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1. Introduction

We consider three-dimensional incompressible Navier-Stokes equations with fractional
Laplacian dissipation,
{@u—l—(—A)su—i— (u-V)u+Vp=0, (11)

divu =0,

for s > 0, in the whole space R® x (0,T), T € (0,00). The system is supplemented with
initial data uli—o = ug € L?*(R3) that is divergence free. The fractional Laplacian is
defined as the Fourier multiplier with symbol |¢|?,

(CAVF() = [¢2°f(€) Vf e D'(RY),

From the physical point of view, this model, for 0 < s < 1, describes fluids with
internal friction in [20] and has also been obtained from a stochastic Lagrangian particle
approach by [31]. From the analytical point of view, (1.1) has special importance as a
generalization of the classical Navier-Stokes equations (i.e. when s = 1). Lions [18] first
studied (1.1) and has established the existence and uniqueness of global-in-time classical
solution when s > %, satisfying the energy inequality,

t
/|u(t)|2dx + 2/ |ASu|?de dr < / luo|*dx, ¥t >0, (1.2)
R3 0 R3 R3

where A = (—A)'/2. In the case of s < 2, the existence of global-in-time classical solution
remains open. In particular, this question for the classical Navier-Stokes equations (s = 1)
remains one of the Millennium Problems. One of the important developments of the
regularity theory is the celebrated e-regularity theory of Caffarelli-Kohn-Nirenberg [3],
who showed that the 1-dimensional parabolic Hausdorff measure of the singular set
(i.e. the set of point (x,t) such that w is unbounded in any neighborhood of (z,t))
vanishes for every suitable weak solution (see [3] for the definition). Recently, Tang-
Yu [26] have extended this result to the hypodissipative case 3 < s < 1, by showing
that the (5 — 4s)-dimensional Hausdorff measure of the singular set vanishes for every
suitable weak solution.® They also showed existence of a suitable weak solution for given
divergence-free initial data ug € L2. In the case of hyperdissipation 1 < s < %, a similar
result has recently been obtained by Colombo-De Lellis-Massaccesi [2] (see also [15] and
[21]). We note that these results cover, at most, Holder continuity of solutions outside
of the singular set, and any regularity aspects of derivatives of suitable weak solutions

have remained an open question for s # 1, s < 5/4.

L See Definition 2.2.
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The regularity of derivatives of the Navier-Stokes equations with fractional dissipation
is an interesting open problem. In the case of classical Navier-Stokes equations one can
deduce boundedness of higher derivatives using the classical procedure, which we now
briefly sketch. (It is described in detail in Section 13 and Section D.3 in [22], for example.)
Consider the vorticity w = curl u and let us focus on the vorticity formulation dyw—Aw =
(w-V)u—(u-V)w. Set W := we, where ¢ € C°(R? x (0,00)) is a cutoff function. Then
W satisfies an equation which is, roughly speaking, of the form

W — AW = d(Wu) + Wu+ OW + W

(where 9 denotes any spatial partial derivative). Considering only the leading order term
“O0(Wwu)” on the right-hand side, and applying standard parabolic regularity estimates
gives

Wler S IWullza S [IW[pm{lul za

for 5/a < 5/r + 1, where L” = L"(R3 x (0,00)), and we also applied Hélder’s inequality
with 1/a = 1/m + 1/q. This gives the condition

s(-1)ar-t
m r q
from which it is clear that if v € L? for some ¢ > 5 then the right hand side of the
above inequality is strictly positive, and so one can choose r > m, which improves
local regularity of w. Therefore, using the “initial regularity” w € L? obtained from
the energy inequality, one can use a bootstrapping argument (with decreasing cutoff
functions ¢) together with the Biot-Savart estimates to obtain local boundedness of all
spatial derivatives of w.

Considering the case s # 1, it is clear that the hypodissipative case (s < 1) is dras-
tically more complicated as we do not necessarily have vorticity w € L2. Indeed the
energy inequality (1.2) gives only A®u € L2, and so it is not even clear that w = curlu
is a well-defined quantity. Therefore one cannot use the vorticity equation to bootstrap
regularity. On the other hand using the equations (1.1) directly becomes much more dif-
ficult as one needs to take into account both the nonlocality of the fractional Laplacian
(=A)® and the nonlocality of the pressure function p. This gives rise to two important
open questions:

Question 1. If a Leray-Hopf weak solution u to (1.1) is bounded on some cylinder Q2
then are the derivatives of u bounded, on some smaller cylinder Q1%

Question 2. Do derivatives of solutions u to (1.1) admit any a priori estimates?
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In this work we provide positive answers to both questions in the hypodissipative case

Z<s<1.

Namely, we answer the first question in our first result (Theorem 1.1 below), and we show
(in Theorem 1.2 below) that derivatives of u admit local estimates in weak Lebesgue
spaces with an optimal exponent for any suitable weak solution u (see Definition 2.2).

Theorem 1.1. Suppose that a Leray-Hopf weak solution u to (1.1) for % < s < 1 satisfies

[ull e, @) + Hu||L2WT @) T ||p||L @) T IVoll L L(Q)
FIMA )| 120y + IMIA U5 Livs (o) (1.3)
+ | A A Dl L1 () < ¢ < o0

ford = 62—85' Then the velocity u satisfies

sup [u(z, t)| + |Vu(z, t)| + [V2u(z, )| < Cy
Q1

for some constant Cy = Cy(c, s) > 0.

Here p stands for the pressure function of a weak solution u (see Definition 2.1 below),
M denotes the Hardy-Littlewood maximal function and .#, denotes the grand maximal
function of order 4. We give the precise definitions in Section 2.6 below. We note that
the assumptions of Theorem 1.1 imply that supg, |VFu| < Ci(c, s) for all k > 0, where
Cr = Ci(c,s) > 0, which can be shown using the same method (see Section 6.1). For
simplicity, we restrict ourselves to k < 2.

In order to prove Theorem 1.1 we develop a new bootstrapping scheme which provides
a robust method of dealing with all nonlocalities. In fact, introducing an arbitrary space-
time cut-off ¢ one needs to estimate a number of commutators of the form [(—A)*, ¢]v ==
(—A)*(vp) — ¢(—A)®v. Here, v can be u, Vu, Au (for v € (s,1)), u- Vu or Vp. In
contrast to the usual Kato-Ponce type estimates (see [14,12,17]), such commutators need
to be localized in the sense that the right hand sides can involve only local information
of some controlled quantities, and they all appear to be new. Each instance of v =
w, Vu, A7u,u - Vu, Vp brings new challenges to our analysis, which we discuss in more
detail in Section 6.2.

A remarkable property of our commutator estimates, presented in Lemmas 6.5-6.12,
is that merely local information of u, p, M(A%u) and .#,(A?*~1Vp) suffices to control all
the tail terms related to the fractional Laplacian (—A)®. In this sense the commutators
are well-suited to the local regularity result of Theorem 1.1 above. We discuss the main
new ideas (i.e. “tricks”) of this control of the tail terms in Lemma 6.3, for the reader’s
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convenience. We explain the reason for the use of the grand maximal function (as opposed
to some simpler notion of a maximal function) below (above Corollary 1.4).

We note that the theorem above is still valid with the grand maximal function .#4
replaced by the Hardy-Littlewood maximal function M and with § = 0, but in any of
these simplifications the boundedness of the last two terms appearing in (1.3) cannot be
guaranteed in general, as Mf ¢ L' for any f € L', f # 0. In this sense Theorem 1.1
gives an optimal answer to Question 1 above.

The boundedness of derivatives of u requires some minimal local control of p, Vp, as
well as local L! control of .#,(A?*~1Vp), as stated in Theorem 1.1. We show that these
quantities are finite for any weak solution since the pressure is given via the singular
integral (2.11). While for the classical Navier-Stokes equations one has a classical global
estimate for V2p, based on the fact that —Ap = d;u;0;u; as well as the Coifman-Lions-
Meyer-Semmes [4] estimate and the Fefferman-Stein [10] estimate, the analogous result
has been unknown for the hypodissipative Navier-Stokes equations (1.1). In contrast
with the classical Navier-Stokes equations, we now have

(—A)*p = (—A)*2(9;u;05us),

which involves the non-local operator (—A)?$~2, and so distributing it equally to O;u; and
0;u; is not possible in general. We get around this issue by generalizing the technique of Li
[17] for the Kenig-Ponce-Vega-type commutator estimates [16] and using the divergence-
free condition of u to obtain that

IR (=A)°pllr®e) Ssn 1A ullZ2 R (1.4)

for every n > 0 (where R = A~!V denotes the Riesz transform), which is another main
result of this paper, see Proposition 4.2. Thanks to this global estimate, the global inte-
grability of ., (A?5~1Vp) follows (see (2.20)), and so using a Poincaré-type Lemma 5.3
and the Calderén-Zygmund inequality gives boundedness of all pressure terms appearing
n (1.3) above.

As a corollary of Theorem 1.1 we obtain an improved statement of the partial regu-
larity result of Tang-Yu [26]: if a suitable weak solution (u,p) is such that

limsupr75+45/y“|6u*\2 < €,
r—0t
Qr

then, for some p > 0, VFu € L>(Q,) for every k > 0 (rather than merely for k& = 0).
As mentioned above, such boundedness result of derivatives is well-known in the case of
classical Navier-Stokes equations (see Theorem 1.4 in [22], for example), but has been
an open problem in the case of fractional dissipation.

Our second result is concerned with an application of Theorem 1.1 that provides an
answer to Question 2.
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Theorem 1.2 (Derivatives of suitable weak solutions). Let u be a suitable weak solution
of (1.1) for 3 < s <1 (see Definition 2.2). Then

|K]|
||V”uHLp 1o (tg, T LPo (K)) Nn SHUOHLQ(R3) + t—%
0

2(3s—1)
n+2s—1

for every to € (0,T) and every open and bounded subset K C R3, where p ==
and n € {1,2}.

We note that the restriction n € {1,2} comes from the fact that only these values of
n > 0 give that p > 1 for s € (3/4,1)

Theorem 1.2 is related to the study of second derivatives in the case of the classical
Navier-Stokes equations, which was initiated by Constantin [5]. He showed the existence
of global-in-time Leray-Hopf weak solution (i.e. weak solution that satisfies the strong
energy inequality?) satisfying a priori estimate for V2u in LP for every p < % in a periodic
setting. Then Lions [19] improved this result to V2u € L3°°(R3 x (0,T)) for any Leray-
Hopf weak solution u. On the other hand, Vasseur [27] suggested a new approach for the
analysis of higher derivatives based on the e-regularity theory, and obtained bounds for
[V ul| Lpioo (r3x (0,1)) for p < %_H, n € N, that are uniform up to the putative blow-up

loc

time of a smooth solution w. The latter result was improved to || V™u| b,
Ly il T (R3x(0,T))

loc
Choi-Vasseur [7], who also obtained the estimates on fractional derivatives. Very recently,
Vasseur and Yang [28] improved this result to V2u € Lf’(‘)’cq(R?’ x (0,T)) for ¢ > %, and for
any suitable weak solution. In this context, Theorem 1.2 is the first result concerned with

the higher derivatives of solutions to Navier-Stokes equations with fractional dissipation.

The value of the exponent p = 2(3s — 1)/(n + 2s — 1) in Theorem 1.2 is determined
by the energy scaling, which can be made precise by noting that the hypodissipative
Navier-Stokes equation (1.1) is invariant under the scaling

up(w,t) = A" tu(\w, A25),  palw,t) = A 2p(Ax, A*1) (1.5)
for any A > 0. The energy functional, defined by

*sup/|u 2dgv+2//|ASu|2d:1:dt
>0

0 R3

of the rescaled velocity uy for A > 0 satisfies

E(uy) = A*E(u).

2 We refer the reader to [22] for the definition of Leray-Hopf weak solutions as well as other notions of
solutions.



H. Kwon, W.S. Ozanski / Journal of Functional Analysis 282 (2022) 109370 7

We say that a pivot quantity that is integrated over a cylinder has the energy scaling if it
scales with the same exponent as the energy. For example |A*u|? has the energy scaling
because

/|Asu>\|2dxdt:)\43_5/|Asu|2dxdt,
Q1 Qx

where Q@ = By x (—A?%,0). The exponent p in Theorem 1.2 is chosen for |V"u|P to have
the energy scaling.

Our proof of Theorem 1.2 is inspired by the approach of Vasseur [27], which is based
on an e-regularity theorem and Galilean invariance, that is the invariance of (1.1) under
a transformation

ue(z,t) = c'(t) + u(x — c(t),t), pe(z,t) = p(zr—c(t),t) (1.6)

for c(t) € R3. To be more precise, suppose that we can obtain local boundedness of

|V™u(z, t)| under the smallness assumption only on the pivot quantities over Q(z, t) that

2(3s—1)
2s

implies boundedness of |[V™u(z,t)| on Q) 2(w,t) if € > 0 is sufficiently small. Then the

Lebesgue measure of the super level set {(x,t) € R? x (A?*,00) :|Vu(x,t)| > A} can be
estimated using Chebyshev’s inequality, provided that [ASu|? is integrable in the whole
domain R? x (0,7, which results in Vu € LY>>°. The point here is that the desired value

loc

obey the energy scaling. For example, suppose that fQA@ ) |Asu|? < e2)P for p :=

of p comes from using the pivot quantities that are globally integrable and have the
energy scaling. Such quantities will be called scale optimal. For instance the quantities
|A*u|? and |(—A)*p| are scale optimal.® Thus one would wish for an e-regularity result
that implies local boundedness of spatial derivatives of u from a smallness assumption
that involves only scale optimal quantities.

Although such a result is currently unknown, using the Galilean invariance (1.6) it
turns out sufficient to prove such e-regularity result under the assumption that the
velocity has zero 1-mean, fRS u(t)pdx = 0, for every t. Here, ¢ is a function in CS°(By)
with ng tdax = 1, which we now fix (and it will remain fixed throughout the paper).
Under such assumption, we obtain the following e-regularity result.

Theorem 1.3 (Local regularity). Let s € (3,1). There exists € = €(s,1)) > 0 such that
if (u,p) is a suitable weak solution of (1.1) such that [wu(z,t)y(z)dz = 0 for all t €
(—52%%,0) and

3 A suitable weak solution u satisfies the energy inequality (1.2) (see Section 2.4), which gives the global
integrability of |A®u|?. For the global integrability of (—A)®p, recall (1.4).
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Ju(z (y.1)|?
/y |Vu*2de dy dt + / // |x—y\3+29 dz dy dt

—52s B5 B5 (17)
+/ ((M|Asu|1+%)1+5 + |[AZ7IVp| + |//l4(A2571Vp)|) dredt <e,
Qs
where 0 = 5=, then

sup(|u| + |Vu| + |V2u|) < Cy

1

2

for some positive constant Cy = Cp(s).

Here, a = 1 — 2s and u* = u*(z,y) denotes the Caffarelli-Silvestre extension of wu,
which gives rise to the extended cylinder Qi C R® of Q5 and the gradient V with respect
to (z,y). We give the precise definitions in Section 2.2 below. We note that, in order
to prove the above theorem, only local boundedness of u needs to be shown, as local
boundedness of |Vu| and |VZu| follows from Theorem 1.1.

An important ingredient of the proof of Theorem 1.3 is a new Poincaré-type inequality
for the pressure function,

Ve = (Vp)oll g 5, D~ S IA* VDl pa(myy + A (AP T VD) [ La(myy,  (18)

where (g)y = [gs g9 dz, which we develop in Lemma 5.3. Such inequality is necessary

5.8)) to control the pressure function using only

in the local regularity argument (see (
scale-optimal quantities. As above, such inequality is also valid with the grand maximal
function .#, replaced by the Hardy-Littlewood maximal function M, but in that case
the global integrability would be lost, and so would be the scale-optimality of the local
regularity result of Theorem 1.3. In fact, one could suspect that perhaps employing the
smooth maximal function or the non-tangential maximal function would be sufficient to
get around this difficulty. This has been demonstrated, for example, by Choi-Vasseur
[7] whose application of the smooth maximal function allowed them to obtain the end-
point integrability exponent 4/3. In fact, it is also true of (1.8), for which we show (in
Lemma 5.3) the stronger estimate with .#, replaced by the smooth maximal function.
The reason for the necessity to use of the grand maximal function .#4 comes from
our first result, Theorem 1.1, where it is needed to estimate the commutator involving
the pressure function, [AY, ¢|Vp (where v € (s,1)). It is our most challenging estimate,
and we present it in Lemma 6.12. Its difficulty comes from the fact that this commutator
involves both the nonlocality caused by the pressure function p and the nonlocality of A7,
and, as above, its estimate needs to be strong enough to involve only local information
of a scale-optimal quantity. This is where the flexibility allowed by the grand maximal
function becomes essential as, in some sense, it allows to control, in L', a family of double
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convolutions with uniform estimates (see (6.40) and Lemma 6.13). We discuss it in more
detail below (6.38), but we point out that it is the main reason why we are able to prove
a scale-optimal result of the form of Theorem 1.3. In other words, we show that one can
obtain the endpoint integrability exponent p = 2(3s — 1)/(n + 2s — 1) in Theorem 1.2
thanks to the grand maximal function ..

Furthermore, as a corollary of Theorem 1.3, we prove that the local regularity of
suitable weak solutions is still valid if the zero ¥»-mean condition is replaced by a smallness
assumption on |u|? + [p| 2

Corollary 1.4. There exists € > 0 such that if a suitable weak solution (u,p) of (1.1)
satisfies

/y (V| 2dX dt + / //'“ y|3+25 5P 4 dyar

—52s B 5 Bs

[ ((MIAUlT) 0 4 2510 LA ol o) < e
Qs

where § = ( . Then

sup (Jul + [Vl + [V?u]) < Cy
Q1

for some constant Cy > 0.

The corollary makes it possible to estimate the box-counting dimension of singular
set, whose upper bound is consistent with a similar result in the hyperdissipative case [2,
Corollary 1.4] that is concerned with Holder continuity of solutions (regularity of higher
derivatives in the hyperdissipative case remains an open problem).

Corollary 1.5 (The boz-counting dimension). Let (u,p) be a suitable weak solution in
R3 x (0,7T), and let

S ={(x,t) € R3 x (0,T): some spatial derivative of u

is unbounded in any neighborhood of (x,t)}

denote the singular set of u. Then, for any ty > 0, the box-counting dimension of the
singular set satisfies

dp(SN{t>ty}) < =(15 —2s — 8s?)

W =

for every tg € (0,T).
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dp(S)
du(S)

Fig. 1. Sketch of the currently known estimates on the dimension of the singular set. The curve of the box-
counting bound is described by the polynomial (—852 —25415)/3. The dashed line represents the bound on
the box-counting dimension of the singular set in space of any Leray-Hopf weak solutions (i.e. not necessarily
suitable weak solutions) and is described by the polynomial (—16s% + 16s + 5)/3. ([2,3,15,21,23,26,29])

In Fig. 1, we sketch the currently known estimates on the dimension of the singular
set for the Navier-Stokes equations with different powers of dissipation.

Finally, let us briefly comment why we only consider s > 3/4. If s < 3/4 then it is not
clear how one should interpret the local energy inequality (2.12), since the cubic term on
the right-hand side can no longer be well-defined using the a priori estimates. (Note that
the a priori estimates u € L L2, A®u € L2L? give only that u € L2s+3)/3(R3 x (0,T));
and 2(2s + 3)/3 > 3 iff s > 3/4.) In fact, the existence of suitable weak solutions is not
clear if s < 3/4, as one can no longer use compactness in L3. In the range s € (3/4,1)
we control [|ul|4(p;,,) using the L? norm of the extension u* (see (5.11)) as well as the
L} L2 norm of the pressure function (see (5.8) and (5.11)), which are crucial elements of
the proof of Theorem 1.3.

The structure of the article is as follows. In Section 2, we first introduce notations
and some preliminary concepts. Then, in Section 3, we prove Theorem 1.2 using the
global estimate (1.4) on the pressure and the local regularity, Theorem 1.3, which are
consequently proved in Section 4 and Sections 5, respectively. Section 5 is the central part
of the paper, where we first prove a Poincaré-type inequality for the pressure function
in Section 5.1, and then obtain the local boundedness of u in Section 5.2. Section 5.3
discusses the proof of Corollary 1.4 and Corollary 1.5. Section 6.1 is dedicated to the
proof of Theorem 1.1 via the new bootstrapping scheme and Section 6.2 contains the
required commutator estimates.

2. Preliminaries and notations
2.1. Notations

For any quantities A and B, we will write A < B if A < CB for some positive constant
C > 0. Similarly, we will write A > Bif A>CBand A~ Bif A< Band A2 B.
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We let B,.(z) :== {2’ € R?: |2/ —z| < 7} be the Euclidean ball in R? centred at = with
radius 7 > 0 and B} () be its extension B}(x) := B,(x) x [0,7) in R%. We denote the
parabolic cylinder centred at (z,t) with radius r by Q. (z,t) == B,.(z) x (t —r?,t] and its
extension by Q(x,t) = B(x) x (t —r?,t]. For brevity, when the centres are origin, i.e.,
either = 0 or (z,t) = (0,0), we use the abbreviations B,., B¥, Q,, and Q, respectively.

Given a sequence {a; }, we use the sequence space [? with its norm (aj)lj? = (22, la \p)%
for p € [1,00) and (a;)i> = sup; |a;|. We denote the usual Lebesgue spaces by LP(f2),
where € is a subset of either R3 or R? x R. When € is whole space R? we simply write
LP = LP(R?) (and similarly for other function spaces) and ||| z» = ||-||,. Given a cylinder
Q = B x I C R?® xR we use the abbreviation Lf/Lg(Q) .= LP (I; LP(B)). Moreover,
given a domain K, we denote the weak LP-space (or the Lorentz space) by LP*°(K),
with the norm

oL
Ilfll ooy = inf{C >0: |[KNn{f>A}< 5 for every A > O}.

We follow the usual definition of the Sobolev space WP () for integer k and p € [1, oc].
(As mentioned above, if = R? then we simply write W*? := W*P?(R3).) We denote
the collection of all smooth functions with the compact support in Q by Cg°(Q). For
brevity we omit the integral region if it is R3, i.e. we write [ fdz = fR3 fdz. We denote
the Lebesgue measure of a set E by |E| and we let (u)g denote the average of u over E,

(u)p = fpudx = ﬁ [ uda.
We use the following the Fourier transform convention,

fle) = / f@)e = ede,  f(z) = ﬁ / Fle)eca;

then E(f) = # I f(ﬁ —n)g(n)dn. We follow the standard convention regarding the
Littlewood-Paley operators: we let p(€) be a radial smooth function supported in Bs
which is identically 1 on B;. For any integer j and distribution f in R3, we set

Pof(&) = p(279€) f(6), Poyf(&) = (1—p(277¢)) f(©),
€) -

Pif(&) = (p(277€) = p (27970¢) ) f(&) = 0 (277€) J(©). (2.1)

2.2. Fractional Laplacian and its extension

We first introduce several characterizations of the fractional Laplacian. The fractional
Laplacian (—A)® for s € (0,1) can be represented as

(=A)*u(z) = Cs pv /| ‘Ms (2.2)

for some normalization constant Cy, and for s € (—2,0) as
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(-ayu) =c. %M.

See [25] for the details. Moreover the fractional Laplacian for s € (0,1) can be charac-
terized using the Caffarelli-Silvestre [6] extension

u(z,y) = /P(:): — z,y)u(2)dz, (2.3)

—@3

where P(z,y) = cs y?(|z|? + |y[2) =2~ for some normalization constant c, > 0. It is

a solution of the extension problem

{v (y*Vu*) =0, (z,y) €RY (2.4)

u*(z,0) = u(x)

where a := 1 — 2s and V is the gradient with respect to (x,%). The fractional Laplacian
can be recovered using the extension by the formula

(=A)*u(z) = —C; lim y*d,u*(z,y) (2.5)
y—0t+

in the sense of distributions where C is a constant depending only on s. We note that we
will sometimes use the same notation ¢* to denote any extension to Ri of a function ¢
defined on R?, but in such case, we will specify it. What is more, considering the energy
functionals, we also have

/ya|Vu*|2dX=/|Asu\2dx, (2.6)
R

where we set X := (x,y). Moreover, the Caffarelli-Silvestre extension of rescaled solution
uy, defined as in (1.5), can be written as a rescaled extended solution,

(ux)*(z, y, 1) = N Tu* (Az, Ay, A%t).

Furthermore, we introduce fractional Leibniz rules [16,12,17]: for « > 0, 81,82 > 0,

B=p1+ B2 €(0,1),

IA*(flLr Sarprposar,ae AT Fllzesllgllza + [ fllze2 |A%gll e, (2.7)
IA7(fg) = gAP f = FAPg || Sppusparmnan AT fllLon A9 pas (2.8)
provided that 1 < r < oo, and 1 < p1,p2,q1, g2 < 0o satisfying % = pil + qil = piz + q%’
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2.83. Sobolev-Slobodeckij space

In this subsection, we introduce fractional order Sobolev spaces. For a given Lipschitz
domain Q C R3, k € NU{0}, v € (0,1), p € [1,00) we define the Sobolev—Slobodeckij
space

W’H"Y’p(Q)

k k
= WP Q) i) = //'v 1) = VWP 4 4 <t

o=y

We define the Sobolev-Slobodeckij space norm by

[fllwre) = 1 i) + 1 f Iz )

In case of p = 2, we also use the notation W2 = HY and W72 = H7.
When Q = R? and v > 0, the Sobolev-Slobodeckij space is related to the LP norm of
the fractional derivatives,

[f e S TAYFlle + [ fllze for p € [2,00),

(2.9)
IAY fllze S [ f llwe for p € (1,2],
see Theorem 5.5 in [24] for a proof. Furthermore, if p =2 and 0 < v < 1, then
||f||W%2 ~ ”A'Yf”lz% (210)

see, for example, in [8, Proposition 3.4] for a proof.
2.4. Suitable weak solutions

In this section we introduce the notion of a suitable weak solution to (1.1). We first
define Leray-Hopf weak solutions.

Definition 2.1 (Leray-Hopf weak solution). Let ug € L?(R3) be divergence-free. We say
that a function u is a weak solution of (1.1) with initial data ug on R x (0,T) if

(1) u belongs to the space
u e L®(0,T; L*) N L0, T; H®)

and is divergence free in the sense of distributions.
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(2) w satisfies (1.1) in a weak sense,

T
//u~(8t§—(—A)Sf)+u®u:V§dmdt:—/uof\t:odx
0

for any divergence-free £ € C2°(R3 x [0,T)).
(3) u satisfies the strong energy inequality,

¢
/\u(t)\Qdm—l—Z//|Asu|2dxd7§/\u(to)|2dx
to

for almost all tg > 0 (including 0) and all ¢ > ¢.

Using the energy inequality it is clear that the initial data is achieved as the strong
limit u(-,t) — ug in L? as t — 0. Given u the corresponding pressure is given by the
singular integral

3
Oyu; (y)Ojui(y)
= —— 7 2 77 d 2.11
p(x) }JE‘ " ixlz ] Y, (2.11)
R3 ,]=

as in the case of classical Navier-Stokes equations.
We now define suitable weak solutions.

Definition 2.2 (Suitable weak solution). We say that a Leray-Hopf weak solution (u,p)
of (1.1) on R? x (0,T) is suitable if

(1) (u,p) satisfy (1.1) in the sense of distributions,
(2) for every & = &(x,y,t) € C°(R* x (0,7);[0,00)), the local energy inequality

/ u(O)2€(8)],—od + 2C, / / ST PedX dr

4
to R

t
< [ utto)Pet,-ode + . [ [ fu e Veax ar
to R4

t

+ [ Velyo) 20+ luP) doar

to

t
+//|u\2 <8t§y=0 + O, lim yaayg) dzdr (2.12)
y—0+
to
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holds for all 0 < tg < t < T (recall a := 1 — 2s), where div denotes the divergence
operator with respect to X = (z,y) and Cj is defined as in (2.5).

(Analogously one can define a suitable weak solution on any open time interval.)
As mentioned in the introduction, the existence of a suitable weak solution to (1.1) on
R3 x (0,7T) has been obtained by [26, Theorem 4.1] for any divergence-free initial data
ug € L?. The proof is based on dissipative regularization.

We note that any suitable weak solution (u,p) defined on ]R3 x (0,T) satisfies u €

L"(0,T;L9) and p € L™/2(0,T; L9/?) for any r,q € [2,00] x [2, 5] with
% .33
r qg 2

This follows from interpolation and the Calderén-Zygmund estimate. In particular, u €
L3(R3 x (0,T)) and p € L3?(R3 x (0,T)), so that the second last integral in the local
energy inequality is well-defined.

2.5. Poincaré inequality

Here we introduce two Poincaré inequalities that involve the Caffarelli-Silvestre ex-
tension.

Lemma 2.3 (Poincaré inequality using the extension). If u satisfies [ u(z)¢(x)dz =0 for
some non-zero smooth cut-off ¢ supported in By, then it satisfies

il

2T,
L5555 (By) S vz Vu®|rzesy)

Remark 2.4. The domains By and B3 can be easily replaced by B, and By any r < R;
a suitable factor involving r and R then appears to respect the scaling of the inequality.

Proof. We note that we have the Poincaré-type inequality

[lu = (u)B, || =~ ly% V(|2 (53, (2.13)

L3— 25(

which was introduced in [26, Proposition 2.2]. Then the desired estimate follows from

'— — (u)p, )¢ da’

— ()5, - j up da’

S = (w)s | < Iy Va2 ay),s (2.14)

L3— 25(3)

where Ay == [ $(z)dz. O
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We will also use the weighted Poincaré inequality

/ Yt — () P < / YT 2, (2.15)

Bt Bf

where (u*)p: == |Bf|™! fo y®u*, proved by [9] (see also (2.10) in [26]).
We will later show (in Section 5.1) another Poincaré-type inequality, which will use
the smooth maximal function (see (2.17) below) instead of the extension.

2.6. The Hardy space and the grand maximal function
The Hardy space H! is defined by
H'(R®) == {f € L'(R®): Rf € L'(R®)}
with the Hardy norm

[l = [1fll 4 (R A

where R := A~!V is the Riesz transform.
The Hardy norm can be characterized in various ways; first of all, using the Littlewood-
Paley projection operator P;, we have that

[ llr ~ NP5 F)zl1 (2.16)

see (2.1.1) in [13]. Moreover, it can be characterized using the grand maximal function.
To this end we first consider several types of maximal functions. To be more precise, the
Hardy-Littlewood mazximal function is defined by

Mf(z) = sup ][ F()ldy.
"0

Given ¥ € S(R?) we denote the smooth mazimal function of f with respect of ¥ by
M(f;¥)(x) = igg\\lft*f(m)\, (2.17)

where U (x) = t73¥ (¢ 'z). Furthermore, we denote the non-tangential mazimal func-
tion with aperture 1 with respect to ¥ by

Mi(f;0)(x) = sup W f(y)].

t>0, |ly—z|<t

The grand mazimal function is defined as
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AN (f) (@) = sup ¢ MI(f;¥) () : ¥ € 37/(1 )V Y 0 U(@)lde <1y,

[a|<N+1

where N > 4. By definition, we clearly have
M(f,¥) < Mi(f;¥) forall U € S.

Using the grand maximal function, the Hardy norm can be characterized as

1f 1l ~ 1Al (2.18)

For a proof we refer the reader to [13, Theorem 2.1.4].
In particular, we have

M) Sw (1 e (2.19)

for any given ¥ € S. The benefit of the grand maximal function is that it is bounded
as an operator H!(R3) — L!(R3), while the Hardy-Littlewood maximal function is not.
Furthermore, (2.18) and (1.4) imply that

- A5(A* 71D 1 S IR(=A)pllr S IR*(=A)*pllr S [A*ull3 < Cluo)  (2:20)

for any weak solution u to (1.1).
We conclude this section by introducing several properties [17] of the Hardy-
Littlewood maximal function.

~

Lemma 2.5. Suppose f € S'(R?) and supp(f) C B, for some r > 0. Then

[f(z —2)| 3
Zseuﬂg)g TR SM|f|(x) for x € R,

Lemma 2.6. For any ¥ € S and f € L}, _(R?), we have

loc
M(f;9)(x) Se Mf(2), for x € R3. (2.21)

Proof. For every t > 0, we let ¥;(z) :=t~2¥(¢t~'2) and note that

woes@i<et | [ [ el - i

yi<t  Z02nicpyj<ortry

<Ot / @ —y)ldy

ly|<t
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— 1
cople (G [ el

1202lt<\y|§2l+1t

<u ][ @ —yldy+3 2! ][ (@ - y)ldy

1>0
ly|<t =

SMf(x). O

ly|<2t+1t

2.7. Parabolic reqularity

Here we mention several facts regarding regularity of solutions to the initial value
problem

{atu +(-A)yv=g R® x (0,T) (2.22)

'U|t:0 = 0,

where T € (0,00) and g is given. We let e~t=2)" denote that fractional heat semigroup

define in the Fourier space by e *(=2)"g(¢) = e_t‘f‘Qsﬁ(E). The fractional heat semigroup
satisfies the following LP-LP estimate.

Lemma 2.7. For any s >0, a <@, and 1 <p <p < 0o, we have

IATe A fllp S 7= YA,

~

—_ 3 (1_1
where o0 = 5- (p 5)'

We refer the reader to Lemma 2.2 in [30] for a proof. The lemma shows that if v is
defined by the Duhamel formula

¢
v = /6_(t_T)(_A)Sg($,T)dT, (2.23)
0
then
A% Lro,msm) S Al Lr 0,520 (2.24)

for any 7' > 0, provided that 1 <r <7 < oo satisfies

a—« 1 1
ror (i<t
2s r T

Moreover, in the case of 0 =0 (i.e. p=p) and a = @&, we have
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o]l zoe 0,732y S N9l L2 0,7:0) (2.25)

for every T' > 0. Furthermore, we note that v defined by (2.23) for g € LP(R? x (0,T)),
where p € [1,00), is the unique distributional solution to (2.22) in the space L"(0,T; LP)
for any r,p € [1,00], that is if w € L"(0,T; L?) and

T
[ - -aye) =0 (2.26)
0

for every ¢ € C°(R3 x [0,T)) then w = 0, which can be proved in the same way as
Theorem 4.4.2 in [11].

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. First, we denote by

ﬂ)\(x,t) = /'I_l,((E + )\y»t)ﬂ)(y)dy

the mollified velocity, where 1 is defined as in Theorem 1.3. We now fix (z,t) € R3 x
((5A)%4,T). We define the flow map ®;(z, ) corresponding to the mollified velocity wuy,
starting from a point x at time ¢;

0,4 (x,7) = U\ (Py(x, ), 7), T € (t—5%,1.
(I)t(x7t) =,

The flow map ®;(x,7) is well defined (since u) is smooth in space, uniformly in time)
and |det D®;(-,7)| = 1 at each time 7 € (t — 5%, (as divuy = 0). We define vy, g\ by
applying the Galilean transformation

oa(z,7) = AT (B (z, t 4+ N2T) + Az, t+ A7)
— AT (B (2, t + N257), E 4+ A2 T),
oz, w,7) = A7 2p(Dy(z,t + A7) + Az, t + A7)
+ AZ 20, (Ux (B (z,t + N2T), t + N*°7))

and we define the extension
Vi (2, w,7) = AT (D (0, t 4 AN5T) 4 Az, dw, £+ A7)

— A\t /u*(fbt(m, tH A7) N dw, t 4+ N2 (2))dY
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where u* is the Caffarelli-Silvestre’s extension of u (recall (2.3)). By the Galilean invari-
ance of (1.1) we can easily see that (vy,qy) also solves (1.1) on R? x (—52%,0). Indeed,
the purpose of the construction (vy,gy) comes from the mean-zero property of vy;

/v)\(Zﬂ')i/J(Z)dZ =0, Vre(=5%,0).
Now, we set

F(z,t) = (M| u(z, )| T55) 40 4 [A2 71V p(2, )| + [ A (A2 VD) (, t)]
G(z,y,t) = y*|Vu* (z,y,1)]?

(recall 6 :==2s/(6 — s)), and

(3.1)

Hz,t) = / F(®y(x,7) + 2z,7)dzdT + / G(®(z,7) + 2,9, 7)dzdy dr
Qs5(0,t) Q3x(0,1)

/ //|u Oy (2, 7) + 2,7) — u(Py(x,7) + 2/, 7)|? deds’ dr.

|Z _ ZI‘3+25

—(5X)2° Bsx Bsa
For each t € ((5A)%%,T) we define
QMt) = {z € R®: H Mz, t) < eX®7%}, (3.2)

where € is a sufficiently small constant given by Theorem 1.3. By a simple change of the
variables, we obtain the following lemma.

Lemma 3.1. Given A > 0 and t € ((56\)%,7), let = € QMt). Then (v, q\) =
(Un,.t, Pr,z,t) and the extension vy satisfy (1.7);

/ 2
/ w? (Vo3 *dZdr + / //'”A 57) ,T;SS D gadr

—52Bs B (3.3)
+ /(M|Asw|1—ia)1+5 + |A2 I gn| + | A (A V) |dZdT < e
Qs

Proof. The claim follows by applying the change of variables (A2, Aw, t+A2$7) +— (2, w, T)
to the left hand side of (3.3) and then using the definition (3.2). O

As a consequence of Lemma 3.1 and Theorem 1.3, we obtain

sgp (Vo] + [V?0y]) < Co
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for some Cy > 0. In particular, using (®¢(z,t + A7) + Az,t + A*7)|2.r)=(0,0) =
(P¢(x,t),t) = (x,t), we have

)\25|Vu(x,t)| + /\2S+1|V2u(x,t)| < Cy,

so that

{o: ez 2 | o wueni = Rl e@or. ey

We now estimate |(Q2(t))¢].

€

Lemma 3.2. For given A > 0 and t € ((5\)2%,T), the set Q2 (t) (defined by (3.2)) satisfies

t
65—2
(@2 (1) < 2 ][ / A7) Pde dr.
€
_(5)\)2<

Proof. The claim follows from Chebyshev’s inequality and the fact that

/ 2
/ o[Vt |2dX+/ ul@,t) = wl@, D 4 g0

|$ _ 1‘/|3+2
R% (3.5)

+ /(M\Asu|1%5)1+6 + |A2871Vp| + \///4(A2571Vp)|dx < / \Asu(x,t)\zdx,

which we verify below. Indeed, assuming (3.5),

/Hk(x, t)dx

= / F(®y(x,7) + 2z, 7)dzdT + / G(P¢(x,7) + 2,y,7)dzdy dr | dz
Q5 (0,1) Q:,(0,2)

<I> —u(d
/ / / |u(®y(z,7) + 2,7) — w(®y(z,7) + 2/, 7)|? Ao ds’ dr da
—(5

|Z _ Zl|3+25
A)2¢ Bsx Bsa

// F(z+ z,7)dedzdr + / Gz + z,y,7)dzdzdydr
Q5x(0,t) Q52 (0,t)

lu(z 4+ 2,7) —u(z + 2/, 7)|?
/ /// Z-Z"3+25 dIdZ’dsz

5)\)25 Bsx
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t
_ / 2
= |Bsa| / / F(z,7)dx + / G(z,y,7)dX + // '“(“{;)_ xfﬁif” dadz’ | dr

_ 2s 4
t—(5X)2s R%

t
< (5M)3 // |ASu(x, 7)|*dx dT,
t—(50)2s
where the first inequality follows from Tonelli’s theorem and the change of variables
O (z,7) — x, the second equality follows from the change of variables 2 + z — x in the

first two terms and 2z’ +z — 2’ and x + z — z in the last term, and the last inequality
follows from (3.5). This together with Chebyshev’s inequality give

[(Q2(0)°] = Ko - H (2, 8) > eA**}|

t

)\45—5 )\65—2
< /H)‘(x,t)dmg ][ /|Asu($77')|2da:d7,
€

€
t—(5X)2s

as required.
It remains to verify (3.5). Using the equivalence between norms, (2.6) and (2.10), we
have

o t) — ! )2
/y“|Vu*|2dX+/ |u($a ) u(m, )‘ dxdx’ﬁ/\AsuFdx

|.’IJ _ x/|3+25
E1

Since the maximal operator M is bounded on L9(R?)-space for any 1 < ¢ < oo, we take
q =14 to obtain

/(M|Asu|1+%)1+5dx5/(|Asu|1%s)1+5dx:/|Asu\2dx.

On the other hand, using the characterization (2.18) and the definition of the Hardy

norm, we have
/I///4(A23_1VP)|0190 S ATVl + [R(AZTVp)|)

Furthermore, writing A?2*~1Vp = R(—A)*p and applying (1.4) (see Proposition 4.2 be-
low), we get

2
/IAZS_lVPI + (NPT e S Y[R (=A) bl S 1A%ul3, (3.6)
n=1

which concludes the proof of (3.5) O
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We now verify that Theorem 1.2 follows from (3.4) and Lemma 3.2. For any A > 0
and t € ((5\)?%,T), we have

erK |V2u(z, t)|>>\20+1}‘_|(9’\( NE| o A672 ][ /|A9 (z,7)]*dzdr

—(5X)2s

< )‘GS_QM(HAsu||21(0.,T))(t>
and analogously

C

}' < A2 M (A2 0 (0,

Hx € K : |Vu(z,t)] > s

where 15 denotes the characteristic function of a set £ C R. In other words, by letting
R = CoA~2=(»=1) (n = 1,2) we obtain

(35 1)

Hz € K : [V"u(z,t)] > R} < R_pM(||ASU,||%2(R3)1(0$T))(1§) for RP > cot™

where n = 1,2 and ¢y = C§52(3~1) (recall that p = ng:i) Thus

2(3s—1)

K| R < cpt= 252
(33 1)
CM(||A*ul310,m)(t), RP > cot™

RP{z € K : |[V™u(z,t)| > R} < {

for some constant C' > 0, and hence

n K] s
IV e ) oo () S miax (tms_l) s M(IAul310,m)(1)
2s
s K]
< M(IAul310,m) () + =1

Including time dependence this gives

IVl e o) S M3 10,2 1 gy

K| _ K|

+ 51 SNl Z2 0y xre) T 5
to * to *
< fluglls + 1L
tO

as required, where we used the fact that the maximal operator M : L}(R) — LY (R) is
bounded in the second inequality, as well as the energy inequality (1.2) in the last step.
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4. Global integrability of the pressure

In this section we show (in Proposition 4.2) that for each integer n > 0
IR™ (=A)°pll1 < csnl Aull3,

which we have used above in (3.6).
We first introduce some decay estimate, required in the proof of Proposition 4.2.

Lemma 4.1. Let g € S(R®). Then for any n € N U {0} and s > 0,

1

nA2s < .
R g(z)| 9,81, (1 + [a])3+7

for everyn € (0,2s), x € R3, where R is the Riesz transform defined by 7/2\9 €)= =84(¢).
U] €]

Proof. The case n = 0 follows from the pointwise decay estimate proved in [12, Lemma 1],

1

2s g5 . 4.1
A% g(x)] <, (1 + |a])3+2s (4.1)

For n > 1 the proof follows by induction: we fix n € N and n € (0,2s), and define
7 = 28 — (25 W for i =0,1,--- ,n. In particular, 7o = 2s, 7, =1, and 9,41 < n;. We
claim that for each 7, we have

) 1
7 A2s < P
|R A g('r)| ~9g,8,? (1 + |m|)3+’f]i :

(4.2)
The base step (when ¢ = 0) holds true by (4.1). Assume (4.2) holds for i. We will write
f — RiAQSg

for brevity. We first recall the integral expression of the Riesz transform of f,

@) ~ v [ ) Ttz (43)

In order to estimate |Rf(x)|, we split the integral region in (4.3) into three parts by
writing
J= ] ]
lyl<lz|/2  |y—x|<|z[/2  |y|=]=|/2

ly—=z|>|z|/2

As for the first part,
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p-v. Fy) 2
/

|z —y|*
ly|<|z]/2
T —y T 1
< Ip.v. — 7 — ——|d — d
<l [0 (Eh - el s [ i
ly|<|z|/2 ly|<|z|/2
1
SR [ Uiy
ly|<|z|/2

1 1 1
Se.si T3 dy < )
AP / (L + yh3+n Y~ e
ly|<|z|/2

where we used the fact that

T—y T

[z —yl* 2

N L B f < 2
~ |IL’ R 0y|4 or |y| = 9
0

(since |z — Oy| > |z| — |y| > @) in the second inequality, and (4.2) in the last line.
As for the second part,

/ f(y)|2i__jldy 5# / f(y)ldy

lyl>|z|/2 lyl=|z|/2
ly—=z|=|=|/2 ly—z|>|z|/2

1 1
< - i < -
~ g [Bni /|f(y)||y| Hdy S | |3+mi+r”

As for the last part,

p.v / fly) =Y ay| = |p.v / (f(2) = f(y) =L qy

|z —y|* |z —y|*
ly—z| <[] /2 ly—z|<|x]/2
< /@) = fWI° (f @]+ 1D
- eyl ey
ly—z|<|x|/2
IV£I%, —(3-0)
S RlErm a0 [z =yl dy
ly—z|<|x|/2
1 1

<0 =
~ x| B (1-0)-0 |z [3+mi+1’
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where 6 = % € (0,1). Indeed, the third line follows from the inductive assumption

and the fact that |y| > |z| — | — y| > |z|/2, and the last line is obtained by noting that

1V llso < / €129 (6)de < / €125 36| dé

l€1<1

1425
" / (HWM €1)719(€)]dE g 1.

[€1>1

Therefore, since a similar calculation gives Rf € L®, the decay estimate ~ |z[3+7+1 for
each of the parts above give (4.2) for i +1. O

Proposition 4.2 (Global estimate on (—A)°p). Let s € (0,1). Suppose that f and g are
divergence-free. Then, for any n € N U {0}, it satisfies

IR" A2 div div(f @ g)lls Som [A°Fll2]A%gll2,

where R is the Riesz transform defined by ﬂ(f) = %ff(f) In particular, if p is a

solution to (—A)p = divdiv(u ® u), we have a global bound of (—A)*p,
IR (=A)*pll S Aulf3-

Proof. Note that when I’ and G are divergence-free, we have

3 3
Z A2s Qak Fle: Z A2S_2alk7 Fl]Gk _ Z [A28_2alk, Gk]Fl
k=1 k=1 k=1

where [A, B] = AB — BA and F! and G* are I and k*® components of vector functions

F and G, respectively. Using this together with Bony’s paraproduct decomposition, we

get
3
A2 divdiv(fog) = Z ZA2S 20w 1135 + [N 20w, fLy_slgf + N2 0m, 95551 f),
lLk=1j€Z

where hj == Pjh, h<j = P<g;h, and h; = Pjh = Z?;?_2 Pyjh. For convenience, we
drop the indices [ and k in f! and g¢*.

Step 1. We estimate the diagonal piece, that is we show that
IR™ S S A2 200(£53) 11 < 1A% Fll2llA%g]|2- (4.4)

Lk J

We consider the case n = 0 first. Let x € C§°(Bgs) be such that x = 1 on Byi. We
have from Fourier series expansion
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ZE 2l i 2
A = T ™, i
meZ3
where x5 = X'lr;’fjs satisfies
212k _ ., /95 _ ~ [T _3_
ol ~ | [ @i 02 -20u5) ()| 5. (14 )2

(4.6)

where the last inequality follows from Lemma 4.1 (applied with 7 := s). Then for each
JEZL

- A28_251k(fj§j)(90)
Gy //( & +m) £k+77k))fj(€) () e T dedy

|§ + 77|2 2s
22Js _9is &+ &+ . PN . .
= e [ (22 S ) s ) €07 (e
22]3 / .
= f et zﬂ'm ‘?df\/\g 17]1 z‘n’den
(277)6 meZS J i
=270 ) xms PP, (4.7)
meZ3

where we set ]ij\f(g) = 0(279¢) f(&)e™™ o (o0 is defined as in (2.1)). Indeed, the
second line follows from the facts that || < 29F! and |n| < 29%3 (so that | + 5] <
27+ 4 2743 < 2+4 which gives x(277(£ + 7)) = 1). Therefore we have

HZAQS 20 (f33) I < Y Xms 127 P 2|2 (275 Py g)ie 1o
meZ3
log?(10 + |m|) _

Ss 1A fll21A%g]2 Z W ~s

meZ

[A°Fll2l1A%g]l2,

where the second line follows from (4.6) and the fact that P/" is bounded on L2(R3,1?)
with constant C'log(10 + |m|) (see [17]).

The estimate (4.4) for n € N follows from the same argument as above. Indeed, with
additional Riesz transform R" the definition (4.5) of x,,, s will include additional factor of
(—iz|z|71)®", which will then also appear in the integrands in (4.7) and (4.6). However,
since Lemma 4.1 gives the same bound (1 + |m|) =3 for |y s| up to constant multiple,
(4.4) follows in the same way for all n € N.
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Step 2. We estimate the low-high and high-low pieces, by showing that

1> RMA> 200, f<j-slgjll Ss [IA°Fll2[[A%g]l2. (4.8)

J

(Then one can obtain the same bound for the high-low piece.) This together with Step
1 proves the lemma.

Consider the case n = 0,1 first. For each j € Z, we have

| [A** 720, f<j—3] g;(z))|

< 20129 / [W(27y)(f<j-s(e —y) — f<j—s(x))g;(z —y)ldy
<2609 [ () max (9 f<s-a(o + 09Iyl 9y (o~ )ldy

SW“MMWkrﬂ@MMM@/WWMMO+MW%y
S 2T MV f<j_3) () M(g5) (@),

where $(€) = &&,]€[2725(¢) (here 5(¢) = > 1jj<3 0(277€) and g is defined as in (2.1))

and we used Lemma 2.5 in the third line.

Therefore, using the characterization (2.16) of the Hardy norm, we obtain
| Z[AQS*Q%, f<i-3lgjllae
J

~ (P Y AP0, f<j-slgi)ez,
J

m=+2
= (P Y PIA*?0u, f<j-slg;lh < II([A* 20, fgjf3]9j)l§||1

j=m-—2

< I M(sup( TV S s))) 2| (M(275))) 2 12
J
< Isup(ZCHIV S sl A%gll2 S 1A% Fll21A%g ]l
J
< [A%ul3,

where the fifth line follows from ||(M(2jsgj))l?||2 = (|\M(2jsgj)||2)13 S \|(2jsgj)l?|\2 <
| A%g]|2, and the second last inequality follows from ' '
27670V fejoa(w)]

=20 DIVAT Py s A f(2)| < 27070 N VAT PA® ()]
k<j—3
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=270 N7 k=9 g (A ) ()] S 276D 3T 2RI M(AS f; ) ()

k<j—3 k<j-—3

S M(A*f)(z),

where o1, (2) = 273Fp(27%2), 0(¢) = &|€]7(p(&) — p(2€)), and we have used (2.21) in
the last line. Tt then follows that [|(27C™ DV fe; 3)ill2 < [[M(ASf)]l2 S [[ASf]l2, as
required.

In the case of the integer n > 2, we can obtain the same estimate (4.8) simply by
modifying the definition of ¢ to include the additional factor of (—i&|€|71)®™. Then we
still have ¥ € S, and so the rest of the calculation remains the same. 0O

5. Local study

In this section, we prove Theorem 1.3, which gives a local regularity condition in terms
of scale-optimal quantities for a suitable weak solution of (1.1) with zero -mean. For
the reader’s convenience, we restate Theorem 1.3.

Theorem 5.1 (Local regularity). Let s € (2,1). There exists € = €(s,¢) > 0 such that
if (u,p) is a suitable weak solution of (1.1) such that [wu(x,t)y(z)dz = 0 for all t €
(—=5%,0) and

o[ Vu* 2d dy dt + (e, ) =y O g, 4
v Y ey

—52* Bs B (5.1)

+/ ((M|Asu|%)1+5+ |A25-1vp| + |///4(A25_1Vp)|> dzdt < e,
Qs

where § = then

65’

sup(|u| + |Vu| + |[VZu|) < Cy

1

2

for some positive constant Cy = Cp(s).
In the statement, € > 0 is determined by Proposition 5.7.

Remark 5.2. The conclusion of the theorem could be easily extended to the boundedness
of [V*u| on Q% for any k > 0, see the comment below Theorem 1.1. Indeed, the proof of
Theorem 5.1 is based on a bootstrapping argument that could be continued for higher
derivatives. However, we only cover the case k = 2 for the purposes of our main a priori
bound, Theorem 1.2.



30 H. Kwon, W.S. Ozanski / Journal of Functional Analysis 282 (2022) 109370

5.1. A Poincaré-type inequality for the pressure function

In this subsection, we discuss a Poincaré-type inequality, which will be used to estimate
the pressure (applied with g := Vp) in the proof of Theorem 5.1.

Lemma 5.3 (Poincaré-type inequality). For s € (3,1), v € CX(Bi) satisfying
J ¥(z)dz =1, we have

lg = (@ull, g ) Sows I glza ) + IMAZ L) 1 s

5)
4
for some n € C2°(R?), where (g)y = [ gydy. In particular

lo = @ul, g ) Sos I 2glamy + 1Ay (52)

Remark 5.4. The oscillation g — (¢g)y can be also controlled by the Hardy-Littlewood
maximal function of A2*~2div g,

lg = (9w llors(myy Sew IMAP )18y,

which can be proved directly using the approach from Lemma 3 in [27] (and also
follows directly from the lemma above and (2.21)). However, the maximal operator
M HYR?) — LYR?) is not bounded and hence we have no global bound for
[[M(=A)%plly. To get around this issue, we introduce the grand maximal function in
the above lemma.

Proof. Using the fact that [¢) =1 and the representation

A% 1g(2)

|$ _ Z|4—2s

g(x) = AT A*g(z) ~ dz,

we decompose the oscillation into two parts,

g(x) = (9)w

/(g(x) dyN//(x_Z4 = |y—z|4 28) A1 g(2)(y) dz dy
B // (w—i% = \y—z|4 23>A23 '9(2)v(y) dzdy

[2]<
e

|z[>5 0

=: I(z) + L(x).

Njw
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To estimate I (), we have
A% 1g(2)] A% g(2)]
()] < / Wd z+ ﬁd z[Y(y)ldy
lz1<3 lz1<3
and we apply Young’s inequality for convolutions to get

11,55, S 1% gl (- 170291, g 01 174215, 1)

< HAzSilgHLl(Bz)a

where 1g denotes the characteristic function of a set F, and we used the fact that
|z — 2| < |z| + |2] < 3 (and similarly |y — z| < 3) in the first inequality, as well as the
fact that s > % in the last inequality.

As for Iy, we let x € CZ°(Bz) be such that x =1 on Bs, we set 7(z) = x(2) — x(22)
and

Uj(Z) _2](2 2s)

|z|6 57277 2) for j € Z.

By construction ||n;||1 = ||| - |7*"%*7|l1 = ¢, supp n; C Bz .y \ Bay; for every j € Z.

Moreover

(5.3)

] =

e ) o2
j>-1

since 7j(z) = 0 for such z and j < —1. Since |fz + (1 —0)y —z| > |z| —flz| — (1 —0)|y| >
— % = % in the definition of Iy for every x € B%, we have

[\GI[9N)

L(z) = le U 23)/ // n;(0z + (1 — 0)y — 2)A*"lg(2)dz - (z — y)y(y) dy db
iz | |>3

=Yz [ a0+ (1= 0y - A% g(a)ds - (o - 9)ily) dydd

j>3 0

+ 22 e 25)/ // ni(0z 4+ (1= 0)y — 2)A* ' g(2)dz - (x — y)¢(y) dy df

0 ]z1>3

= Is () + I22(x).

This decomposition allows us to drop “|z| > 3/2” in Is(z) because we can assume

|0x+ (1—0)y —z| > 3 (as j > 3) and hence |z| > |0z + (1 —0)y — 2| — O|z| — (1 — 6)|y| >

5 3
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We consider I, first. Since [0z + (1 —0)y —z| < I (as j < 2) we have |z| < |6z + (1 —
)y — z| + 0lz| + (1 — 0)|y| <5 whenever |z| < 3, |y| <1, 6 € [0,1], and so

INEEDS / [ [ e+ = 0y - 2l1a* g1, () dz dy ao
j=-17

0 [yt

S ||A25719||L1(Bs)

for every x € Bs, where we used the fact that 252_1 Inj] < 1 in the last inequality.
Therefore

”IQQHLl(B%) SIA* gl (sy)-

As for Iy, we write G := sup, [n; * A>*~!g| (for brevity) to get

I ()] = |3 279229 //n £ A271g) (0 + (1 — 0)y) - (x — 1) (y) dy df

j>3
//|G9x+ (1= 6)y)|dydd = / / /\GOQH— (1= 6)y) dydo
0 B 1

=: Ip11(z) + Iz12(x)

for z € Bs, where we used the facts that s <1, [¢[ S 1and [z —y| < |z|+ |y S 1 in

the second line.
The estimate for I1; follows from the change of variable y — 0z + (1 — 0)y =: ¢/,

do
HfzuHLl(Bs // / y')ldy’ wdx S Gl (sy)- (5.4)

B 0 0I+ 1— 9)Bl

On the other hand, I315 can be estimated by

||1212||5 / //|G 0z + (1 —0)y)|dydd| dz

Bs

ulo

4

// /|G0m—1— ))|dy dzdo

1 Bj
z 7§
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//[/13” V@ =G =) g ;»3 d§§
<[ [pse 25
Bs)/” 131 s

¢ / _3
~ ||G||21(Bs)/(1 —0)"5d0

1
2

.::-\c

6/5 4o
63

6/5

6

6
S 1G5 -

where we applied the changes of variables z — 0z =: 2/, y — (1 — )y =: ' and the fact
that |2/ —y/| < |z —y| < |z| + |y| < 3 in the third line, and we used Young’s inequality
for convolutions in the fourth line. Combining with (5.4), we obtain

H121||L5 By > S NG L (Bs)-

Finally letting n(2) := 7(2)2/|2|°~2° we see that n;(z) = 27%(2772), so that
G =sup |n; x A*7lg| = sup [27¥7(277 ) % A= Tlg| < M(A*Tg;n),
Jj=3 ji>3

which (together with the above estimates on I; and o) completes the proof. Note that
(5.2) easily follows from the pointwise estimate M(A%*~tg;n)(z) < A#4(A%*~1g)(x) at
any point x € R3. O

5.2. L*°-boundness

In this subsection, we obtain the local boundedness of u under the assumptions of
Theorem 5.1. We first recall an e-regularity result of [26, Proposition 2.9].
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Proposition 5.5. There exists eg = €o(s) > 0 such that if a suitable weak solution (u,p)
to (1.1) satisfies

sup |u(x, t)|*dz + / Y| Vu*|*dX dt
te(-09)"0)5) Qo
3 AN (5.5)
0
+ /|u|3 + / /|p(:c,t)|dx dt | < eo,
NS - \By

for some q € [1,2), then the local boundedness of u follows,

[l oo @iy < 1.

Remark 5.6. In [26], the authors restrict ¢ to the range of ¢ € (%, 2) for the purpose
of their main result, but the proof of Proposition 5.5 remains valid for any ¢ € [1,2).

We now find € > 0 in Theorem 5.1 such that the assumptions of the theorem imply
(5.5). This shows that (5.5) can be guaranteed (and so local boundedness follows) using
only scale-optimal quantities given u has the 1-mean zero, [wipdz = 0. (Recall that
1 € C°(By) has been fixed in Theorem 5.1.)

Proposition 5.7. There exists ¢ > 0 such that if a suitable weak solution (u,p) satisfies
the assumptions in Theorem 5.1, then

[ullzoe (@) < 1.

This proposition, together with our first result (Theorem 1.1), which guarantees
boundedness of derivatives, concludes the proof of Theorem 5.1.

Proof. By Proposition 5.5, it suffices to prove that

sup (e, £) Pda + / Y[Vt FAXdt + )20, + 1P121(0 10 < €00
9 9

_(10)2s
te(=() 70)3% 0

g’

(5.6)

where ¢y is given by Proposition 5.5. We will show that the left hand side of (5.6) is
bounded by ¢, (e +¢2?) (and we will refer to such bound as “smallness”) for some constant
¢« = c4(5,9). Then, choosing e sufficiently small such that c,(e + €?) < ¢, we obtain
(5.6). Without loss of generality we assume that f pydx = 0, since the pressure enters
(1.1) only via Vp.

Step 1. We reduce the claim (5.6) to showing only the smallness of |[ul| Lz r2(qQ,0)-
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We note that fQI y*|Vu*[?dXdt < ¢ holds by assumption. Since 3% > 3 for s > 1,

1 2s—1
> s ||fll;3° and Lemma 2.3 to get
[3=2s

we use the interpolation inequality ||f|zs < ||f

lullLs (@10
9

) S ||u||L§5Lg(Q%) S ”uHL,?CLi(Q%o) + 2 V|l L2 qs) S Hu”L;ﬁLi(Q%o) + Ve
(5.7)

To estimate the pressure, multiplying (1.1) by ¢ and integrating in space, we obtain

(Vp)y = /¢Vp dz = / (u(u- V)Y — pA*u) d.

By Lemma 2.3, the first term on the right hand side can be bounded by

/IUI2|V1/J| SllulZaim,) S Iy2Vur(|2e ss)-

As for the second term, for each ¢ we have

/ PYAFudr = —C 7}13% / y O ui*dX = O / div(y*Vul*)dX
: J
=C, / y*Vul - Vy*dX,
RY

where ¢* € C°(R? x [0,1]) is any extension of ¢ such that ¥*(z,0) = ¥(x) (not the
Caffarelli-Silvestre extension). This implies that | [ ¢¥A%*u| < [ly2 Vu* || 12(s) and hence
at almost every time t,

lPllz2ms) < 1IVPl g ) S IIVE — (Vp)wIILg(B%) + 15 Va2 sg) + 192 Vi ll22(53)

5 B%) ~
S APVl L1y + |44(A* VD) L1 (8s)

+ 1y 2Vt |22 ms + yE Vut |2y, (5.8)

where we used the Poincaré inequality (recall [pyp = 0) in the first inequality and
Lemma 5.3 in the last line. Integration in time over the interval (—(10/9)2¢,0) gives the
estimate for the pressure,

||P||L%L§(Q%) SNl (s + (A VD) |11 ()
+ w2V 7205 + lv2VutllL2s)

Se+ e (5.9)
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Thus, having shown smallness of |ul|zs(q,,) and [|pl|L122(q ), the claim (5.6) follows if
9 R

we show smallness of ||u|zxr2(Q,0)-
9
Step 2. We show smallness of |[ul|zsor2(Q10)-
e

For the convenience, we set

F(t) = |ly2Vu* ()| 2(ms) + Iy Vu* ()1 2255
AP TID@) | £1(8y) + A (A>T VD) ()| 11.(By) -
Let £ = £(x,t) be a smooth cut-off in space and time satisfying £(x,t) = 1 on Qu,
supp(§) C @3, and £ be an extension of ¢ satisfying £ = 1 on Qw, supp(£*) C Q%,
4

and &*(z,0 t) = &(x,t). The local energy inequality (2.12) applied “with test function
()7 gives

T

%/|u(7’)|2£(7)2dx+5s / /y“IW*IQ(ﬁ*)2

—(5/4)2* R

<& / [ @ e?)

—(5/4)2* R

// (3lul? + ) - ve

5/4 23
1 _
sy [ (o von im o) (5.10)
2 y—0t
7(5/4)25

for almost every 7 € (—(5/4)%,0). (Here, we used the fact that (-, —(5/4)%¢) = 0.) By
Lemma 2.3

[ 1uPaias < lulags, S Iyt Fuagus, < F

for every t € (—(5/4)%%,0). Moreover, using Hélder’s inequality, Lemma 2.3 (note that
4< o b y for s > 3/4) and (5.8), we get

1
[ (G2 +9) w9 S sl (Iulsqoy + Iplzcay) )

S lulls (g8 Tl z2ms) + Iy8 Vo 32

A IVDl 1y + (A VD) | (8y))
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37
< (1 +f |u|2£2) F

for every t € (—(5/4)%%,0), and so

(5.11)
1 T
(o + (Jup+p)u-ve)s [ (1+ [lee)r
(/a2 ~ (/a2
) (5.12)
SNF s~ (5/92¢,0) + u?€*F
7(5/4)25

for every 7 € (—(5/4)%%,0). As for the remaining terms in (5.
to get

10), we integrate by parts
/|u*|2d1V “V(£%) )dX+/|u|2 lim, ¥, (€*)?dz = —4/ (& Vul) (u; V%)

R "

(at each t € (—(5/4)%°,7)). Applying Young’s inequality we obtain

+

[ €T @ T | < T g +

We now estimate the last term on the right-hand side. We first write the extension u* as

u*(z,y,t) = u(z,t) /8u (z,z,t)d

which gives

w(B})|(w)p

=%

BN

|

2
| < (B B|+/
0

S lyEVu|zaay),

W—

y
/y“z_a 22 |0u*(z, 2, t)| dz dz dy
0 (5.13)
where w(B%) fB,; y2dX and (f)

= oD fB*7 y*f(x,y)dX. Here the last inequal-
1 4
ity follows from a modification of (2.14) and the Cauchy-Scharz inequality. This together
with the weighted Poincare inequality (2.15) give
[wwrax s [y - w)
B )

*
7 BZ
4 4

B 2dX + ’LU(B%)KU*)B

< /y‘ﬂvu*\de

B3
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for almost every t € (—(5/4)%%,0). Integrating in time we obtain [ly2u*||r2(qs)
4

~

2 Vu|lr2(s) < I|FllLr (= (5/a)2:,0) and therefore

|u*\gﬁ(yaV(§*)2)dX + / |’U,|2 £%1+ ya(?y(g*)de 5 ||F||L1(,(5/4)2s70)
(5/4)2¢ il !
(5.14)

for every 7 € (—(5/4)%%,0). Applying the estimates (5.12) and (5.14) in (5.10) gives

[umpserass [ ([upea) P iscorme,

for almost every 7 € (—(5/4)%%,0). Using the integral Grénwall’s inequality (see, for
example, Theorem 7.3 in [1]), it follows that

/ u(r)PE(r)*dz S IF L1~ (57220100 (1 + 1F | 1. (~(5/0)2¢,0) XD F [l L2 (— 5/2)24,0)))

for almost every 7 € (—(5/4)*,0). Since || F||p1(—(5/4)2,0) S V€ + € by assumption we
obtain (assuming € € (0,1))

lullLser2(@0) S Ve

©|

as required. O
5.8. Consequences of the local reqularity Theorem 5.1

We now show that the claim of Theorem 5.1 remains valid if one replaces the zero
mean property by a smallness assumption on |u|®> + |p|>/2. In other words we obtain
Corollary 1.4, which we now restate for the reader’s convenience.

Corollary 5.8. There exists € > 0 such that if a suitable weak solution (u,p) of (1.1)
satisfies

‘12 |u(z y:t)[?
/ *Vu*|?dX dt + / // |x—y\3+25 dzdydt

e (5.15)
- / ((MIA T340 4 |A2 1] 4 Ly (A2 V)] + ul + o)) < e,
Qs

where § == (6 o) . Then
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sup (|u| + |Vu| + |V2u|) <C
Q

for some constant Cy; > 0.

Proof. We deduce (5.5) by the choice of sufficiently small e (this choice is independent
of the one in Proposition 5.7) and the same argument as in Proposition 5.7 except for
using Lemma 2.3 only to u — (u)y, where (u)y == ([¢dy)~! [u(t)ydy. We outline the
main updates to the proof of Proposition 5.7 below.

First, we replace (5.7) by the assumption, and (5.8) by writing

‘/wVpdx
ng)

SIA Tl (my) + [Aa(A*T VD) | La sy + Il 3

Iohiocog) < IV, 5 |9 [ 09

i,y (516)

where we applied Lemma 5.3 and integrated the last term by parts in the second in-
equality. This implies that

||p\|LgL§(Q%) S A Dl gy + 120 (A* 71 VD) || 21 (@q) + [Pl (5.17)

3
L2(Q1)’
which is our substitute for (5.8). We are left to estimate |ul[zscr2(q,,), for which we

L (Quo

again use the local energy inequality (5.10) with the same test function (£*)2, but with
some estimates for the terms on the right-hand side replaced as follows:

[ 1P S 1y S 100 - wag [any) + 0y

_(5/4)25
Sy EVu* @)l gs) + llullZsq.),

and

(b0 96 S il + ol

5/4 2@

The estimate for the remaining term is similar to (5.14) except for (5.13), where we use
the estimate \(u)3%| < Hu||L3(Bz) (instead of \(u)3%| < Hy%Vu*HLQ(B;)). O

We now show that Corollary 5.8 gives an estimate on the box-counting dimension of
the singular set, that is we prove Corollary 1.5.
We first note that u € L™(0,T; LY(R?)) for any r, q € [2,00] % [2,6/(3 — 2s)] such that

2s 3 3

r g 2
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recall Section 2.4. This and the fact that all the other quantities appearing in (5.15)
are globally integrable (see (2.6), (2.10), (2.18)) allow us to use a standard covering
argument. Indeed, recall the definition of the box-counting dimension,

log M (K
dp(K) = limsupw

r—0 —logr ’

for a set K C R® x (0,T), where M(K,r) denotes the maximal number of pairwise
disjoint 7-balls (in R*) with centers in K. One can see that the box-counting dimension
dp(K) can be bounded by

!/
lim sup log MI(K, r)

5.18
r—0 —logr ( )

where M’ (K, r) denotes the maximal number of pairwise disjoint cylinders Q,.(z,t) with
(z,t) € K (as r?* <7 for r < 1).
We set

u(z,t) — u(y,t)|?

and (as in (3.1))

F(x,t) = (M|A u(a, )| 755) 0 4 [A2 71 Vp(a, 1)| + [Aa(A* ' Vp)(z, 1),
G(X,t) = y*|Vu*(X,t)|%

As in (3.5) we see that all above quantities are globally integrable,

T T T T
///W(x,y,t)dxdydt+//F(x,t)dxdt+//G(X,t)dthS//|A5u|2 < JJuoll2-
0 0

0 RY 0
(5.19)
Corollary 5.8 gives that if

0
1
. / //W(x,y,t)dxdydt—l—/F(x,t)dxdt+/G(X,t)dth
B, B,

—r2s B, Qr Qi
+ r45*6/ (\u(x,t)|3 + |p(x, )P/ 2dz dt) <e
3,

then u and its spatial derivatives are bounded on @Q,/19. Given to > 0 we consider
r < min(ty/*,1) and let {Q(zx, tx) }22 52007 e any collection of pairwise disjoint
r-cylinders with (zy,tx) € SN{t > to} for every k =1,..., M’ (SN {t > to},r). Then
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l|luoll2

T T T T
2(2s+43 e
z//w+//F+//G+//<\u\<s“+ 23”’)
0 0 0 R4 0

>to},r) b

M’ (Sn{t

_~

z

HM

/W+ / F+ / G+ / <|u|(26+3) 2*’?3)

(e —728 Br(zy)? Qr(zp tr) Qr(zp,tr) Qr(zp tr)

2(2s5+3)
M’ (SN{t>to},r) K

P > et [P0 / (|U\3 + |p|3/2)

= Qr(zk,ty)

bl
-

M’ (SN{t>to},r) )
el 3—4s ;o 2(2s+3) 2(2543)
> E <er + T'( 2 16 48) 9 ¢ 9 )

k=1

Ze M/(SN{t > to}, )87 —25418)/3,

s+3) 2543

+|p| 73 (recall Section 2.4)
in the first line, and Holder’s inequality in the fourth inequality. Applying this estimate
in the bound (5.18) gives dg(S N {t > to}) < (=852 — 25 + 15)/3, as required.

where we used (5.19) and the global integrability of |u|

6. Higher derivatives of weak solutions

In this section we prove Theorem 1.1, which we restate for reader’s convenience.

Theorem 6.1. Suppose that a Leray-Hopf weak solution (u,p) to (1.1) for % <s<1
satisfies
lull e, @) + lull 2wz (g, + IPlLE @) T IIVPIL,(@1)
+ M) | L2y + IMIA T | Lrvs g,
+ || A VD[ L1y S € < 00
for 6 = 62_‘:, Then the velocity u satisfies

sup |u(z, t)| + |Vu(z, t)| + |[Viu(z, t)] < Co
Q1

for some constant Cy = Cy(c, ).
We first introduce a lemma for pressure decomposition.
Lemma 6.2 (Pressure decomposition). Let p be a solution to —Ap = 0;0;(u;u;) and let

b, ¢ be smooth cut-offs in space satisfying supp(¢) € {¢ = 1} C supp(¢) C By. Then
we have the decomposition
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¢Vp = ¢VRij(uju;) +T
for some I satisfying

supp(T') € supp ¢, || Tllyproe Spopp Nl (s, + I0lc2my VE>0.  (6.1)

Proof. Let F := supp ¢. Manipulating the equation —Ap = 0;;(u;u;), we can write pg
as
po = Rij(uiu;d) — [2(—=A) 719 (wiu;0;¢) + (—A)~ (uiu;0i;d)]
- [2(=2)7'V - (pVe) — (-A) " (pAg)] (6.2)
=: Rij(uiu;) + p1 + pa.
(Note that here we have used uniqueness of solutions to the Poisson equation: if Af =0

in R3 and f € L? for any p € [1,00) then f = 0, which can be proved using mollification
and Liouville’s theorem.) Thus

¢Vp = ¢V (pg) = ¢V Ri;(uiu;p) + ¢V (p1 + pa).

We now show that

IV*Pillooe () S Nl 2 8, (6.3)

IV*p2llLi pee () Sk IPllzi(my) (6.4)

for every integer k& > 0. Then, setting T' := ¢V (p1 + p2), the claim follows from the
product rule.

Since every term included in p; or ps involves at least one derivative falling on ¢, and
we have dist(FE,supp(Ve)) > dist(supp(¢), {¢ = 1}¢) > ¢4 > 0 by the assumption, p;
and po satisfy

Vemeo) < [ ('“<y>2lw<y>| | luw)PIv?6(y)]

a2
|z — y|2+F [z — y[I+F ) Y Sk 1ullzees,)

and

Pl [Vl pl V29|
\V’“pz(x,t)l S / (|x _ y|2+k + |z — y|1+k dy S;k,d),q; ”p”Ll(Bl) (6.5)

for any « € E, from which (6.3) and (6.4) follow, respectively. O
6.1. Proof of Theorem 6.1

We now discuss our new bootstrapping scheme, which proves Theorem 6.1. We will use
a number of commutator estimates, which we discuss in Lemmas 6.3—6.12 in Section 6.2
below.
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Proof of Theorem 6.1. In the proof we abuse the notation by letting {Qz}Z€§ be a
sequence of parabolic cylinders Q, = (—r(£)2,0) x Bi.(), where 7(£) is a radius that is
strictly decreasing in ¢, that satisfies @ := (—1,0)x By and (s, Q¢ = (— (%)28 ,0) xB%.
In particular, Qry1 € Quq1/2 € Q. We set ¢y € C°(Qy—1/2;[0,1]) be such that ¢y = 1
on Qg.

In what follows, we consider several equations of the form (9; + A*)v =Y, fi, where
the right hand side is given as a finite summation of forcing terms f;. To deduce a certain
regularity of v, we decompose the equation into (9;+A2?*)v; = f; and apply the parabolic
regularity estimates in Lemma 2.7 to each equation (9; + A2%)v; = f;. For the simplicity,
if v; satisfies the regularity required on v, we say “some regularity of f; gives the required
regularity of v” below.

6
Step 1. We show that A28~ 1%¢(ugy) € L2L; T for £ € (0,1/2).

Multiplying (1.1) by ¢2 and using Lemma 6.2 to write the pressure term in terms of
the expressions involving the Riesz transform and the remainder we obtain

(0, + A2)(udy) = V - F + [A%, go]u + (u ®u: Vs — VoaRij(usujés) + “3t¢2> +T

=V -F+G +Gy+T, (6.6)
where
F = 7(’UJ & U¢2) + ¢2Rij (Uﬂl,](b%)ld

First of all, G2 € L°LE for any p € (1,00) which implies A7 (u¢2) € L LE for any
v €[0,2s) and p € (1,00) by (2.24). Therefore, G5 gives the required regularity of ugs.

Next, I' € L}WEFP for any k € N U {0} and p € [1, 0] due to (6.1), so that we have
upy € LWEP for any k € NU{0} and p € [1,00] by (2.25), and then A?(ugpy) € L;°LP
for any real number 8 > 0 and p € [1,00] by interpolation. In particular, it gives the
required regularity of ugs.

As for the commutator term Gy, we have Gy € L7, by Lemma 6.5, which gives the
required regularity of ugy by (2.24). (The fact that e € (0, 3] is used here.)

The term V - F' is the most subtle to handle. Indeed, noting that the assumption gives
F € LgeLP for every p € (1,00) the parabolic estimate (2.24) (applied with o = —1)
only allows to estimate A%(ugs) for @ < 2s — 1 (as o + (1/r + 1/7) > 0). In order to
reach above the 2s — 1 threshold we show below that

3
143 Fllz2p < Cllullzzs @ Il 2c0u) (67)

_6
1+4e

Riesz transform and applying (2.24) with @ :== -1+ 3¢/2, @ :=2s —1+¢, 0 := 0 and

for q := . This gives the required regularity of u¢, by using L9-boundedness of the

T = 2.
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Therefore, we are left to prove (6.7). We first use the fractional Leibniz rule (2.7) to
get

IAZE (usuj )| o = [|A22 (uinjd2093) | 2
3 3
S IA2= ()l ludoll e + 1A (ugo) | La uds [l ee

3 3
< (1A o g)llag + 142 (uen) g ) lullo (5.

Since we have supp,(¢s) = {z : (z,t) € supp(¢z) for some t} € B; from its
construction, we can choose sufficiently small R > 0 such that Bzr(supp,(¢z)) =
suppx(d)%) + Bop C Bj. For such R and fixed t € (—1,0), we obtain the following

interpolation inequality for € € (0, 2s)
3
[A=%(ugs)llq

[uds (- +y) — ugs qu
|y|3+gs

<

~

y|[<R |y|>R

2 1—2
O L R B L E A [ 1
~ |y‘(3+28)% 3 z dY |y|3+%s

T
ly|>R

: 3
Wi<R lyl«’

q

juds (z + y) — udy (2)
M

2
1—2
dydz | ludgfloo * + [lugslly

N

BR(Susz(¢%)) lyl<R

s () — ury ()
Sy e dyda |+ ullioy

LB1 B1

[N

S ullvisz(myy + el sy,

where we used the LP-interpolation inequality in the second line, Hélder’s inequality and
the fact that u¢s (z +y) = u¢s (z) = 0 for [y| < R and x ¢ Br(supp,(¢z)) in the third
line, Young’s inequality and change of variable y — y — x in the fourth line, as well as
the Leibniz rule

[udsllvirsz(my) S lullvirseyll@g e + el @02 iz s,
S lullvirse s,y + el sy
in the last line. Similarly one can show the same upper bound for ||A%5(u¢2)||Lz;, up

to a constant multiple. Thus (6.7) follows by using the L?-boundedness of the Riesz
transforms.
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Step 2. We show that AP (ugy) € L{°LP for every p € [6,00), 3 € [0,25).

We will use (6.6) with ¢s, ¢3 replaced by the cutoffs ¢;, ¢
of the finite number of the iterations below. We note that G5 and I" (after replacing the

%fori:?),n-,?ineach

71—
cutoffs) gives the required regularity by the same argument in Step 1. Therefore, we
only need to focus on V - F and Gy (with the replacement of the cutoffs).

Step 2a. A*71¢(ugs) € L°LP for every p € [6,00) and € € (0,5 — 3).

To deal with V - F, we can control A2*~1T¢F using the improved regularity of u in
Step 1;

25—1+¢ 2s—14¢
IABE L S I s ) g,

25—1+¢
+ ||AZ 1 (¢3Rij(uin¢5/2)|\L?L;+% (6.8)
2s—1+
<0 (Il A" wiall g, )

The last two lines follow from the fractional Leibniz rule (2.7) and the facts that ¢3 =
$343 and (,25% = qugng%. Then, using (2.24) and LP-boundedness of Riesz transform, it
gives A?*71F¢(ug3) € LZLP for any p € [6,00) and £ € (0, 1).

2s—1+e, 0

As for Gy, since Step 1 and (2.9) imply that u € LIW, (Q2) (because of
6

H%s > 2), we have [A% ¢3]u € L2L; ™™ by Lemma 6.5. Thus, it follows from (2.24)
that A2*~1%¢(ugs) € L7LE for any p € [6,00) and € € (0,5 — 3).

Repeating the same argument twice, we can improve to the required regularity of u¢s;

AP (ugpg) € L2LE Wp e [6,00) = A% 715 (ugpy) € L;%SLQ Vp € [6,00)
— A» e (ugs) € LOLE Vp € [6,00).

Indeed, the first implication follow from [A%*, ¢4)u, A2*~1T¢F € L2LP for p € [6,00), (for
F with ¢4, ¢7/2). Then the second one follows from [A2% ¢p5]u € L2LE for p € [6,00) and

AZ=1HeF € LT L2 for p € [6,00) (for F with ¢s, da/s).
Step 2b. V(ugg) € L°LE for every p € [6, 00].
As for V- F, since if (0; + A**)w = V- F then (9; + A**)Vw = V(V - F), using (2.24)

we get

[V, S [AZ53TeT(V - Fllpecrr S ||A2871+€F||L;’°L§- (6.9)
Therefore, the inclusion A2~ F € L LP for every p € [6,00) and ¢ € (0,1) (obtained
as in (6.8)) gives the required regularity of ugs (as V(ugs) € Lg%, implies V(ugps) €
L L? for every p).
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As for the commutator term Gy, we use the decomposition LLE + L2WE> (for
p € [6,00)) suggested in Lemma 6.5. Then the latter part (in L?W*°°) gives the required
regularity of u¢g by (2.25), while the former part (in L{°L2) also does by (2.24). (In fact,
it even gives the regularity A%*~°1(ugg) € L°LP for any p € (6,00) and €7 € (0, 2s].

Step 2c. A?57C1(ugr) € L LP for every p € [6,00), £1 € (0, 2s].

As in Step 2b, GG; gives the required regularity on u¢7. As a consequence of Step
2b, we have V- F € L°LP for every p € [6,00). Therefore, it gives the regularity on ugr
by (2.24).

Step 3. We show that V(¢sA7u) € LE°LE for every p € [1,00], v € (s,1).

Since ¢gA7u is compactly supported, it is enough to obtain the regularity for large p.
As a byproduct of the proof, we also get A= (¢gAVu) € LLL~.
We consider the equation for ¢gAYu,

(01 + A%)(6sA™w) = A (9s(u - V)u+ 65V)
=:AYF{+AYT
+ [A%, ¢g]ATu + [A7, 6] ((u - V)u + Vp) + ATudigss,
— s =:G4

where F; and IT' are determined by Lemma 6.2; in particular,
Fy = ¢s((u- V)u+ VR(uu;dis/2)), I € LW vkeNuU{0}.

To deal with the last term G4, we remark that AYu € L{°LE + LQWf’OO(le_s) for
any k € NU {0} and p € [6,00). Indeed, AV (up7) € L°LP follows from Step 2 and
A (u(l —¢7)) € LfWk’OO(Q%) (for every k > 0), which follows from (6.28). Therefore,
G4 € L°LE + L2WF for all p € [1,00), k > 0, which gives the required regularity on
V(gsATu).

Moreover, A’T" € LZWF for any integer k > 0 because of I' € LZW/°. (Indeed,
[AYA]|Lee S [IAllyyaee.) Thus, A7T gives the required regularity of V(¢sA7u), as in (6.9)
above.

As for the commutator terms in G, we obtain [(—=A)*, ¢3]ATu € L LY + L2W k-2 for
any integer k > 0 and p € [6,00) by Lemma 6.6 (applied with any « € (2s+v—1,2s)) and
Step 2. Similarly, by Lemma 6.10 together with (5.9), we have [A7, ¢g]((u-V)u+ Vp) €
LPLE 4+ LWk for any integer k > 0 and p € [6,00) Therefore, these terms give the
required regularity on V(¢sA7u) via (2.24) and (2.25).

Lastly, we consider AYF;. We note that A?~1=%2[} € L*LP for every p €
[6,00) and € € (0,2s], as a consequence of Step 2 (which gives in particular that
A2s=1=e2 (ygr), A28~ 1722V (ugy) € L°LP) and the fractional Leibniz rules as in (6.8).
Therefore, by (2.24) (applied with a :==2s — 1 —es —y,a=1,0 =0, 7r =T = 00), it
gives the required regularity on V(¢sA7u) when €5 € (0,4s — 3).
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Step 4. We show that ¢9V2u € LY.

It is sufficient to obtain V(¢oVu) € L7, because VogVu = VooV (ups) € LS, by
Step 2b.
We consider the equation for ¢gVu,

(8, + A%*)(po V) = V(V - Fy) + [A%, ¢g] Viu
=:G5
+V(u®u): Vog — V(VooRij(uiujdi7/2)) + Vudsgpg + VT,

=:Gg

(6.10)

where Fy i= —(u ® u)pg + poRj(uiujdr7/2)1d.

Since Step 2b and (6.1) give that G € L{°LE + LIW* for any integer k > 0 and
p € [1,00), it gives the required regularity on V(¢oVu) via (2.24) and (2.25).

By Lemma 6.8 with the results of Step 2b and Step 3, we have [A%% ¢g]Vu €
LPLP™ + L2WH° for integer k > 0. Therefore, this commutator term also gives the
desired regularity via (2.24) and (2.25).

Lastly, we note that AYVF € L LP for any 7 € (s,1) and p < oo, which follows from
the fractional Leibniz rule (2.8), Step 2b, Step 2c, Step 3 and by noting that

PoA"Vu = ¢V (gsATu) € L°LY, Vp € [1,00].

Therefore, by (2.24) (applied with a ==y -1, @:=1, 0 =0, r =T := 00), it gives the
required regularity of V(¢oVu). O

6.2. Commutator estimates

In this section, we prove several commutator estimates of the form [A”, §]G, used in
the bootstrapping argument above. The main difficulty of these estimates is to control
the commutators by local information in space, while fractional laplacians involve global
information. This results in a number of tail estimates, for which we develop a technique
that allows us to estimate the tails of u and A7u, where v € [s, s+ 1), using only M(A*u)
and a local mass of u, which we state in the lemma below. These tail estimates are the
heart of this section, and will be used repeatedly in the commutator estimates that follow
in Lemmas 6.5-6.10.

Lemma 6.3 (The main tail estimates). Let s € (0,1), R > 0 and p € (0,R/2). Choose
Xp € C(Ba2p; [0,1]) satisfying x, =1 on B,. Then, for every integer k > 0,

u(y) s
| - - < 1M 2 + i
|z — yl Wk (Bg)

(6.11)
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and

Aru(y
z—y)d < M(A3)]| 2 6.12
|/ poist e o | Sensn MO, ©612)

for>sand0<~y—s<1.

Remark 6.4. (6.12) is also valid with A replaced by the classical derivative V (when
v=1).

Proof of Lemma 6.3. We consider (6.11) ﬁrst We let ¢ € C°(Bg;[0,00)) be such that

[ ¢dx =1, and we denote p-mean of u by (u), = [updz. We will show that
[ 1) = @eldy 521679 sup ][ A% (613)
RIZ4R
ly—=|<27p

for x € Br and j € N. Then for each such x and integer k£ > 0
u(y) = (u) [(u = (W) (W)
‘Vk/m(l —Xp) (@ —y)dy| Sk Y Wdy

(= @)W,
|z — y[3+5+m
Loi—1p<iy—a|<2ip

S 22000 [ - )iy
j=>1

|
M=
I\/M

ly—=z|<2ip

<ZQ 3= sup ][|A5u\
=1 R'>AR

R’

<p,s Sup ][|Asu|, (6.14)
R'>4R

where the third line follows from |z — y|™™ <, 1 (since |z — y| > p). On the other

hand, the remaining part with the ¢-mean can be easily estimated by

u
/%(1 - Xp)(x —y)dy ~s,p,8 (u)cp S ||u||L1(BR)

and all its derivatives vanish. Since for every R’ > 4R
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][ [ASu( \dz<][ ][ |A%u(z)|dz dw

Br BR’+R

(6.15)
/M (Au)(w)dw < [|M(A )| 2By,

the claim (6.11) follows.
In order to get (6.13), we fix j > 1 and write u = A7*(A%u) to get

(u = (w)e)(y) = /(U(y) — u(w))p(w)dw = /(A’S(ASU)(y) — A7 (A u)(w))p(w)dw

1 1 .
~g // (y e o z|(38)> A u(z)p(w)dz dw
Asu(z) s

|z—a|<2+m0p |z—a|<2i+n0p

1 1 .
I (G z|<35>> Aulz)plu)dz dw

|z—x|>27tnm0p

= Uloc,l(y) + Uloc,2 + Utail(y) (616)

for y € By;,(x), where ng = ng(p, R) is the smallest integer satisfying 2"°p > 4R. In
particular, ng > 4 (since p < 2R) and 2™ p < 8R. As for ujoc,1, we have

1
[ mewias [ [ it

By () Byjtno, (@) By ()

Sangp 26T ][ |A%u|dz

ng+nop($) (6 17)
< 2903+ ][ |A®u|dz
Byjtno+1,

< 276+9) qup ][|Asu|dz
RIZ4R

where the second inequality follows from the inequality |y — z| < |y —z| + |z — 2| <
2p+27%m0p < 2ep (so that Boj,(x) C Bajey(z) when z € Byjing,(x)) and the third
inequality follows from the fact that |z| < R < 2"072p. As for w2, recalling that
r € Bg, we obtain
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ez [+ / / ) dw At

Bano , () 1= n0+lBl o (@\Byi—1,

< - - s
< =2 dw |Au(z)|dz

Bsr(x) lw—2|<10R

J+mno
[A*u(z)|
+ Z / o= 2] dz

= 1
I=notlp, (@)\Byi-1, (@)

(6.18)
Jj+mno
Ss,Rop / |A%u| + Z 2l(=3+9) / [APu(z)|dz
Bsn(z) ot By, (@)
Jj+mno
/|A5u|+ D 2l / |Au(z)|dz
l=nop+1

Byit1,

2% sup ][|Asu|dz
RI>1R

Here, the second inequality follows from |w —z| < |w|+ |z —z|+|z| < R+8R+ R = 10R
(in the first term) and |w — z| > |z — x| — || — |w| > |z — 2| - 2R > % (in the second
term). In the fourth inequality, we used the fact that |z — x| > 2™°p > 4R which implies
that [2| < |z — x|+ |z| < 2!p+ R<2lp+ 1 - 2m0p < 211 p,

As for ugi, we decompose the integral region (Bayj+no,(2))¢ into sets {z: 2/71p <
|z — x| <2!p} for I > j 4+ ng + 1, and we note that on each such set we have

: - ! < v —y| < 9ig—l(4—s)
ly — 2|B=5)  |w —2|G=9) |~ |0y + (1 — O)w — 2|(4=5) ~

for some @ € [0,1]. Indeed, here we used the fact that |w —y| < |z — y| + |z] + |w] <
27p+2R <, g 27 for j > 1 and the fact that

0y + (1= 0w — 2| > |z —a| = Oly —a[ = (1= O)|w—a| =2 p—27p - 2R

1 ; 1

> —-2p,

e

where the second line follows from the choice of ng (ng > 4 and R < 2"0_2). Therefore,
recalling that x € Bg, we have
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@) S2 Y 27109 / A%
[>j+no+1 N (m)

<20y 27l / Ayl

[>j+no+1 BQH»l
P

<2 Z 2710=9) sup ][|Asu|

(6.19)

1>+3 R'>4R

< 275 sup ][|Asu|
R'>4R

for every y € By, (x). Combining (6.17)—(6.19), we obtain (6.13), as required.
Now, we consider (6.12). The case 7 = s can be obtained easily as follows;

IVk %(1 = Xp)(@ — y)dy’

| (EREE) o

k
> / Y / A%u(y)| |z — y~CHETm dy

<ly—z|<2mop  IZM02ip<|yz|<2it1p

S [ u@ldy+ 3200 [ )y

ly|<9R jzno y|<2+2p

Ser |14 > 2777 sup ][ |A*uldy
>mo R/>4R
> .

Sne SUP ][\Asu|dy

R'>4R

for every integer k > 0, © € Bpr, where, the second inequality follows from |y| < |y —
x| + |z] < 2"p 4+ R < 9R (in the first term) and the fact that |y| < |y — x| + |2 <
20ty 4 R < 20+ p 4 2m0=2) < 27%2) (in the second term).

As for the case v > s, we first set 77(y) == x,(y) — x,(2y) and

281 . .
i (y) = Wﬂ@ Yy)  forjeZ.

Then 7;(y) = 27%n0(277y), so that |In;x = [noll1, supp n; C Base1, \ Bai=1, and
IVEn;| <k 27(=3=FK) for every j € Z, integer k > 0, and
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IAVFn; ()] Sa lyl =BT for [y| > 2742, a € (—1,1). (6.20)

The case a = 0 trivially holds while a € (0, 1) can be verified by writing

pr [+ Vk LT (Z)dz‘

- !/ nev: (ﬁ) -

|Aavk77]

1 1
S W/WW ~ [T

as required, where, in the second line, we used that n;(y) = 0 for |y| > 2972p as well
as integration by parts (which is allowed since nj(z) = 0 when |z — y| < 27T1p (as
then |z| > |y| — |z — y| > 2771p)), and, in the fourth line, we used the inequality
|z =yl > Jy| — 2| > |y| =27 F1p > % The case o € (—1,0) follows by skipping the first
line.

Using the auxiliary functions n; we can write

1= xp(z ﬁJ
|:cfy\3+ﬁ 22 — ),
j>1

and obtain that, for every integer k > 0 and every = € Bg,

Avu(y)

k . —Bjork
‘V W(l — Xp)(x — y)dy‘ = Zz IVE(n; * ANu)(z)
j=>1
< 2 (TN s Ao
§>1
k .
=222 / VA n(z — y)Au(y)dy
m=0j>1 l—y|<2i-n0+5 R
s / VAT (z — y)Au(y)dy
1>j—no+5 DLR<|z—y|<2H1R

k
Sax Yo Y2 |2t [ )y

m=0521 ly|<2i 2R
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b3 e [ )y

[>2j—no+5 ly|<2i+no+2R

§R2275j 27 (=7+s) ]l [A%uldy + Z H(=7+9) ]l |[A%u|dy

j>1 Byjt2p 1>j—no+5 ol+no+2 R

< sup ][\Asu|dy (6.21)

(recall ng > 4 is such that 4R < 2" p < 8R), as required, where, in the third inequality,
we used the bound [V AY =50, <, s 27(737m77F9) and |y| < |y—a|+|z| < 27F'R4+R <
27+2R (for the first term) as well as (6.20) (which is allowed since |z — y| > 2'R >
2J—mo+5 R > 27%2 ) by definition of ng) together with the lower bound |z — y| > 2! and
the inequality |y| < |y — x| + |z| < 2""'R + R < 2!72R (for the second term). O

We now move on to the commutator estimates. In Lemmas 6.5-6.12, we consider the
commutators of the form [A?, ¢]G where 5 € (1/2,2), ¢ = ¢(x,t) is a smooth function
supported on Br x (—T,0] for some R > 0 and T > 0, and G is chosen differently in
each lemma. Also, we introduce Ry > R. Since we use the finite number of candidates
for R, Ry, ¢, 5 in the bootstrapping argument, we ignore their dependence in the implicit
constants of the commutator estimates. We also ignore the dependence on s.

Lemma 6.5. Let s € (%, 1). Let ¢ = ¢(x,t) be a smooth function compactly supported on
Bg x (=T,0] for some R > 0 and T > 0. Let Ry > R. Then, for any £ € (0,2 — 2s),
r € [1,00] and p € (1,00), we have a decomposition

[(=A)% dlu=f+yg

where f and g satisfy

I fller(-7,0;0) Se llullLr(—7.0,w2s-1+20(BR, )

9l z2(—r 0wy Sk IMA )l L2((=10)x Br) + Ul L2(~70;01 (BR))  VE € NU{0}.
Furthermore, g is compactly supported in Br x (=T,0), which gives that
9l 2 (—r0;wka) Sk IMA W) || L2 ((—1,0)x Br) + [ullL2 (=102 (BR))
for ke NU{0}, ¢ € [1,00].

We note that the lemma is true for any € > 0, but (for brevity) we restrict ourselves
to & < 2 — 2s since then the Sobolev-Slobodeckij space W25~1+P is of order less than
1. We set
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- %(Ro “R). (6.22)

We may assume Ry < %R to achieve 2p < R; otherwise we choose R}, satisfying R{, < %R
instead of Ry and then the desired estimates follow by expanding the domain.

Proof. For the convenience, we omit the variable ¢ of u and ¢ unless it is needed. Using
the definition (2.2), the commutator [(—A)?®, ¢]u can be written as

(-8 olula) ~ (. [ DI g, [ 220, )
o [ MO 0l

o=y

We first decompose the integral in the last line into local and tail parts,

./u(y)(cﬁ(%‘) — ()

[(=A)*, ¢lu(x) ~ p.v i Xp(z — y)dy

[0 gy

o =y

= Xp)(x —y)dy
= IE + It7
where x, = x,(z) is a radial function in space satisfying x, = 1 on B, and supported
on By,.
Step 1. We estimate the local part I,.

We decompose I, by writing

[ uadiote) o)

o~y

Ii(z) = pv Xp(z —y)dy

(6.23)

W (CORTOICERED)

|£E _ y|3+25 Xp(l' - y)dy
=: Ip1(x) + Ipa(2).
We note that both Iy, and Ije are supported on (—Tp, 0) X Br2,. Indeed, if |z| > R+2p,

we have |z| > R and |y| > |z| — |y — 2| > (R + 2p) — 2p = R, which make ¢(z) — ¢(y)

vanish. Moreover using p.v. [ %dy = 0, we see that ¢ satisfies

P e

‘ /(bwt y,t) = (x —y) - Vo(z,t)

|J: —y[3t2s Xp(w —y)dy

S ollor.0.02Rs)), Y(x,t) € R® x [-T,0].
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Thus we can estimate Iy,

e |l r(=7,0:0) = el or(=7,0,0 (Brap)) S Wl Lr(=7,0;L0 (Broay))- (6.24)

As for Iy9, we use the following estimate for ¢: for any £ > 0 and 1 < ¢ < oo,

/ |¢($7t) 7¢(y7t)|qd

i gpra-aa W) 52 I91ECrocime) @ 1) €RY X (-T.0),

y—z[<2p

while for ¢ = co we use

6. 1) — by 1)] _

e~ 9l c(=1,0;01 (R3)) -

sup
ly—z|<2p |z —

Using Holder’s inequality, this gives for p € [1, 00)

|u(y) — u(x)]? [6(y) — ¢(x)”
Hea(@)” < / PESEECETEE / 7 — ypra-or ¥

‘d\‘-@

ly—z|<2p y—z|<2p
_ P
- uly) —ul@)l
~e \a: _ y|3+(23—1+s)p )
ly|<R+4p

where p’ is the Holder conjugate of p, and hence

7 (Brtap))* (6.25)

I e2llr(—7,0;20) = o2l r (=105 (

Therefore, combining (6.24) and (6.25), we have

”IKHLT(fT,O;LT’) Se ”uHL“(fT,O;WQS*HE?P(BR ))-
0

Step 2. We estimate the tail part I;.

We decompose I,

a:c;/“@éﬂﬁgi@”a—x»u—ymy

/ | |3_;'_29 XP)(x - dy C / | ‘3_;'_29 (1 - Xﬂ)(x - y)dy
=: Inn + Iz,

and we show below that
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[ llweee S IMA U L2(Br) + lullLrsr) Y
[ Le2|lr(~1,0:20) S llLr(~1,0:L2(Bry))-
This concludes the lemma by letting
f=In+1p+1la g=Ia.

The first term I is supported in Br x (=T, 0] and so can be estimated as in (6.11)
with 8 := 2s,

el 2 (= 0wreey S IMA W) L2((—1,0)x Br) + IUllL2(—7,0,L1(BR))-

As for Itz we see that, since | — y| > p and supp,(¢) C Bg, it can be bounded for any
x € R3,

La(2)] < / @)@ Idy < Tl zm.

Moreover, it also satisfies a decay estimate

lu(y)o(y)| 1
(@) £ [ ey S ol sy Vel > 2R,

because of |x — y| > |z| — |y| > |#| — R > |z|/2. Combining the two inequalities we get

2l (~7.0:0) S lullr(—7.0,0(BR))> (6.26)
as required. O

In the following lemmas, we keep using a decomposition of a commutator suggested
in the proof above. Namely, given a function G we use the decomposition

AP $IG = Ioy + Iz + Iy + I,

where

Infa) = Gy pov. [ SO SO o pay,

Ipa(z) = Cjp p.v./ (Gly) - |Gx(m—>z/(|f“<‘? — (b(y))Xp(x —y)dy,

o (6.27)
Iin(z) = Cp ¢(z) / W(l = Xp) (7 — y)dy,

la(a) = ~Cy [ V1= ) -
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where ¢ € C°(Bg x (—T,0)), p = :(Ro — R), x, € C2°(Ba,) with x, =1 on B,. We
recall that the local terms, Iy, Iyo are supported in Brya, (regardless of G). As in the
proof of Lemma 6.5, we may assume 2p < R.

Lemma 6.6. Let s € (1,1) and Ry > R. Let ¢ = ¢(x,t) be a smooth function compactly
supported on Br x (=T,0] for some R >0 and T > 0. Then, given vy € (s,1), k —y €
(25 — 1,1), and ¢ = ¢(z,t) € C(R*) with ¢ = 1 on [~T,0] x Bg,, for any r € [1,00],
and p € [2,00), we have a decomposition

[(7A)S7 QS}A’YU = fO + 90,
where fo and go satisfy
||f0||L*(7T,O;LP) S HAH(ué)”LT(fT,O;LP) + ||A’Y(U(E)HLT(7T,O;LP)7
||gOHL2(7T,0;WkVO°) S HM(Asu”le([*T,O]XBRO) + ||u||L2(—T7O;L1(suppm ?)) fO?" keNU {0}

Furthermore for every integer k > 0

IAY(w(X = )l L2 (- oo (B2 ., 4

5

o))

5 HM(ASU)HLQ([*T,O]XBRO) + ||’U’||L2(7T,O;L1(suppz ) (628)

Remark 6.7. The motivation of the terms A®(u¢) and A7(u¢) (rather than Au and
A7u) comes from the bootstrapping argument (see Step 3 in the proof of Theorem 6.1.)
These terms are the reason why the above lemma cannot be proved in the same way as
Lemma 6.5 by replacing (6.11) by (6.12) (in estimating I+ ). Instead we need to estimate
additional error terms of the form of (6.28), which we include as part of gp.

Proof of Lemma 6.6. For the convenience, we omit the variable ¢ of v and ¢ unless it is
needed. We use the decomposition (6.27) with G := A7y and 8 := 2s to obtain

[(=A)% ¢JA u = It + Lop + Ip1 + Lo
First, I;; can be estimated using (6.12) with § := 2s as
”ItlHL?(fT,O;W’“W) S ||M<Asu)||L2([7T,O]><BRO)

for every integer k > 0. As for the other terms, we further decompose, writing ATu =
AV (u¢p) + AV (u(1l — ¢)). We denote the corresponding decomposition by

I+ Ipg + Iio = (Lon1 + Loi2) + (o2 + Lio2) + (Lio1 + Ii22).

We will estimate the local parts (i.e. the ones with subscript ending with “1”) in Step
1, and the tail parts (i.e. the ones with subscript ending with “2”) in Step 2.
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Step 1. We estimate for the local parts, that is we show that

1 Tery + Toor + Toa | pr 000y S AT (ud) || 2 (— 105 .Lr(Bg,)) T IA” (u@) || L (~1,0:L7)-
Indeed, the same calculations as in (6.24), (6.25), (6.26) give

1 Me11 + Le21 + Iio1 || r(—10; 1)

SN W) Lr(—1.0,L0(Bry)) + 1A (W) | (1 0w2s 1420 (g, )

for e =k —vy—2s+1 € (0,2 — 2s). Using (2.9), we then bound the last term by
||A“(uq5)||Lr(_T,0;Lp) and ||A’Y(uq§)||Lr(_T7O;LI’), which concludes this step.

Step 2. Estimate for the tail parts, that is we show that
[ e12 + Teaz + Troa|l 2~ 0wy S IM(A W) L2()

—T,0]XxBry) + ||u||L2(—T,O;L1(supp @)

(This completes the proof of the lemma by setting

fo=1TIn1+ L1 + Lio1,  go =TI + Loz + Leoa + I1o2.)

Recall that
, ol (x)
1512(x) ~s A (U(l p V. |y|3+25 Xp(y)dy

— M1 - 3)(@) K@) (A% - [ )(1—Xp(y))dy)7
o) . [ A=) =)~ 1~ D) 61e) = ole =)

|y|3+25 Xp(y)dy7

Tia(z) ~s — / Av(“g:j&)ﬁg}ﬂy) (1= xp)(z —y)dy,

where ¥ € C2°(Bg,;[0,1]) is such that x = 1 on Bryg, (recall that Ipo vanishes for
|z| > R+ 2p).
We first reduce our aim to showing that

[AY(w(l = )llwr(Bris,) S S ][ [A%u] + [|ul 1 (supp 6) (6.29)

R’

which will be obtained in Step 2a below.
Assuming (6.29) we have

Herallwee S A (@ = 0))llwr (Brya,) (A0l (Bays,) + l0llwns)
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for every integer k > 0, and so the required estimate on Iyj2 follows from (6.15). As for

It227

V¥ Laa(e)| < |01 = D)o [ \V'“ (W) ' W
Sk A7 (u(l - qg))HLoo(BR)

for every integer k > 0, z € R3, and so the required estimate on I;»s follows from (6.29)
and (6.15) as well.
Lastly, we recall that Iys is supported on {|z| < R + 2p}, and for such =

U= el 9E) w19

|z — 237 - |z — 237

AV (u(1 = ¢))(z) ~y pv

9

because ¢ = 1 on Br+s, and similarly with « replaced by x—y (note that |z —y| < R+2p
since |y| < 2p and either |z| < R or |z —y| < R (as otherwise ¢(x) — ¢(x — y) vanishes)).
This implies that

AV (u(1 = ¢)(x — y) = A (u(l = ¢))(2)

1 1 _
- _/ Lx —y— Pt o — 2P u(l—¢)(z)dz

//f‘ey‘z V(1 - §)(2)db s,

x — Oy — 2|t

(6.30)

which gives

Xp(y y) o) (—Oy—=2)-y -
Looa(x /// |y|3+28 P u(l — ¢)(2)dy dz db.

Observe that for every integer k > 0
IVFo(a —y) = VFo()] < culyl|[VE ll

and

& x—0y—z N 1 <17Xp(:1770yfz)
|z — Oy — 2[5t )| ™~ |z — Oy — 2|*HEty ™ jr — Oy — 2|4t

where we used the fact that |x — 0y — z| > |z| — |[x — 0y| > Ro — (R+ 2p) > 3p in
the last inequality. (Recall that |z| > Ry, as otherwise (1 — ¢)(z) vanishes, and that
||, ]z — y| < R+ 2p which gives the same bound on |z — fy|.) This implies that
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||]€22 HLZ(—T,O;WImo)

[u(2)|(1 = x,(z — Oy — 2))

< L dodzd
~ / |y|1+25/ |x—ey—z|4+v e
y|<2p

L2(=T,0;L>(Br+2,))

!/
S|, [ b -2

L2(=T,0)

S IMA )| 2 ((—1.0)x Bry) + [ullL2(—7.0:01(BRy )
for all integers k > 0, where we used (6.11) (with 8 := 1+ +) in the last inequality.
Step 2a. We prove (6.29). (Note that this also proves (6.28) by applying (6.15).)

For any x € Bry3, and integer k > 0

ML= 8)(0) . | (w1 = 9)@) ~ (- )W), / (1= ),

|z — y[3+Y |z — y[3+Y

:/<<1—<5>><>

|$ . y|3+7 (1 - Xp(aj - ))dy7

= [t [ R0 e -
: Jl + JQ,

(6.31)

where the second line follows from |z — y| > |y| — |z] > Ry — (R + 3p) > 2p, so that
Xp(z —y) =0 for such z,y. As for Jyi, we use (6.11) with 8 :=~ > s to obtain

[ Tillweoo (Brys,) S IMA W)l L2 (8r) + el (Br)- (6.32)

As for J, we have for any integer & > 0 and x € Br43,

Xp( —y)
|VkJ2 ‘ < / ¢ Vk (W dy ~k,p ||u¢||L1(R3) < ||u||L1 (supp,, (4))°

which gives [|Joflwro(Bris,) S Ul upp, 3))- Combining this with (6.32) gives
(6.29). O

Lemma 6.8. Let % < s<1and Ry > R. Let ¢ = ¢(z,t) be a smooth function compactly
supported on Br x (=T,0] for some R >0 and T > 0. Then, given 2s —1 <~y < 1 and
¢ = ¢(x,t) € C(R*) with ¢ =1 on [~T,0] x Bg,, for any 1 <r < oo and 2 < p < 0o
we have a decomposition,
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[(=A)%¢]Vu = fi1 + g1,

where f1 and g1 satisfy

I fillor—70i00) S IV (OA W) Lr(—70510)
+ 1A (@A W) || L~ 105L0) + VUl Lr (=1,0:27(Bry )
g1l 22— 0wr.00y S IMA W) || L2((—7.0)x By ) Vk € N.

Remark 6.9. The motivation of V(¢AYu) and A'=7(pA"u) comes from the bootstrap-
ping argument. (See Step 4 in the proof of Theorem 6.1. Indeed, it is easy to see
that one could control the commutator [(—A)®, ¢]Vu using Lemma 6.5 (with w re-
placed by Vu). However, then we would not be able to use the resulting estimate in
(Step 4 of) the bootstrapping argument, as we would not have sufficient control over
the term [[Vul|pr(—1 0,w2s-1+e0(By,))- Indeed, using (2.9) this would require a bound
on A?$717€Vqy, which we have no control using Step 2 of the bootstrapping argument
(since the order of the operator is 2s+ & > 2s —&). Using Step 3 of the bootstrapping we
have some control over derivatives of order 2s + &, but it comes only via the derivatives
of ¢A7u. This the reason why terms V(¢A"u) and A=Y (¢AYu) appears in the estimate
on f; in the above lemma. We are able prove such estimate due to a nontrivial decompo-
sition of Vu (see (6.33) below). The decomposition results in additional tail terms that
need to be estimated (as part of g;).

Proof of Lemma 6.8. For brevity we omit the variable ¢ of v and ¢ unless it is needed.
We use the decomposition (6.27) with G := Vu. Similarly to (6.24) and (6.26), we have

el Lr(~10:0) + [ e2llr(—7.0:00) S I VUllLr(—7,0,L0 (Brss,))-

Moreover, using (6.12) with 8 := 2s and AYu replaced by Vu (see Remark 6.4), we
obtain

[ Ze1ll2(—r0wroey < IMIA Ul L2(—7.0,L2(BR, ))-
As for Iy» we will use the decomposition
Vu(z) = VAT (oA u + (Au)(1 — $))(z)
= VA (A u)(z) + C_, / ﬁ((mu)u — &) (2)dz (6.33)
= (Vu)s + (Vu)s.

This gives further decomposition of Iyo;
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Iin(x) = Cy pov. / Xo(@ = y)(Vu() — Vu(y))(9(z) — o)) |

|z — y[3+2 Yy

—C,p. / Xol@ = P(Tu)el@) = (V) ($(2) = 6W))

|z — y[3+2s

L O, p / o (W) (V)i (z — ) —| ;gzgi(x))(gb(x —y)— ¢(x))dy

=: IZQE(:E) + IZZt(x)'

Then the first term can be estimated in the same way as (6.25) with the choice of
E=v—(2s—1),

Meellor(~1.020) S V0l i

SIAVATY (A w)) Lr(—1,0,0) + IVATY(ATw) @) Lr(—1,0;L7)
S ||V((A7U)<5)HLT(—T70;LP) + HAI*V((AWU)QE)||LT(—T,0;LP)-

As for Ipp; we have

Tiag = C p.V.// Xp (W) (d(x — y) — $(x)) < T-y—=z T—2 ) Au(l — §)(2)dy d.

3+2s T — 1y —25 |z — 257
Y Y

(This is similar to (6.30), except that now we have A7u instead of u, which is an additional
difficulty.)

Note that |x —y — z| > |z| — |z| — |y| = Ro — (R+2p) — 2p > p and similarly |z — z| > p.
We set (y) == X,(y) — X, (2y) and

o Yoo
7]](3/) = 2j(1 ”) |y|5_7n(2 Jy)

Then ||n;||1 = C for some constant C' > 0 independent of j, supp 1; C Bjoj+1 \ Bjaj—1
and |VF*n;| <p 277375 for every j € Z, integer k > 0, and

ATV i (y)] S lyl =G for fy] > 27, a € (0,1), (6.34)

which can be verified as (6.20). Moreover for any y with |y| > p

Yy _i(1—
o = 22 ).
j=>0

Thus, we can write Iyo; as

Tzt ~y 327907 / Xp(y)(¢(|z3—+zz — ¢(x))
720

x [(n; * Au(l = @) (x —y) — (nj * ANu(l — ) ()] dy



H. Kwon, W.S. Ozanski / Journal of Functional Analysis 282 (2022) 109370

= Z 9—3(1-7) / Xp(y)(9(z —y) — ¢(x))

|y|3+25

x [(A7%n; = A%u) (z — y) — (A7"°n; x Au) (z)] dy
_y gt / X (W) (¢(x — y) — ¢(z))

|y|3+23

>0
x [(n; * Aug) (z —y) — (n; * Aud) (z)] dy

=: Ipo1 + ILpo2.

As for Ipae, for every € Brigy, Y € B2, we have

|(nj = Aud) (x — y) — (n; * Nug) (z)|
< |ny * V(A ug) (@ — 0y)| [yl < [1)llco V(A ud) || L1 (51, ) ]
S 279V (0N W) L1 By Y]

for some § = 6, , € [0, 1]. Thus,

Traa@)] S IVl T (A708) 13 [ Iyl 4290y Yo 270607
B, Jj=0

S IVA ud)|| 11 (g,
for every x € Bryo,, which gives that
||I€2t2||L7‘(7T,O;LP) S ||V(A’Y’U’(Z))||LT(*T70§L”(32RO))'

As for Iya41, we have for every integer k > 0, x € Bryo,

V¥ Ipoe ()|
k

Sl S0 372790 / [y~ 2T AT e A oo ()l

m=0 ;>0 By
P

k
< Z 227](177) / ATV (y — 2)Afu(2)dz
m=0 ;>0 j

J |z—y|<27 Ro L (BR+4p)

+ Z / ATV (y — 2)Afu(2)dz

127 b
2 _y|<2l+1
RO<|Z yl_ RO LEO(BR+4p)
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<k Z S 2mi=) [ gi(mdmmeyts) / IASu(z)|dz

m=035>0 j
|z—y|<29 2R L% (Br+4p)
DR ] I BNFCTEITE
1>7+2 _ I+1
|z—y|<2!F 1R L% (BRr+4p)
DI il P ][ IA*u(z)|dz + D 2HtTrEs) ][ [A*u(z)|dz
3>0 |2]<23+3 Rg 125+2 |z|<2l+2Rg
<3299 up f|A u s s f 14
>0 R/>4Ro R'>4Ro

where, in the third inequality, we used the bound |[|[A7*V™n;||s < 2/(377=7+5) (in the

~

first term) and (6.34) (in the second term; recall (6.22) that Ry > R > 2p). Thus using
(6.15)

[ Le2e1]| L2~ 05wnoey S MM )| L2(—7 0% BRy ) -

Hence lemma follows by setting

fi=1In~+1Leoe + Lporo + Lo, g1 = Lo + 1. O

We now move on to the commutators involving the nonlinear term and the pressure
term.

Lemma 6.10. Let % < s<1land Ry > R. Let ¢ = ¢(z,t) be a smooth function compactly
supported on Br X (—T,0] for some R >0 and T > 0. For anyy € (2s—1,1), r € [1, 0],
and p € [1,00), we have decompositions

(A7, 0(u- Vu = f2+ g2

such that for any k € N U {0},

||f2||Lr —T,0;L?) S Hw - V)UHL’“( T,0;L?(Br)) T ||UHLoo ([-T,0]xBry)>
||92||L}(7T,0;ka°°) Sk HM|ASU|1T5||L1+5([7T,0}xBRO) + HuHL‘”([—T,O]xBRO)’

2s

where § == ey
—S8

Remark 6.11. The lemma is also valid with § = 0, but such version would be of no
use to us (in Step 3 of the bootstrapping argument) since the global boundedness of
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[M|A®u|?|| 1 is not guaranteed. In fact, making sure that [A*u| appears in the estimate
above with a power lower than 2 under the maximal operator M as well as estimating
the quadratic nonlinearity are the two main difficulties of this lemma.

Proof. We apply decomposition (6.27) with G := (u - V)u and 5 =7,
A7, ) (u- V)u=1I + Ii1 + L,

where

Ip = 1Ip1 + Ip2 ~y p.v./ Xp(T — y)((bg)__y(é%y(u -Vu(y) dy.

We recall that (due to the support of ¢) I, is supported in Brig, x (=7,0], and that
Ry = R+ 5p (see (6.22)). Since v < 1, we can easily estimate it by writing

[ Lellr(~7,0;17)

1Xp (Y]
< P — _ . _
~ |y‘3+7 ||((b(l‘) (b(l‘ y))(u V)U(J} y)HLp(BR+2p)dy Lr(—T.0) (635)
1Xp ()]
: |yT2+v dy[l(u - V)ull (10,00 (Br1ap)) S (- V)uller (—1.0,L0(BR, ) -
As for I;s,

HIt2||L’“(—T,O;LP(R3)) S Iw - V)UHLT(—T,OQLP(BRO))'

Lastly, consider the remaining piece

Iﬂ(.’E)
-~ ¢(x)/ =X = y)V-wau),

|z —y[3+7

=~ ot) [ ST (), (), )iy

|z —y[>+

- @) o) [T ), )01

_ ¢($)/ (u(y) - V)x,o(z — y)u(y)dy

|z — y[3T7

=: Iy11 + T2 + I

for z € R3, where ¢ € C°(Bg;[0,00)) is such that [¢dz = 1. Then it is easy to see
that
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o < / fu(y)|2dy S Nl o0y 5, -

z—y|<2p L™ (=T,0;L?(BR))

where we used the fact that supp(Vx,) C B, \ B, in the first inequality. Also, since
1115 satisfies

k
erualo) 5 3 fwod [ By 4,

ly—z|>p

for every x € Bpg, we obtain (as in (6.14))

[ lt12l 2~ 05w ko) S ||U||L<x>([ T,0]xBr) T HM|ASU|”L2 [~T,0]x Bry)"
As for I;11, we will show that for any x € Bg,

1+0

/ u— (u)p(y)dy S 27+ | sup ][ [ASu[ 0+ | (6.36)
ly—=z|<2ip =t

(This is a quadratic version of (6.13); recall that § satisfies 1 4§ = 3£5.)
Given (6.36), similarly as in (6.14), we obtain

e Ju— (w)y*(y,1)
el rowes) € D0 D o gl W

L}{(—T,0;L (Br))

oo
S [ = Py

Jy—=I<2p L}(~T,0;L3* (Br))

1+6

sup ][ |A%u] 5 dy
R'>4R

A
S —c

S |‘M|Asu|m||L1+5((—T,0)><BR),

where we used (6.36) and the fact that v > 2s — 1 in the third inequality, and (6.15)
(without its last step) in the last inequality. Thus (given (6.36)) the lemma follows by
letting

for=1i+ I3, g2 = It + Lo,
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In order to obtain (6.36), we write

U(y) - (u)tp - uloc,l(y) + Uloc,2 + utail(y>7

as in (6.16). Using (6.18) and (6.19), we easily obtain

/ (Jtoc,2]? + ugann(v)]?) dy < 27G+29) | sup ][|A8u|
Bpr

R'>4R
ly—z|<27p
1446
g 2j(3+2s) sup ][ |Asu|2/(1+5)
R/'>4R
B
As for ujee,1, we obtain the following estimate by a modification of (6.17),
2
ANu(z
/ \Uloc,l(y)|2d3/ S / / #dz dy
ly—z[<27p ly—x|<27p [z—z|<2iFm0p
< / / |Asu(z)|132j+n0p(x)(2)132j+n0+1p(y - Z) ds dy
- ly —z>~*
S IAul? - 17E? oo
L1+3 (Bz.i-#"op(x)) L6-2s (sz+"L0+1p)
146
< 2]‘566:2j |ASU|1+L5
Byitng , (%)
149

)

§2j(3+28) sup ][|A9u|%
R'>4R
B

where we used Young’s inequality for convolutions in the third inequality. O

Finally, we turn to the commutator concerning the pressure function.

Lemma 6.12. Let p satisfy —Ap = 0;;(usu;) on (=T,0) x R®, and let 3 < s < 1 and
Ry > R. Let ¢ = ¢(x,t) be a smooth function compactly supported on Br x (=T,0] for

some R >0 and T > 0. For any v € (2s —1,1), r € [1,00], and q € [1,00), we have
decompositions

[A", VD= fs+gs



68 H. Kwon, W.S. Ozanski / Journal of Functional Analysis 282 (2022) 109370

such that for any k € N U {0},

Hf3||Lr —T,0;L9) ~ S (u - V)u”D( T,0;L1(Brg))>
||g3||L%(7T,0;W’C»°°) ~k ||uHL2(—T,O;L°°(BRO)

Pl L (—r.01x Bry) + [Aa(N* 7 D) || L1 (—7,01x Br)-
Proof. We apply decomposition (6.27) with G := Vp and 8 = v,
[AY,¢]Vp = Ip + Ity + I,

where

Iy~ pov. / Xo(@ = y)($(x) — 6) Vp(y)

|z =yt v

As in the proof of Lemma 6.5, we assume that Ry < %R (so that 2p < R).
Step 1. We estimate Iy and I;o.
To deal with the local part, I, we use the pressure decomposition (6.2),
V(pd) = VRij(uiu;d) = V [2(=2) ' 8i(uin0;6) + (—=A) " (uiu;9;)] + Vi
= RR;(u- Vu;d) = V [(=A)710;(uiu;9;) + (—A)~ (uiu;0i;9)] + Vpe
= RR;(u-Vu;d) + Vp,
where py = — [2(—A)_1V . (pV(E) — (—A)_l(pA(E)] and é = é(m,t) € CX(Bg, x R)

satisfies ¢ = 1 on Brig,x [—T,0]. (We note that p is the same as p; +ps in (6.2), except
for the factor of 2 in p;). As in (6.3), (6.4) we obtain

||Vk]3||L1(7T,O;L°°(BR+4p)) Sk ”’U’H%Q(fT,O;LOO(BRO)) + HpHLl(*T,le(BRO))

for every integer k > 0. Thus, since Iy(x) is supported on B9, (so that z,2—y € Br4p,
which implies that ¢(z —y) = 1), we can write

o)y v [ 20O =6l DV —v)

ly|>+7

= p. [N A IRR, o Vude—y),,

lyl+

+ pv. / X)) = oo —y)Vile ~y)

ly|>+7

=: Ipy + Ipo,
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which gives that

eallr(—10i00) S IIRR (- Vujd) || (- 10i00) Sq Il V)ull o109 (B, )

for every g < oo, r € [1, 0], and

||IK2||L1(—T,O;W’“v°°) Sk ||u||2L2(—T,0;L°°(BRO)) + HPHLl([—T,o]xBRO)

for every integer k > 0.
As for the tail part I;2 we have

k

IVp(y)llo()l

||It2||L1(—T,0;W"‘w°°) Sk Z / 7|x — y\3+v+m dy Sk va”Ll([fT,O]xBR)
m=1

z-ylzp LN(~T.05L5)
for any integer k > 0, as required.
Step 2. We estimate ;.
We first decompose Iy as

Iﬂ(.’lﬁ)

o) [ TR e )y

= ¢(x) (/ Vplw) ~ (Ve)e) (1= xp)(x —y)dy + / M(1 = Xp) (@ — y)dy)

|z —y[*+ |z —y[**+

=: In1(z) + Iz (z), (6.37)
where ¢ € C2°(Bp) is such that [ pdz = 1. Then we obtain

A= xp(z —y))

||It12||L1(—T7O;ka°°) ~ "¢(x)/ |{E — y|3+7 dy(vp)sﬂ

Ll(fT,O;Wk‘“’(BR))
S IVD)ellLr(—1,0)

Sl -r,01x Br)-

As for I;17 we will show below that

1Teanll o (—rosweny Sk 1 a(A* 7 VD) || La((—1.01x By ) - (6.38)

In fact this is the most challenging estimate in this section. Actually one could instead
use a similar approach as in (6.11) to prove the same estimate, but with the grand
maximal function .#y replaced by the Hardy-Littlewood maximal function. However, as
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mentioned in the introduction, such estimate would be of no use to us (as Mf ¢ L'
for any f € L', f # 0). This is the point where the use of the grand maximal function
becomes necessary and, in the remaining part of this section, we show that (6.38) can
be obtained by combining the two ideas that we have already used (in showing (6.11)
and in the proof of Lemma 5.3) and adapting them to fit the structure of ..

In fact, in order to see (6.38) we will show that

IV I || ~10:0) S [1£m(A** VD) | L1 ((—101x By )» (6.39)
where the operator L, is defined by

Lon(H) 2= 5D [ (0 * Gj) # H| -+ sup|¢; # H| + 5up |Gjms * H]
j>1 j>1 3>0

a = ~(a e 640
+  sup |77l( )*<m+1,j*H|+ sup ‘771( )*Cm+1’j*H|. ( )
1—no<I<j 1-no<I<j
a€[1/2,1] a€[1/2,1]

(Recall (above (6.17)) that the integer ng > 4 is determined by R and Ry.) Then (6.38)
follows from the inequality L., <, #4, which we show in Lemma 6.13 below. The
auxiliary functions appearing under the suprema above are defined as

1 , 1 23
() = 297 7(2—J (9 —n (Y O =2 Y, (Y
mi) =2 s ), W) =g (g). 170 =" (5)

J - J
Gy) = 270720 Xf(ﬁ 2sy), C(y) = 290 2s>7(74 ng)’ (6.41)
y

Nm,j = 2ijm77j7 m,j QvamC 5

where 0 € [1/2,1] and 7(y) = x,(y) — x,(2y) for x, € C°(Bs,; [0,1]) satisfying x, =1
on B,. Every function defined in (6.41) satisfies

9i(y) =27 7g(27y),
where g = 1,7, 759 ¢, C,nm, . We also note that
Mg * Gi(Y) = 275 (o * G0)(277y).

In order to prove (6.39) note that

1—x,(27"(»)) =
S V)
j2n+1

for every n € Z, and so I;11 can be written as
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o) = C, o) | 1|X—() (Vo) — (Vo)) dy

y|3+7

LB(w) Y2 /m(w =) (Vp(y) — (Vp)e) dy

jz1
Using
I Xp(2772) 11— x,(2772) _ 27j(1723)< +22 (1— 25 ( ),
z]3-2s ~ |g[i-2s |42 -
k>j

we decompose Vp(y) — (Vp),,

Vply) — (V) = / (Vp(y) — Vp(w))p(w)dw

//(|y Z[4-2s Iw—z|4 25) H(z)p(w)dz dw

- 28>/<< <H(y) - ¢ Hw) plw)de

#3000 [ (G b y) = Gox Hw)) )i

k>j

=:¢;1(y) + ¢;.2(v),

where we write H := A25~1Vp for brevity. Plugging this back into the integral, we obtain
the corresponding decomposition of I;11,

I (z ZQ I (nj = qja (@) + 5 * gj2(x))
7>1

=: Oy ¢(x) (J1(z) + J2(2)) -
Since ¢ is smooth and supported in Bg, the claim (6.39) follows if we show that

V™ Tillzrsry + IV 2l (Br) Sm 1Lm(H) |21 (BR,) (6.42)

for every m > 0 (and almost every t € (=T, 0)).
The estimate of J; can be obtained easily by noting that

Ji(x) = Z 9y +1=29) (773‘ * o+ H(x) — c/(Cj * H)apdw) ,
i>1

since [n;dz = c and [ pdz = 1. Thus for any integer m > 0, using

$gitti=20gim <

Jj=1
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S NLm(H) 22 (Br)-
L'(Br)

IV Il S sup [(;

sup |(nm,j * Gj) * H|
jz1 j>1

L'(Br)

As for Jo, we first write the mth derivatives of the integral in the definition of g; o for
integer m > 0 as

32”/ (G H(y) = & x H(w)) p(w)dw

= 8;”/ Ve HOy + (1 — 0)w) - (y — w)df p(w)dw
0

1
= g k(m+1)gm //2’“<m+1>vm+1§k * HOy + (1 — O)w) - (y — w)dl p(w)dw

0
— g~k(m+1)gm (2/3]% Z 2//J+l i1+ H(Oy + (1= 0)w)

l1n02j+11

(y — w)df p(w)d

We now rewrite V™ Jy by applying the integration by parts and have a corresponding
decomposition,

VT I(x) =Y nj % 0" 0(x

i>1
2 Iv9k(2s=1) (z —y)9," C s« H(y) — G * H(w)) o(w)dwdy

=: Vmng(ar) + V" (),

where the last decomposition is obtained by the decomposition of the #-integral pointed
out above.

In order to estimate V™.Jy;(z) for * € Br we note that we have |x — y| < 2/T1p
lw| < R, 6 € [0,2797"], so that |y| < |z —y| + |z] < 27Tp+ - 2m0p < 25FM0p (recall
above (6.17) that 4R < 2™ p), |y + (1 —0)w| < Oly|+|w| < p+ R < Rp and |y —w| < 27,
which gives that

|VmJ21(.T)| 5 Zz2fj72k(2372)

§>1k>j

2—Ji—mng

// 11 (% = 9)l[Cmr1e % H(Oy + (1 = )w)| |y — w| [o(w)] df dw dy
0
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< Z Z 91(1=7)9k(25-2)

J21k>j

9—J—no

// 0 (@ —y)| / [Cma1e ¥ HOy + (1 — )w)|dw d dy
0 Br
273=m0

.~ dé
<33 2 // @ = )i Hll o2 77 =gy 49

j>1k>j 9)

S Y2 D s x Hlus o) | e =iy
J>1k>j
SIsup [Cmr1k * HIl| 1 (5, )-
k>0
Therefore, it easily follows that

V™ Ja1llLr(Br) S I ig%|§~m+1,k * H||| o1 (Bry) S 1Cm(H) | L1 (BRy)-

To deal with V™.J9, we rewrite the following integral, when 6 € (277+!=1 277+ as

// 03 = 9)msr s+ HBy + (1 — B)w) - (y — w)p(w) dw dy

= // 55l (03: it —ee)w — yl) (a1 * HY') - (2 — w)p(w) dw dy’

- [ g (S G ) - (PO g away

- / 1) % G x H(0 + (1= 0)w) - (x — w)p(w) dw

-2 /771 2 Gk * Hy(0 + (1 = 0)w)p(w) duw, (6.43)

where H; is ith component of H, and the summation convention in ¢ is used. Here the
first equality follows from the change of variable y — 0y + (1 — f)w =: y’ and the
decomposition y —w = (¥ —w) = (z —w) — %, and the second equality

follows by setting ¢’ = 277!9 € (1/2, 1] and noting that

1 z\ 1 z () 277z z
g3 (e)231(2j—le)3”0<21(2j—19)>”l (), =g (5)

Using (6.43), we can decompose V™ .Ja2 into two parts and estimate on Bp as

0
% (2).
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J
/ |va22(l’)|dl’ 5 E E 27]W2k(2572) E
Br l=1—ng

J>1 k>j
o—i+l

X / |771(0/) s G * H0z + (1 — 0)w)||z — w|dz dwdo

2—i+l-1 B B

£33 2i0-mgk(s-2) | 3
=1—ngp

j>1k>j5
o—J+l

x / / / |771(3,) * Cma1n * Hi(0z + (1 — 0)w)| de dwdf

2-i+i-1 Br Br
o—i+l

J
) do
—jvok(2s—2
sy Yame 3 [
jZl k?>j l:1_7l027j+l71
Com- H 2j _(0") & H
sup ok Crmt1,k * + sup 7,k Cmt1,k *
1—ne<I<k 1-no<i<k
E>1 L(Bp) k21 L'(Br)

S Em(H) || (8r)s

where we used the trivial bound 27%™ < 1 in the first inequality, the bound |z —w| < 2R
o 40, 926D

in the second inequality, and the last line follows by noting that f;:jﬂ,l

which gives convergence of the triple sum,

ZZQJ’(PW)Q’C@S*Q) ZJ: 92(i—1) < ZZQJ’(lf"/)Qk@S*?) < 227j(7+172s) <1.
i>1

i>1k>j I=1—ng i>1k>j
This together with the same estimates for J; and Jo; above give (6.42), as required. O

H).

We now conclude this section by showing the relation between L,,(H) and 4 (

Lemma 6.13. If L,,(H) is defined by (6.40) then for any H

Lo (H)(z) Sy Au(H)(2) for all x € R3.

Proof. We recall that £,,(H) consists of the terms which can be represented as

' % ¢ % H], (6.44)

sup |n; * H, sup
i>1 ~b<I<k,a€[1/2,1]

where b is some fixed positive constant, n;(y) = 27y (27 7y) and (;(y) = 2737¢(277y)
for some 1, Go € C*(Bay), and ;" (y) = a~*n(a”"y).
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By the definition of .Z,, it easily follows that

sup [mys x H| So A4(H)
j>1

for every p. Since L,, contains only finitely many candidates for 7, the claim follows for
such terms.

Therefore, we are left to deal with the second representative term in (6.44).

Since I < k, we set [ ==k +n, n < 0. Using nl(“) (y) = 2-3kn{" (27 *y), we have

1 % Gely) = 27 (@ (o) (27 Fy) = 273Fwma(27ky) = Ut (y).

Then we obtain

sup |nl(a) * Cpx H(z)| < sup sup |U « H(z)|
—b<i<k,a€[1/2,1] n<0,a€[l/2,1] k>—b
< sup |IM(H; &™) (x)|
n<0,a€[1/2,1]
< sup |M(H; ™) ().
n<0,a€[1/2,1]

Since for each n < 0 and a € [1/2, 1], ¥™* satisfies

/(1+ |lz))* Z \8Q\I'"7a(x)|dx=/ 1+ ]z)? Z [n{®) s 9%¢o| da:

la| <5 |a|<5
< a1 (@ — ) 110°Coy)| dy da
> Jo °
Lt Jal)t n( - )'mac )| dy da
= X JJor g m ()
< (1+4p)*Imollx Z 10%Coll1,
|| <5

where the last line follows from supp(7o),supp({o) C Ba,, so that
lz—y| <2%-2p<2p, |y <2p = |z| < 4p.

Observe that the upper bound is independent of n and a. Therefore, by rescaling, we
can make it bounded by 1. Hence by definition of .#, (recall Section 2.6)

sup i« Gox H(z)| < sup  [MI(H; 9™ (2)| S Aa(H) (@),
0<i<k,a€[1/2,1] n<0,a€[1/2,1]

as required. O



76 H. Kwon, W.S. Ozanski / Journal of Functional Analysis 282 (2022) 109370

Acknowledgments

H. Kwon has been supported by the National Science Foundation under Grant No.
DMS-1638352. W. S. Ozanski has been supported by the funding from Charles Simonyi
Endowment at the Institute for Advanced Study as well as the AMS Simons Travel
Grant. The authors are grateful to Camillo De Lellis for suggesting this project and
many helpful discussions.

References

[1] R.P. Agarwal, D. O’Regan, An Introduction to Ordinary Differential Equations, Universitext.,
Springer, New York, 2008.

[2] M. Colombo, C. De Lellis, A. Massaccesi, The generalized Caffarelli-Kohn—Nirenberg theorem for
the hyperdissipative Navier—Stokes system, Commun. Pure Appl. Math. 73 (3) (2020) 609-663.

[3] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes
equations, Commun. Pure Appl. Math. 35 (6) (1982) 771-831.

[4] R. Coifman, P.-L. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces, J.
Math. Pures Appl. (9) 72 (3) (1993) 247-286.

[5] P. Constantin, Navier-Stokes equations and area of interfaces, Commun. Math. Phys. 129 (2) (1990)
241-266.

[6] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial
Differ. Equ. 32 (7-9) (2007) 1245-1260.

[7] K. Choi, A.F. Vasseur, Estimates on fractional higher derivatives of weak solutions for the Navier-
Stokes equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31 (5) (2014) 899-945.

[8] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull.
Sci. Math. 136 (5) (2012) 521-573.

[9] E.B. Fabes, C.E. Kenig, R.P. Serapioni, The local regularity of solutions of degenerate elliptic
equations, Commun. Partial Differ. Equ. 7 (1) (1982) 77-116.

[10] C. Fefferman, E.M. Stein, H? spaces of several variables, Acta Math. 129 (3-4) (1972) 137-193.

[11] M.-H. Giga, Y. Giga, J. Saal, Asymptotic behavior of solutions and self-similar solutions, in: Non-
linear Partial Differential Equations, in: Progress in Nonlinear Differential Equations and Their
Applications., vol. 79, Birkhduser Boston, Ltd., Boston, MA, 2010.

[12] L. Grafakos, S. Oh, The Kato-Ponce inequality, Commun. Partial Differ. Equ. 39 (6) (2014)
1128-1157.

[13] L. Grafakos, Modern Fourier Analysis, third edition, Graduate Texts in Mathematics, vol. 250,
Springer, New York, 2014.

[14] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun.
Pure Appl. Math. 41 (7) (1988) 891-907.

[15] N.H. Katz, N. Pavlovié, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation
with hyper-dissipation, Geom. Funct. Anal. 12 (2) (2002) 355-379.

[16] C.E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg-
de Vries equation via the contraction principle, Commun. Pure Appl. Math. 46 (4) (1993) 527-620.

[17] D. Li, On Kato-Ponce and fractional Leibniz, Rev. Mat. Iberoam. 35 (1) (2019) 23-100.

[18] J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gau-
thierVillars, Paris, 1969.

[19] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1, Oxford Lecture Series in Mathemat-
ics and its Applications., vol. 3, The Clarendon Press, Oxford University Press, New York, 1996.
Incompressible models, Oxford Science Publications.

[20] J.M. Mercado, E.P. Guido, E.P. Sdnchez-Sesma, A.J. Iniguez, A. Gonzalez, Analysis of the Blasius’s
formula and the navier—stokes fractional equation, in: Fluid Dynamics in Physics, Engineering and
Environmental Applications, Environmental Science and Engineering, Springer, Berlin, Heidelberg,
2013, pp. 475-480.

[21] W.S. Ozanski, Partial regularity of Leray-Hopf weak solutions to the incompressible Navier-Stokes
equations with hyperdissipation, Anal. PDE (2020), in press; preprint available at arXiv:2001.11018.


http://refhub.elsevier.com/S0022-1236(21)00452-3/bib4C77B506DA1F5B2A9C514329571E31FFs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib4C77B506DA1F5B2A9C514329571E31FFs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib88CA96B598FE44C41B4132C6D77FC457s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib88CA96B598FE44C41B4132C6D77FC457s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibA7029714710BEE4E6AD4DF473FE2317Bs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibA7029714710BEE4E6AD4DF473FE2317Bs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib637EB56523EF0510DC00DD4B495E23FDs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib637EB56523EF0510DC00DD4B495E23FDs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib4CEDA0EB59FC94EDBFEDB2AA53D1B1C5s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib4CEDA0EB59FC94EDBFEDB2AA53D1B1C5s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib91DAC94BD398A35F28C4406742412619s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib91DAC94BD398A35F28C4406742412619s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib8BA749409A58D609D4C81A61BE6589AAs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib8BA749409A58D609D4C81A61BE6589AAs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibA319A0C3CFD81CAF484ED773BCA76F0Fs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibA319A0C3CFD81CAF484ED773BCA76F0Fs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib0F8FFFEAA0161FCC40C90FF9111DC980s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib0F8FFFEAA0161FCC40C90FF9111DC980s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibA8F884F98ECC3A9C9C8FC468659C2AC2s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib9CD671653FE89D024C78CABDEEA52402s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib9CD671653FE89D024C78CABDEEA52402s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib9CD671653FE89D024C78CABDEEA52402s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibE43A7B32AF7AC5034C1E58418E32D237s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibE43A7B32AF7AC5034C1E58418E32D237s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibC9930D5864A1D6A1E31A9DDE2462D95As1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibC9930D5864A1D6A1E31A9DDE2462D95As1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib08F7A55FCF4954A4DD8AD6D239E617B2s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib08F7A55FCF4954A4DD8AD6D239E617B2s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib2B52315CA92F686B8840E80EA52DC0EDs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib2B52315CA92F686B8840E80EA52DC0EDs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib631D9D81A362661F496546B294C867C0s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib631D9D81A362661F496546B294C867C0s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibD70C1E5D44DE8A9150EB91ECFF563578s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib8B6E4DEC30EA063CCB875960264A96E2s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib8B6E4DEC30EA063CCB875960264A96E2s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib86AA71C6832F46E2D79134FE3D5080B7s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib86AA71C6832F46E2D79134FE3D5080B7s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib86AA71C6832F46E2D79134FE3D5080B7s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib5BD053A2E3D78B78F59FC9F05930D6A3s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib5BD053A2E3D78B78F59FC9F05930D6A3s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib5BD053A2E3D78B78F59FC9F05930D6A3s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib5BD053A2E3D78B78F59FC9F05930D6A3s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibAE300214D6AC3A17AC8A1084F07F1CC9s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibAE300214D6AC3A17AC8A1084F07F1CC9s1

H. Kwon, W.S. Ozanski / Journal of Functional Analysis 282 (2022) 109370 7

[22] J.C. Robinson, J.L. Rodrigo, W. Sadowski, The Three-Dimensional Navier-Stokes Equations, Cam-
bridge Studies in Advanced Mathematics, vol. 157, Cambridge University Press, Cambridge, 2016.

[23] J.C. Robinson, W. Sadowski, Almost-everywhere uniqueness of Lagrangian trajectories for suit-
able weak solutions of the three-dimensional Navier-Stokes equations, Nonlinearity 22 (9) (2009)
2093-2099.

[24] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical
Series, vol. 30, Princeton University Press, Princeton, N.J., 1970.

[25] P. Stinga, User’s guide to the fractional Laplacian and the method of semigroups, in: Fractional
Differential Equations, 2019, pp. 235-266.

[26] L. Tang, Y. Yu, Partial regularity of suitable weak solutions to the fractional Navier-Stokes equa-
tions, Commun. Math. Phys. 334 (3) (2015) 1455-1482.

[27] A. Vasseur, Higher derivatives estimate for the 3D Navier-Stokes equation, Ann. Inst. Henri
Poincaré, Anal. Non Linéaire 27 (5) (2010) 1189-1204.

[28] A. Vasseur, J. Yang, Second derivatives estimate of suitable solutions to the 3D Navier-Stokes
equations, arXiv:2009.14291, 2020.

[29] Y. Wang, M. Yang, Improved bounds for box dimensions of potential singular points to the Navier—
Stokes equations, Nonlinearity 32 (12) (2019) 4817-4833.

[30] Z. Zhai, Global well-posedness for nonlocal fractional Keller—Segel systems in critical Besov spaces,
Nonlinear Anal., Theory Methods Appl. 72 (6) (2010) 3173-3189.

[31] X. Zhang, Stochastic Lagrangian particle approach to fractal Navier-Stokes equations, Commun.
Math. Phys. 311 (1) (2012) 133-155.


http://refhub.elsevier.com/S0022-1236(21)00452-3/bib962E1EB701867BE48123CBA3C6BFFF26s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib962E1EB701867BE48123CBA3C6BFFF26s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib1B27C69CF5D4BE9CBFC38833F4D76BA3s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib1B27C69CF5D4BE9CBFC38833F4D76BA3s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib1B27C69CF5D4BE9CBFC38833F4D76BA3s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib33A574250E120B51986B83CDB05CCF1Fs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib33A574250E120B51986B83CDB05CCF1Fs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib0E23B4AC71B308F10381CBB9EC9C596Cs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib0E23B4AC71B308F10381CBB9EC9C596Cs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibF80662E4B3F2A86C17BD4D36743B2DDFs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibF80662E4B3F2A86C17BD4D36743B2DDFs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib0CFA83ABB185B0B876BDD52C8EC0CD4As1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib0CFA83ABB185B0B876BDD52C8EC0CD4As1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibBDAEEC597EDDA71F6584D8C9B99D2776s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibBDAEEC597EDDA71F6584D8C9B99D2776s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib37879382DB7A95944BCD3221550F3AE2s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bib37879382DB7A95944BCD3221550F3AE2s1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibE1CABB8482A108BC029185BDBF9E0C8Cs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibE1CABB8482A108BC029185BDBF9E0C8Cs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibD0CD2693B3506677E4C55E91D6365BFFs1
http://refhub.elsevier.com/S0022-1236(21)00452-3/bibD0CD2693B3506677E4C55E91D6365BFFs1

	Local regularity of weak solutions of the hypodissipative Navier-Stokes equations
	1 Introduction
	2 Preliminaries and notations
	2.1 Notations
	2.2 Fractional Laplacian and its extension
	2.3 Sobolev-Slobodeckij space
	2.4 Suitable weak solutions
	2.5 Poincaré inequality
	2.6 The Hardy space and the grand maximal function
	2.7 Parabolic regularity

	3 Proof of Theorem 1.2
	4 Global integrability of the pressure
	5 Local study
	5.1 A Poincaré-type inequality for the pressure function
	5.2 L∞-boundness
	5.3 Consequences of the local regularity Theorem 5.1

	6 Higher derivatives of weak solutions
	6.1 Proof of Theorem 6.1
	6.2 Commutator estimates

	Acknowledgments
	References


