the Hardy-Littlewood 
maximal function of Λ2s−2 div g,

‖g − (g)ψ‖L6/5(B1) �s,ψ ‖M(Λ2s−1g)‖L1(B1),

which can be proved directly using the approach from Lemma 3 in [27] (and also 
follows directly from the lemma above and (2.21)). However, the maximal operator 
M : H1(R3) → L1(R3) is not bounded and hence we have no global bound for 
‖M(−Δ)sp‖1. To get around this issue, we introduce the grand maximal function in 
the above lemma.

Proof. Using the fact that 
´
ψ = 1 and the representation

g(x) = Λ1−2sΛ2s−1g(x) ∼
ˆ Λ2s−1g(z)

|x− z|4−2s dz,

we decompose the oscillation into two parts,

g(x) − (g)ψ

=
ˆ

(g(x) − g(y))ψ(y) dy ∼
¨ (

1
|x− z|4−2s − 1

|y − z|4−2s

)
Λ2s−1g(z)ψ(y) dz dy

=
¨

|z|≤ 3
2

(
1

|x− z|4−2s − 1
|y − z|4−2s

)
Λ2s−1g(z)ψ(y) dz dy

+
¨

|z|> 3
2

1ˆ

0

(θx + (1 − θ)y − z) · (x− y)
|θx + (1 − θ)y − z|6−2s dθΛ2s−1g(z)ψ(y) dz dy

=: I1(x) + I2(x).



H. Kwon, W.S. Ożański / Journal of Functional Analysis 282 (2022) 109370 31
To estimate I1(x), we have

|I1(x)| ≤
ˆ

|z|≤ 3
2

|Λ2s−1g(z)|
|x− z|4−2s dz +

¨

|z|≤ 3
2

|Λ2s−1g(z)|
|y − z|4−2s dz|ψ(y)|dy

and we apply Young’s inequality for convolutions to get

‖I1‖
L

6
5 (B 5

4
)
� ‖Λ2s−1g‖L1(B2)

(
‖| · |−(4−2s)1B3‖ 6

5
+ ‖| · |−(4−2s)1B3‖1

)
� ‖Λ2s−1g‖L1(B2),

where 1E denotes the characteristic function of a set E, and we used the fact that 
|x − z| ≤ |x| + |z| < 3 (and similarly |y − z| ≤ 3) in the first inequality, as well as the 
fact that s > 3

4 in the last inequality.
As for I2, we let χ ∈ C∞

c (B 7
8
) be such that χ = 1 on B 3

4
, we set η(z) := χ(z) − χ(2z)

and

ηj(z) := 2j(2−2s) z

|z|6−2s η(2
−jz) for j ∈ Z.

By construction ‖ηj‖1 = ‖| · |−6+2sη̄‖1 = c, supp ηj ⊂ B 7
8 ·2j \ B 3

82j for every j ∈ Z. 
Moreover

z

|z|6−2s =
∑
j≥−1

2−j(2−2s)ηj(z) for |z| ≥ 1
4 , (5.3)

since ηj(z) = 0 for such z and j < −1. Since |θx +(1 − θ)y− z| ≥ |z| − θ|x| − (1 − θ)|y| ≥
3
2 − 5

4 = 1
4 in the definition of I2 for every x ∈ B 5

4
, we have

I2(x) =
∑
j≥−1

2−j(2−2s)
1ˆ

0

¨

|z|> 3
2

ηj(θx + (1 − θ)y − z)Λ2s−1g(z)dz · (x− y)ψ(y) dy dθ

=
∑
j≥3

2−j(2−2s)
1ˆ

0

¨
ηj(θx + (1 − θ)y − z)Λ2s−1g(z)dz · (x− y)ψ(y) dy dθ

+
2∑

j=−1
2−j(2−2s)

1ˆ

0

¨

|z|> 3
2

ηj(θx + (1 − θ)y − z)Λ2s−1g(z)dz · (x− y)ψ(y) dy dθ

= I21(x) + I22(x).

This decomposition allows us to drop “|z| > 3/2” in I21(x) because we can assume 
|θx + (1 − θ)y− z| ≥ 3 (as j ≥ 3) and hence |z| ≥ |θx + (1 − θ)y− z| − θ|x| − (1 − θ)|y| >
3 − 5 > 3 .
4 2
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We consider I22 first. Since |θx +(1 − θ)y− z| ≤ 7
2 (as j ≤ 2) we have |z| ≤ |θx +(1 −

θ)y − z| + θ|x| + (1 − θ)|y| ≤ 5 whenever |x| ≤ 5
4 , |y| ≤ 1, θ ∈ [0, 1], and so

|I22(x)| �
2∑

j=−1

1ˆ

0

ˆ

|y|≤1

ˆ
|ηj(θx + (1 − θ)y − z)||Λ2s−1g(z)|1B5(z) dz dy dθ

� ‖Λ2s−1g‖L1(B5)

for every x ∈ B 5
4
, where we used the fact that 

∑2
j=−1 |ηj | � 1 in the last inequality. 

Therefore

‖I22‖L1(B 5
4
) � ‖Λ2s−1g‖L1(B5).

As for I21, we write G := supj≥3 |ηj ∗ Λ2s−1g| (for brevity) to get

|I21(x)| =

∣∣∣∣∣∣
∑
j≥3

2−j(2−2s)
1̈

0

(ηj ∗ Λ2s−1g)(θx + (1 − θ)y) · (x− y)ψ(y) dy dθ

∣∣∣∣∣∣
�

1ˆ

0

ˆ

B1

|G(θx + (1 − θ)y)|dy dθ =

⎛⎜⎝
1
2ˆ

0

+
1ˆ

1
2

⎞⎟⎠ ˆ

B1

|G(θx + (1 − θ)y)|dy dθ

=: I211(x) + I212(x)

for x ∈ B 5
4
, where we used the facts that s < 1, |ψ| � 1 and |x − y| ≤ |x| + |y| � 1 in 

the second line.
The estimate for I211 follows from the change of variable y �→ θx + (1 − θ)y =: y′,

‖I211‖L1(B 5
4
) =

ˆ

B1

1
2ˆ

0

ˆ

θx+(1−θ)B1

|G(y′)|dy′ dθ
(1 − θ)3 dx � ‖G‖L1(B2). (5.4)

On the other hand, I212 can be estimated by

‖I212‖
6
5

L
6
5 (B 5

4
)
=

ˆ

B 5
4

⎡⎢⎣ 1ˆ
1
2

ˆ

B1

|G(θx + (1 − θ)y)|dy dθ

⎤⎥⎦
6
5

dx

�
1ˆ

1

ˆ

B 5

⎡⎣ˆ
B1

|G(θx− (1 − θ)y)|dy

⎤⎦ 6
5

dx dθ
2 4
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=
1ˆ

1
2

ˆ

B 5
4

[ˆ
1B1−θ

(y′) 1B3(x′ − y′)|G(x′ − y′)| dy′

(1 − θ)3

] 6
5

dx′ dθ
θ3

≤
1ˆ

1
2

∥∥∥∥|1B3 G| ∗ 1B1−θ

(1 − θ)3

∥∥∥∥6/5

6/5

dθ
θ3

� ‖G‖
6
5
L1(B3)

1ˆ
1
2

∥∥∥∥ 1B1−θ

(1 − θ)3

∥∥∥∥ 6
5

L
6
5
x′

dθ

∼ ‖G‖
6
5
L1(B3)

1ˆ
1
2

(1 − θ)− 3
5 dθ

� ‖G‖
6
5
L1(B3),

where we applied the changes of variables x �→ θx =: x′, y �→ (1 − θ)y =: y′ and the fact 
that |x′ − y′| ≤ |x − y| ≤ |x| + |y| < 3 in the third line, and we used Young’s inequality 
for convolutions in the fourth line. Combining with (5.4), we obtain

‖I21‖
L

6
5 (B1)

� ‖G‖L1(B3).

Finally letting η(z) := η(z)z/|z|6−2s we see that ηj(z) = 2−3jη(2−jz), so that

G = sup
j≥3

|ηj ∗ Λ2s−1g| = sup
j≥3

|2−3jη(2−j ·) ∗ Λ2s−1g| ≤ M(Λ2s−1g; η),

which (together with the above estimates on I1 and I22) completes the proof. Note that 
(5.2) easily follows from the pointwise estimate M(Λ2s−1g; η)(x) � M4(Λ2s−1g)(x) at 
any point x ∈ R3. �

5.2. L∞-boundness

In this subsection, we obtain the local boundedness of u under the assumptions of 
Theorem 5.1. We first recall an ε-regularity result of [26, Proposition 2.9].
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Proposition 5.5. There exists ε0 = ε0(s) > 0 such that if a suitable weak solution (u, p)
to (1.1) satisfies

sup
t∈
(
−
( 10

9
)2s,0)

ˆ

B 10
9

|u(x, t)|2dx +
ˆ

Q∗
10
9

ya|∇u∗|2dXdt

+

⎛⎜⎜⎝ ˆ

Q 10
9

|u|3

⎞⎟⎟⎠
2
3

+

⎛⎜⎜⎝
0ˆ

−
( 10

9
)2s

⎛⎜⎜⎝ ˆ

B 10
9

|p(x, t)|dx

⎞⎟⎟⎠
q

dt

⎞⎟⎟⎠
2
q

≤ ε0,

(5.5)

for some q ∈ [1, 2), then the local boundedness of u follows,

‖u‖L∞(Q1) ≤ 1.

Remark 5.6. In [26], the authors restrict q to the range of q ∈ ( 4s
(6s−3) , 2) for the purpose 

of their main result, but the proof of Proposition 5.5 remains valid for any q ∈ [1, 2).

We now find ε > 0 in Theorem 5.1 such that the assumptions of the theorem imply 
(5.5). This shows that (5.5) can be guaranteed (and so local boundedness follows) using 
only scale-optimal quantities given u has the ψ-mean zero, 

´
uψdx = 0. (Recall that 

ψ ∈ C∞
c (B1) has been fixed in Theorem 5.1.)

Proposition 5.7. There exists ε > 0 such that if a suitable weak solution (u, p) satisfies 
the assumptions in Theorem 5.1, then

‖u‖L∞(Q1) ≤ 1.

This proposition, together with our first result (Theorem 1.1), which guarantees 
boundedness of derivatives, concludes the proof of Theorem 5.1.

Proof. By Proposition 5.5, it suffices to prove that

sup
t∈(−

( 10
9
)2s,0)

ˆ

B 10
9

|u(x, t)|2dx +
ˆ

Q∗
10
9

ya|∇u∗|2dXdt + ‖u‖2
L3(Q 10

9
) + ‖p‖2

L1(Q 10
9

) ≤ ε0,

(5.6)

where ε0 is given by Proposition 5.5. We will show that the left hand side of (5.6) is 
bounded by c∗(ε +ε2) (and we will refer to such bound as “smallness”) for some constant 
c∗ = c∗(s, ψ). Then, choosing ε sufficiently small such that c∗(ε + ε2) ≤ ε0, we obtain 
(5.6). Without loss of generality we assume that 

´
pψdx = 0, since the pressure enters 

(1.1) only via ∇p.

Step 1. We reduce the claim (5.6) to showing only the smallness of ‖u‖L∞L2 (Q10/9).
t x
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We note that 
´
Q∗

1
ya|∇u∗|2dXdt ≤ ε holds by assumption. Since 6

3−2s ≥ 3 for s ≥ 1
2 , 

we use the interpolation inequality ‖f‖L3 ≤ ‖f‖
1
2s

L
6

3−2s
‖f‖

2s−1
2s

L2 and Lemma 2.3 to get

‖u‖L3(Q 10
9

) � ‖u‖L4s
t L3

x(Q 10
9

) � ‖u‖L∞
t L2

x(Q 10
9

) + ‖y a
2 ∇u∗‖L2(Q∗

2) � ‖u‖L∞
t L2

x(Q 10
9

) +
√
ε.

(5.7)

To estimate the pressure, multiplying (1.1) by ψ and integrating in space, we obtain

(∇p)ψ :=
ˆ

ψ∇p dx =
ˆ (

u(u · ∇)ψ − ψΛ2su
)
dx.

By Lemma 2.3, the first term on the right hand side can be bounded by
ˆ

|u|2|∇ψ| � ‖u‖2
L2(B1) � ‖y a

2 ∇u∗‖2
L2(B∗

2 ).

As for the second term, for each i we have
ˆ

ψΛ2suidx = −Cs lim
y→0

ˆ
ya∂yu

∗
iψ

∗dX = Cs

ˆ

R4
+

div(ya∇u∗
iψ

∗)dX

= Cs

ˆ

R4
+

ya∇u∗
i · ∇ψ∗dX,

where ψ∗ ∈ C∞
c (R3 × [0, 1]) is any extension of ψ such that ψ∗(x, 0) = ψ(x) (not the 

Caffarelli-Silvestre extension). This implies that | ́ ψΛ2su| � ‖y a
2 ∇u∗‖L2(B∗

2 ) and hence 
at almost every time t,

‖p‖L2(B 5
4
) ≤ ‖∇p‖

L
6
5 (B 5

4
)
� ‖∇p− (∇p)ψ‖

L
6
5 (B 5

4
)
+ ‖y a

2 ∇u∗‖2
L2(B∗

2 ) + ‖y a
2 ∇u∗‖L2(B∗

2 )

� ‖Λ2s−1∇p‖L1(B5) + ‖M4(Λ2s−1∇p)‖L1(B3)

+ ‖y a
2 ∇u∗‖2

L2(B∗
2 ) + ‖y a

2 ∇u∗‖L2(B∗
2 ), (5.8)

where we used the Poincaré inequality (recall 
´
pψ = 0) in the first inequality and 

Lemma 5.3 in the last line. Integration in time over the interval (−(10/9)2s, 0) gives the 
estimate for the pressure,

‖p‖L1
tL

2
x(Q 10

9
) � ‖Λ2s−1∇p‖L1(Q5) + ‖M4(Λ2s−1∇p)‖L1(Q3)

+ ‖y a
2 ∇u∗‖2

L2(Q∗
2) + ‖y a

2 ∇u∗‖L2(Q∗
2)

� ε +
√
ε. (5.9)
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Thus, having shown smallness of ‖u‖L3(Q 10
9

) and ‖p‖L1
tL

2
x(Q 10

9
), the claim (5.6) follows if 

we show smallness of ‖u‖L∞
t L2

x(Q 10
9

).

Step 2. We show smallness of ‖u‖L∞
t L2

x(Q 10
9

).

For the convenience, we set

F (t) := ‖y a
2 ∇u∗(t)‖L2(B∗

2 ) + ‖y a
2 ∇u∗(t)‖2

L2(B∗
2 )

+ ‖Λ2s−1∇p(t)‖L1(B5) + ‖M4(Λ2s−1∇p)(t)‖L1(B3).

Let ξ = ξ(x, t) be a smooth cut-off in space and time satisfying ξ(x, t) = 1 on Q 10
9

, 
supp(ξ) ⊂ Q 5

4
, and ξ∗ be an extension of ξ satisfying ξ∗ = 1 on Q∗

10
9

, supp(ξ∗) ⊂ Q∗
5
4
, 

and ξ∗(x, 0, t) = ξ(x, t). The local energy inequality (2.12) applied with test function 
(ξ∗)2 gives

1
2

ˆ
|u(τ)|2ξ(τ)2dx + Cs

τ̂

−(5/4)2s

ˆ

R4
+

ya|∇u∗|2(ξ∗)2

≤ Cs

2

τ̂

−(5/4)2s

ˆ

R4
+

|u∗|2div(ya∇(ξ∗)2)

+
τ̈

−(5/4)2s

(
1
2 |u|

2 + p

)
u · ∇ξ2

+ 1
2

τ̈

−(5/4)2s

|u|2
(
∂tξ

2 + Cs lim
y→0+

ya∂y(ξ∗)2
)

(5.10)

for almost every τ ∈ (−(5/4)2s, 0). (Here, we used the fact that ξ(·, −(5/4)2s) = 0.) By 
Lemma 2.3

ˆ
|u|2∂tξ2dx � ‖u‖2

L2(B 5
4
) � ‖y a

2 ∇u∗‖2
L2(B∗

2 ) ≤ F

for every t ∈ (−(5/4)2s, 0). Moreover, using Hölder’s inequality, Lemma 2.3 (note that 
4 < 6

(3−2s) for s > 3/4) and (5.8), we get

ˆ (
1
2 |u|

2 + p

)
u · ∇ξ2 � ‖uξ‖2

(
‖u‖2

L4(B 5
4
) + ‖p‖L2(B 5

4
)

)
� ‖uξ‖2

(
‖y a

2 ∇u∗‖L2(B∗
2 ) + ‖y a

2 ∇u∗‖2
L2(B∗

2 )

+‖Λ2s−1∇p‖L1(B5) + ‖M4(Λ2s−1∇p)‖L1(B3)
)
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�
(

1 +
ˆ

|u|2ξ2
)
F (5.11)

for every t ∈ (−(5/4)2s, 0), and so

τ̈

−(5/4)2s

(
|u|2∂tξ2 +

(
1
2 |u|

2 + p

)
u · ∇ξ2

)
�

τ̂

−(5/4)2s

(
1 +

ˆ
|u|2ξ2

)
F

� ‖F‖L1(−(5/4)2s,0) +
τ̈

−(5/4)2s

|u|2ξ2F

(5.12)

for every τ ∈ (−(5/4)2s, 0). As for the remaining terms in (5.10), we integrate by parts 
to get
ˆ

R4
+

|u∗|2div(ya∇(ξ∗)2)dX +
ˆ

|u|2 lim
y→0+

ya∂y(ξ∗)2dx = −4
ˆ

ya(ξ∗∇ju
∗
i )(u∗

i∇jξ
∗)dX

(at each t ∈ (−(5/4)2s, τ)). Applying Young’s inequality we obtain∣∣∣∣∣∣∣
ˆ

R4
+

ya(ξ∗∇ju
∗
i )(u∗

i∇jξ
∗)dX

∣∣∣∣∣∣∣ ≤ ‖y a
2 ∇u∗‖2

L2(B∗
2 ) + ‖y a

2 u∗‖2
L2(B∗

5
4
).

We now estimate the last term on the right-hand side. We first write the extension u∗ as

u∗(x, y, t) = u(x, t) +
yˆ

0

∂zu
∗(x, z, t)dz,

which gives

w(B∗
7
4
)|(u∗)B∗

7
4
| ≤ w(B∗

7
4
)|(u)B 7

4
| +

2ˆ

0

ˆ

B 7
4

yˆ

0

yaz−
a
2 · z a

2 |∂zu∗(x, z, t)|dz dx dy

� ‖y a
2 ∇u∗‖L2(B∗

2 ),

(5.13)

where w(B∗
7
4
) :=

´
B∗

7
4

yadX and (f)B∗
7
4

:= 1
w(B∗

7
4
)
´
B∗

7
4

yaf(x, y)dX. Here the last inequal-

ity follows from a modification of (2.14) and the Cauchy-Scharz inequality. This together 
with the weighted Poincare inequality (2.15) give

ˆ

B∗
7
4

ya|u∗|2dX �
ˆ

B∗
7
4

ya|u∗ − (u∗)B∗
7
4
|2dX + w(B∗

7
4
)|(u∗)B∗

7
4
|2 �

ˆ

B∗
2

ya|∇u∗|2dX
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for almost every t ∈ (−(5/4)2s, 0). Integrating in time we obtain ‖y a
2 u∗‖L2(Q∗

5
4
) �

‖y a
2 ∇u∗‖L2(Q∗

2) ≤ ‖F‖L1(−(5/4)2s,0) and therefore∣∣∣∣∣∣∣
τ̂

−(5/4)2s

⎛⎜⎝ˆ

R4
+

|u∗|2div(ya∇(ξ∗)2)dX +
ˆ

|u|2 lim
y→0+

ya∂y(ξ∗)2dx

⎞⎟⎠
∣∣∣∣∣∣∣ � ‖F‖L1(−(5/4)2s,0)

(5.14)

for every τ ∈ (−(5/4)2s, 0). Applying the estimates (5.12) and (5.14) in (5.10) gives

ˆ
|u(τ)|2ξ(τ)2dx �

τ̂

−(5/4)2s

(ˆ
|u|2ξ2dx

)
F + ‖F‖L1(−(5/4)2s,0),

for almost every τ ∈ (−(5/4)2s, 0). Using the integral Grönwall’s inequality (see, for 
example, Theorem 7.3 in [1]), it follows that

ˆ
|u(τ)|2ξ(τ)2dx � ‖F‖L1(−(5/4)2s,0)(1 + ‖F‖L1(−(5/4)2s,0) exp(‖F‖L1(−(5/4)2s,0)))

for almost every τ ∈ (−(5/4)2s, 0). Since ‖F‖L1(−(5/4)2s,0) � √
ε + ε by assumption we 

obtain (assuming ε ∈ (0, 1))

‖u‖L∞
t L2

x(Q 10
9

) �
√
ε,

as required. �
5.3. Consequences of the local regularity Theorem 5.1

We now show that the claim of Theorem 5.1 remains valid if one replaces the zero 
mean property by a smallness assumption on |u|3 + |p|3/2. In other words we obtain 
Corollary 1.4, which we now restate for the reader’s convenience.

Corollary 5.8. There exists ε > 0 such that if a suitable weak solution (u, p) of (1.1)
satisfies

ˆ

Q∗
5

ya|∇u∗|2dX dt +
0ˆ

−52s

ˆ

B5

ˆ

B5

|u(x, t) − u(y, t)|2
|x− y|3+2s dx dy dt

+
ˆ

Q5

(
(M|Λsu| 2

1+δ )1+δ + |Λ2s−1∇p| + |M4(Λ2s−1∇p)| + |u|3 + |p| 32
)
≤ ε,

(5.15)

where δ := 2s . Then
(6−s)



H. Kwon, W.S. Ożański / Journal of Functional Analysis 282 (2022) 109370 39
sup
Q 1

2

(
|u| + |∇u| + |∇2u|

)
≤ C1

for some constant C1 > 0.

Proof. We deduce (5.5) by the choice of sufficiently small ε (this choice is independent 
of the one in Proposition 5.7) and the same argument as in Proposition 5.7 except for 
using Lemma 2.3 only to u − (u)ψ, where (u)ψ := (

´
ψdy)−1 ´ u(t)ψdy. We outline the 

main updates to the proof of Proposition 5.7 below.
First, we replace (5.7) by the assumption, and (5.8) by writing

‖p‖L2(B 5
4
) ≤ ‖∇p‖

L
6
5 (B 5

4
)
�
∥∥∥∥∇p−

ˆ
ψ∇p

∥∥∥∥
L

6
5 (B 5

4
)
+
∣∣∣∣ˆ ψ∇pdx

∣∣∣∣
� ‖Λ2s−1∇p‖L1(B5) + ‖M4(Λ2s−1∇p)‖L1(B3) + ‖p‖

L
3
2 (B1)

, (5.16)

where we applied Lemma 5.3 and integrated the last term by parts in the second in-
equality. This implies that

‖p‖L1
tL

2
x(Q 5

4
) � ‖Λ2s−1∇p‖L1(Q5) + ‖M4(Λ2s−1∇p)‖L1(Q3) + ‖p‖

L
3
2 (Q1)

, (5.17)

which is our substitute for (5.8). We are left to estimate ‖u‖L∞
t L2

x(Q 10
9

), for which we 

again use the local energy inequality (5.10) with the same test function (ξ∗)2, but with 
some estimates for the terms on the right-hand side replaced as follows:

τ̈

−(5/4)2s

|u|2∂tξ2 � ‖u(t)‖2
L2(Q 5

4
) � ‖u(t) − (u)B 5

4
‖2
L2(B 5

4
) + |(u)B 5

4
|2

� ‖y a
2 ∇u∗(t)‖2

L2(Q∗
2) + ‖u‖2

L3(Q2),

and
τ̈

−(5/4)2s

(
1
2 |u|

2 + p

)
u · ∇ξ2 � ‖u‖3

L3(Q2) + ‖p‖
3
2

L
3
2 (Q2)

.

The estimate for the remaining term is similar to (5.14) except for (5.13), where we use 
the estimate |(u)B 7

4
| � ‖u‖L3(B2) (instead of |(u)B 7

4
| � ‖y a

2 ∇u∗‖L2(B∗
2 )). �

We now show that Corollary 5.8 gives an estimate on the box-counting dimension of 
the singular set, that is we prove Corollary 1.5.

We first note that u ∈ Lr(0, T ; Lq(R3)) for any r, q ∈ [2, ∞] × [2, 6/(3 − 2s)] such that

2s
r

+ 3
q

= 3
2 ,
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recall Section 2.4. This and the fact that all the other quantities appearing in (5.15)
are globally integrable (see (2.6), (2.10), (2.18)) allow us to use a standard covering 
argument. Indeed, recall the definition of the box-counting dimension,

dB(K) := lim sup
r→0

logM(K, r)
− log r ,

for a set K ⊂ R3 × (0, T ), where M(K, r) denotes the maximal number of pairwise 
disjoint r-balls (in R4) with centers in K. One can see that the box-counting dimension 
dB(K) can be bounded by

lim sup
r→0

logM ′(K, r)
− log r , (5.18)

where M ′(K, r) denotes the maximal number of pairwise disjoint cylinders Qr(x, t) with 
(x, t) ∈ K (as r2s < r for r < 1).

We set

W (x, y, t) := |u(x, t) − u(y, t)|2
|x− y|3+2s

and (as in (3.1))

F (x, t) := (M|Λsu(x, t)| 2
1+δ )1+δ + |Λ2s−1∇p(x, t)| + |M4(Λ2s−1∇p)(x, t)|,

G(X, t) := ya|∇u∗(X, t)|2.

As in (3.5) we see that all above quantities are globally integrable,

T̂

0

¨
W (x, y, t)dx dy dt +

T̈

0

F (x, t)dx dt +
T̂

0

ˆ

R4
+

G(X, t)dX dt �
T̈

0

|Λsu|2 � ‖u0‖2.

(5.19)
Corollary 5.8 gives that if

1
r

⎛⎜⎝ 0ˆ

−r2s

ˆ

Br

ˆ

Br

W (x, y, t)dx dy dt +
ˆ

Qr

F (x, t)dx dt +
ˆ

Q∗
r

G(X, t)dX dt

⎞⎟⎠
+ r4s−6

ˆ

Qr

(
|u(x, t)|3 + |p(x, t)|3/2dx dt

)
≤ ε

then u and its spatial derivatives are bounded on Qr/10. Given t0 > 0 we consider 
r < min(t1/2s0 , 1) and let {Qr(xk, tk)}M

′(S∩{t≥t0},r)
k=1 be any collection of pairwise disjoint 

r-cylinders with (xk, tk) ∈ S ∩ {t ≥ t0} for every k = 1, . . . , M ′(S ∩ {t ≥ t0}, r). Then
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‖u0‖2

�
T̂

0

¨
W +

T̈

0

F +
T̂

0

ˆ

R4
+

G +
T̈

0

(
|u|

2(2s+3)
3 + |p|

2s+3
3

)

�
M′(S∩{t≥t0},r)∑

k=1

⎛⎜⎝ tkˆ

tk−r2s

ˆ

Br(xk)2

W +
ˆ

Qr(xk,tk)

F +
ˆ

Q∗
r(xk,tk)

G +
ˆ

Qr(xk,tk)

(
|u|

2(2s+3)
3 + |p|

2s+3
3

)⎞⎟⎠

�
M′(S∩{t≥t0},r)∑

k=1

⎛⎜⎜⎝εr +

⎛⎜⎝r
3−4s

2

ˆ

Qr(xk,tk)

(
|u|3 + |p|3/2

)⎞⎟⎠
2(2s+3)

9
⎞⎟⎟⎠

≥
M′(S∩{t≥t0},r)∑

k=1

(
εr + r

(
3−4s

2 +6−4s
)

2(2s+3)
9 ε

2(2s+3)
9

)
�ε M ′(S ∩ {t ≥ t0}, r)r(−8s2−2s+15)/3,

where we used (5.19) and the global integrability of |u| 2(2s+3)
3 +|p| 2s+3

3 (recall Section 2.4) 
in the first line, and Hölder’s inequality in the fourth inequality. Applying this estimate 
in the bound (5.18) gives dB(S ∩ {t ≥ t0}) ≤ (−8s2 − 2s + 15)/3, as required.

6. Higher derivatives of weak solutions

In this section we prove Theorem 1.1, which we restate for reader’s convenience.

Theorem 6.1. Suppose that a Leray-Hopf weak solution (u, p) to (1.1) for 3
4 < s < 1

satisfies

‖u‖L∞
t,x(Q1) + ‖u‖L2

tW
s,2
x (Q2) + ‖p‖L1

t,x(Q1) + ‖∇p‖L1
t,x(Q1)

+ ‖M(Λsu)‖L2(Q2) + ‖M|Λsu| 2
1+δ ‖L1+δ(Q2)

+ ‖M4|Λ2s−1∇p|‖L1(Q2) ≤ c < ∞

for δ = 2s
6−s . Then the velocity u satisfies

sup
Q1

|u(x, t)| + |∇u(x, t)| + |∇2u(x, t)| ≤ C0

for some constant C0 = C0(c, s).

We first introduce a lemma for pressure decomposition.

Lemma 6.2 (Pressure decomposition). Let p be a solution to −Δp = ∂i∂j(uiuj) and let 
φ, φ̄ be smooth cut-offs in space satisfying supp(φ) � {φ̄ = 1} ⊂ supp(φ̄) ⊂ B1. Then 
we have the decomposition
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φ∇p = φ∇Rij(uiuj φ̄) + Γ

for some Γ satisfying

supp(Γ) ⊂ supp φ, ‖Γ‖Wk,∞
x

�k,φ,φ̄ ‖u‖2
L∞(B1) + ‖p‖L1(B1) ∀k ≥ 0. (6.1)

Proof. Let E := supp φ. Manipulating the equation −Δp = ∂ij(uiuj), we can write pφ̄
as

pφ̄ = Rij(uiuj φ̄) −
[
2(−Δ)−1∂i(uiuj∂j φ̄) + (−Δ)−1(uiuj∂ij φ̄)

]
−
[
2(−Δ)−1∇ · (p∇φ̄) − (−Δ)−1(pΔφ̄)

]
=: Rij(uiuj φ̄) + p1 + p2.

(6.2)

(Note that here we have used uniqueness of solutions to the Poisson equation: if Δf = 0
in R3 and f ∈ Lp for any p ∈ [1, ∞) then f = 0, which can be proved using mollification 
and Liouville’s theorem.) Thus

φ∇p = φ∇(pφ̄) = φ∇Rij(uiuj φ̄) + φ∇(p1 + p2).

We now show that

‖∇kp1‖L∞(E) �k ‖u‖2
L∞(B1), (6.3)

‖∇kp2‖L1
tL

∞
x (E) �k ‖p‖L1(B1) (6.4)

for every integer k ≥ 0. Then, setting Γ := φ∇(p1 + p2), the claim follows from the 
product rule.

Since every term included in p1 or p2 involves at least one derivative falling on φ̄, and 
we have dist(E, supp(∇φ̄)) ≥ dist(supp(φ), {φ̄ = 1}c) > cφ,φ̄ > 0 by the assumption, p1
and p2 satisfy

|∇kp1(x, t)| �
ˆ (

|u(y)|2|∇φ̄(y)|
|x− y|2+k

+ |u(y)|2|∇2φ̄(y)|
|x− y|1+k

)
dy �k,φ,φ̄ ‖u‖2

L∞(B1)

and

|∇kp2(x, t)| �
ˆ (

|p| |∇φ̄|
|x− y|2+k

+ |p| |∇2φ|
|x− y|1+k

)
dy �k,φ,φ̄ ‖p‖L1(B1) (6.5)

for any x ∈ E, from which (6.3) and (6.4) follow, respectively. �
6.1. Proof of Theorem 6.1

We now discuss our new bootstrapping scheme, which proves Theorem 6.1. We will use
a number of commutator estimates, which we discuss in Lemmas 6.3–6.12 in Section 6.2
below.
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Proof of Theorem 6.1. In the proof we abuse the notation by letting {Q�}�∈N
2

be a 

sequence of parabolic cylinders Q� := (−r(�)2, 0) × Br(�), where r(�) is a radius that is 
strictly decreasing in �, that satisfies Q1 := (−1, 0) ×B1 and 

⋂
�≥1 Q� = (− 

( 1
2
)2s

, 0) ×B 1
2
. 

In particular, Q�+1 � Q�+1/2 � Q�. We set φ� ∈ C∞
c (Q�−1/2; [0, 1]) be such that φ� = 1

on Q�.
In what follows, we consider several equations of the form (∂t + Λ2s)v =

∑
i fi, where 

the right hand side is given as a finite summation of forcing terms fi. To deduce a certain 
regularity of v, we decompose the equation into (∂t+Λ2s)vi = fi and apply the parabolic 
regularity estimates in Lemma 2.7 to each equation (∂t +Λ2s)vi = fi. For the simplicity, 
if vi satisfies the regularity required on v, we say “some regularity of fi gives the required 
regularity of v” below.

Step 1. We show that Λ2s−1+ε(uφ2) ∈ L2
tL

6
1+4ε
x for ε ∈ (0, 1/2].

Multiplying (1.1) by φ2 and using Lemma 6.2 to write the pressure term in terms of 
the expressions involving the Riesz transform and the remainder we obtain

(∂t + Λ2s)(uφ2) = ∇ · F + [Λ2s, φ2]u +
(
u⊗ u : ∇φ2 −∇φ2Rij(uiujφ 3

2
) + u∂tφ2

)
+ Γ

=: ∇ · F + G1 + G2 + Γ, (6.6)

where

F := −(u⊗ uφ2) + φ2Rij(uiujφ 3
2
)Id.

First of all, G2 ∈ L∞
t Lp

x for any p ∈ (1, ∞) which implies Λγ(uφ2) ∈ L∞
t Lp

x for any 
γ ∈ [0, 2s) and p ∈ (1, ∞) by (2.24). Therefore, G2 gives the required regularity of uφ2.

Next, Γ ∈ L1
tW

k,p
x for any k ∈ N ∪ {0} and p ∈ [1, ∞] due to (6.1), so that we have 

uφ2 ∈ L∞
t W k,p

x for any k ∈ N ∪{0} and p ∈ [1, ∞] by (2.25), and then Λβ(uφ2) ∈ L∞
t Lp

x

for any real number β ≥ 0 and p ∈ [1, ∞] by interpolation. In particular, it gives the 
required regularity of uφ2.

As for the commutator term G1, we have G1 ∈ L2
t,x by Lemma 6.5, which gives the 

required regularity of uφ2 by (2.24). (The fact that ε ∈ (0, 12 ] is used here.)
The term ∇ ·F is the most subtle to handle. Indeed, noting that the assumption gives 

F ∈ L∞
t Lp

x for every p ∈ (1, ∞) the parabolic estimate (2.24) (applied with α := −1) 
only allows to estimate Λα(uφ2) for α < 2s − 1 (as σ + (1/r + 1/r) ≥ 0). In order to 
reach above the 2s − 1 threshold we show below that

‖Λ 3
2 εF‖L2

tL
q
x
≤ C(‖u‖L∞

t,x(Q1), ‖u‖L2
tW

s,2
x (Q1)) (6.7)

for q := 6
1+4ε . This gives the required regularity of uφ2 by using Lq-boundedness of the 

Riesz transform and applying (2.24) with α := −1 + 3ε/2, α := 2s − 1 + ε, σ := 0 and 
r, r := 2.
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Therefore, we are left to prove (6.7). We first use the fractional Leibniz rule (2.7) to 
get

‖Λ 3
2 ε(uiujφ 3

2
)‖Lq

x
= ‖Λ 3

2 ε(uiujφ2φ 3
2
)‖Lq

x

� ‖Λ 3
2 ε(uφ 3

2
)‖Lq

x
‖uφ2‖L∞

x
+ ‖Λ 3

2 ε(uφ2)‖Lq
x
‖uφ 3

2
‖L∞

x

�
(
‖Λ 3

2 ε(uφ 3
2
)‖Lq

x
+ ‖Λ 3

2 ε(uφ2)‖Lq
x

)
‖u‖L∞(B1).

Since we have suppx(φ 3
2
) := {x : (x, t) ∈ supp(φ 3

2
) for some t} � B1 from its 

construction, we can choose sufficiently small R > 0 such that B2R(suppx(φ 3
2
)) :=

suppx(φ 3
2
) + B2R ⊂ B1. For such R and fixed t ∈ (−1, 0), we obtain the following 

interpolation inequality for ε ∈ (0, 2s)

‖Λ 3
2 ε(uφ 3

2
)‖q

�

⎛⎜⎝ ˆ

|y|<R

+
ˆ

|y|≥R

⎞⎟⎠ ‖uφ 3
2
(· + y) − uφ 3

2
‖q

|y|3+ 3
2 ε

dy

�
ˆ

|y|<R

‖uφ 3
2
(· + y) − uφ 3

2
‖

2
q

2

|y|(3+2s) 1
q

·
‖uφ 3

2
‖1− 2

q
∞

|y|
3
q′ −

3
2 ε− 2s

q

dy +
ˆ

|y|≥R

‖uφ 3
2
‖q

|y|3+ 3
2 ε

dy

�

⎡⎢⎢⎣ ˆ

BR(suppx(φ 3
2
))

ˆ

|y|<R

|uφ 3
2
(x + y) − uφ 3

2
(x)|2

|y|3+2s dy dx

⎤⎥⎥⎦
1
q

‖uφ 3
2
‖1− 2

q
∞ + ‖uφ 3

2
‖q

�

⎡⎣ˆ
B1

ˆ

B1

|uφ 3
2
(y) − uφ 3

2
(x)|2

|y − x|3+2s dy dx

⎤⎦ 1
2

+ ‖u‖L∞(B1)

� ‖u‖Ẇ s,2(B1) + ‖u‖L∞(B1),

where we used the Lp-interpolation inequality in the second line, Hölder’s inequality and 
the fact that uφ 3

2
(x + y) = uφ 3

2
(x) = 0 for |y| < R and x /∈ BR(suppx(φ 3

2
)) in the third 

line, Young’s inequality and change of variable y �→ y − x in the fourth line, as well as 
the Leibniz rule

‖uφ 3
2
‖Ẇ s,2(B1) � ‖u‖Ẇ s,2(B1)‖φ 3

2
‖L∞(B1) + ‖u‖L∞(B1)‖φ 3

2
‖Ẇ s,2(B1)

� ‖u‖Ẇ s,2(B1) + ‖u‖L∞(B1)

in the last line. Similarly one can show the same upper bound for ‖Λ 3
2 ε(uφ2)‖Lp

x
, up 

to a constant multiple. Thus (6.7) follows by using the Lq-boundedness of the Riesz 
transforms.
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Step 2. We show that Λβ(uφ7) ∈ L∞
t Lp

x for every p ∈ [6, ∞), β ∈ [0, 2s).

We will use (6.6) with φ2, φ 3
2

replaced by the cutoffs φi, φi− 1
2

for i = 3, · · · , 7 in each 
of the finite number of the iterations below. We note that G2 and Γ (after replacing the 
cutoffs) gives the required regularity by the same argument in Step 1. Therefore, we 
only need to focus on ∇ · F and G1 (with the replacement of the cutoffs).

Step 2a. Λ2s−1+ε(uφ5) ∈ L∞
t Lp

x for every p ∈ [6, ∞) and ε ∈ (0, s − 3
4).

To deal with ∇ · F , we can control Λ2s−1+εF using the improved regularity of u in
Step 1;

‖Λ2s−1+εF‖
L2

tL
6

1+4ε
x

≤ ‖Λ2s−1+ε(u⊗ uφ3)‖
L2

tL
6

1+4ε
x

+ ‖Λ2s−1+ε(φ3Rij(uiujφ5/2)‖
L2

tL
6

1+4ε
x

≤ C

(
‖u‖L∞

t,x(Q1), ‖Λ2s−1+ε(uφ2)‖
L2

tL
6

1+4ε
x

)
.

(6.8)

The last two lines follow from the fractional Leibniz rule (2.7) and the facts that φ3 =
φ3φ

2
2 and φ 5

2
= φ 5

2
φ2

2. Then, using (2.24) and Lp-boundedness of Riesz transform, it 
gives Λ2s−1+ε(uφ3) ∈ L2

tL
p
x for any p ∈ [6, ∞) and ε ∈ (0, 12 ).

As for G1, since Step 1 and (2.9) imply that u ∈ L2
tW

2s−1+ε, 6
1+4ε

x (Q2) (because of 
6

1+4ε ≥ 2), we have [Λ2s, φ3]u ∈ L2
tL

6
1+4ε
x by Lemma 6.5. Thus, it follows from (2.24)

that Λ2s−1+ε(uφ3) ∈ L2
tL

p
x for any p ∈ [6, ∞) and ε ∈ (0, s − 3

4 ).
Repeating the same argument twice, we can improve to the required regularity of uφ5;

Λ2s−1+ε(uφ3) ∈ L2
tL

p
x ∀p ∈ [6,∞) =⇒ Λ2s−1+ε(uφ4) ∈ L

s
1−s

t Lp
x ∀p ∈ [6,∞)

=⇒ Λ2s−1+ε(uφ5) ∈ L∞
t Lp

x ∀p ∈ [6,∞).

Indeed, the first implication follow from [Λ2s, φ4]u, Λ2s−1+εF ∈ L2
tL

p
x for p ∈ [6, ∞), (for 

F with φ4, φ7/2). Then the second one follows from [Λ2s, φ5]u ∈ L2
tL

p
x for p ∈ [6, ∞) and 

Λ2s−1+εF ∈ L
s

1−s

t Lp
x for p ∈ [6, ∞) (for F with φ5, φ9/2).

Step 2b. ∇(uφ6) ∈ L∞
t Lp

x for every p ∈ [6, ∞].

As for ∇ ·F , since if (∂t + Λ2s)w = ∇ ·F then (∂t + Λ2s)∇w = ∇(∇ ·F ), using (2.24)
we get

‖∇w‖L∞
t,x

� ‖Λ2s−3+ε∇(∇ · F )‖L∞
t Lp

x
� ‖Λ2s−1+εF‖L∞

t Lp
x
. (6.9)

Therefore, the inclusion Λ2s−1+εF ∈ L∞
t Lp

x for every p ∈ [6, ∞) and ε ∈ (0, 1) (obtained 
as in (6.8)) gives the required regularity of uφ6 (as ∇(uφ6) ∈ L∞

t,x implies ∇(uφ6) ∈
L∞
t Lp

x for every p).
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As for the commutator term G1, we use the decomposition L∞
t Lp

x + L2
tW

k,∞
x (for 

p ∈ [6, ∞)) suggested in Lemma 6.5. Then the latter part (in L2
tW

k,∞
x ) gives the required 

regularity of uφ6 by (2.25), while the former part (in L∞
t Lp

x) also does by (2.24). (In fact, 
it even gives the regularity Λ2s−ε1(uφ6) ∈ L∞

t Lp
x for any p ∈ (6, ∞) and ε1 ∈ (0, 2s].

Step 2c. Λ2s−ε1(uφ7) ∈ L∞
t Lp

x for every p ∈ [6, ∞), ε1 ∈ (0, 2s].

As in Step 2b, G1 gives the required regularity on uφ7. As a consequence of Step 
2b, we have ∇ ·F ∈ L∞

t Lp
x for every p ∈ [6, ∞). Therefore, it gives the regularity on uφ7

by (2.24).

Step 3. We show that ∇(φ8Λγu) ∈ L∞
t Lp

x for every p ∈ [1, ∞], γ ∈ (s, 1).

Since φ8Λγu is compactly supported, it is enough to obtain the regularity for large p. 
As a byproduct of the proof, we also get Λ1−γ(φ8Λγu) ∈ L∞

t L∞−
x .

We consider the equation for φ8Λγu,

(∂t + Λ2s)(φ8Λγu) = −Λγ(φ8(u · ∇)u + φ8∇p)︸ ︷︷ ︸
=:ΛγF1+ΛγΓ

+ [Λ2s, φ8]Λγu + [Λγ , φ8]((u · ∇)u + ∇p)︸ ︷︷ ︸
=:G3

+ Λγu∂tφ8︸ ︷︷ ︸
=:G4

,

where F1 and Γ are determined by Lemma 6.2; in particular,

F1 := φ8((u · ∇)u + ∇Rij(uiujφ15/2)), Γ ∈ L2
tW

k,∞
x ∀k ∈ N ∪ {0}.

To deal with the last term G4, we remark that Λγu ∈ L∞
t Lp

x + L2W k,∞
x (Q 15

2
) for 

any k ∈ N ∪ {0} and p ∈ [6, ∞). Indeed, Λγ(uφ7) ∈ L∞
t Lp

x follows from Step 2 and 
Λγ(u(1 − φ7)) ∈ L2

tW
k,∞(Q 15

2
) (for every k ≥ 0), which follows from (6.28). Therefore, 

G4 ∈ L∞
t Lp

x + L2
tW

k,∞
x for all p ∈ [1, ∞), k ≥ 0, which gives the required regularity on 

∇(φ8Λγu).
Moreover, ΛγΓ ∈ L2

tW
k,∞
x for any integer k ≥ 0 because of Γ ∈ L2

tW
k,∞
x . (Indeed, 

‖Λγh‖L∞
x

� ‖h‖W 1,∞
x

.) Thus, ΛγΓ gives the required regularity of ∇(φ8Λγu), as in (6.9)
above.

As for the commutator terms in G3, we obtain [(−Δ)s, φ 3
2
]Λγu ∈ L∞

t Lp
x+L2

tW
k,∞
x for 

any integer k ≥ 0 and p ∈ [6, ∞) by Lemma 6.6 (applied with any κ ∈ (2s +γ−1, 2s)) and
Step 2. Similarly, by Lemma 6.10 together with (5.9), we have [Λγ , φ8]((u ·∇)u +∇p) ∈
L∞
t Lp

x + L1
tW

k,∞
x for any integer k ≥ 0 and p ∈ [6, ∞) Therefore, these terms give the 

required regularity on ∇(φ8Λγu) via (2.24) and (2.25).
Lastly, we consider ΛγF1. We note that Λ2s−1−ε2F1 ∈ L∞

t Lp
x for every p ∈

[6, ∞) and ε ∈ (0, 2s], as a consequence of Step 2 (which gives in particular that 
Λ2s−1−ε2(uφ7), Λ2s−1−ε2∇(uφ7) ∈ L∞

t Lp
x) and the fractional Leibniz rules as in (6.8). 

Therefore, by (2.24) (applied with α := 2s − 1 − ε2 − γ, α := 1, σ := 0, r = r := ∞), it 
gives the required regularity on ∇(φ8Λγu) when ε2 ∈ (0, 4s − 3).
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Step 4. We show that φ9∇2u ∈ L∞
t,x.

It is sufficient to obtain ∇(φ9∇u) ∈ L∞
t,x because ∇φ9∇u = ∇φ9∇(uφ6) ∈ L∞

t,x by
Step 2b.

We consider the equation for φ9∇u,

(∂t + Λ2s)(φ9∇u) = ∇(∇ · F2) + [Λ2s, φ9]∇u︸ ︷︷ ︸
=:G5

+ ∇(u⊗ u) : ∇φ9 −∇(∇φ9Rij(uiujφ17/2)) + ∇u∂tφ9 + ∇Γ︸ ︷︷ ︸
=:G6

,

(6.10)

where F2 := −(u ⊗ u)φ9 + φ9Rij(uiujφ17/2)Id.
Since Step 2b and (6.1) give that G6 ∈ L∞

t Lp
x + L1

tW
k,∞ for any integer k ≥ 0 and 

p ∈ [1, ∞), it gives the required regularity on ∇(φ9∇u) via (2.24) and (2.25).
By Lemma 6.8 with the results of Step 2b and Step 3, we have [Λ2s, φ9]∇u ∈

L∞
t L∞−

x + L2
tW

k,∞ for integer k ≥ 0. Therefore, this commutator term also gives the 
desired regularity via (2.24) and (2.25).

Lastly, we note that Λγ∇F ∈ L∞
t Lp

x for any γ ∈ (s, 1) and p < ∞, which follows from 
the fractional Leibniz rule (2.8), Step 2b, Step 2c, Step 3 and by noting that

φ9Λγ∇u = φ9∇(φ8Λγu) ∈ L∞
t Lp

x, ∀p ∈ [1,∞].

Therefore, by (2.24) (applied with α := γ − 1, α := 1, σ = 0, r = r := ∞), it gives the 
required regularity of ∇(φ9∇u). �
6.2. Commutator estimates

In this section, we prove several commutator estimates of the form [Λβ, φ]G, used in 
the bootstrapping argument above. The main difficulty of these estimates is to control 
the commutators by local information in space, while fractional laplacians involve global 
information. This results in a number of tail estimates, for which we develop a technique 
that allows us to estimate the tails of u and Λγu, where γ ∈ [s, s +1), using only M(Λsu)
and a local mass of u, which we state in the lemma below. These tail estimates are the 
heart of this section, and will be used repeatedly in the commutator estimates that follow 
in Lemmas 6.5–6.10.

Lemma 6.3 (The main tail estimates). Let s ∈ (0, 1), R > 0 and ρ ∈ (0, R/2). Choose 
χρ ∈ C∞

c (B2ρ; [0, 1]) satisfying χρ = 1 on Bρ. Then, for every integer k ≥ 0,∥∥∥∥ˆ u(y)
|x− y|3+β

(1 − χρ)(x− y)dy
∥∥∥∥
Wk,∞(BR)

�k,R,ρ,β ‖M(Λsu)‖L2(BR) + ‖u‖L1(BR)

(6.11)
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and ∥∥∥∥ˆ Λγu(y)
|x− y|3+β

(1 − χρ)(x− y)dy
∥∥∥∥
Wk,∞(BR)

�k,R,ρ,β,γ ‖M(Λsu)‖L2(BR) (6.12)

for β > s and 0 ≤ γ − s < 1.

Remark 6.4. (6.12) is also valid with Λγ replaced by the classical derivative ∇ (when 
γ = 1).

Proof of Lemma 6.3. We consider (6.11) first. We let ϕ ∈ C∞
c (BR; [0, ∞)) be such that ´

ϕ dx = 1, and we denote ϕ-mean of u by (u)ϕ :=
´
uϕdx. We will show that

ˆ

|y−x|≤2jρ

|u(y) − (u)ϕ|dy � 2j(3+s) sup
R′≥4R

−
ˆ

BR′

|Λsu| (6.13)

for x ∈ BR and j ∈ N. Then for each such x and integer k ≥ 0

∣∣∣∣∇k

ˆ
u(y) − (u)ϕ
|x− y|3+β

(1 − χρ)(x− y)dy
∣∣∣∣ �k

k∑
m=0

ˆ

|y−x|≥ρ

|(u− (u)ϕ)(y)|
|x− y|3+β+m

dy

=
k∑

m=0

∑
j≥1

ˆ

2j−1ρ≤|y−x|<2jρ

|(u− (u)ϕ)(y)|
|x− y|3+β+m

dy

�k,ρ

∑
j≥1

2−j(3+β)
ˆ

|y−x|≤2jρ

|(u− (u)ϕ)(y)|dy

�
∑
j≥1

2−j(β−s) sup
R′≥4R

−
ˆ

BR′

|Λsu|

�β,s sup
R′≥4R

−
ˆ

BR′

|Λsu|, (6.14)

where the third line follows from |x − y|−m �ρ,m 1 (since |x − y| ≥ ρ). On the other 
hand, the remaining part with the ϕ-mean can be easily estimated by

ˆ (u)ϕ
|x− y|3+β

(1 − χρ)(x− y)dy ∼s,ρ,β (u)ϕ � ‖u‖L1(BR)

and all its derivatives vanish. Since for every R′ ≥ 4R
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−
ˆ

BR′

|Λsu(z)|dz � −
ˆ

BR

−
ˆ

BR′+R(w)

|Λsu(z)|dz dw

�
ˆ

BR

M(Λsu)(w)dw � ‖M(Λsu)‖L2(BR),

(6.15)

the claim (6.11) follows.
In order to get (6.13), we fix j ≥ 1 and write u = Λ−s(Λsu) to get

(u− (u)ϕ)(y) =
ˆ

(u(y) − u(w))ϕ(w)dw =
ˆ

(Λ−s(Λsu)(y) − Λ−s(Λsu)(w))ϕ(w)dw

∼s

¨ (
1

|y − z|(3−s) − 1
|w − z|(3−s)

)
Λsu(z)ϕ(w)dz dw

=
ˆ

|z−x|≤2j+n0ρ

Λsu(z)
|y − z|(3−s) dz −

¨

|z−x|≤2j+n0ρ

ϕ(w)
|w − z|(3−s) dwΛsu(z)dz

+
¨

|z−x|>2j+n0ρ

(
1

|y − z|(3−s) − 1
|w − z|(3−s)

)
Λsu(z)ϕ(w)dz dw

= uloc,1(y) + uloc,2 + utail(y) (6.16)

for y ∈ B2jρ(x), where n0 = n0(ρ, R) is the smallest integer satisfying 2n0ρ ≥ 4R. In 
particular, n0 ≥ 4 (since ρ < 2R) and 2n0ρ < 8R. As for uloc,1, we have

ˆ

B2jρ(x)

|uloc,1(y)|dy �
ˆ

B2j+n0ρ
(x)

ˆ

B2jρ(x)

1
|y − z|(3−s) dy |Λsu(z)|dz

�s,n0,ρ 2j(3+s) −
ˆ

B2j+n0ρ
(x)

|Λsu|dz

� 2j(3+s) −
ˆ

B2j+n0+1ρ

|Λsu|dz

� 2j(3+s) sup
R′≥4R

−
ˆ

BR′

|Λsu|dz,

(6.17)

where the second inequality follows from the inequality |y − z| � |y − x| + |z − x| ≤
2jρ + 2j+n0ρ ≤ 2jcρ (so that B2jρ(x) ⊂ B2jcρ(z) when z ∈ B2j+n0ρ(x)) and the third 
inequality follows from the fact that |x| ≤ R ≤ 2n0−2ρ. As for uloc,2, recalling that 
x ∈ BR, we obtain
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|uloc,2| �

⎛⎜⎝ ˆ

B2n0ρ(x)

+
j+n0∑

l=n0+1

ˆ

B2lρ(x)\B2l−1ρ
(x)

⎞⎟⎠ ˆ
ϕ(w)

|w − z|(3−s) dw |Λsu(z)|dz

�
ˆ

B8R(x)

ˆ

|w−z|≤10R

1
|w − z|(3−s) dw |Λsu(z)|dz

+
j+n0∑

l=n0+1

ˆ

B2lρ(x)\B2l−1ρ
(x)

|Λsu(z)|
|x− z|(3−s) dz

�s,R,ρ

ˆ

B8R(x)

|Λsu| +
j+n0∑

l=n0+1

2l(−3+s)
ˆ

B2lρ(x)

|Λsu(z)|dz

�
ˆ

B9R

|Λsu| +
j+n0∑

l=n0+1

2l(−3+s)
ˆ

B2l+1ρ

|Λsu(z)|dz

�ρ 2js sup
R′≥4R

−
ˆ

BR′

|Λsu|dz.

(6.18)

Here, the second inequality follows from |w−z| ≤ |w| + |z−x| + |x| ≤ R+8R+R = 10R
(in the first term) and |w− z| ≥ |z− x| − |x| − |w| ≥ |z− x| − 2R ≥ |x−z|

2 (in the second 
term). In the fourth inequality, we used the fact that |z− x| ≥ 2n0ρ ≥ 4R which implies 
that |z| ≤ |z − x| + |x| ≤ 2lρ + R ≤ 2lρ + 1

4 · 2n0ρ ≤ 2l+1ρ.
As for utail, we decompose the integral region (B2j+n0ρ(x))c into sets {z : 2l−1ρ <

|z − x| ≤ 2lρ} for l ≥ j + n0 + 1, and we note that on each such set we have

∣∣∣∣ 1
|y − z|(3−s) − 1

|w − z|(3−s)

∣∣∣∣ �s
|w − y|

|θy + (1 − θ)w − z|(4−s) � 2j2−l(4−s)

for some θ ∈ [0, 1]. Indeed, here we used the fact that |w − y| ≤ |x − y| + |x| + |w| ≤
2jρ + 2R �ρ,R 2j for j ≥ 1 and the fact that

|θy + (1 − θ)w − z| ≥ |z − x| − θ|y − x| − (1 − θ)|w − x| ≥ 2l−1ρ− 2jρ− 2R

≥ 2lρ
(

1
2 − 2j−l − 2n0−l−1

)
≥ 2lρ

(
1
2 − 2−5 − 2−3

)
≥ 1

4 · 2lρ,

where the second line follows from the choice of n0 (n0 ≥ 4 and R ≤ 2n0−2). Therefore, 
recalling that x ∈ BR, we have
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|utail(y)| � 2j
∑

l≥j+n0+1

2−l(4−s)
ˆ

B2lρ(x)

|Λsu|

� 2j
∑

l≥j+n0+1

2−l(4−s)
ˆ

B2l+1ρ

|Λsu|

� 2j
∑

l≥j+3

2−l(1−s) sup
R′≥4R

−
ˆ

BR′

|Λsu|

� 2js sup
R′≥4R

−
ˆ

BR′

|Λsu|

(6.19)

for every y ∈ B2jρ(x). Combining (6.17)–(6.19), we obtain (6.13), as required.
Now, we consider (6.12). The case γ = s can be obtained easily as follows;∣∣∣∣∇k

ˆ Λsu(y)
|x− y|3+β

(1 − χρ)(x− y)dy
∣∣∣∣

=
∣∣∣∣ˆ Λsu(y)∇k

(
(1 − χρ)(x− y)

|x− y|3+β

)
dy
∣∣∣∣

�
k∑

m=0

⎛⎜⎝ ˆ

ρ<|y−x|≤2n0ρ

+
∑
j≥n0

ˆ

2jρ<|y−x|≤2j+1ρ

⎞⎟⎠ |Λsu(y)||x− y|−(3+β+m)dy

�s,ρ,β

ˆ

|y|≤9R

|Λsu(y)|dy +
∑
j≥n0

2−j(3+β)
ˆ

|y|≤2j+2ρ

|Λsu(y)|dy

�ρ,R

⎛⎝1 +
∑
j≥n0

2−βj

⎞⎠ sup
R′≥4R

−
ˆ

BR′

|Λsu|dy

�n0 sup
R′≥4R

−
ˆ

BR′

|Λsu|dy

for every integer k ≥ 0, x ∈ BR, where, the second inequality follows from |y| ≤ |y −
x| + |x| ≤ 2n0ρ + R ≤ 9R (in the first term) and the fact that |y| ≤ |y − x| + |x| ≤
2j+1ρ + R ≤ 2j+1ρ + 2n0−2ρ ≤ 2j+2ρ (in the second term).

As for the case γ > s, we first set η(y) := χρ(y) − χρ(2y) and

ηj(y) := 2βj

|y|3+β
η(2−jy) for j ∈ Z.

Then ηj(y) = 2−3jη0(2−jy), so that ‖ηj‖1 = ‖η0‖1, supp ηj ⊂ B2j+1ρ \ B2j−1ρ and 
|∇kηj | �k 2j(−3−k) for every j ∈ Z, integer k ≥ 0, and
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|Λα∇kηj(y)| �α |y|−(3+k+α) for |y| ≥ 2j+2ρ, α ∈ (−1, 1). (6.20)

The case a = 0 trivially holds while a ∈ (0, 1) can be verified by writing

|Λα∇kηj(y)| ∼α

∣∣∣∣p.v. ˆ ∇kηj(y) −∇kηj(z)
|z − y|3+α

dz
∣∣∣∣

=
∣∣∣∣ˆ ηj(z)∇k

(
1

|z − y|3+α

)
dz
∣∣∣∣

�
ˆ

ηj(z)
|z − y|3+α+k

dz

� 1
|y|3+α+k

ˆ
|ηj |dz ∼ 1

|y|3+α+k
,

as required, where, in the second line, we used that ηj(y) = 0 for |y| ≥ 2j+2ρ as well 
as integration by parts (which is allowed since ηj(z) = 0 when |z − y| ≤ 2j+1ρ (as 
then |z| ≥ |y| − |z − y| ≥ 2j+1ρ)), and, in the fourth line, we used the inequality 
|z − y| ≥ |y| − |z| ≥ |y| − 2j+1ρ ≥ |y|

2 . The case α ∈ (−1, 0) follows by skipping the first 
line.

Using the auxiliary functions ηj we can write

1 − χρ(x− y)
|x− y|3+β

=
∑
j≥1

2−βjηj(x− y),

and obtain that, for every integer k ≥ 0 and every x ∈ BR,

∣∣∣∣∇k

ˆ Λγu(y)
|x− y|3+β

(1 − χρ)(x− y)dy
∣∣∣∣ =

∣∣∣∣∣∣
∑
j≥1

2−βj∇k(ηj ∗ Λγu)(x)

∣∣∣∣∣∣
≤
∑
j≥1

2−βj
∣∣(∇kΛγ−sηj ∗ Λsu)(x)

∣∣

≤
k∑

m=0

∑
j≥1

2−βj

⎛⎜⎝
∣∣∣∣∣∣∣

ˆ

|x−y|≤2j−n0+5R

∇mΛγ−sηj(x− y)Λsu(y)dy

∣∣∣∣∣∣∣
+

∑
l≥j−n0+5

∣∣∣∣∣∣∣
ˆ

2lR<|x−y|≤2l+1R

∇mΛγ−sηj(x− y)Λsu(y)dy

∣∣∣∣∣∣∣
⎞⎟⎠

�R,k

k∑
m=0

∑
j≥1

2−βj

⎛⎜⎝2j(−3−m−γ+s)
ˆ
j+2

|Λsu(y)|dy

|y|≤2 R
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+
∑

l≥j−n0+5

2l(−3−m−γ+s)
ˆ

|y|≤2l+n0+2R

|Λsu(y)|dy

⎞⎟⎠

�R

∑
j≥1

2−βj

⎛⎜⎝2j(−γ+s) −
ˆ

B2j+2R

|Λsu|dy +
∑

l≥j−n0+5

2l(−γ+s) −
ˆ

2l+n0+2R

|Λsu|dy

⎞⎟⎠
� sup

R′≥4R
−
ˆ

BR′

|Λsu|dy (6.21)

(recall n0 ≥ 4 is such that 4R ≤ 2n0ρ < 8R), as required, where, in the third inequality, 
we used the bound |∇mΛγ−sηj | �m,γ,s 2j(−3−m−γ+s) and |y| ≤ |y−x| +|x| ≤ 2j+1R+R ≤
2j+2R (for the first term) as well as (6.20) (which is allowed since |x − y| > 2lR ≥
2j−n0+5R ≥ 2j+2ρ by definition of n0) together with the lower bound |x − y| �R 2l and 
the inequality |y| ≤ |y − x| + |x| ≤ 2l+1R + R ≤ 2l+2R (for the second term). �

We now move on to the commutator estimates. In Lemmas 6.5–6.12, we consider the 
commutators of the form [Λβ, φ]G where β ∈ (1/2, 2), φ = φ(x, t) is a smooth function 
supported on BR × (−T, 0] for some R > 0 and T > 0, and G is chosen differently in 
each lemma. Also, we introduce R0 > R. Since we use the finite number of candidates 
for R, R0, φ, β in the bootstrapping argument, we ignore their dependence in the implicit 
constants of the commutator estimates. We also ignore the dependence on s.

Lemma 6.5. Let s ∈ (1
2 , 1). Let φ = φ(x, t) be a smooth function compactly supported on 

BR × (−T, 0] for some R > 0 and T > 0. Let R0 > R. Then, for any ε̄ ∈ (0, 2 − 2s), 
r ∈ [1, ∞] and p ∈ (1, ∞), we have a decomposition

[(−Δ)s, φ]u = f + g

where f and g satisfy

‖f‖Lr(−T,0;Lp) �ε̄ ‖u‖Lr(−T,0;W 2s−1+ε̄,p(BR0 )),

‖g‖L2(−T,0;Wk,∞) �k ‖M(Λsu)‖L2([−T,0]×BR) + ‖u‖L2(−T,0;L1(BR)) ∀k ∈ N ∪ {0}.

Furthermore, g is compactly supported in BR × (−T, 0), which gives that

‖g‖L2(−T,0;Wk,q) �k ‖M(Λsu)‖L2([−T,0]×BR) + ‖u‖L2(−T,0;L1(BR))

for k ∈ N ∪ {0}, q ∈ [1, ∞].

We note that the lemma is true for any ε̄ > 0, but (for brevity) we restrict ourselves 
to ε̄ < 2 − 2s since then the Sobolev-Slobodeckij space W 2s−1+ε̄,p is of order less than 
1. We set
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ρ := 1
5(R0 −R). (6.22)

We may assume R0 < 7
2R to achieve 2ρ < R; otherwise we choose R′

0 satisfying R′
0 < 7

2R

instead of R0 and then the desired estimates follow by expanding the domain.

Proof. For the convenience, we omit the variable t of u and φ unless it is needed. Using 
the definition (2.2), the commutator [(−Δ)s, φ]u can be written as

[(−Δ)s, φ]u(x) ∼
(

p.v.
ˆ

φ(x)u(x) − φ(y)u(y)
|x− y|3+2s dy − p.v.

ˆ
φ(x)(u(x) − u(y))

|x− y|3+2s dy
)

= p.v.
ˆ

u(y)(φ(x) − φ(y))
|x− y|3+2s dy.

We first decompose the integral in the last line into local and tail parts,

[(−Δ)s, φ]u(x) ∼ p.v.
ˆ

u(y)(φ(x) − φ(y))
|x− y|3+2s χρ(x− y)dy

+
ˆ

u(y)(φ(x) − φ(y))
|x− y|3+2s (1 − χρ)(x− y)dy

=: I� + It,

where χρ = χρ(x) is a radial function in space satisfying χρ = 1 on Bρ and supported 
on B2ρ.

Step 1. We estimate the local part I�.

We decompose I� by writing

I�(x) = p.v.
ˆ

u(x)(φ(x) − φ(y))
|x− y|3+2s χρ(x− y)dy

+ p.v.
ˆ (u(y) − u(x))(φ(x) − φ(y))

|x− y|3+2s χρ(x− y)dy

=: I�1(x) + I�2(x).

(6.23)

We note that both I�1 and I�2 are supported on (−T0, 0) ×BR+2ρ. Indeed, if |x| ≥ R+2ρ, 
we have |x| ≥ R and |y| ≥ |x| − |y − x| ≥ (R + 2ρ) − 2ρ = R, which make φ(x) − φ(y)
vanish. Moreover using p.v.

´ (x−y)χρ(x−y)
|x−y|3+2s dy = 0, we see that φ satisfies∣∣∣∣p.v.

ˆ
φ(x, t) − φ(y, t)
|x− y|3+2s · χρ(x− y)dy

∣∣∣∣
=
∣∣∣∣p.v.

ˆ
φ(x, t) − φ(y, t) − (x− y) · ∇φ(x, t)

|x− y|3+2s · χρ(x− y)dy
∣∣∣∣

� ‖φ‖C(−T,0;C2(R3)), ∀(x, t) ∈ R3 × [−T, 0].
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Thus we can estimate I�1,

‖I�1‖Lr(−T,0;Lp) = ‖I�1‖Lr(−T,0;Lp(BR+2ρ)) � ‖u‖Lr(−T,0;Lp(BR+2ρ)). (6.24)

As for I�2, we use the following estimate for φ: for any ε̄ > 0 and 1 ≤ q < ∞,∣∣∣∣∣∣∣
ˆ

|y−x|≤2ρ

|φ(x, t) − φ(y, t)|q
|x− y|3+(1−ε̄)q dy

∣∣∣∣∣∣∣ �ε̄ ‖φ‖qC(−T,0;C1(R3)), ∀(x, t) ∈ R3 × (−T, 0),

while for q = ∞ we use

sup
|y−x|≤2ρ

|φ(x, t) − φ(y, t)|
|x− y|1−ε̄

�ε̄ ‖φ‖C(−T,0;C1(R3)).

Using Hölder’s inequality, this gives for p ∈ [1, ∞)

|I�2(x)|p �
ˆ

|y−x|≤2ρ

|u(y) − u(x)|p
|x− y|3+(2s−1+ε̄)p dy

⎛⎜⎝ ˆ

|y−x|≤2ρ

|φ(y) − φ(x)|p′

|x− y|3+(1−ε̄)p′ dy

⎞⎟⎠
p
p′

�ε̄

ˆ

|y|≤R+4ρ

|u(y) − u(x)|p
|x− y|3+(2s−1+ε̄)p dy,

where p′ is the Hölder conjugate of p, and hence

‖I�2‖Lr(−T,0;Lp) = ‖I�2‖Lr(−T,0;Lp(BR+2ρ)) � ‖u‖Lr(−T,0;W 2s−1+ε̄,p(BR+4ρ)). (6.25)

Therefore, combining (6.24) and (6.25), we have

‖I�‖Lr(−T,0;Lp) �ε̄ ‖u‖Lr(−T,0;W 2s−1+ε̄,p(BR0 )).

Step 2. We estimate the tail part It.

We decompose It,

It = Cs

ˆ
u(y)(φ(x) − φ(y))

|x− y|3+2s (1 − χρ)(x− y)dy

= Cs φ(x)
ˆ

u(y)
|x− y|3+2s (1 − χρ)(x− y)dy − Cs

ˆ
u(y)φ(y)
|x− y|3+2s (1 − χρ)(x− y)dy

=: It1 + It2,

and we show below that



56 H. Kwon, W.S. Ożański / Journal of Functional Analysis 282 (2022) 109370
‖It1‖Wk,∞ � ‖M(Λsu)‖L2(BR) + ‖u‖L1(BR) ∀t,
‖It2‖Lr(−T,0;Lp) � ‖u‖Lr(−T,0;Lp(BR0 )).

This concludes the lemma by letting

f := I�1 + I�2 + It2, g := It1.

The first term It1 is supported in BR × (−T, 0] and so can be estimated as in (6.11)
with β := 2s,

‖It1‖L2(−T,0;Wk,∞) � ‖M(Λsu)‖L2([−T,0]×BR) + ‖u‖L2(−T,0;L1(BR)).

As for It2 we see that, since |x − y| > ρ and suppx(φ) ⊂ BR, it can be bounded for any 
x ∈ R3,

|It2(x)| �
ˆ

|u(y)||φ(y)|dy � ‖u‖L1(BR).

Moreover, it also satisfies a decay estimate

|It2(x)| �
ˆ |u(y)φ(y)|

|x− y|3+2s dy � 1
|x|3+2s ‖u‖L1(BR) ∀|x| ≥ 2R,

because of |x − y| ≥ |x| − |y| ≥ |x| −R ≥ |x|/2. Combining the two inequalities we get

‖It2‖Lr(−T,0;Lp) � ‖u‖Lr(−T,0;Lp(BR)), (6.26)

as required. �
In the following lemmas, we keep using a decomposition of a commutator suggested 

in the proof above. Namely, given a function G we use the decomposition

[Λβ , φ]G = I�1 + I�2 + It1 + It2,

where

I�1(x) := Cβ p.v.
ˆ

G(x)(φ(x) − φ(y))
|x− y|3+β

χρ(x− y)dy,

I�2(x) := Cβ p.v.
ˆ (G(y) −G(x))(φ(x) − φ(y))

|x− y|3+β
χρ(x− y)dy,

It1(x) := Cβ φ(x)
ˆ

G(y)
|x− y|3+β

(1 − χρ)(x− y)dy,

It2(x) := −Cβ

ˆ
G(y)φ(y)

3+β
(1 − χρ)(x− y)dy,

(6.27)
|x− y|
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‖

where φ ∈ C∞
c (BR × (−T, 0)), ρ = 1

5(R0 − R), χρ ∈ C∞
c (B2ρ) with χρ = 1 on Bρ. We 

recall that the local terms, I�1, I�2 are supported in BR+2ρ (regardless of G). As in the 
proof of Lemma 6.5, we may assume 2ρ < R.

Lemma 6.6. Let s ∈ (1
2 , 1) and R0 > R. Let φ = φ(x, t) be a smooth function compactly 

supported on BR × (−T, 0] for some R > 0 and T > 0. Then, given γ ∈ (s, 1), κ − γ ∈
(2s − 1, 1), and φ̄ = φ̄(x, t) ∈ C∞

c (R4) with φ̄ = 1 on [−T, 0] × BR0 , for any r ∈ [1, ∞], 
and p ∈ [2, ∞), we have a decomposition

[(−Δ)s, φ]Λγu = f0 + g0,

where f0 and g0 satisfy

‖f0‖Lr(−T,0;Lp) � ‖Λκ(uφ̄)‖Lr(−T,0;Lp) + ‖Λγ(uφ̄)‖Lr(−T,0;Lp),

g0‖L2(−T,0;Wk,∞) � ‖M(Λsu)‖L2([−T,0]×BR0 ) + ‖u‖L2(−T,0;L1(suppx φ̄)) for k ∈ N ∪ {0}.

Furthermore for every integer k ≥ 0

‖Λγ(u(1 − φ̄))‖L2(−T,0;Wk,∞(B 2
5R+ 3

5R0
))

� ‖M(Λsu)‖L2([−T,0]×BR0 ) + ‖u‖L2(−T,0;L1(suppx φ̄)). (6.28)

Remark 6.7. The motivation of the terms Λκ(uφ̄) and Λγ(uφ̄) (rather than Λκu and 
Λγu) comes from the bootstrapping argument (see Step 3 in the proof of Theorem 6.1.) 
These terms are the reason why the above lemma cannot be proved in the same way as 
Lemma 6.5 by replacing (6.11) by (6.12) (in estimating It1). Instead we need to estimate 
additional error terms of the form of (6.28), which we include as part of g0.

Proof of Lemma 6.6. For the convenience, we omit the variable t of u and φ unless it is 
needed. We use the decomposition (6.27) with G := Λγu and β := 2s to obtain

[(−Δ)s, φ]Λγu = I�1 + I�2 + It1 + It2.

First, It1 can be estimated using (6.12) with β := 2s as

‖It1‖L2(−T,0;Wk,∞) � ‖M(Λsu)‖L2([−T,0]×BR0 )

for every integer k ≥ 0. As for the other terms, we further decompose, writing Λγu =
Λγ(uφ̄) + Λγ(u(1 − φ̄)). We denote the corresponding decomposition by

I�1 + I�2 + It2 = (I�11 + I�12) + (I�21 + I�22) + (It21 + It22).

We will estimate the local parts (i.e. the ones with subscript ending with “1”) in Step 
1, and the tail parts (i.e. the ones with subscript ending with “2”) in Step 2.
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Step 1. We estimate for the local parts, that is we show that

‖I�11 + I�21 + It21‖Lr(−T,0;Lp) � ‖Λγ(uφ̄)‖Lr(−T,0;Lp(BR0 )) + ‖Λκ(uφ̄)‖Lr(−T,0;Lp).

Indeed, the same calculations as in (6.24), (6.25), (6.26) give

‖I�11 + I�21 + It21‖Lr(−T,0;Lp)

� ‖Λγ(uφ̄)‖Lr(−T,0;Lp(BR0 )) + ‖Λγ(uφ̄)‖Lr(−T,0;W 2s−1+ε̄,p(BR+4ρ))

for ε̄ := κ − γ − 2s + 1 ∈ (0, 2 − 2s). Using (2.9), we then bound the last term by 
‖Λκ(uφ̄)‖Lr(−T,0;Lp) and ‖Λγ(uφ̄)‖Lr(−T,0;Lp), which concludes this step.

Step 2. Estimate for the tail parts, that is we show that

‖I�12 + I�22 + It22‖L2(−T,0;Wk,∞) � ‖M(Λsu)‖L2([−T,0]×BR0 ) + ‖u‖L2(−T,0;L1(supp φ̄)).

(This completes the proof of the lemma by setting

f0 := I�11 + I�21 + It21, g0 := It1 + I�12 + I�22 + It22.)

Recall that

I�12(x) ∼s Λγ(u(1 − φ̄))(x) p.v.
ˆ

φ(x− y) − φ(x)
|y|3+2s χρ(y)dy

= Λγ(u(1 − φ̄))(x)χ̃(x)
(

Λ2sφ(x) −
ˆ

φ(x− y) − φ(x)
|y|3+2s (1 − χρ(y))dy

)
,

I�22(x) ∼s p.v.
ˆ (Λγ(u(1 − φ̄))(x− y) − Λγ(u(1 − φ̄))(x))(φ(x) − φ(x− y))

|y|3+2s χρ(y)dy,

It22(x) ∼s −
ˆ Λγ(u(1 − φ̄))(y)φ(y)

|x− y|3+2s (1 − χρ)(x− y)dy,

where χ̃ ∈ C∞
c (BR0 ; [0, 1]) is such that χ = 1 on BR+2ρ (recall that I�12 vanishes for 

|x| > R + 2ρ).
We first reduce our aim to showing that

‖Λγ(u(1 − φ̄))‖Wk,∞(BR+3ρ) � sup
R′≥4R

−
ˆ

BR′

|Λsu| + ‖u‖L1(supp φ̄), (6.29)

which will be obtained in Step 2a below.
Assuming (6.29) we have

‖I�12‖Wk,∞ � ‖Λγ(u(1 − φ̄))‖Wk,∞(BR+3ρ)
(
‖Λ2sφ‖Wk,∞(BR+3ρ) + ‖φ‖Wk,∞

)
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for every integer k ≥ 0, and so the required estimate on I�12 follows from (6.15). As for 
It22,

|∇kIt22(x)| ≤ ‖Λγ(u(1 − φ̄))‖L∞(BR)

ˆ ∣∣∣∣∇k

(
1 − χρ(x− y)
|x− y|3+2s

)∣∣∣∣ dy
�k,ρ ‖Λγ(u(1 − φ̄))‖L∞(BR)

for every integer k ≥ 0, x ∈ R3, and so the required estimate on It22 follows from (6.29)
and (6.15) as well.

Lastly, we recall that I�22 is supported on {|x| ≤ R + 2ρ}, and for such x

Λγ(u(1 − φ̄))(x) ∼γ p.v.
ˆ

u(1 − φ̄)(x) − u(1 − φ̄)(z)
|x− z|3+γ

dz = −
ˆ

u(1 − φ̄)(z)
|x− z|3+γ

dz,

because φ̄ = 1 on BR+5ρ and similarly with x replaced by x −y (note that |x −y| ≤ R+2ρ
since |y| ≤ 2ρ and either |x| ≤ R or |x − y| ≤ R (as otherwise φ(x) −φ(x − y) vanishes)). 
This implies that

Λγ(u(1 − φ̄))(x− y) − Λγ(u(1 − φ̄))(x)

∼γ −
ˆ [

1
|x− y − z|3+γ

− 1
|x− z|3+γ

]
u(1 − φ̄)(z)dz

∼γ −
1̈

0

(x− θy − z) · y
|x− θy − z|5+γ

u(1 − φ̄)(z)dθ dz,

(6.30)

which gives

I�22(x) ∼γ

1ˆ

0

¨
χρ(y)(φ(x− y) − φ(x))

|y|3+2s · (x− θy − z) · y
|x− θy − z|5+γ

u(1 − φ̄)(z)dy dz dθ.

Observe that for every integer k ≥ 0

|∇kφ(x− y) −∇kφ(x)| ≤ ck|y|‖∇k+1φ‖L∞

and ∣∣∣∣∇k

(
x− θy − z

|x− θy − z|5+γ

)∣∣∣∣ � 1
|x− θy − z|4+k+γ

� 1 − χρ(x− θy − z)
|x− θy − z|4+γ

,

where we used the fact that |x − θy − z| ≥ |z| − |x − θy| ≥ R0 − (R + 2ρ) ≥ 3ρ in 
the last inequality. (Recall that |z| ≥ R0, as otherwise (1 − φ̄)(z) vanishes, and that 
|x|, |x − y| ≤ R + 2ρ which gives the same bound on |x − θy|.) This implies that



60 H. Kwon, W.S. Ożański / Journal of Functional Analysis 282 (2022) 109370
‖I�22‖L2(−T,0;Wk,∞)

�

∥∥∥∥∥∥∥
ˆ

|y|≤2ρ

1
|y|1+2s

1̈

0

|u(z)|(1 − χρ(x− θy − z))
|x− θy − z|4+γ

dθ dz dy

∥∥∥∥∥∥∥
L2(−T,0;L∞(BR+2ρ))

�
∥∥∥∥∥ sup
|x′|≤R+4ρ

ˆ |u(z)|
|x′ − z|4+γ

(1 − χρ(x′ − z))dz

∥∥∥∥∥
L2(−T,0)

� ‖M(Λsu)‖L2([−T,0]×BR0 ) + ‖u‖L2(−T,0;L1(BR0 ))

for all integers k ≥ 0, where we used (6.11) (with β := 1 + γ) in the last inequality.

Step 2a. We prove (6.29). (Note that this also proves (6.28) by applying (6.15).)

For any x ∈ BR+3ρ and integer k ≥ 0

Λγ(u(1 − φ̄))(x) ∼γ p.v.
ˆ (u(1 − φ̄))(x) − (u(1 − φ̄))(y)

|x− y|3+γ
dy =

ˆ (u(1 − φ̄))(y)
|x− y|3+γ

dy

=
ˆ (u(1 − φ̄))(y)

|x− y|3+γ
(1 − χρ(x− y))dy,

=
ˆ

u(y)
|x− y|3+γ

(1 − χρ(x− y))dy −
ˆ

uφ̄(y)
|x− y|3+γ

(1 − χρ(x− y))dy

=: J1 + J2,

(6.31)

where the second line follows from |x − y| ≥ |y| − |x| ≥ R0 − (R + 3ρ) ≥ 2ρ, so that 
χρ(x − y) = 0 for such x, y. As for J1, we use (6.11) with β := γ > s to obtain

‖J1‖Wk,∞(BR+3ρ) � ‖M(Λsu)‖L2(BR) + ‖u‖L1(BR). (6.32)

As for J2 we have for any integer k ≥ 0 and x ∈ BR+3ρ

|∇kJ2(x)| �
ˆ

uφ̄(y)∇k

(
1 − χρ(x− y)
|x− y|3+γ

)
dy �k,ρ ‖uφ̄‖L1(R3) ≤ ‖u‖L1(suppx(φ̄)),

which gives ‖J2‖Wk,∞(BR+3ρ) � ‖u‖L1(suppx(φ̄)). Combining this with (6.32) gives 
(6.29). �
Lemma 6.8. Let 1

2 < s < 1 and R0 > R. Let φ = φ(x, t) be a smooth function compactly 
supported on BR × (−T, 0] for some R > 0 and T > 0. Then, given 2s − 1 < γ < 1 and 
φ̄ = φ̄(x, t) ∈ C∞

c (R4) with φ̄ = 1 on [−T, 0] ×BR0 , for any 1 ≤ r ≤ ∞ and 2 ≤ p < ∞
we have a decomposition,
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[(−Δ)s, φ]∇u = f1 + g1,

where f1 and g1 satisfy

‖f1‖Lr(−T,0;Lp) � ‖∇(φ̄Λγu)‖Lr(−T,0;Lp)

+ ‖Λ1−γ(φ̄Λγu)‖Lr(−T,0;Lp) + ‖∇u‖Lr(−T,0;Lp(BR0 )),

‖g1‖L2(−T,0;Wk,∞) � ‖M(Λsu)‖L2([−T,0]×BR0 ) ∀k ∈ N.

Remark 6.9. The motivation of ∇(φ̄Λγu) and Λ1−γ(φ̄Λγu) comes from the bootstrap-
ping argument. (See Step 4 in the proof of Theorem 6.1. Indeed, it is easy to see 
that one could control the commutator [(−Δ)s, φ]∇u using Lemma 6.5 (with u re-
placed by ∇u). However, then we would not be able to use the resulting estimate in 
(Step 4 of) the bootstrapping argument, as we would not have sufficient control over 
the term ‖∇u‖Lr(−T,0;W 2s−1+ε̄,p(BR0 )). Indeed, using (2.9) this would require a bound 
on Λ2s−1+ε̄∇u, which we have no control using Step 2 of the bootstrapping argument 
(since the order of the operator is 2s + ε̄ > 2s − ε̄). Using Step 3 of the bootstrapping we 
have some control over derivatives of order 2s + ε̄, but it comes only via the derivatives 
of φ̄Λγu. This the reason why terms ∇(φ̄Λγu) and Λ1−γ(φ̄Λγu) appears in the estimate 
on f1 in the above lemma. We are able prove such estimate due to a nontrivial decompo-
sition of ∇u (see (6.33) below). The decomposition results in additional tail terms that 
need to be estimated (as part of g1).

Proof of Lemma 6.8. For brevity we omit the variable t of u and φ unless it is needed. 
We use the decomposition (6.27) with G := ∇u. Similarly to (6.24) and (6.26), we have

‖I�1‖Lr(−T,0;Lp) + ‖It2‖Lr(−T,0;Lp) � ‖∇u‖Lr(−T,0;Lp(BR+2ρ)).

Moreover, using (6.12) with β := 2s and Λγu replaced by ∇u (see Remark 6.4), we 
obtain

‖It1‖L2(−T,0;Wk,∞) ≤ ‖M|Λsu|‖L2(−T,0;L2(BR0 )).

As for I�2 we will use the decomposition

∇u(x) = ∇Λ−γ(φ̄Λγu + (Λγu)(1 − φ̄))(x)

= ∇Λ−γ(φ̄Λγu)(x) + C−γ

ˆ
x− z

|x− z|5−γ
((Λγu)(1 − φ̄))(z)dz

= (∇u)� + (∇u)t.

(6.33)

This gives further decomposition of I�2;
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I�2(x) = Cs p.v.
ˆ

χρ(x− y)(∇u(x) −∇u(y))(φ(x) − φ(y))
|x− y|3+2s dy

= Cs p.v.
ˆ

χρ(x− y)((∇u)�(x) − (∇u)�(y))(φ(x) − φ(y))
|x− y|3+2s dy

+ Cs p.v.
ˆ

χρ(y)((∇u)t(x− y) − (∇u)t(x))(φ(x− y) − φ(x))
|y|3+2s dy

=: I�2�(x) + I�2t(x).

Then the first term can be estimated in the same way as (6.25) with the choice of 
ε̄ = γ − (2s − 1),

‖I�2�‖Lr(−T,0;Lp) � ‖(∇u)�‖Lr(−T,0;Ẇγ,p)

� ‖Λγ∇Λ−γ((Λγu)φ̄)‖Lr(−T,0;Lp) + ‖∇Λ−γ((Λγu)φ̄)‖Lr(−T,0;Lp)

� ‖∇((Λγu)φ̄)‖Lr(−T,0;Lp) + ‖Λ1−γ((Λγu)φ̄)‖Lr(−T,0;Lp).

As for I�2t we have

I�2t = Cs p.v.
¨

χρ(y)(φ(x− y) − φ(x))
|y|3+2s

(
x− y − z

|x− y − z|5−γ
− x− z

|x− z|5−γ

)
Λγu(1 − φ̄)(z)dy dz.

(This is similar to (6.30), except that now we have Λγu instead of u, which is an additional 
difficulty.)
Note that |x − y− z| ≥ |z| − |x| − |y| ≥ R0 − (R+ 2ρ) − 2ρ ≥ ρ and similarly |x − z| ≥ ρ. 
We set η(y) := χρ(y) − χρ(2y) and

ηj(y) := 2j(1−γ) y

|y|5−γ
η(2−jy).

Then ‖ηj‖1 = C for some constant C > 0 independent of j, supp ηj ⊂ Bρ2j+1 \ Bρ2j−1

and |∇kηj | �k 2j(−3−k) for every j ∈ Z, integer k ≥ 0, and

|Λα∇kηj(y)| � |y|−(3+k+α) for |y| ≥ 2j+2ρ, α ∈ (0, 1), (6.34)

which can be verified as (6.20). Moreover for any y with |y| ≥ ρ

y

|y|5−γ
=
∑
j≥0

2−j(1−γ)ηj(y).

Thus, we can write I�2t as

I�2t ∼s

∑
j≥0

2−j(1−γ)
ˆ

χρ(y)(φ(x− y) − φ(x))
|y|3+2s

×
[(
ηj ∗ Λγu(1 − φ̄)

)
(x− y) −

(
ηj ∗ Λγu(1 − φ̄)

)
(x)

]
dy



H. Kwon, W.S. Ożański / Journal of Functional Analysis 282 (2022) 109370 63
=
∑
j≥0

2−j(1−γ)
ˆ

χρ(y)(φ(x− y) − φ(x))
|y|3+2s

×
[(

Λγ−sηj ∗ Λsu
)
(x− y) −

(
Λγ−sηj ∗ Λsu

)
(x)

]
dy

−
∑
j≥0

2−j(1−γ)
ˆ

χρ(y)(φ(x− y) − φ(x))
|y|3+2s

×
[(
ηj ∗ Λγuφ̄

)
(x− y) −

(
ηj ∗ Λγuφ̄

)
(x)

]
dy

=: I�2t1 + I�2t2.

As for I�2t2, for every x ∈ BR+2ρ, y ∈ B2ρ we have

∣∣(ηj ∗ Λγuφ̄
)
(x− y) −

(
ηj ∗ Λγuφ̄

)
(x)

∣∣
≤
∣∣ηj ∗ ∇(Λγuφ̄)(x− θy)

∣∣ |y| ≤ ‖ηj‖∞‖∇(Λγuφ̄)‖L1(BR0 )|y|

� 2−3j‖∇(φ̄Λγu)‖L1(BR0 )|y|

for some θ = θx,y ∈ [0, 1]. Thus,

|I�2t2(x)| � ‖∇φ‖∞‖∇(Λγuφ̄)‖L1(BR0 )

ˆ

B2ρ

|y|−(1+2s)dy
∑
j≥0

2−j(4−γ)

� ‖∇(Λγuφ̄)‖L1(BR0 )

for every x ∈ BR+2ρ, which gives that

‖I�2t2‖Lr(−T,0;Lp) � ‖∇(Λγuφ̄)‖Lr(−T,0;Lp(B2R0 )).

As for I�2t1, we have for every integer k ≥ 0, x ∈ BR+2ρ

|∇kI�2t1(x)|

� ‖φ‖Wk,∞

k∑
m=0

∑
j≥0

2−j(1−γ)
ˆ

B2ρ

|y|−(1+2s)‖∇m+1Λγ−sηj ∗ Λsu‖L∞(BR+4ρ)dy

�
k∑

m=0

∑
j≥0

2−j(1−γ)

⎛⎜⎜⎝
∥∥∥∥∥∥∥

ˆ

|z−y|≤2jR0

Λγ−s∇m+1ηj(y − z)Λsu(z)dz

∥∥∥∥∥∥∥
L∞

y (BR+4ρ)

+
∑
l≥j

∥∥∥∥∥∥∥
ˆ

2lR0<|z−y|≤2l+1R0

Λγ−s∇m+1ηj(y − z)Λsu(z)dz

∥∥∥∥∥∥∥
∞

⎞⎟⎟⎠

Ly (BR+4ρ)
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�k

k∑
m=0

∑
j≥0

2−j(1−γ)

⎛⎜⎜⎝2j(−4−m−γ+s)

∥∥∥∥∥∥∥
ˆ

|z−y|≤2j+2R0

|Λsu(z)|dz

∥∥∥∥∥∥∥
L∞

y (BR+4ρ)

+
∑

l≥j+2

2l(−4−m−γ+s)

∥∥∥∥∥∥∥
ˆ

|z−y|≤2l+1R0

|Λsu(z)|dz

∥∥∥∥∥∥∥
L∞

y (BR+4ρ)

⎞⎟⎟⎠
�
∑
j≥0

2−j(1−γ)

⎛⎜⎝2j(−1−γ+s) −
ˆ

|z|≤2j+3R0

|Λsu(z)|dz +
∑

l≥j+2
2l(−1−γ+s) −

ˆ

|z|≤2l+2R0

|Λsu(z)|dz

⎞⎟⎠
�
∑
j≥0

2−j(2−s) sup
R′≥4R0

−
ˆ

BR′

|Λsu| � sup
R′≥4R0

−
ˆ

BR′

|Λsu|,

where, in the third inequality, we used the bound ‖Λγ−s∇nηj‖∞ � 2j(−3−n−γ+s) (in the 
first term) and (6.34) (in the second term; recall (6.22) that R0 > R > 2ρ). Thus using 
(6.15)

‖I�2t1‖L2(−T,0;Wk,∞) � ‖M(Λsu)‖L2([−T,0]×BR0 ).

Hence lemma follows by setting

f1 = I�1 + I�2� + I�2t2 + It2, g1 = I�2t1 + It1. �
We now move on to the commutators involving the nonlinear term and the pressure 

term.

Lemma 6.10. Let 3
4 < s < 1 and R0 > R. Let φ = φ(x, t) be a smooth function compactly 

supported on BR×(−T, 0] for some R > 0 and T > 0. For any γ ∈ (2s −1, 1), r ∈ [1, ∞], 
and p ∈ [1, ∞), we have decompositions

[Λγ , φ](u · ∇)u = f2 + g2

such that for any k ∈ N ∪ {0},

‖f2‖Lr(−T,0;Lp) � ‖(u · ∇)u‖Lr(−T,0;Lp(BR)) + ‖u‖2
L∞([−T,0]×BR0 ),

‖g2‖L1
t (−T,0;Wk,∞) �k ‖M|Λsu| 2

1+δ ‖L1+δ([−T,0]×BR0 ) + ‖u‖2
L∞([−T,0]×BR0 ),

where δ := 2s
6−s .

Remark 6.11. The lemma is also valid with δ = 0, but such version would be of no 
use to us (in Step 3 of the bootstrapping argument) since the global boundedness of 
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‖M|Λsu|2‖L1
t,x

is not guaranteed. In fact, making sure that |Λsu| appears in the estimate 
above with a power lower than 2 under the maximal operator M as well as estimating 
the quadratic nonlinearity are the two main difficulties of this lemma.

Proof. We apply decomposition (6.27) with G := (u · ∇)u and β := γ,

[Λγ , φ](u · ∇)u = I� + It1 + It2,

where

I� = I�1 + I�2 ∼γ p.v.
ˆ

χρ(x− y)(φ(x) − φ(y))(u · ∇)u(y)
|x− y|3+γ

dy.

We recall that (due to the support of φ) I� is supported in BR+2ρ × (−T, 0], and that 
R0 = R + 5ρ (see (6.22)). Since γ < 1, we can easily estimate it by writing

‖I�‖Lr(−T,0;Lp)

�
∥∥∥∥ˆ |χρ(y)|

|y|3+γ
‖(φ(x) − φ(x− y))(u · ∇)u(x− y)‖Lp(BR+2ρ)dy

∥∥∥∥
Lr(−T,0)

�
ˆ |χρ(y)|

|y|2+γ
dy‖(u · ∇)u‖Lr(−T,0;Lp(BR+4ρ)) � ‖(u · ∇)u‖Lr(−T,0;Lp(BR0 )).

(6.35)

As for It2,

‖It2‖Lr(−T,0;Lp(R3)) � ‖(u · ∇)u‖Lr(−T,0;Lp(BR0 )).

Lastly, consider the remaining piece

It1(x)

∼γ φ(x)
ˆ (1 − χρ(x− y))∇ · (u⊗ u)(y)

|x− y|3+γ
dy

= −(3 + γ)φ(x)
ˆ (1 − χρ(x− y))(x− y)i

|x− y|5+γ
(u− (u)ϕ)i(u− (u)ϕ)(y)dy

− (3 + γ)φ(x)
ˆ (1 − χρ(x− y))(x− y)i

|x− y|5+γ
[uiu(y) − (u− (u)ϕ)i(u− (u)ϕ)(y)]dy

− φ(x)
ˆ (u(y) · ∇)χρ(x− y)

|x− y|3+γ
u(y)dy

=: It11 + It12 + It13

for x ∈ R3, where ϕ ∈ C∞
c (BR; [0, ∞)) is such that 

´
ϕ dx = 1. Then it is easy to see 

that
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‖It13‖Lr(−T,0;Lp) �

∥∥∥∥∥∥∥
ˆ

|x−y|≤2ρ

|u(y)|2dy

∥∥∥∥∥∥∥
Lr(−T,0;Lp(BR))

� ‖u‖2
L∞([−T,0]×BR0 ),

where we used the fact that supp(∇χρ) ⊂ B2ρ \ Bρ in the first inequality. Also, since 
It12 satisfies

|∇kIt12(x)| �k

k∑
m=0

|(u)ϕ|
ˆ

|y−x|≥ρ

|(u− (u)ϕ)(y)|
|x− y|4+γ+m

dy + |(u)ϕ|2,

for every x ∈ BR, we obtain (as in (6.14))

‖It12‖L2(−T,0;Wk,∞) � ‖u‖2
L∞([−T,0]×BR) + ‖M|Λsu|‖2

L2([−T,0]×BR0 ).

As for It11, we will show that for any x ∈ BR,

ˆ

|y−x|≤2jρ

|u− (u)ϕ|2(y)dy � 2j(3+2s)

⎛⎜⎝ sup
R′≥4R

−
ˆ

BR′

|Λsu|2/(1+δ)

⎞⎟⎠
1+δ

. (6.36)

(This is a quadratic version of (6.13); recall that δ satisfies 1 + δ = 6+s
6−s .)

Given (6.36), similarly as in (6.14), we obtain

‖It11‖L1(−T,0;Wk,∞) �
k∑

m=0

∞∑
j=1

∥∥∥∥∥∥∥
ˆ

2j−1ρ≤|y−x|≤2jρ

|u− (u)ϕ|2(y, t)
|x− y|4+γ+m

dy

∥∥∥∥∥∥∥
L1

t (−T,0;L∞
x (BR))

�
∞∑
j=1

2−j(4+γ)

∥∥∥∥∥∥∥
ˆ

|y−x|≤2jρ

|u− (u)ϕ|2(y, t)dy

∥∥∥∥∥∥∥
L1

t (−T,0;L∞
x (BR))

�
0ˆ

−T

⎛⎜⎝ sup
R′≥4R

−
ˆ

BR′

|Λsu| 2
1+δ dy

⎞⎟⎠
1+δ

� ‖M|Λsu| 2
1+δ ‖L1+δ((−T,0)×BR),

where we used (6.36) and the fact that γ > 2s − 1 in the third inequality, and (6.15)
(without its last step) in the last inequality. Thus (given (6.36)) the lemma follows by 
letting

f2 := I� + It13, g2 := It11 + It12.
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In order to obtain (6.36), we write

u(y) − (u)ϕ = uloc,1(y) + uloc,2 + utail(y),

as in (6.16). Using (6.18) and (6.19), we easily obtain

ˆ

|y−x|≤2jρ

(
|uloc,2|2 + |utail(y)|2

)
dy � 2j(3+2s)

⎛⎜⎝ sup
R′≥4R

−
ˆ

BR′

|Λsu|

⎞⎟⎠
2

� 2j(3+2s)

⎛⎜⎝ sup
R′≥4R

−
ˆ

BR′

|Λsu|2/(1+δ)

⎞⎟⎠
1+δ

.

As for uloc,1, we obtain the following estimate by a modification of (6.17),

ˆ

|y−x|≤2jρ

|uloc,1(y)|2dy �
ˆ

|y−x|≤2jρ

⎡⎢⎣ ˆ

|z−x|≤2j+n0ρ

|Λsu(z)|
|y − z|3−s

dz

⎤⎥⎦
2

dy

≤
ˆ [ˆ |Λsu(z)|1B2j+n0ρ

(x)(z)1B2j+n0+1ρ
(y − z)

|y − z|3−s
dz
]2

dy

� ‖Λsu‖2
L

2
1+δ (B2j+n0ρ

(x))
‖| · |−(3−s)‖2

L
6−s
6−2s (B2j+n0+1ρ

)

� 2js
6−2s
6−s

⎛⎜⎝ ˆ

B2j+n0ρ
(x)

|Λsu| 2
1+δ

⎞⎟⎠
1+δ

� 2j(3+2s)

⎛⎜⎝ sup
R′≥4R

−
ˆ

BR′

|Λsu| 2
1+δ

⎞⎟⎠
1+δ

,

where we used Young’s inequality for convolutions in the third inequality. �
Finally, we turn to the commutator concerning the pressure function.

Lemma 6.12. Let p satisfy −Δp = ∂ij(uiuj) on (−T, 0) × R3, and let 3
4 < s < 1 and 

R0 > R. Let φ = φ(x, t) be a smooth function compactly supported on BR × (−T, 0] for 
some R > 0 and T > 0. For any γ ∈ (2s − 1, 1), r ∈ [1, ∞], and q ∈ [1, ∞), we have 
decompositions

[Λγ , φ]∇p = f3 + g3
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such that for any k ∈ N ∪ {0},

‖f3‖Lr(−T,0;Lq) � ‖(u · ∇)u‖Lr(−T,0;Lq(BR0 )),

‖g3‖L1
t (−T,0;Wk,∞) �k ‖u‖2

L2(−T,0;L∞(BR0 )

+ ‖p‖L1([−T,0]×BR0 ) + ‖M4(Λ2s−1∇p)‖L1([−T,0]×BR).

Proof. We apply decomposition (6.27) with G := ∇p and β = γ,

[Λγ , φ]∇p = I� + It1 + It2,

where

I� ∼γ p.v.
ˆ

χρ(x− y)(φ(x) − φ(y))∇p(y)
|x− y|3+γ

dy.

As in the proof of Lemma 6.5, we assume that R0 < 7
2R (so that 2ρ < R).

Step 1. We estimate I� and It2.

To deal with the local part, I�, we use the pressure decomposition (6.2),

∇(pφ̃) = ∇Rij(uiuj φ̃) −∇
[
2(−Δ)−1∂i(uiuj∂j φ̃) + (−Δ)−1(uiuj∂ij φ̃)

]
+ ∇p2

= RRj(u · ∇uj φ̃) −∇
[
(−Δ)−1∂i(uiuj∂j φ̃) + (−Δ)−1(uiuj∂ij φ̃)

]
+ ∇p2

=: RRj(u · ∇uj φ̃) + ∇p̃,

where p2 := − 
[
2(−Δ)−1∇ · (p∇φ̄) − (−Δ)−1(pΔφ̄)

]
and φ̃ = φ̃(x, t) ∈ C∞

c (BR0 × R)
satisfies φ̃ ≡ 1 on BR+ 9

2ρ
× [−T, 0]. (We note that p̃ is the same as p1 +p2 in (6.2), except 

for the factor of 2 in p1). As in (6.3), (6.4) we obtain

‖∇kp̃‖L1(−T,0;L∞(BR+4ρ)) �k ‖u‖2
L2(−T,0;L∞(BR0 )) + ‖p‖L1(−T,0;L1(BR0 ))

for every integer k ≥ 0. Thus, since I�(x) is supported on BR+2ρ (so that x, x −y ∈ BR+4ρ, 
which implies that φ̃(x − y) = 1), we can write

I�(x) ∼γ p.v.
ˆ

χρ(y)(φ(x) − φ(x− y))∇(pφ̃)(x− y)
|y|3+γ

dy

= p.v.
ˆ

χρ(y)(φ(x) − φ(x− y))RRj(u · ∇uj φ̃)(x− y)
|y|3+γ

dy

+ p.v.
ˆ

χρ(y)(φ(x) − φ(x− y))∇p̃(x− y)
|y|3+γ

dy

=: Ĩ�1 + Ĩ�2,
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which gives that

‖Ĩ�1‖Lr(−T,0;Lq) � ‖RRj(u · ∇uj φ̃)‖Lr(−T,0;Lq) �q ‖(u · ∇)u‖Lr(−T,0;Lq(BR0 ))

for every q < ∞, r ∈ [1, ∞], and

‖Ĩ�2‖L1(−T,0;Wk,∞) �k ‖u‖2
L2(−T,0;L∞(BR0 )) + ‖p‖L1([−T,0]×BR0 )

for every integer k ≥ 0.
As for the tail part It2 we have

‖It2‖L1(−T,0;Wk,∞) �k

k∑
m=1

∥∥∥∥∥∥∥
ˆ

|x−y|≥ρ

|∇p(y)||φ(y)|
|x− y|3+γ+m

dy

∥∥∥∥∥∥∥
L1(−T,0;L∞

x )

�k ‖∇p‖L1([−T,0]×BR)

for any integer k ≥ 0, as required.

Step 2. We estimate It1.

We first decompose It1 as

It1(x)

∼γ φ(x)
ˆ ∇p(y)

|x− y|3+γ
(1 − χρ)(x− y)dy

= φ(x)
(ˆ (∇p(y) − (∇p)ϕ)

|x− y|3+γ
(1 − χρ)(x− y)dy +

ˆ (∇p)ϕ
|x− y|3+γ

(1 − χρ)(x− y)dy
)

=: It11(x) + It12(x), (6.37)

where ϕ ∈ C∞
c (BR) is such that 

´
ϕdx = 1. Then we obtain

‖It12‖L1(−T,0;Wk,∞) ∼
∥∥∥∥φ(x)

ˆ (1 − χρ(x− y))
|x− y|3+γ

dy(∇p)ϕ
∥∥∥∥
L1(−T,0;Wk,∞(BR))

� ‖(∇p)ϕ‖L1(−T,0)

� ‖p‖L1([−T,0]×BR).

As for It11 we will show below that

‖It11‖L1(−T,0;Wk,1) �k ‖M4(Λ2s−1∇p)‖L1((−T,0]×BR0 ). (6.38)

In fact this is the most challenging estimate in this section. Actually one could instead 
use a similar approach as in (6.11) to prove the same estimate, but with the grand 
maximal function M4 replaced by the Hardy-Littlewood maximal function. However, as 
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mentioned in the introduction, such estimate would be of no use to us (as Mf /∈ L1

for any f ∈ L1, f 	= 0). This is the point where the use of the grand maximal function 
becomes necessary and, in the remaining part of this section, we show that (6.38) can 
be obtained by combining the two ideas that we have already used (in showing (6.11)
and in the proof of Lemma 5.3) and adapting them to fit the structure of M4.

In fact, in order to see (6.38) we will show that

‖∇mIt11‖L1(−T,0;L1) �m ‖Lm(Λ2s−1∇p)‖L1((−T,0]×BR0 ), (6.39)

where the operator Lm is defined by

Lm(H) := sup
j≥1

|(ηj,m ∗ ζj) ∗H| + sup
j≥1

|ζj ∗H| + sup
j≥0

|ζ̃j,m+1 ∗H|

+ sup
1−n0≤l≤j
a∈[1/2,1]

|η(a)
l ∗ ζ̃m+1,j ∗H| + sup

1−n0≤l≤j
a∈[1/2,1]

|η̃(a)
l ∗ ζ̃m+1,j ∗H|. (6.40)

(Recall (above (6.17)) that the integer n0 ≥ 4 is determined by R and R0.) Then (6.38)
follows from the inequality Lm �m M4, which we show in Lemma 6.13 below. The 
auxiliary functions appearing under the suprema above are defined as

ηj(y) := 2jγ 1
|y|3+γ

η(2−jy), η
(θ)
j (y) := 1

θ3 ηj

(y
θ

)
, η̃

(θ)
j (y) := 2−jy

θ4 ηj

(y
θ

)
ζj(y) := 2j(1−2s)χρ(2−jy)

|y|4−2s , ζ̃j(y) := 2j(1−2s) η̄(2−jy)
|y|4−2s ,

ηm,j := 2jm∇mηj , ζ̃m,j := 2jm∇mζ̃j ,

(6.41)

where θ ∈ [1/2, 1] and η(y) := χρ(y) − χρ(2y) for χρ ∈ C∞
c (B2ρ; [0, 1]) satisfying χρ = 1

on Bρ. Every function defined in (6.41) satisfies

gj(y) = 2−3jg(2−jy),

where g = η, η(θ), η̃(θ), ζ, ζ̃, ηm, ζ̃m. We also note that

ηm,j ∗ ζj(y) = 2−3j(ηm,0 ∗ ζ0)(2−jy).

In order to prove (6.39) note that

1 − χρ(2−n(y))
|y|3+γ

=
∑

j≥n+1
2−jγηj(y)

for every n ∈ Z, and so It11 can be written as
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It11(x) = Cγ φ(x)
ˆ 1 − χρ(x− y)

|x− y|3+γ
(∇p(y) − (∇p)ϕ) dy

= Cγφ(x)
∑
j≥1

2−jγ

ˆ
ηj(x− y) (∇p(y) − (∇p)ϕ) dy.

Using

1
|x|4−2s = χρ(2−jx)

|x|4−2s + 1 − χρ(2−jx)
|x|4−2s = 2−j(1−2s)ζj(x) +

∑
k>j

2−k(1−2s)ζ̃k(x),

we decompose ∇p(y) − (∇p)ϕ,

∇p(y) − (∇p)ϕ =
ˆ

(∇p(y) −∇p(w))ϕ(w)dw

=
¨ (

1
|y − z|4−2s − 1

|w − z|4−2s

)
H(z)ϕ(w)dz dw

= 2−j(1−2s)
ˆ

(ζj ∗H(y) − ζj ∗H(w))ϕ(w)dw

+
∑
k>j

2−k(1−2s)
ˆ (

ζ̃k ∗H(y) − ζ̃k ∗H(w)
)
ϕ(w)dw

=: qj,1(y) + qj,2(y),

where we write H := Λ2s−1∇p for brevity. Plugging this back into the integral, we obtain 
the corresponding decomposition of It11,

It11(x) = Cγ φ(x)
∑
j≥1

2−jγ (ηj ∗ qj,1(x) + ηj ∗ qj,2(x))

=: Cγ φ(x) (J1(x) + J2(x)) .

Since φ is smooth and supported in BR, the claim (6.39) follows if we show that

‖∇mJ1‖L1(BR) + ‖∇mJ2‖L1(BR) �m ‖Lm(H)‖L1(BR0 ) (6.42)

for every m ≥ 0 (and almost every t ∈ (−T, 0)).
The estimate of J1 can be obtained easily by noting that

J1(x) =
∑
j≥1

2−j(γ+1−2s)
(
ηj ∗ ζj ∗H(x) − c

ˆ
(ζj ∗H)ϕdw

)
,

since 
´
ηj dx = c and 

´
ϕ dx = 1. Thus for any integer m ≥ 0, using∑

2−j(γ+1−2s)2−jm � 1,

j≥1
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‖∇mJ1‖L1(BR) �
∥∥∥∥sup
j≥1

|(ηm,j ∗ ζj) ∗H|
∥∥∥∥
L1(BR)

+
∥∥∥∥sup
j≥1

|ζj ∗H|
∥∥∥∥
L1(BR)

� ‖Lm(H)‖L1(BR).

As for J2, we first write the mth derivatives of the integral in the definition of qj,2 for 
integer m ≥ 0 as

∂m
y

ˆ (
ζ̃k ∗H(y) − ζ̃k ∗H(w)

)
ϕ(w)dw

= ∂m
y

1̈

0

∇ζ̃k ∗H(θy + (1 − θ)w) · (y − w)dθ ϕ(w)dw

= 2−k(m+1)θm
1̈

0

2k(m+1)∇m+1ζ̃k ∗H(θy + (1 − θ)w) · (y − w)dθ ϕ(w)dw

= 2−k(m+1)θm

⎛⎜⎝ 2−j−n0¨

0

+
j∑

l=1−n0

2−j+l¨

2−j+l−1

⎞⎟⎠ ζ̃m+1,k ∗H(θy + (1 − θ)w)

· (y − w)dθ ϕ(w)dw.

We now rewrite ∇mJ2 by applying the integration by parts and have a corresponding 
decomposition,

∇mJ2(x) =
∑
j≥1

ηj ∗ ∂mqj,2(x)

=
∑
j≥1

∑
k>j

2−jγ2k(2s−1)
¨

ηj(x− y)∂m
y

ˆ (
ζ̃k ∗H(y) − ζ̃k ∗H(w)

)
ϕ(w)dwdy

=: ∇mJ21(x) + ∇mJ22(x),

where the last decomposition is obtained by the decomposition of the θ-integral pointed 
out above.

In order to estimate ∇mJ21(x) for x ∈ BR we note that we have |x − y| ≤ 2j+1ρ, 
|w| ≤ R, θ ∈ [0, 2−j−n0 ], so that |y| ≤ |x − y| + |x| ≤ 2j+1ρ + 1

4 · 2n0ρ ≤ 2j+n0ρ (recall 
above (6.17) that 4R ≤ 2n0ρ), |θy+(1 −θ)w| ≤ θ|y| + |w| ≤ ρ +R < R0 and |y−w| � 2j , 
which gives that

|∇mJ21(x)| �
∑
j≥1

∑
k>j

2−jγ2k(2s−2)

×
2−j−n0˚

|ηj(x− y)||ζ̃m+1,k ∗H(θy + (1 − θ)w)| |y − w| |ϕ(w)|dθ dw dy

0
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�
∑
j≥1

∑
k>j

2j(1−γ)2k(2s−2)

×
2−j−n0¨

0

|ηj(x− y)|
ˆ

BR

|ζ̃m+1,k ∗H(θy + (1 − θ)w)|dw dθ dy

�
∑
j≥1

∑
k>j

2j(1−γ)2k(2s−2)
2−j−n0¨

0

|ηj(x− y)|‖ζ̃m+1,k ∗H‖L1(BR0 )
dθ

(1 − θ)3 dy

�
∑
j≥1

∑
k>j

2−jγ2k(2s−2)‖ζ̃m+1,k ∗H‖L1(BR0 )

ˆ
|ηj(x− y)|dy

� ‖ sup
k≥0

|ζ̃m+1,k ∗H|‖L1(BR0 ).

Therefore, it easily follows that

‖∇mJ21‖L1(BR) � ‖ sup
k≥0

|ζ̃m+1,k ∗H|‖L1(BR0 ) � ‖Lm(H)‖L1(BR0 ).

To deal with ∇mJ22, we rewrite the following integral, when θ ∈ (2−j+l−1, 2−j+l], as

¨
ηj(x− y)ζ̃m+1,k ∗H(θy + (1 − θ)w) · (y − w)ϕ(w) dw dy

=
¨ 1

θ3 ηj

(
θx + (1 − θ)w − y′

θ

)
ζ̃m+1,k ∗H(y′) · (x− w)ϕ(w) dw dy′

−
¨ 1

θ3 ηj

(
θx + (1 − θ)w − y′

θ

)
ζ̃m+1,k ∗H(y′) ·

(
θx + (1 − θ)w − y′

θ

)
ϕ(w) dw dy′

=
ˆ

η
(θ′)
l ∗ ζ̃m+1,k ∗H(θx + (1 − θ)w) · (x− w)ϕ(w) dw

− 2j
ˆ

η̃
(θ′)
l,i ∗ ζ̃m+1,k ∗Hi(θx + (1 − θ)w)ϕ(w) dw, (6.43)

where Hi is ith component of H, and the summation convention in i is used. Here the 
first equality follows from the change of variable y �→ θy + (1 − θ)w =: y′ and the 
decomposition y − w = 1

θ (y′ − w) = (x − w) − θx+(1−θ)w−y′

θ , and the second equality 
follows by setting θ′ = 2j−lθ ∈ (1/2, 1] and noting that

1
θ3 ηj

(z
θ

)
= 1

23l(2j−lθ)3 η0

(
z

2l(2j−lθ)

)
= η

(θ′)
l (z), 2−jzi

θ4 ηj

(z
θ

)
= η̃

(θ′)
l,i (z).

Using (6.43), we can decompose ∇mJ22 into two parts and estimate on BR as
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ˆ

BR

|∇mJ22(x)|dx �
∑
j≥1

∑
k>j

2−jγ2k(2s−2)
j∑

l=1−n0

×
2−j+lˆ

2−j+l−1

ˆ

BR

ˆ

BR

|η(θ′)
l ∗ ζ̃m+1,k ∗H(θx + (1 − θ)w)||x− w|dx dw dθ

+
∑
j≥1

∑
k>j

2j(1−γ)2k(2s−2)
j∑

l=1−n0

×
2−j+lˆ

2−j+l−1

ˆ

BR

ˆ

BR

|η̃(θ′)
l,i ∗ ζ̃m+1,k ∗Hi(θx + (1 − θ)w)|dx dw dθ

�
∑
j≥1

∑
k>j

2−jγ2k(2s−2)
j∑

l=1−n0

2−j+lˆ

2−j+l−1

dθ
θ3

·

⎛⎜⎝
∥∥∥∥∥∥∥ sup

1−n0≤l≤k
k≥1

∣∣∣η(θ′)
l ∗ ζ̃m+1,k ∗H

∣∣∣
∥∥∥∥∥∥∥
L1(BR)

+ 2j

∥∥∥∥∥∥∥ sup
1−n0≤l≤k

k≥1

∣∣∣η̃(θ′)
l ∗ ζ̃m+1,k ∗H

∣∣∣
∥∥∥∥∥∥∥
L1(BR)

⎞⎟⎠
� ‖Lm(H)‖L1(BR),

where we used the trivial bound 2−km ≤ 1 in the first inequality, the bound |x −w| ≤ 2R
in the second inequality, and the last line follows by noting that 

´ 2−j+l

2−j+l−1
dθ
θ3 ∼ 22(j−l), 

which gives convergence of the triple sum,

∑
j≥1

∑
k>j

2j(1−γ)2k(2s−2)
j∑

l=1−n0

22(j−l) �
∑
j≥1

∑
k>j

2j(1−γ)2k(2s−2) �
∑
j≥1

2−j(γ+1−2s) � 1.

This together with the same estimates for J1 and J21 above give (6.42), as required. �
We now conclude this section by showing the relation between Lm(H) and M4(H).

Lemma 6.13. If Lm(H) is defined by (6.40) then for any H

Lm(H)(x) �m M4(H)(x) for all x ∈ R3.

Proof. We recall that Lm(H) consists of the terms which can be represented as

sup
j≥1

|ηj ∗H|, sup
−b≤l≤k,a∈[1/2,1]

|η(a)
l ∗ ζk ∗H|, (6.44)

where b is some fixed positive constant, ηj(y) = 2−3jη0(2−jy) and ζj(y) = 2−3jζ0(2−jy)
for some η0, ζ0 ∈ C∞

c (B2ρ), and η(a)
j (y) = a−3ηj(a−1y).
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By the definition of M4, it easily follows that

sup
j≥1

|η2j ∗H| �� M4(H)

for every �. Since Lm contains only finitely many candidates for η, the claim follows for 
such terms.

Therefore, we are left to deal with the second representative term in (6.44).
Since l ≤ k, we set l := k + n, n ≤ 0. Using η(a)

l (y) = 2−3kη
(a)
n (2−ky), we have

η
(a)
l ∗ ζk(y) = 2−3k(η(a)

n ∗ ζ0)(2−ky) =: 2−3kΨn,a(2−ky) =: Ψn,a
k (y).

Then we obtain

sup
−b≤l≤k,a∈[1/2,1]

|η(a)
l ∗ ζk ∗H(x)| ≤ sup

n≤0,a∈[1/2,1]
sup
k≥−b

|Ψn,a
k ∗H(x)|

≤ sup
n≤0,a∈[1/2,1]

|M(H; Ψn,a)(x)|

≤ sup
n≤0,a∈[1/2,1]

|M∗
1(H; Ψn,a)(x)|.

Since for each n ≤ 0 and a ∈ [1/2, 1], Ψn,a satisfies
ˆ

(1 + |x|)4
∑
|α|≤5

|∂αΨn,a(x)|dx =
ˆ

(1 + |x|)4
∑
|α|≤5

|η(a)
n ∗ ∂αζ0|dx

≤
∑
|α|≤5

¨
(1 + |x|)4|η(a)

n (x− y)||∂αζ0(y)|dy dx

=
∑
|α|≤5

¨
(1 + |x|)4 1

(2na)3

∣∣∣∣η0

(
x− y

2na

)∣∣∣∣ |∂αζ0(y)|dy dx

≤ (1 + 4ρ)4‖η0‖1
∑
|α|≤5

‖∂αζ0‖1,

where the last line follows from supp(η0), supp(ζ0) ⊂ B2ρ, so that

|x− y| ≤ 2na · 2ρ ≤ 2ρ, |y| ≤ 2ρ =⇒ |x| ≤ 4ρ.

Observe that the upper bound is independent of n and a. Therefore, by rescaling, we 
can make it bounded by 1. Hence by definition of M4 (recall Section 2.6)

sup
0≤l≤k,a∈[1/2,1]

|η(a)
l ∗ ζk ∗H(x)| ≤ sup

n≤0,a∈[1/2,1]
|M∗

1(H; Ψn,a)(x)| � M4(H)(x),

as required. �
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