

1 **Paleomagnetic Results from the Singhbhum Craton, India: Remagnetization, Demagnetization, and**
2 **Complication**

3 Anthony F. Pivarunas^{1*}, Joseph G. Meert¹, Karastin D. Katusin¹, Manoj K. Pandit², Scott R. Miller¹,
4 Aubrey Craver¹, Kelli M. Roderus¹, Anup Sinha³

5

6 ¹University of Florida, Department of Geological Sciences, 241 Williamson Hall, Gainesville, FL 32611

7 ²Department of Geology, University of Rajasthan, Jaipur, Rajasthan India.

8 ³Geomagnetic Research Laboratory, Regional Center of Indian Institute of Geomagnetism, Allahabad,
9 221 505, India.

10 *corresponding author is now at the United States Geological Survey, apivarunas@usgs.gov

11

12 **Abstract**

13 We report a complicated magnetic fidelity through time in Singhbhum Craton, India, with new,
14 geographically wide-spread and spatially detailed, paleomagnetic results. The Singhbhum Craton in
15 eastern India is cross-cut by multiple generations of the so-called “Newer Dolerite” dykes. A previously
16 published 1765 Ma paleomagnetic pole represents a useful constraint on the Singhbhum Craton during
17 the amalgamation of the Columbia supercontinent whereas an older ~2763 Ma paleomagnetic pole is
18 problematic. We present additional data from the 1765 Ma dykes that results in a grand mean
19 paleomagnetic pole at 43°N, 320°E (A95=11°, K=17; N=13). The 1765 Ma pole is supported by a positive
20 baked contact test. Our additional data shows that paleomagnetic results from the 1765 Ma dykes are more
21 complicated by magnetic overprints than originally reported. We also argue that the steep inclination
22 paleomagnetic data from the Singhbhum Craton, previously assumed to represent a Neoarchean signal,
23 are part of a complicated group whose magnetic age is uncertain. We establish a minimum age of 2250
24 Ma for connecting the Singhbhum and Dharwar cratons on the basis of published geochronology and our
25 interpretation of paleomagnetic data in this paper. Paleomagnetic data from both cratons can be
26 juxtaposed using a simple Euler pole rotation of the Singhbhum Craton relative to Dharwar.

27 **1. Introduction**

28 Untangling the paleomagnetic record of geologic terranes with complex tectonothermal histories
29 is a difficult endeavor since primary magnetic signatures may become altered. Peninsular India – the
30 Dharwar, Bastar, Singhbhum, Bundelkhand, and Aravalli cratons along with the Banded Gneiss Complex
31 (BGC) – has a substantial history of growth and deformation, beginning in the Eoarchean (Naqvi and
32 Rogers, 1987; Ramakrishnan and Vaidyanathan, 2008; Meert and Pandit, 2015, Jain et al., 2020,
33 Jayananda et al., 2020). Typical for Archean cratons (Halls, 2008), these nuclei are cut by numerous mafic
34 dykes. A concerted effort to precisely date the many generations of mafic dykes has yielded a wealth of

35 robust geochronologic data in the Dharwar (Halls, 2007; Belica et al., 2014; Kumar et al., 2015; Nagaraju
36 et al., 2018a; Pivarunas et al., 2019; Nagaraju et al., 2018b; Söderlund et al., 2019 and references therein),
37 Bastar (French et al., 2008; Pisarevsky et al., 2013; Shellnutt et al., 2018), Singhbhum (Kumar et al., 2017;
38 Shankar et al., 2017; Srivastava et al., 2019), and Bundelkhand (Pradhan et al., 2012) nuclei. In concert
39 with knowledge of dyke ages, proof for the time of magnetization acquisition – determined by such means
40 as the ‘baked contact test’ of Everitt and Clegg, (1962) for intrusions – are of paramount importance to
41 paleomagnetic studies. Otherwise, the correlations between continental blocks or inferences of movement
42 are premature at best and spurious at worst. The protracted Precambrian intrusive history of Peninsular
43 India, restricted within a finite amount of space, creates complexities in the evaluation of paleomagnetic
44 data from dykes (Pivarunas et al., 2019).

45 The five major nuclei that comprise Peninsular India can be divided into a North Indian Block
46 (NIB) (Aravalli-Banded Gneiss Complex, Bundelkhand, and Marwar region) and a South Indian Block
47 (SIB) (Dharwar, Bastar, Singhbhum), separated by the roughly east-west trending Central Indian Tectonic
48 Zone (CITZ) (Fig. 1). The 1.6– 1.5 Ga activity has been recently argued (Bhowmik, 2019) to represent
49 early quasi-assembly of the NIB and SIB (accretionary orogeny) and the major Stenian-Tonian (1.1-1.0 Ga)
50 aged tectonothermal event resulted from full assembly of the SIB and NIB during a Himalayan-type
51 orogenic pulse. Paleomagnetic data from the NIB (Miller and Hargraves, 1996; Gregory et al., 2006;
52 Malone et al., 2008; Pradhan et al., 2010) and SIB (Venkateshwarlu and Chalapathi-Rao, 2013) support
53 SIB-NIB assembly by 1.1-0.9 Ga, although coeval data from the intervening time are lacking and therefore
54 this should be regarded as the minimum age of assembly.

55 Paleomagnetic data from both the Dharwar Craton and the northern block of the Southern
56 Granulite Terrain (SGT) demonstrate that they were contiguous since at least 2367 Ma (Halls et al., 2007;
57 Belica et al., 2014; Dash et al., 2013; Pivarunas et al., 2019), while geochronologic considerations
58 (Meissner et al., 2002; Clark et al., 2009) suggest these areas were conjoined as early as ca. 2500 Ma (see
59 also Meert et al., 2010). A 2367 Ma dyke from the Bastar Craton (Liao et al., 2019) tentatively supports
60 an early amalgamation of Bastar and Dharwar. Stronger evidence for their unity is derived from 1888 Ma
61 dykes from the Dharwar and Bastar cratons (French et al., 2008; Meert et al., 2011; Belica et al., 2014;
62 Radhakrishna et al., 2013), although an earlier amalgamation (Rajesham et al., 1993; Santosh et al., 2004)
63 and a later quasi-separation (Santosh et al., 2004) are proposed.

64 The Singhbhum nucleus and its direct neighbor, Bastar Craton were canonically considered as
65 adjacent partners, since the Neoarchean, on the basis of indirect evidence. Their hypothesized connection
66 in the Neoarchean is supported by a semi-continuous gneissic fabric (Chetty, 2014), an approximate age
67 match – based on a problematic 2.7 Ga Sm-Nd ‘isochron’ – of dyke swarms from Bastar Craton
68 (Srivastava et al., 2009) and from Singhbhum Craton (Kumar et al., 2017), and tradition (Meert et al.,

69 2011; Basu and Bickford, 2015). The Singhbhum/Dharwar cratonic nuclei synchronously hosted 2250 Ma
70 (Demirer, 2012; Srivastava et al., 2019) and 1790-1760 Ma (Demirer, 2012; Shankar et al., 2017;
71 Söderlund et al., 2019) dyke intrusions. While similar ‘bar-code’ pattern (Bleeker and Ernst, 2006) ages
72 of intrusions is considered a strong indicator of unity, geochronological data sans coeval paleomagnetic
73 data excludes rigorous tests of such age-based reconstructions.

74 Here, we present new, geographically widespread paleomagnetic data from a wide array of dykes
75 from Singhbhum Craton. The purpose of our study is to (i) add to the paleomagnetic database from
76 Singhbhum Craton; (ii) test the reliability of previously published results from the Singhbhum Craton;
77 (iii) identify additional paleomagnetic data from the Singhbhum Craton; (iv) use these data to assess the
78 contiguity of the NIB/SIB and (v) compare the data to the global paleomagnetic database.

79 **2. Geological Overview**

80 The 40,000 km² Singhbhum Craton is the northernmost terrane of the South Indian Block. The
81 Singhbhum Craton is bordered to the north by the Chhotanagpur Granite-Gneiss Complex (Mukherjee et
82 al., 2017). The southern border of the Singhbhum Craton is demarcated by the Mahanadi Rift, separating
83 it from the Bastar Craton to the southwest, and older Rengali Province granodiorite gneisses and
84 supracrustal rocks of the Eastern Ghats orogenic belt, to the southeast (Sharma, 2009). Recent reviews of
85 Singhbhum Craton genesis and evolution provide details of the cratonic framework geology (Oliverook et
86 al., 2019; Pandey et al., 2019; Chaudhuri et al., 2020); we recommend these works for those looking for
87 a synoptic view of the craton architecture.

88 Singhbhum Craton comprises four major litho-stratigraphic units, viz. the Older Metamorphic
89 Group (OMG), Older Metamorphic Tonalite Gneisses (OMTG), Iron Ore Group (IOG), and Singhbhum
90 Granite complex, that yield Paleoarchean ages (Chaudhuri, 2020). Xenocrystic zircons within the OMTG,
91 detrital zircons within the Mahagiri Quartzite, and a detrital zircon within modern sediment have preserved
92 a Hadean to Eoarchean signal (Mukhopadhyay et al., 2014; Chaudhuri et al., 2018; Miller et al., 2018;
93 Sreenivas et al., 2019). A dacitic lava tuff interbedded with quartzite and banded iron formations in the
94 Southern IOG yielded an age of 3506.8 ± 2.3 Ma (Mukhopadhyay et al., 2008) and represents the oldest
95 dated igneous event in the Singhbhum Craton. An even older event is hinted at in a 3527 ± 17 Ma U-Pb
96 zircon age from a TTG gneiss in the northeast of Singhbhum Craton (Acharyya et al., 2010). The
97 Singhbhum Granite complex dominates the central region (Fig. 1) and was built in pulses from 3.38-3.25
98 Ga (Upadhyay et al., 2019; Dey et al., 2017; Dey et al., 2020). The metasedimentary rocks and
99 amphibolites of the OMG and the tonalite-trondhjemite gneisses of the OMTG occur as small enclaves
100 within the Singhbhum Granite. The Iron Ore Group includes three volcano-sedimentary basins
101 surrounding the east, south, and west sides of the Singhbhum Granite Complex. Secondary units such as

102 Dhanjori Volcanics and Simlipal Group were emplaced over the cratonic nuclei from Mesoarchean to
103 Neoarchean (Misra and Johnson, 2005; Singh et al., 2021).

104 The Archean lithologies of Singhbhum Craton, particularly the Singhbhum Granite (Fig. 1), are
105 cut by a dense array of dykes known as the ‘Newer Dolerites’. Until recently, the emplacement ages for
106 the Newer Dolerites were limited to poorly constrained K-Ar system ages yielding ages ranging between
107 2200-900 Ma (Naqvi and Rogers, 1987; Srivastava et al., 2000; Bose, 2008). More precise geochronology
108 (Pb-Pb baddeleyite) identified at least four episodes of Newer Dolerite intrusions at 2800 Ma, ~2760 Ma
109 (Kumar et al., 2017), ~2260 Ma (Srivastava et al., 2019), and ~1765 Ma (Shankar et al., 2014, 2017).
110 Srivastava et al. (2019) separate the Newer Dolerites into as many as 7 swarms based on the four precise
111 ages as well as cross-cutting relationships inferred from satellite imagery. Inherent to this approach is an
112 assumption that dyke trends are diagnostic for age. This is a good first-order approximation, given the
113 difficulties of sampling every single dyke in a craton for geochronology; however, we emphasize that
114 dykes from the same intrusive event may have multiple trends (Samal et al., 2015).

115 The densely concentrated Newer Dolerite dyke swarms intruding the Singhbhum basement rocks
116 are predominately mafic with subordinate ultramafic and intermediate compositions (Mir and Alvi, 2019).
117 The mafic dyke geochemistry ranges from tholeiitic to alkalic (Srivastava, 2000; Bose, 2008; Mir et al.,
118 2011; Dasgupta, 2019). The width of individual dykes ranges from ~1-70 m, with small dykelets regularly
119 off-shooting main dykes (Mir et al., 2011; Katusin, 2017). Larger dykes define two main cross-cutting
120 trends, oriented either N-S to NNE-SSW or NW-SE to WNW-ESE (Meert et al., 2010; Mir et al., 2011).
121 Our field observations indicate that the northerly-trending dykes are generally relatively older when cross-
122 cutting relationships can be observed. Large dykes have subvertical orientations, some dykes <1 m in
123 width at Bhima Kunda are not vertically emplaced. However, larger dykes (>1 m width) dykes at Bhima
124 Kunda are clearly vertical.

125 **2.1 Previous Paleomagnetic Work**

126 An early paleomagnetic study of the Newer Dolerite swarm (Verma and Prasad, 1974) used
127 rudimentary low-temperature thermal magnetic cleaning that revealed three groupings (N.D. 1-3) of
128 directional paleomagnetic data. Other paleomagnetic studies were conducted on rocks of the Iron Ore
129 Group by Kumar and Bhalla (1984) and Das et al. (1996). Recent paleomagnetic work on the Singhbhum
130 Craton focused on precisely dated mafic dykes (Shankar et al., 2017; Kumar et al., 2017). Two WNW-
131 trending dykes were dated to 1765.3 ± 1.0 Ma (Shankar et al., 2014). After stepwise demagnetization, the
132 authors reported a consistent northwesterly-directed negative shallow remanence with a mean direction of
133 $D = 329^\circ$, $I = -23^\circ$ ($k = 32$, $\alpha_{95} = 9^\circ$, $N = 9$ dykes). This is broadly consistent with one of the directions
134 identified in low-temperature results of Verma and Prasad (1974). In the Shankar et al. (2017) study,
135 sizeable secondary components of magnetization were often removed, but not discussed in any detail (see

136 Figure 3 of that manuscript). The mean characteristic direction was supported by a baked contact test
137 from a dyke which paralleled the dated dyke. Shankar et al. (2017) reported a paleomagnetic pole at 45°
138 N, 311° E (A95 = 7°). The reliability factor assigned to that study is R = 6 (Meert et al., 2020) and
139 therefore is considered as a “key” paleopole at 1765 Ma.

140 Kumar et al. (2017) confirmed the absolute age of older, NNE-SSW trending dykes, in the
141 Singhbhum Craton based on well-constrained Pb-Pb baddeleyite ages yielding an average of 2762.4 ± 2.0
142 Ma. Distinctly older and younger ages were also identified in that study (~2800 Ma and ~2752 Ma),
143 although the younger age may simply represent protracted dyke emplacement, as is seen in the Dharwar
144 Craton and SGT. Stepwise demagnetization revealed a steep, dual polarity remanence that is consistent
145 with results from the limited study by Verma and Prasad (1974). Kumar et al. (2017) argued that a reversal
146 test with an “R_c” classification (McFadden and McElhinny, 1990; hereafter MM1990) was evidence of a
147 primary magnetization. We recalculated their test using a correct form of the MM1990 reversals test
148 which yielded an “indeterminate” result. We also applied a modified Bayesian reversals test (Heslop and
149 Roberts, 2018) which yielded “positive support” for the hypothesis of a common mean between the
150 antipodal directions. The mean direction is D=226°, I=+84° ($\alpha_{95}=6^\circ$; N=14) with a corresponding
151 paleomagnetic pole at 14° N, 78° E (A95 =11°; Q=6).

152 3. Methods

153 A total of 96 sites (468 directly drilled samples along with 84 block samples) from 84 dykes were
154 collected throughout the northern and southern Singhbhum Craton over the course of three field seasons
155 (Fig. 2). Paleomagnetic sites from this study are geographically concentrated south of Jamshedpur in the
156 northern Singhbhum Craton, and east of Keonjhar in the southern Singhbhum Craton (Fig. 2). Sampling
157 was targeted on unambiguously *in-situ* dyke outcrops, typically in rivers or recent road cuts due to deep
158 tropical weathering in the area. Samples were also collected from host rocks – granites and gneisses – at
159 sites suitable for baked contact tests (18 sites). Baked contact tests had a low rate of success due to weak
160 or unstable magnetizations within the host rocks. Paleomagnetic samples were collected in the field with
161 a water-cooled, gasoline-powered drill and oriented with both a magnetic and a sun compass. Oriented
162 hand samples were taken where drilling was unfeasible or when equipment failures occurred.

163 Samples were returned to the University of Florida where they were trimmed to a standard size
164 (after drilling, in the case of oriented hand samples). Natural remanent magnetization (NRM) directions
165 were measured using either a Molspin spinner magnetometer or a 2G-77R cryogenic magnetometer. Two
166 pilot specimens (from the same sample) from each sampling site were demagnetized by thermal and
167 alternating field (AF) methods using either an ASC TD-48 thermal demagnetizer, homebuilt AF
168 demagnetization apparatus, or DTech 2000 AF demagnetizer. Subsequent demagnetization procedures
169 were optimized based on pilot sample behavior. Generally, multiple specimens from each site were

170 demagnetized using both methods. Selected samples were subjected to both thermal and AF
171 demagnetization to more fully characterize their response. After complete demagnetization,
172 paleomagnetic vector directions were recovered with principal component analysis (Kirschvink, 1980) or
173 great-circle analysis, using IAPD software (Torsvik et al., 2016). Within-site analyses and statistical
174 analyses of directions (Fisher et al., 1953) were conducted using both IAPD and the PmagPy software
175 package (Tauxe et al., 2016). Susceptibility and temperature-dependent susceptibility were measured from
176 samples at selected sites with a KLY-3S Kappabridge with a CS-3 furnace attachment in order to
177 characterize magnetic behavior and signal carriers in the samples.

178 **4. Results**

179 Stable paleomagnetic directional data were recovered from a total of 59 individual cooling units
180 (72 individual sites). In the following discussion, we highlight the fact that some sites were sampled
181 multiple times during this investigation. In an effort to help clarify our sampling, note that each site is
182 preceded by IXX where XX represents the last two digits of the year in which the samples were collected
183 (i.e. I14xx samples were collected in 2014, I16xx in 2016 and I17xx in 2017). These sites included directly
184 dated dykes ranging in age from 2800 Ma to 1765 Ma. Two sites (I1417 and I1733) were sampled from a
185 2800 Ma dyke. Another site (I1713) was sampled from a 2763 Ma dyke, and multiple sites (I1637, I171,
186 I1722) were taken along the large WNW-trending 1765 Ma dyke. Sites were rejected for typical reasons
187 in paleomagnetic studies: random directional data (causes include unstable magnetic behavior or lightning
188 strikes), evidence of intra-outcrop rotations, or too few (1 or 2) stable samples for meaningful statistics.

189 **4.1 Results from 1765 Ma dyke swarm**

190 We isolated a characteristic northwest-declination, shallow up-inclination magnetization (Fig. 3)
191 in 9 dykes (12 sites) in Singhbhum Craton (Fig. 3a; Table 2). This direction is typically resolved after the
192 removal of low-medium blocking temperature/coercivity secondary components (Fig. 3b). Curie
193 temperature analyses show that this remanence is carried by magnetite (Fig. 3c). This magnetic direction
194 is sometimes almost completely overprinted by other magnetic components. Two large WNW-trending
195 dykes (sites SKJ10 and SKJ15; Shankar et al., 2014) were directly dated to 1765 Ma. Subsequent
196 paleomagnetic work (Shankar et al., 2017) identified the northwest-declination, shallow up-inclination
197 paleomagnetic direction in the dated dyke (SKJ10) and other dykes throughout the Singhbhum Craton.

198 The characteristic NW-up remanence was isolated in these dykes after the removal of secondary
199 steep magnetic components, although the remagnetization was sometimes complete along the margins of
200 the dyke (Figs. 4,5). Great-circle analysis was required in several cases to determine a mean direction
201 (e.g. I147, I1637, I171, I1729). A mean direction for the 1765 Ma dykes was calculated by combining
202 our results and those of Shankar et al. (2017). The result is based on 183 samples from 13 sites (9 cooling

203 units) with a mean declination=321.6°, inclination=-15.7° (a₉₅=12.9°, k=17.2) with a resultant
204 paleomagnetic pole at 43.2 N, 319.9 E.

205 We attempted a baked contact test at a small northerly-trending dyke (site I172) near the Khanjhari
206 Reservoir that is cross-cut by a large, WNW-trending dyke previously dated to 1765 Ma (sites
207 I1637+I171+I1722+K10+SKJ10; Shankar et al., 2014, 2017) (Fig. 4). After the removal of random low-
208 temperature/coercivity components, a consistent paleomagnetic remanence was found within the N-S
209 trending dyke (I172) near the contact with the WNW trending dyke (I171) with a mean direction of D=
210 330°, I= -18° (k=174, a₉₅=3.5°, n=11). Two samples from the granite immediately adjacent (3 cm from
211 contact) to the dyke yield a similar paleomagnetic direction of D= 327°, I= -27°. Further away from both
212 I171 and I172 (~2-3 m), two samples of granite preserve a distinctly different direction at D= 358°, I=
213 +20°; one preserving also a low-coercivity NW-shallow overprint (D= 337°, I= -41°). This illustrates the
214 complexity of this particular baked contact test. Based on cross-cutting relationships, the northerly
215 trending dyke I172 is older and was likely partially reset along with some of the granitic material during
216 the intrusion of the younger 1765 Ma dyke. Further complications arise from the fact that we isolate a
217 NE-up overprint in the younger dyke (Fig. 4). The NE-directed component is not fully removed using
218 thermal demagnetization; however, AF-demagnetization is effective at resolving the characteristic NW-
219 up direction (Fig. 4d). In some samples, high-temperature thermal demagnetization was followed by AF
220 demagnetization, revealing a characteristic NW-shallow up direction statistically similar to the mean
221 direction obtained by Shankar et al. (2017) (Fig. 3). These repeated trajectories from northeast directions
222 to northwest directions illustrate that the NE-direction is a persistent overprint (Supplementary Section 5).
223 This alteration of paleomagnetic directions is particularly pronounced along the margins of the dyke. Our
224 interpretation is that the 1765 Ma dyke remagnetized the older northerly trending dyke and at least some
225 of the country rock within the baked zone. Subsequently, a NE-shallow magnetization overprinted the
226 margins of the larger dyke.

227 In an effort to resolve this conundrum, we collected samples at a second site along the same large
228 dated dyke (site I1722) that corresponds to site SKJ10 of Shankar et al. (2017). They reported separate
229 means for site SKJ10 and site K10 although both are from the same large dyke. Our analysis showed
230 similar magnetic behavior, a trend revealed by AF demagnetization from a northeasterly-shallow to a
231 northwesterly, shallow paleomagnetic direction (cf. Fig. 3 of Shankar et al., 2017). We combine magnetic
232 vectors isolated at different sites (I1637, I171, I172, I1722, K10, SKJ10) by AF demagnetization, thermal
233 demagnetization, and great circle analysis to calculate a new mean direction for this dyke as a single
234 cooling unit: D= 327°, I= -17° (k=65.8; a₉₅=11.4°; N=6 sites; n=48 samples).

235 Previous work indicated a positive baked contact test at a WNW-trending dyke (our site I176; Fig.
236 5) (K12; Shankar et al., 2017). This dyke is a few kilometers northeast of site I172 and the Khanjhari

237 Reservoir. We resampled this dyke with a detailed drilled sampling profile across the dyke interior,
238 margin, and baked host rocks in order to supplement the previous hand-sample collection and determine
239 the full width of the baked zone. Samples from the coarse-grained interior of the dyke contained a
240 southwest-directed, intermediate, down-inclination direction, $D=235^\circ$, $I=+63^\circ$ ($k=27$, $\alpha_{95}=8^\circ$) that was
241 removed between 525 and 580 °C or between 5 and 15 mT. After removal of this component, a stable
242 NW-shallow up-inclination component was recovered with $D=348^\circ$, $I=-20^\circ$ ($k=18$, $\alpha_{95}=14^\circ$). Thermally
243 demagnetized samples from the dyke margin behaved differently from those in the dyke interior and
244 yielded a mean direction at $D=193^\circ$, $I=+80^\circ$ ($k=17$, $\alpha_{95}=15^\circ$). One sample (number 8) at the contact
245 showed different specimen behavior under different demagnetization treatments, with univectorial thermal
246 decay defining a steep component (D/I : $113^\circ/+89^\circ$), while AF demagnetization yielded a shallow
247 component (D/I : $338^\circ/-9^\circ$) after the removal of a low-coercivity steep component similar to the direction
248 in the dyke interior (similar behavior is apparent in Figure 3 of Shankar et al., 2017). Individual samples
249 of granite yielded random directions. Therefore, considering both the complex paleomagnetic behavior at
250 the contact and our ungrouped results from the granite, we cannot confirm the earlier baked contact test
251 here. Typically, the fine-grained margins of dykes are viewed as better magnetic recorders than the
252 interiors (Halls, 2008), but this situation is inverted at this dyke. To further complicate the signal in the
253 WNW-trending dykes, we identify additional overprints along the margins of sites I176 (Fig. 6), I1720,
254 and I1734. However, we emphasize that these overprints are *secondary* to the NW-shallow up component.
255 The thermal effects of the NW-shallow magnetization extend to other dykes within the Craton. We have
256 isolated the NW-shallow up direction (or its antipodal direction) as an overprint on 12 other dykes (87
257 samples). These overprints are commonly discovered in samples with pyrrhotite (components removed
258 by 350°C). The mean direction of the dual-polarity overprint is $Dec=327.5$, $Inc=-6.8$ ($k=10.4$, $\alpha_{95}=14.1$)
259 with a resultant paleopole at 49.5 N, 321.8 E. The mean pole and direction overlaps with the 1765 Ma
260 dyke pole.

261 We posit the following arguments in favor of a primary NW-shallowly directed magnetization in
262 the 1765 Ma dykes. (1) The direction isolated in the dated dyke (SKJ10) is identical to directions observed
263 in other dykes that follow the WNW trend. (2) Although we were unable to duplicate the baked contact
264 test reported in Shankar et al. (2017), the baked contact test reported in that study stands. (3) Magnetic
265 directions at cross-cutting dykes I171 (younger) and I172 (older) are consistent with the hypothesis that
266 I171 baked I172, although the baked contact test was not ideal. (4) There is a widespread dual polarity
267 NW-up/SE-down overprint on many older dykes in the region (12 dykes, 83 samples). (5) The NW-
268 shallow up direction is sometimes overprinted by younger magnetizations particularly along altered
269 margins of the dykes. (6) The pole averages secular variation according to the Deenen et al. (2011, 2014)
270 parameters with our $A95_{min}=4.3^\circ < A95_{1765}=12.9^\circ < A95_{max}=16.3^\circ$. (7). At present, the presumed 1765 Ma

271 magnetization resembles no younger poles in the Singhbhum craton. Our evaluation of this pole using the
272 R-value (a measure of the ‘quality’ of a particular paleomagnetic result, see Meert et al., 2020) yields an
273 R-value of 6 (with baked contact test marked as R4_{Co}). The pole lacks a reversals test; however, the
274 overprint directions on other dykes are of dual-polarity. On the basis of this evidence and reasoning, we
275 conclude a 1765 Ma primary NW-shallow magnetization exists in the craton.

276 **4.2 Steeply-inclined dual polarity magnetic data**

277 Within the Singhbhum craton, there are at least 4 distinct moderate to steeply inclined directions
278 that were isolated in our study; hereafter referred to as Singhbhum Paleomagnetic Groups 1-4 (SPG1-4;
279 Fig. 7). Forty-three cooling units (53 sites) have paleomagnetic directions that are within these confines
280 (Table 3). Typically, strong trend-directional affinities are not recovered, which indicates either a given
281 dyke swarm was emplaced along multiple trends, or some magnetic signals of older dykes were reset.

282 The moderately-to-steeply-inclined magnetizations were isolated in Neoarchean and other north-
283 northeast-trending dykes (see Kumar et al., 2017; Fig. 7). They were also isolated in west-northwest-
284 trending dykes, baked and unbaked granites, and altered exterior margins of younger (1765 Ma) dykes
285 (Figs. 5,6). Thus, it is likely that at least some of the steeply inclinded directions represent
286 remagnetizations that are younger than 1765 Ma. This clearly indicates that dual-polarity, intermediate-
287 steep inclination magnetizations in Singhbhum Craton are a group of varied origin, leading to our
288 framework of multiple groupings.

289 The characteristic magnetic components from these dykes were isolated at a wide range of
290 temperatures and coercivities (Figs. 8,9). Lower unblocking-temperature/coercivity components were
291 typically present. The remanence of dykes with intermediate-steep dual-polarity paleomagnetic directions
292 are predominately carried by magnetite (Fig. 8e), although some dykes exhibit different rock magnetic
293 properties. The majority of susceptibility-temperature experiments are non-reversible and indicate growth
294 of a new magnetic phase during heating-cooling cycles (Fig. 8e).

295 **4.2.1 Singhbhum Paleomagnetic Group 1 (SPG1)**

296 Paleomagnetic results from 19 dykes (24 sites) in Singhbhum Craton fall into a dual-polarity
297 group (SPG1; Table 3a; Fig 8a,b) with either NE-steeply down or SW-steeply up magnetic vectors (Fig.
298 7). These dykes have both NNE and NW-trends. After inverting the NE-down directions, we obtain a
299 mean direction at D= 218°, I= -77° (k= 41, $\alpha_{95}= 5.3^\circ$; N=19).

300 We performed a baked contact test at site I1427 on a small (5 m wide) WNW-trending dyke in
301 the southern Singhbhum Craton (Fig. 10a). Samples from the dyke showed a consistent univectorial
302 direction of D= 66°, I= +78° ($\alpha_{95}= 8^\circ$). Samples at the contact, including some mixed dyke/granite
303 specimens yielded a mean direction of D= 255°, I= +87° ($\alpha_{95}= 15^\circ$). Unbaked samples yielded a mean
304 D= 288°, I= +79° ($\alpha_{95}= 8^\circ$). Due to the steep inclinations, this baked contact test is more difficult to

305 interpret; however, the mean dyke and unbaked directions are statistically distinct which is supportive of
306 a primary magnetic signal, although it does not constitute an ideal positive baked contact test. A
307 susceptibility profile across the dyke does not show indications of baking along the margins as all contact
308 samples have similar susceptibilities (Supplementary Material). The significance of this baked contact
309 test is uncertain because the direction from the ‘unbaked’ granite samples is similar to the ‘primary’
310 Neoarchean remanence in the NNE-trending dykes (Kumar et al., 2017).

311 The complexities associated with the SPG1 directions are further illustrated in two cross-cutting
312 dykes at Bhima Kunda along the Baitarani River. At sites I1647 and I717 (both on a 0.75m wide, NE-
313 trending dyke), three components of magnetization were isolated (Fig. 11a). Near the contact with a NW-
314 trending dyke (I1646, 0.75m wide), samples show a univectorial southwest-directed, steep-up
315 magnetization (SW-up; Fig 11b, c). A sample, collected about 35 cm from this contact on the NE-trending
316 dyke (site I717, sample 3b), shows a low-coercivity overprint (SW-steep up; Fig. 11b,d) and a higher
317 coercivity component that is roughly antipodal (NE-steep down; Fig. 11b,d). Samples away from the
318 ‘baked zone’ (I1717, 2.5 m) show a NE-steep down high temperature component that is overprinted by a
319 NW-shallow up component similar to the 1765 Ma direction (Fig. 11b,e). Samples from this dyke appear
320 to show an ideal baked contact test including evidence for a hybrid zone in sample 3b. Unfortunately,
321 data from the cross-cutting dyke show a high temperature/coercivity component that is of the opposite
322 polarity as discussed below.

323 Samples from the NW-trending dyke (I1646) show the NE-steep down direction with NW-
324 shallow overprints (Fig. 11b,f). The NE-steeply down component in I1646 is antipodal to the directions
325 observed at the contact between the two dykes, but matches the high-temperature/coercivity component
326 away from the contact in both dykes. Currently we have no unequivocal explanation for the apparently
327 ‘reverse’ direction in samples immediately adjacent to the contact zone; however, the SPG1 direction pre-
328 dates 1765 Ma, as both dykes are overprinted by the NW-shallow up direction. Intra-dyke reversals were
329 previously reported by Liebke et al. (2010, 2012), but the spatial arrangement, as shown in Figure 11,
330 renders this explanation untenable for these relatively small dykes.

331 In spite of the equivocal baked contact tests cited above, we believe that the SPG1 magnetization
332 is older than 1765 Ma and may be primary. The mean downward-directed direction is $D=51.5^\circ$, $I=+76.4^\circ$
333 ($k=49.5$, $\alpha_{95}=5.7^\circ$; $N=14$) and the mean upward-directed direction is $D=179.9^\circ$ $I= -75.6^\circ$ ($k=42.3$, $\alpha_{95}=$
334 11.9° ; $N=5$). This dual polarity magnetization passes the reversal test with a grade of “C” (McFadden and
335 McElhinny, 1990). The paleomagnetic pole, calculated from the mean of VGP’s, falls at 40.2 N, 104.6 E
336 ($K=13.4$, $A95=9.5$) and averages secular variation based on the Deenen et al. (2011, 2014) parameters
337 ($A95_{min}=3.7^\circ$, $A95_{max}=12.8^\circ$).

338 **4.2.2 Singhbhum Paleomagnetic Group 2 (SPG2)**

339 Paleomagnetic data from 13 dykes within Singhbhum Craton have steep magnetic inclinations of
340 dual polarity that are distinct from the steep SPG1 directions (Table 3b; SPG2; Fig 8,c,d). The down-
341 inclinations data cluster in the southwest-quadrant, with antipodal, up-inclination directions in the
342 northeast (Fig. 7). Our mean direction (after reversing the negative inclination results) falls at $D= 201^\circ$,
343 $I= +80^\circ$ ($k= 35$, $\alpha_{95}= 7^\circ$). These data closely resemble results from the Neoarchean dykes reported in
344 previous studies (Verma and Prasad, 1973; Kumar et al., 2017). The majority of our studied dykes have
345 an NNE-trend, in agreement with the arguments put forth by Kumar et al (2017).

346 A baked contact test was conducted on a 9-meter wide, northerly-trending dyke (site I178),
347 parallel to sites K7 (Kumar et al., 2017) and I177 (our study). We sampled site I178 (the parallel dyke
348 ~100 meters to the east), because of the favorable, sharp, and exposed dolerite-granite contact (Fig. 10b).
349 Samples from the interior and exterior parts of the dyke were consistent under both thermal and alternating
350 field demagnetization, with a well-defined mean direction $D=188^\circ$, $I= +68^\circ$ ($k= 20$, $\alpha_{95}= 9^\circ$). Samples
351 from the baked and unbaked granite yielded a mean direction at $D=205^\circ$, $I= +63^\circ$ ($k=16$, $\alpha_{95}=24^\circ$; Fig. 8b)
352 similar to the dyke. This baked contact test is therefore negative. Interestingly, the characteristic dyke
353 direction is antipodal to the mean direction from the northerly-trending dyke, just to the west (K7+I177:
354 $D= 012^\circ$, $I= -67^\circ$; $k = 806$, $\alpha_{95}= 8.8^\circ$).

355 The SPG2 magnetization is similar to overprints on the 1765 Ma dykes and therefore post-dates
356 1765 Ma (Fig. 6). Along with the negative baked contact test at site I178, the evidence does not support a
357 primary Neoarchean paleomagnetic signal. However, certain dykes within the group (such as I1636,
358 undated but cut by a 1765 Ma dyke), have secondary directions which roughly correspond with the 1765
359 Ma event. This indicates that some magnetizations in this group were acquired *before* 1765 Ma, but not
360 necessarily in the Neoarchean.

361 Due to the similarity between SPG2 and results of Kumar et al. (2017), we combine both these
362 data to reach a grand mean direction of $Dec=206.2^\circ$, $Inc=+81.8^\circ$ ($k=47.5$, $\alpha_{95}= 4.3^\circ$; $N=24$ dykes). Sites
363 K7 and K9 of Kumar et al. (2017) were combined with our sites I177 and I1713 (as single cooling units).
364 We eliminated site Q (Verma and Prasad, 1972) that was included in the Kumar et al. (2017) analysis.
365 The mean paleomagnetic pole for SPG2 and Kumar et al. (2017) falls at 7.9° N, 79.2° E ($K=15$, $A95=8.0^\circ$).
366 With our added data, the pole has a positive reversal test with a grade of “C” (McFadden and McElhinny,
367 1990), and has averaged secular variation based on the Deenen et al. (2014) parameters ($A95_{min}=4.8^\circ$,
368 $A95_{max}=11.1^\circ$)

369 **4.2.3 Singhbhum Paleomagnetic Group 3 (SPG3)**

370 Paleomagnetic data for 6 dykes (10 sites) exhibit an easterly-up/westerly-down intermediate-
371 inclination dual-polarity paleomagnetic direction (SPG3; Figure 9; Table 3c). We combine several sites
372 from a ~10 m thick WNW-trending dyke at Bhima Kunda (I1435, I1642, I1644, I1714, I1715) in reporting

373 this mean direction as they represent a single cooling unit. The mean direction from these dykes falls at
374 $D=89.9^\circ$, $I=-48.4^\circ$ ($k=28$, $\alpha_{95}=13^\circ$). This direction was isolated either after removal of a low-medium
375 temperature/low coercivity overprint (site I1730) or isolated as a single component (site I1635) (Fig. 9).
376 Demagnetization and rock magnetic experiments indicate that this remanence is carried by magnetite (Fig.
377 9). Dykes with this direction are mostly northeast-trending, although a single dyke exposed in the Bhima
378 Kunda river section trends northwest.

379 The largest dyke (sites I1642, I1644, I1714, I1715) at the Bhima Kunda river section provides
380 constraints on the age of this magnetization. The contact gneiss is cut by cm-scale dykelets, as well as a
381 larger apophysis (site I1644) which we also sampled. All sampling areas carry a substantial overprint with
382 a mean at $D=356^\circ$, $I=+12^\circ$ ($k=24$, $\alpha_{95}=10^\circ$). This direction was isolated at temperatures up to 400°C .
383 The only stable magnetization isolated in the gneissic rocks adjacent to the dyke is antipodal to this
384 overprint (samples 9 and 10 from site I1642). After removal of the overprint, the characteristic easterly,
385 intermediate-up-inclination component was isolated from the dyke (sites I1642, I1714) and apophysis
386 (I1644) with a mean at $D=100^\circ$, $I=-46^\circ$ ($k=33$, $\alpha_{95}=5^\circ$). This component was persisted to temperatures up
387 to 545°C . AF demagnetization was more successful in isolating this component.

388 A detailed sampling profile (I1715) examined the relationship between the ‘large’ Bhima Kunda
389 dyke (described above) and a smaller, more northwesterly-trending dyke (‘bridge’ dyke; sites I1436,
390 I1643) (Fig. 12, Supp. Fig 1). The two dykes coalesce just before an abrupt hillslope where cross-cutting
391 relationships are obscured. Each dyke has a unique paleomagnetic direction, away from the intrusive
392 contact (i.e. ‘far-field ChRMs’). The interior of the smaller bridge dyke yields a high-temperature
393 component with a mean $D=261^\circ$, $I=-45^\circ$ ($k=46$, $\alpha_{95}=14^\circ$).

394 Samples were drilled at the intersection of the two dykes (Fig. 12). Samples from both dykes show
395 a persistent (medium to high temperature) overprint mean at $D=334^\circ$, $I=+35^\circ$ ($k=10$, $\alpha_{95}=12^\circ$; Fig. 12).
396 The characteristic remanence of both dykes at their intrusive contact is an easterly, intermediate up-
397 polarity direction ($D=103^\circ$, $I=-46^\circ$; $k=17$, $\alpha_{95}=13^\circ$ ‘large dyke’) and a $D=105^\circ$, $I=-37^\circ$; $k=25$, $\alpha_{95}=11^\circ$ for
398 the ‘bridge dyke’). These directions are also identical to the primary signal ~ 150 m away on a WNW-
399 trending (‘large’) dyke at sites I1642, I1644 and I1714. That the consistent east, moderate-up-inclination
400 direction is seen in *both* dykes suggests that the WNW-trending (‘large’) dyke cut and baked the NW-
401 trending (‘bridge’) dyke. The survival of this remanence at the intrusive contact along with a distinct
402 paleomagnetic direction preserved in the dykes farther away, supports a positive baked contact test on the
403 E-up direction as well as an inverse baked contact test on the W-up direction.

404 The absolute age of this magnetic component is uncertain; however, the baked contact test suggest
405 it is a primary signal. The virtual geomagnetic pole calculated from this mean direction falls at 10°S ,

406 204°E (K = 19; A95=16°). This represents a small sampling of dykes from around Singhbhum Craton
407 and requires more data to ensure that it has averaged secular variation.

408 **4.2.4 Singhbhum Paleomagnetic Group 4 (SPG4)**

409 Paleomagnetic data from 5 dykes (6 sites) exhibit a dual-polarity magnetization with either
410 west/up or east/down magnetizations (Fig. 9; Table 3d). The inverse baked contact test indicates that this
411 magnetization is older than the SPG3-direction, and NW-shallow overprints indicate that it also predates
412 1765 Ma. The mean direction from these dykes falls at D= 261°, I= -51° (k= 37, α_{95} = 13°). Dykes have
413 both northeast and northwest trends (Fig. 7).

414 **5. Discussion**

415 **5.1 Magnetic Relationships within Singhbhum Craton**

416 Paleomagnetic data from Neoarchean dykes were assumed to be primary in an earlier study by
417 Kumar et al. (2017). This interpretation was based on several indirect arguments: that the magnetization
418 is of dual-polarity, that the dual-polarities ‘pass’ a reversals test, and that no amphibolite-grade
419 metamorphism has occurred in the craton post-dyke-emplacement (Kumar et al., 2017; Nelson et al.,
420 2014).

421 There are issues with using these indirect arguments as proxies for direct evidence. First,
422 directions acquired during a remagnetization event can be of dual-polarity (Johnson and Van der Voo,
423 1989). Second, the reversals test in any iteration (Merrill and McElhinny, 1990; Heslop and Roberts,
424 2018), merely tests for a common mean, not an emplacement time of the rock in question. Given the
425 negative baked contact test described above, a positive reversals test does not preclude remagnetization.
426 Third, although we agree that tectonothermal events in the Singhbhum probably failed to bring the cratonic
427 interior above the blocking temperature of magnetite (Nelson et al., 2014; Kumar et al., 2017), replacement
428 of a primary magnetic direction can take place at lower temperatures over extended periods (Pullaiah et
429 al., 1975) or as the result of fluid flow (Geissman and Harlan, 2002).

430 A petrographic examination of the Neoarchean and Paleoproterozoic dykes (Kumar et al., 2017;
431 Shankar et al., 2017), revealed hydrothermal alteration of both pyroxene and plagioclase (Sengupta et al.,
432 2014). Low-temperature hydrothermal activity alters the primary magnetic signature of magnetite-bearing
433 rocks (Ade Hall et al., 1971). Rock magnetic evidence from this study (e.g. demagnetization spectra and
434 Curie temperature analysis) indicate that steep directions are isolated in magnetically-altered samples.
435 Multiple post-Neoarchean intrusion events in Singhbhum Craton provide opportunities for thermal and/or
436 hydrothermal alteration of the dykes and jointed, permeable dyke margins (Hall, 2008). Have these
437 intrusive events also led to major changes in remanent paleomagnetic directions? The steep magnetization
438 isolated along the fine-grained margins at sites I176, I1720, and I1734 indicate that remagnetization was
439 over a period of at least one billion years following the emplacement of Neoarchean dykes. This steep

440 SPG2 direction is similar that isolated in Neoarchean dykes (Kumar et al., 2017). This is troubling to
441 reconcile with a primary Neoarchean magnetization, but does not necessarily exclude the possibility given
442 the long timescales involved (Pivarunas et al., 2018). Further, the confidence interval on these overprints
443 are relatively large (Fig. 6), thus, we do not regard these data as conclusive evidence against a primary
444 magnetization in the Neoarchean dykes. We note that SPG2 is primarily isolated as a high-
445 temperature/coercivity component in NNE-trending dykes, as was noted by Kumar et al. (2017).

446 There are myriad episodes of Paleoproterozoic dyke emplacement within the craton (Shankar et
447 al., 2017; Srivastava et al., 2019). We surmise that these pulses of activity may be related to the SPG1-4
448 groups although we cannot place rigid age constraints on each one of the directional groups (Fig. 7).

449 The northwest shallow-up magnetic direction is geographically widespread in the Singhbhum
450 Craton both as a primary magnetization in the 1765 Ma Piplia dyke swarm and as dual-polarity overprint
451 in older dykes (Shankar et al., 2017; Srivastava et al., 2019). The Piplia swarm dykes are also sometimes
452 overprinted by two distinct secondary magnetizations – a steep secondary component, and a NE-shallow
453 secondary component (Supplement). Therefore, the 1765 Ma direction serves as a magnetic time marker
454 in the Singhbhum craton.

455 **5.2 Comparison to the other South Indian cratons**

456 The assembly of Peninsular India might be resolved with paleomagnetic data from its constituent
457 cratons including data from the Singhbhum Craton. Since the Neoarchean dykes in Singhbhum Craton
458 cannot be shown to preserve a primary magnetization, and similarly, no primary Neoarchean
459 paleomagnetic data from either Dharwar or Bastar cratons exist, the very ancient comparative
460 paleoposition of these cratons remains inscrutable to paleomagnetic analysis. In contrast, the
461 Paleoproterozoic positioning of the Indian cratons is more amenable to paleomagnetic methods. There are
462 multiple phases of Paleoproterozoic dyke emplacement in Singhbhum Craton, either absolutely or
463 relatively dated (Shankar et al., 2014; Kumar et al., 2017; Srivastava et al., 2019), some of which reset the
464 magnetic record of earlier dykes.

465 Thus, despite age uncertainty, we present the following comparisons of Singhbhum
466 paleomagnetic data with Paleoproterozoic poles from the Dharwar and Bastar cratons (Table 4). The most
467 well-supported comparison is between coeval 2250-2207 Ma dykes within both Singhbhum (Kaptipada
468 dyke; Srivastava et al., 2019) and Dharwar (Kumar et al., 2015; Nagaraju et al., 2018a, b) cratons. The
469 Kaptipada dyke has a NE-trend, as do other dykes in Singhbhum Craton, including many dykes within the
470 SPG1-4 datasets.

471 The SPG1 pole falls near the 2250-2207 Ma swath of early Paleoproterozoic paleomagnetic poles
472 from Dharwar Craton (at 2250 Ma, 2216 Ma, and 2207 Ma; Fig. 13a). The mean paleomagnetic pole for
473 SPG1 dykes of Singhbhum Craton is 40° N, 105° E ($A95=9.5^{\circ}$). The corresponding 2250 Ma

474 paleomagnetic pole from the Dharwar Craton falls at 13° N, 116° E (A95=14°; Nagaraju et al., 2018b, as
475 recalculated in Meert et al., in press). While the poles appear to be distinct, they can be aligned by a
476 simple Euler rotation of the Singhbhum Craton centered in the Mahanadi Rift (21° N, 84° E, -60°). Figure
477 13b shows one possible reconstruction including the Dharwar-Bastar and Singhbhum cratons, both
478 without rotation and with rotation. Thus, the SPG1 data may provide evidence for a loose amalgam of the
479 South Indian Blocks in the Paleoproterozoic. However, in the absence of precise knowledge of the
480 ‘magnetic’ age for the SPG1 paleomagnetic data, this is speculative. Paleomagnetic data from the
481 precisely-dated Kaptipada dyke (2252 Ma) will provide critical information for this hypothesis.

482 The ages for SPG2, SPG3 and SPG4 remain a mystery; however, we suspect that at least some of
483 the steeper directions isolated in SPG2 pre-date 1765 Ma, given that the characteristic directions in some
484 of these groups are partially overprinted by 1765 Ma directions. Other than the 2250-2207 Ma poles cited
485 above, there are additional poles that are older than 1765 Ma recorded in the Dharwar/Bastar cratons
486 (Table 4). Of those, only the 2367 Ma inclinations are steep enough to be considered a possible match for
487 SPG2. The SPG2 pole falls at 9.1° N, 78.3° E (A95=8.4°) and the grand mean 2367 Ma pole for the
488 combined Dharwar-Bastar-SGT region falls at 13° N, 62° E (A95=5°). These two poles are different
489 (non-overlapping A95 envelopes); however, applying the same Euler rotation given above, the two poles
490 are brought into statistical alignment (Fig. 13a). We are tentative about such a correlation because at least
491 some of the steep directions used to calculate SPG2 may be younger than 1765 Ma.

492 We make a final point of comparison with SPG4 and the 1888 Ma pole from Dharwar Craton
493 (Belica et al., 2014). We suggest the Bhagamunda swarm, constrained in age between 2.26 Ga and 1.77
494 Ga (Srivastava et al., 2019) as a possible candidate for SPG4. The SPG4 virtual geomagnetic pole is at
495 18.2° N, 147.6° E (A95=15.6°). We use the same Euler rotation as with SPG1 and SPG2, and observe that
496 SPG4 falls closer to the 1885 Ma Dharwar paleomagnetic pole after rotation (Fig. 13a). These
497 comparisons, particularly those of SPG2 and SPG4, are preliminary. However, the repeatedly improved
498 fits after applying the same Euler rotation to these Singhbhum data are intriguing.

499 A recent discovery of a 1794 Ma dyke in the Dharwar Craton might indicate broadly coeval
500 activity in both the Singhbhum and Dharwar cratons (Söderlund et al., 2019); however, paleomagnetic
501 data are lacking from the Dharwar dyke. The late Paleoproterozoic 1765 Ma Pipilia dyke swarm is, in
502 contrast, the best-constrained paleomagnetic datum from Singhbhum craton. Comparison of this with
503 Dharwar (and Bastar) Craton paleomagnetic data will be crucial moving forward.

504 A northeast-shallow-inclination paleomagnetic data from Singhbhum Craton overprints, and
505 therefore post-dates, primary 1765 Ma data (Fig. 4; Supplementary Material). Given the distribution of
506 dykes with comparable paleomagnetic data across the entire Singhbhum Craton, northeast-shallow-
507 inclination direction are likely the result of a regional remagnetization event. Major orogenic activity

508 north of Singhbhum Craton, in the Chhotanagpur Granite-Gneiss Complex, occurred at ~1.0-1.1 Ga
509 (Bhowmik, 2019). If the northeast-shallow-inclination Singhbhum magnetization resulted from orogenic
510 activity at this time, then it should be comparable with ca. 1.0 Ga paleomagnetic data from neighboring
511 cratons. A paleomagnetic pole calculated from remanent magnetization with ~1.1 Ga Dharwar Craton
512 kimberlites (Venkateshwarlu et al., 2013) falls at 45°N, 195°E (A95=15°) and a mean paleomagnetic pole
513 from sedimentary and igneous rocks in the Bundelkhand Craton falls at 43°N, 216°E (A95=7°; Meert et
514 al., 2021). These are comparable to the paleomagnetic pole calculated from Singhbhum dykes overprinted
515 with northeast-shallow-inclination directions at 34°N, 196°E (A95=11°). Thus, these paleomagnetic data
516 from Singhbhum Craton likely represent paleomagnetic disturbance from orogenic activity associated
517 with North India Block – South India Block assembly.

518 **5.3 Global Tectonic Implications**

519 Previous paleogeographic models assumed that the Neoarchean dykes from the Singhbhum
520 Craton record a primary magnetization. Based on that assumption, Kumar et al. (2017) and Chaudhuri
521 (2020) speculated that the Singhbhum Craton was part of the supercraton “Vaalbara” (Cheney, 1996).
522 Given the caveats noted above with respect to evidence for a primary magnetization, we believe these data
523 are currently unsuitable for constraining spatial relationships within reconstructions of Vaalbara. Primary
524 paleomagnetic data from the Paleoproterozoic likely survives within Singhbhum Craton. The key
525 takeaway from the comparison of Paleoproterozoic paleomagnetism from Dharwar and Singhbhum
526 Cratons is that the South Indian blocks were a loose amalgam during the Paleoproterozoic.

527 The 1765 Ma data from Singhbhum Craton are currently the best option for use in global
528 reconstructions. Singhbhum Craton occupied equatorial latitudes (Fig. 14).

529 Several well-constrained paleomagnetic poles from other cratons are available from around 1765
530 Ma (± 25 Myr) (Table 5). The most reliable paleomagnetic data from this interval were used to construct
531 Figure 15. The 1.756 Ga Newer Dolerite NW-SE trending swarm (Table 1) places the South Indian Blocks.
532 The Volyn-Dniestr-Bug Intrusions (Elming et al., 2010) are used for Sarmatia, while a combination of
533 poles from ~1785 locates Fennoscandia (Pisarevsky and Sokolov, 2001; Elming et al., 2009; Elming et
534 al., 1994; Mertanen et al., 2006). This separation is consistent with models positing the final rotation of
535 Sarmatia into the Baltica assemblage from 1.72-1.66 Ga (Elming et al., 2010). Other poles used include:
536 the 1.741 Ga Cleaver dykes-Laurentia (Irving et al., 2004); the 1.789 Ga Avanavero mafic rocks-
537 Amazonia (Bispo-Santos et al., 2014); 1.769 Ga Taihang dykes-N. China (Halls et al., 2000; Xu et al.,
538 2014), and the Elgety Formation-Siberia (Didenko et al., 2015). A dyke swarm in the Congo-Sao
539 Francisco Craton (CSF) at 1790 Ma illustrates a ‘bar-code’ age match with both South India cratons and
540 North China Craton (NCC); we incorporate its paleomagnetic data (Agrella-Filho et al., 2020) to place
541 CSF into our reconstruction as well.

542 This late Paleoproterozoic configuration of continents positions Laurentia against the Baltica
543 blocks along the Greenland-Fennoscandian margins (as in Evans and Mitchell (2011) and Zhang et al.
544 (2012) among others) and Amazonia is placed equatorially, adjacent to both future Baltica and Siberia
545 (Aldan). Assuming Dharwar-Bastar-Singhbhum contiguity at this time (Fig. 15), we place the southern
546 Indian blocks together and adjacent to North China Craton, and relatively close to Siberia, and Amazonia.
547 Thus, the majority of paleomagnetic data reveal their associated blocks were at lower latitudes, with the
548 exception of Laurentia. The South Indian blocks have been linked with both Baltica (Pisarevsky et al.,
549 2013; Pisarevsky et al., 2014), and North China (Zhao et al., 2002; Zhao et al., 2003; Clark et al., 2012;
550 Zhang et al., 2012) in the Paleoproterozoic-Mesoproterozoic. Detrital zircon spectra used by Clark et al.
551 (2012) on rocks from the Vestfold Hills (VH) in East Antarctica led to the proposal of a Neoarchean
552 collision between NCC and SIB. This was a modification of an earlier proposal by Zhao et al. (2003) who
553 linked NCC and the SIB on the basis of general similarities in their Archean to Paleoproterozoic basement
554 sedimentary and magmatic successions. The 1765 Ma paleomagnetic pole from the Singhbhum Craton is
555 supportive of these models. We argue it is now – and has been – untenable to link the Central Indian
556 Tectonic Zone (CITZ) and Trans-North China Orogen (TNCO), based on more recent, detailed
557 geochronological studies of both the orogens (e.g. TNCO: Zhang et al., 2006; CITZ: Bhowmik et al.,
558 2012; Bhowmik et al., 2019). This is also supported by the inferred spatial orientation of the orogens as
559 shown in Figure 15. Note, major tectonism along the CITZ post-dates our reconstruction by >150 Myr.
560 Both ages and geometric considerations, therefore, mitigate against unity of the large central orogens of
561 North China Craton and cratonic India central orogen unity. We also emphasize that Peninsular India as a
562 united entity was not fully amalgamated at this time – since it came together along the Central Indian
563 Tectonic Zone.

564 **6. Conclusions**

565 Our new results demonstrate that the Singhbhum Craton has a complex paleomagnetic history.
566 With the pervasive thermal and hydrothermal alteration within Singhbhum Craton, all reported
567 Precambrian paleomagnetic directions require rigorous field tests to ensure their stability and primary
568 nature. Additionally, particularly for small dykes, the trends of dykes may not be reliably correlative with
569 ages. Our data generally agrees with earlier findings (Shankar et al., 2017; Kumar et al., 2017).

570 The reported 1765 Ma paleopole for the Singhbhum Craton (Shankar et al., 2017) represents a
571 primary magnetic signature. We provide additional data and calculated a new mean paleomagnetic pole
572 for the Singhbhum Craton at 1765 Ma. Given the presence of a reverse polarity dyke within our new data,
573 this pole now grades out at R=6 (Meert et al., 2020). The 1765 Ma magnetization is also prevalent as an
574 overprint in older dykes throughout the craton. Thus, we can use the emplacement of this dyke swarm as
575 a useful reference point for paleomagnetic studies within the craton.

576 Kumar et al. (2017) identified a steep, dual-polarity direction on NNE-trending Neoarchean mafic
577 dykes of the Singhbhum Craton. Kumar et al. (2017) argued that the dual-polarity remanence provided
578 evidence for a primary magnetization. Our detailed sampling, baked contact tests, and rock magnetic
579 results provide complicated evidence for steep magnetizations, both predating and postdating 1765 Ma.
580 Thus, there is equivocal support for the survival of a primary Neoarchean magnetization; however, we
581 consider that a primary magnetic signal from the Neoarchean is not well supported by evidence. There are
582 clear indications of magnetizations pre-dating and post-dating the 1765 Ma dykes.

583 We have identified these as SPG1-4 and provide the following summary regarding their relative
584 ages. SPG1 compares favorably to mid-Paleoproterozoic data from the Dharwar Craton – a fellow piece
585 of the present South Indian blocks. We propose that SPG1 paleomagnetic data is from the 2250 Ma
586 Kaptipada dyke swarm. As such, this implies a loose configuration of Singhbhum, Dharwar, and Bastar
587 cratons dating back to early within the Paleoproterozoic. The key test of this hypothesis is direct
588 paleomagnetic examination of the Kaptipada dyke itself. SPG2 is an odd case, its paleomagnetic directions
589 are similar to overprints on 1765 Ma dykes, which implies this paleomagnetic signature postdates 1765
590 Ma and is late Paleoproterozoic or Mesoproterozoic. Baked contact tests show similarity between these
591 directions and the host rocks of the craton. However, other evidence, such as Neoarchean dyke ages,
592 overprints of 1765 Ma age, and an unusually strong trend-paleomagnetic affinity for this group may imply
593 certain directions of this age are older. SPG3 and SPG4 both are likely primary, Paleoproterozoic
594 paleomagnetic data which pre-date 1765 Ma; SPG4 is the older of the two.

595 Thus, paleomagnetic data from Singhbhum Craton indicate that it is a rich trove of
596 Paleoproterozoic paleomagnetic data. Refining these data and tightening the timing of South Indian Block
597 assembly via comparison of Singhbhum and Dharwar paleomagnetism should be a future priority of
598 Precambrian Indian paleomagnetic studies.

599

600 Acknowledgments

601 This work was primarily supported by the USA National Science Foundation grants **EAR13-47942** and
602 **EAR18-50693** to JGM. All conclusions of this paper are those of the authors and not the funding agency.
603 AFP was supported by a Graduate Student Fellowship from the University of Florida. The Master's thesis
604 work of KDK was instrumental in putting together the complex narrative of Singhbhum paleomagnetism.
605 We also thank Rachel Nutter and Patrick Denning for work on sample analysis. We are grateful to the Ivar
606 Giæver Geomagnetic Laboratory (IGGL) for the use of their facilities during a visit by AFP. The IGGL is
607 funded by the Research Council of Norway (project #226214) and the Centre for Earth Evolution and
608 Dynamics, University of Oslo. We appreciate the constructive and detailed attention of three reviewers,

609 among them Elisa Piispa, whose reviews significantly improved this manuscript. The helpful editorial
610 handling of Guest Editors Dey and Jayananda is appreciated.

611

612 **Figure Captions**

613 Figure 1. Cratonic sketch map of Peninsular India adapted from Meert et al., (in press) showing major Archean
614 nuclei and tectonic features such as basins and mobile belts. Abbreviations as follows: **Basin Names:** MB=Marwar
615 Basin; VB=Vindhyan Basin; ChB=Chhattisgarh Basin; CuB=Cuddapah Basin; KBB=Kaladgi-Bhima Basin;
616 IB=Indravati Basin; PG=Prahmita-Godavari Basin; MR=Mahanadi Rift. **Tectonized Regions:** NSL=Narmada-Son
617 Lineament; AFB=Aravalli Fold Belt; DFB=Delhi Fold Belt; CIS=Central Indian Suture; CITZ=Central Indian
618 Tectonic Zone; SMB=Satpura Mobile Belt (~equivalent to CITZ); ; CGGC=Chotanagpur Granite Gneiss Complex;
619 EGMB=Eastern Ghats Mobile Belt; PCSZ=Palghat-Cauvery Shear Zone; RP=Rengali Province; **Other**
620 **Abbreviations:** CG=Closepet Granite; R=Rajmahal Traps; WDC=Western Dharwar Craton; EDC=Eastern
621 Dharwar Craton; SIB=Southern Indian Blocks (the Dharwar, Bastar and Singhbhum cratons); NIB=Northern
622 Indian Blocks (the Aravalli and Bundelkhand Cratons).

623

624 Figure 2. Simplified geological map (GSI 1:2M geology, 1998) of Singhbhum Craton and sampling sites, line
625 segments indicating dyke trends as determined via field observations and satellite imagery. Radiometrically dated
626 dykes are indicated by stars. Heavily sampled areas which lack detail on this scale are indicated as KR – Kanjhari
627 Reservoir and BK – Bhima Kunda. They are detailed with finer-scale mapping in the Supplementary Material
628 associated with this paper. BG = Bonai Granite. Other units as labeled, geology is approximate. Inset map to the top
629 left indicates location of Singhbhum Craton within major provinces of peninsular India: SC: Singhbhum Craton, BC:
630 Bastar Craton, DC: Dharwar Craton, SGT: Southern Granulite Terrain, DT: Deccan Traps, AC: Aravalli Craton,
631 BuC: Bundelkhand Craton.

632

633 Figure 3: (a) Paleomagnetic data from Singhbhum Craton at 1765 Ma. (a) Directional results from this study (Table
634 2) are combined with extant data (Shankar et al., 2017) to calculate a revised mean direction. (b,c, e) Examples of
635 demagnetization behavior (closed/open symbols represent declination/inclination in Zijderveld diagrams;
636 closed/open symbols represent down/up inclinations in stereoplots, (d) Temperature-susceptibility curves for
637 representative samples indicating magnetite with growth of new magnetic phases upon heating.

638

639 Figure 4: (a) Baked contact test on the large 1765 Ma dyke (I1637+I171) at its intersection with a smaller, older dyke
640 (I172). The small dyke and some distance into the granite have been baked by the large dyke. (b,c) Zijderveld plots
641 showing demagnetization behavior at the baked contact test. A secondary magnetization difficult to remove by
642 thermal treatment alone has affected the large dyke post-emplacement. (d) An intensity decay curve (normalized to
643 initial intensity) showing mixed thermal-AF treatment moving magnetization along great-circle trajectory northeast
644 to northwest (e) Further stereonets of demagnetization data, principally from large WNW dyke (sites I1637 and I171)

645 illustrating examples of this overprint and the varied effects with different demagnetization options. Symbols are the
646 same as in Figure 3.

647

648 Figure 5: An example of magnetic alteration along a dyke margin in Singhbhum Craton. (a) The stereoplot of
649 directions recovered from a 1765 Ma WNW-trending dyke. (b) Zijderveld diagram of multi-component
650 magnetization with a characteristic NW-shallow (primary) component. (c) sample from dyke margin with NNW-
651 steep down magnetization isolated with thermal demagnetization (d) partner specimen demagnetized using AF
652 reveals steep-down component unblocked at low coercivities and NW-shallow up characteristic direction isolated at
653 higher coercivities along with (e) a stereoplot of the same sample. (e) A schematic location of samples. Symbols are
654 the same as in Figure 3.

655

656 Figure 6. Magnetic overprints directions isolated from dyke samples includes (a) steep (dual polarity) and (b) NW-
657 SE-shallow (dual polarity). Circles are individual site means; squares are means of all sites. These correspond with
658 known data groupings such as SPG2 (Fig. 7, Section 4.2.2; although the confidence interval is quite large), and the
659 1765 Ma Singhbhum direction. Closed/open symbols represent down/up inclinations in stereoplots; Rose diagram
660 indicates dyke trends.

661

662 Figure 7: Directional data from NNE-trending and WNW-trending dykes in Singhbhum Craton. Four distinct groups
663 are recoverable, named here SPG1-4 (a-d), respectively corresponding to an interpreted 2250 Ma group, a group that
664 corresponds with overprint directions (see Fig. 6), and two groups which each have nearly antipodal intermediate
665 directions. Closed/open symbols represent down/up inclinations in stereoplots; Rose diagram indicates dyke trends.
666 Color-group relationships carry into Figures 8 and 9.

667

668 Figure 8: Steep paleomagnetic data from Singhbhum Craton, with examples of different demagnetization behaviors
669 shown from SPG1 (purple) and SPG2 (blue) dykes with Zijderveld plots and stereonets (symbols as in Fig. 3).
670 Demagnetization behavior is quite variable (a) high-unblocking temperature direction (b) low-coercivity direction
671 (c,d) NW-directed overprints on the steep component (e) temperature-susceptibility curves showing nearly reversible
672 behavior (I1721) and alteration on heating of a low-temperature magnetic phase (I1726) (f) typical non-reversible
673 temperature-susceptibility curves indicating growth of new magnetic phases during heating-cooling cycles.

674 Figure 9: Intermediate-inclination paleomagnetic data from Singhbhum Craton. Examples of different
675 demagnetization behavior shown from SPG3 (orange) and SPG4 (green) dykes. (a) near univectorial thermal
676 demagnetization sample (I1635-2a) and (b) substantial pyrrhotite carried overprint (I1730-A10a) (c) Temperature-
677 susceptibility plots for selected samples for both groups. Behavior ranges from nearly reversible in some cases to
678 more typical substantial growth of new magnetic phases during heating (d) SPG4 example yielding multicomponent
679 behavior with a NW-down directed overprint. Symbols are the same as in Figure 3.

680

681 Figure 10: Baked contact tests for SPG1 at site I1427 (upper half) and SPG2 at site I178 (lower half). For SPG1 site
682 I1427, (a) stereonet showing directional data (b,c) Zijderveld diagrams showing demagnetization behavior from dyke
683 and host rocks, (d) schematic of baked contact test sampling (boxes indicate block sampling locations) and (e) bulk
684 susceptibility profile. For SPG2 site I178, (f) directional data showing overlap in stereonet directional data (g) the
685 sampling around the dyke (h,k) examples of Zijderveld plots of demagnetization behavior (i) bulk susceptibility
686 profile (units in μ SI), and j) susceptibility temperature experiment indicating the presence of pyrrhotite. Symbols as
687 in Figure 3.

688

689 Figure 11: (a) Schematic illustration of cross-cutting dykes at Bhima Kunda section of the Baitarani River; (b)
690 stereoplot of directions isolated from these dykes dashed lines represent low-temperature, low coercivity components
691 color coded to the dykes. (c-f) Zijderveld diagrams and associated stereoplots showing directional behavior change
692 in relationship to distance from dyke contact. Sample numbers are coded to labeled samples from (a) schematic.
693 Symbols the same as in Figure 3. OP=overprint; CD=characteristic direction.

694

695 Figure 12. Baked contact test at site I1715. The (a) transects of samples across the dyke intersection, each circle
696 indicating a separate core sample taken and the (b) stereonet of directions. Individual circles are individual sample
697 overprint data, squares and triangles with confidence intervals are means of samples. Symbols same as in Figure 3.
698 Far-field ChRM refer to characteristic directions recovered from each separate dyke \sim 150 meters away from this
699 outcrop. Cross-cutting relationships are not apparent at the physical outcrop.

700

701 Figure 13: (a) Comparison of paleomagnetic poles between Singhbhum and Dharwar cratons. Ages of Dharwar poles
702 as indicated. Faded out Singhbhum poles are the in-situ positions, full-color represents the rotation of these poles (as
703 given in Table 4). (b) Craton reconstructions for South Indian blocks throughout the Paleoproterozoic.

704

705 Figure 14: (a) Virtual geomagnetic poles (circles) from this work (Table 1) and overprints (Table 2a) Mean
706 paleomagnetic poles – calculated as a mean of virtual geomagnetic poles (from ChRM directions of dykes) – shown
707 with A95 confidence intervals. The small Singhbhum cratonic nucleus is shown within Singhbhum Craton. (b)
708 Paleomagnetic reconstruction of India at 1765 Ma. Shaded out sections indicate modern positioning while bold
709 colors indicate the reconstruction. India is placed at equatorial latitude and rotated with respect to present-day
710 position.

711

712 Figure 15: Reconstruction from ca. 1770 Ma (adapted from Meert et al., in press) showing paleomagnetically
713 permissible arrangement of cratonic blocks (rotation parameters are combination of reconstruction Euler poles and
714 longitudinal rotations: Laurentia 0° N, 187° E, +71°; Fennoscandia 16.8° N, 140° E, +46.2°; Sarmatia 26.2° N,
715 26.6° E, -142.6°; Amazonia 67.8° N, 188° E, +142.7°; North China 25.7° N, 168.8° E, -+54.1°; Aldan 33° N,
716 128.5° E, +104.2°; South Indian Blocks 31° N, 245° E, +55.3°) The ‘equatorial’ blocks include Amazonia, the

717 South Indian blocks (Dharwar, Bastar, and Singhbhum), and North China TNCO=Trans North China Orogen (1.8-
718 2.1 Ga).

719

720 References

721

722 Acharyya, S. K., Gupta, A., and Orihashi, Y., 2010. New U-Pb zircon ages from Paleo-Mesoarchean TTG
723 gneisses of the Singhbhum Craton, eastern India. *Geochemical Journal* 44, 81-88.

724

725 Basu, A., Bickford, M. E., 2015. An alternate perspective on the opening and closing of the intracratonic
726 Purana basins in peninsular India. *Journal of the Geological Society of India* 85, 5-25.

727

728 Belica, M.E., Piispa, E.J., Meert, J.E., Pesonen, L.J., Plado, J., Pandit, M.K., Kamenov, G.D., Celestino,
729 M., 2014. Paleoproterozoic mafic dyke swarms from the Dharwar craton; paleomagnetic poles for India
730 from 2.37 to 1.88 Ga and rethinking the Columbia supercontinent. *Precambrian Research* 244, 100–122.

731

732

733 Bhowmik, S.K., Chattopadhyay, A., Gupta, S., Dasgupta, S., 2012. Proterozoic tectonics: An Indian
734 perspective on the Central Indian Tectonic Zone (CITZ). *Proceedings of the Indian National Scientific
735 Academy* 78, 385-391.

736

737 Bhowmik, S. K., 2019. The current status of orogenesis in the Central Indian Tectonic Zone: A view
738 from its Southern Margin. *Geological Journal* 54, 2912-2934.

739

740 Bleeker W, and Ernst R. 2006. Short-lived mantle generated magmatic events and their dyke swarms: The
741 key unlocking Earth's paleogeographic record back to 2.6 Ga. In *Dyke Swarms - Time Markers of Crustal
742 Evolution*. Edited by E. Hanski, S. Mertanen, T. Rämö, and J. Vuollo. Taylor and Francis/Balkema,
743 London, pp. 3-26.

744

745 Bose, M.K., 2008. Petrology and geochemistry of Proterozoic 'Newer Dolerite' and associated ultramafics
746 within Singhbhum granite pluton, eastern India. In Srivastava, R.K., Shivaji, Ch., and Chalapathi Rao, V.
747 eds., *Indian Dykes: Geochemistry, Geophysics and Geochronology*: Narosa, New Delhi, 413-446.

748

749 Chaudhuri, T., Wan, Y., Mazumder, R., Ma, M., & Liu, D., 2018. Evidence of enriched, hadean mantle
750 reservoir from 4.2-4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, Eastern
751 India. *Scientific reports* 8, 1-12.

752

753 Chaudhuri, T., 2020. A review of Hadean to Neoarchean crust generation in the Singhbhum Craton, India
754 and possible connection with Pilbara Craton, Australia: The geochronological perspective. *Earth-Science
755 Reviews*, 103085.

756

757 Cheney, E.S., 1996. Sequence stratigraphy and plate tectonic significance of the Transvaal succession of
758 southern Africa and its equivalent in Western Australia. *Precambrian Research*, 79, 3-24.

759

760 Chetty, T.R.K, 2014. Deep crustal shear zones in the Eastern Ghats Mobile Belt, India: Gondwana
761 correlations, *Journal of the Indian Geophysical Union* 18, 19-56.

762

763 Clark, C., Collins, A.S., Timms, N.E., Kinny, P.D., Chetty, T.R.K., Santosh, M., 2009. SHRIMP U-Pb
764 age constraints on magmatism and high-grade metamorphism in the Salem Block, Southern India.
765 *Gondwana Research* 16, 27-36.

766

767 Clark, C., Kinny, P. D., Harley, S. L., 2012. Sedimentary provenance and age of metamorphism of the
768 Vestfold Hills, East Antarctica: evidence for a piece of Chinese Antarctica?. *Precambrian Research* 196,
769 23-45.

770

771 Das, A.K., Piper, J.D.A, Mallik, S.B., and Sherwood, G.J., 1996. Paleomagnetic study of Archaean
772 Banded Hematite Jasper Rocks from the Singhbhum-Orissa Craton, India. *Precambrian Research* 80, 193-
773 204.

774

775 Dasgupta S., Bose S., Bhowmik S.K., Sengupta P., 2017. The Eastern Ghats Belt, India, in the context of
776 supercontinent assembly. In: Dasgupta S, Pant NC (eds) *Crustal evolution of India and Antarctica: the*
777 *supercontinent connection*, v. 457. Geological Society London Special Publications, London, pp 87–104.

778

779 Dasgupta, P., Ray, A., and Chakraborti, T. M., 2019. Geochemical characterisation of the Neoarchaean
780 newer dolerite dykes of the Bahalda region, Singhbhum craton, Odisha, India: Implication for
781 petrogenesis. *Journal of Earth System Science* 128, 216.

782

783 Dash, J.K., Pradhan, S.K., Bhutani, R., Balakrishnan, S., Chandrasekaran, G., Basavaiah, N., 2013.
784 Paleomagnetism of ca. 2.3 Ga mafic dyke swarms in the northeastern Southern Granulite Terrain, India:
785 Constraints on the position and extent of Dharwar craton in the Paleoproterozoic. *Precambrian Research*
786 228, 164-176.

787

788 Deenen, M. H., Langereis, C. G., van Hinsbergen, D. J., Biggin, A. J., 2014. Geomagnetic secular
789 variation and the statistics of palaeomagnetic directions. *Geophysical Journal International* 186, 509-
790 520.

791

792 Dey, S.; Topno, A.; Liu, Y.; and Zong, K. 2017. Generation and evolution of Palaeoarchaean continental
793 crust in the central part of the Singhbhum craton, eastern India. *Precambrian Research* 298, 268–291.

794

795 Dey, S., Nayak, S. K., Mitra, A., Zong, K., and Liu, Y., 2020. Mechanism of Paleoarchaean continental
796 crust formation as archived in granitoids from the northern part of Singhbhum Craton, eastern
797 India. *Geological Society, London, Special Publications* 489, 189-214.

798

799 Demirer, K., 2012. U–Pb Baddeleyite Ages from Mafic Dyke Swarms in Dharwar Craton, India –Links
800 to an Ancient Supercontinent, (Dissertations in Geology at Lund University, Master's thesis), 308 pp.

801

802 Didenko, A.N., Vodovozov, V.Yu., Peskov, A.Yu., Guryanov, V.A., Kosynkin, A.V., 2015.
803 Paleomagnetism of the Ulkan massif (SE Siberian platform) and the apparent polar wander path for
804 Siberia in late Paleoproterozoic–early Mesoproterozoic times. *Precambrian Research*, 259, 58-77.
805

806 Elming, S.A., 1994. Paleomagnetism of Precambrian rocks in northern Sweden and its correlation to
807 radiometric data, *Precambrian Research*, 69, 61-79.
808

809 Elming, S. Å., Moakhar, M. O., Layer, P., Donadini, F., 2009. Uplift deduced from remanent
810 magnetization of a proterozoic basic dyke and the baked country rock in the Helsing area, Central Sweden:
811 a palaeomagnetic and 40Ar/39Ar study. *Geophysical Journal International* 179, 59-78.
812

813 Elming, S. Å., Shumlyansky, L., Kravchenko, S., Layer, P., Söderlund, U., 2010. Proterozoic Basic dykes
814 in the Ukrainian Shield: A palaeomagnetic, geochronologic and geochemical study—The accretion of the
815 Ukrainian Shield to Fennoscandia. *Precambrian Research* 178, 119-135.
816 Evans, D.A.D., Mitchell, R.N., 2011. Assembly and breakup of the core of Paleoproterozoic–
817 Mesoproterozoic supercontinent Nuna. *Geology* 39, 443–446.
818

819 Everitt, C.W.F., Clegg, J.A., 1962. A field test of palaeomagnetic stability. *Geophysical Journal*
820 International 6, 312–319.
821

822 Fisher, R. A., 1953. Dispersion on a sphere. *Proceedings of the Royal Society of London. Series A.*
823 *Mathematical and Physical Sciences* 217, 295-305.
824

825 French, J.E., Heaman, L.M., Chacko, T., Srivastava, R.K., 2008. 1891-1883 a southern Bastar craton-
826 Cuddapah mafic igneous events, India: a newly recognized large igneous province. *Precambrian Research*
827 160, 308–322.
828

829 French, J.E., Heaman, L.M., 2010. Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the
830 Dharwar craton, India: implications for the existence the Neoarchean supercraton Sclavia. *Precambrian*
831 *Research* 183, 416-441.
832

833 Geissman, J.W., Harlan, S.H., 2002. Late Paleozoic remagnetization of Precambrian crystalline rocks
834 along the Precambrian/Carboniferous nonconformity, Rocky Mountains: a relationship among
835 deformation, remagnetization, and fluid migration. *Earth and Planetary Science Letters* 203, 905-924.
836

837 .
838

839 Gregory, L. C., Meert, J. G., Pradhan, V., Pandit, M. K., Tamrat, E., Malone, S. J., 2006. A
840 paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: Implications for the age of
841 the Upper Vindhyan Supergroup. *Precambrian Research* 149, 65–75.
842 <https://doi.org/10.1016/j.precamres.2006.05.005>.
843

844 GSI 1:2M Map, 1998. Geological Survey of India, 1:2M Geological Map. Accessed through Bhukosh
845 Portal, 2019.

846 Halls, H.C., Li, J.-H., Davis, D., Hou, G.-T., Zhang, B.-X., Qian, X.-L., 2000. A precisely dated
847 Proterozoic paleomagnetic pole from the North China craton, and its relevance to paleocontinental
848 reconstruction. *Geophysical Journal International* 143, 185–203.

849

850 Halls, H.C., Kumar, A., Srinivasan, R., Hamilton, M.A., 2007. Paleomagnetism and U–Pb geochronology
851 of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the
852 position of India at 2.37 Ga. *Precambrian Research* 155, 47–68.

853

854 Halls, H.C., 2008. The importance of integrating paleomagnetic studies of Proterozoic dykes with U–Pb
855 geochronology and geochemistry. In: Srivastava, R.K., Sivaji, Ch., Chalapathi Rao, N.V. (eds), *Indian*
856 *Dykes: Geochemistry, Geophysics, and Geochronology*, Naroosa Publishing, New Delhi, 19-40.

857

858 He, Y.-H., Zhao, G.-C., Sun, M., Xia, X.-P., 2009. SHRIMP and LA-ICP-MS zircon geochronology of
859 the Xiong'er volcanic rocks: implications for the Paleo-Mesoproterozoic evolution of the southern margin
860 of the North China Craton. *Precambrian Research* 168, 213–222.

861 Heslop, D., Roberts, A.P., 2018. Revisiting the paleomagnetic reversal test: A Bayesian hypothesis
862 testing framework for a common mean direction, *Journal of Geophysical Research: Solid Earth* 123,
863 7225-7236.

864 Jain, A.K., Banerjee, D.M. and Kale, V.S., 2020. Tectonics of the Indian subcontinent. *Journal of Earth*
865 *System Science*, 129, 224. <https://doi.org/10.1007/s12040-020-01501-1>

866 Jayananda, M., Dey, S., and Aadhisheshan, K. R., 2020). Evolving early earth: Insights from peninsular
867 India. *Geodynamics of the Indian Plate*, 5-103. Johnson, R. J., & Van der Voo, R., 1989. Pre-folding
868 magnetization reconfirmed for the Late Ordovician-Early Silurian Dunn Point volcanics, Nova
869 Scotia. *Tectonophysics* 178, 193-205.

870 Katusin, K.D., 2017. Paleomagnetism of Proterozoic Newer Dolerites Dyke in the Singhbhum Craton, NE
871 India, (University of Florida, Master's thesis), 81 pp.

872

873 Kirschvink, J.L., 1980. The least squares line and plane and the analysis of paleomagnetic data.
874 *Geophysical Journal of the Royal Astronomical Society* 62, 699–718.

875 Kumar, A., Bhalla, M.S., 1984. Palaeomagnetism of Sukinda chromites and their geological implications.
876 *Geophysical Journal* 77, 863-874.

877 Kumar, A., Parashuramulu, V., Nagaraju, E., 2015. A 2082 Ma radiating dyke swarm in the Eastern
878 Dharwar Craton, southern India and its implications to Cuddapah basin formation. *Precambrian Research*
879 288, 490-505.

880 Kumar, A., Parashuramulu, V., Shankar, R., Besse, J., 2017. Evidence for a Neoarchean LIP in the
881 Singhbhum craton, eastern India: Implications to Vaalbara supercontinent. *Precambrian Research* 292,
882 163-174.

883 Liao, A.C-Y., Shellnutt, J.G., Hari, K.R., Denyszyn, S.W., Vishwakarma, N., Verma, C.B., 2019. A
884 petrogenetic relationship between bonititic dyke swarms of the Indian shield: Evidence from the central
885 Bastar Craton and the NE Dharwar craton, *Gondwana Research* 69, 193-211.

886 Mahadevan, T.M., 2002. Geology of Bihar and Jharkhand. Geological Society of India, Bangalore. 563
887 pp.

888 Malone, S.J., Meert, J.G., Banerjee, D.M., Pandit, M.K., Tamrat, E., Kamenov, G.D., Pradhan, V.R., Sohl,
889 L.E., 2008. Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan sequence, Son
890 Valley and Rajasthan, India: A ca. 1000 Ma closure age for the Purana basins? *Precambrian Research* 164,
891 137-159.

892 McFadden, P.L., McElhinney, M.W., 1990. Classification of the reversal test in paleomagnetism.
893 *Geophysical Journal International* 103, 725-729.

894 Meert, J. G., Pandit, M. K., 2015. The Archaean and Proterozoic history of Peninsular India: tectonic
895 framework for Precambrian sedimentary basins in India. *Geological Society of London Memoirs* 43, 29-
896 54.

897

898 Meert, J.G., Pandit, M.K., Pradhan, V.R., Banks, J.C., Sirianni, R., Stroud, M., Newstead, B., Gifford, J.,
899 2010. The Precambrian tectonic evolution of India: A 3.0-billion-year odyssey. *Journal of Asian Earth
900 Sciences* 39, 483-515.

901

902 Meert, J.G., Pandit, M.K., Pradhan, V.R., Kamenov, G.D., 2011. Preliminary report on the
903 paleomagnetism of 1.88 Ga dykes from the Bastar and Dharwar cratons, *Gondwana Research* 20, 335-
904 343.

905 Meert, J.G., Pivarunas, A.F., Miller, S.R., Nutter, R.F., Pandit, M.K., Sinha, A.K., 2021 The Precambrian
906 drift history and paleogeography of India, in: Pesonen et al.(eds) *Precambrian Paleomagnetism and
907 Supercontinents*, Elsevier, in press.

908 Meert, J. G., Pivarunas, A. F., Evans, D. A., Pisarevsky, S. A., Pesonen, L. J., Li, Z. X., ... & Salminen, J.
909 M., 2020. The magnificent seven: A proposal for modest revision of the quality
910 index. *Tectonophysics* 790.

911 Meißner, B., Deters, P., Srikantappa, C., Köhler, H., 2002. Geochronological evolution of the Moyar,
912 Bhavani and Palghat shear zones of southern India: implications for east Gondwana
913 correlations. *Precambrian Research* 114, 149-175.

914 Mertanen, S., Eklund, O., Shebanov, A., Frank-Kamenetsky, D., Vasilieva, T., 2006a. Palaeo- and
915 Mesoproterozoic dyke swarms in the Lake Ladoga area, NW Russia - Palaeomagnetic studies. In:
916 Hanski, E., Mertanen, S., Rämö, T., Vuollo, J. (eds.) *Dyke Swarms - Time Markers of Crustal
917 Evolution*. Taylor & Francis, London, pp. 63-74.

918

919 Miller, K. C., and Hargraves, R. B., 1994. Paleomagnetism of some Indian kimberlites and
920 lamproites. *Precambrian Research* 69, 259-267.

921 Miller, S.R., Mueller, P.A., Meert, J.G., Kamenov, G.D., Pivarunas, A.F., Sinha, A.K., Pandit, M.K. 2018.
922 Detrital zircons reveal evidence of Hadean crust in the Singhbhum craton, India, *Journal of Geology*.

923 Mir, A.R., Shabber, H.A., and Balaram, V., 2011. Geochemistry, petrogenesis and tectonic significance
924 of the Newer Dolerites from the Singhbhum Orissa craton, eastern Indian shield. *International Geology*
925 *Review* 53, 46-60.

926 Mir, A.R. and Alvi, S.H., Geochemistry of Ultramafic Dykes from Chaibasa District, Singhbhum craton,
927 Eastern India: Petrogenetic and Tectonic Implications.

928 Misra, S., Johnson, P. T., 2005. Geochronological constraints on evolution of Singhbhum mobile belt and
929 associated basic volcanics of eastern Indian shield. *Gondwana Research* 8, 129-142.

930 Mukherjee, S., Dey, A., Sanyal, S., Ibanez-Mejia, M., Dutta, U., Sengupta, P., 2017. Petrology and U-Pb
931 geochronology of zircon in a suite of charnockitic gneisses from parts of the Chotanagpur Granite Gneiss
932 Complex (CGGC): evidence for the reworking of a Mesoproterozoic basement during the formation of
933 the Rodinia supercontinent. *Geological Society, London, Special Publications* 457, 197-231.

934 Mukhopadhyay, J., Beukes, N. J., Armstrong, R. A., Zimmermann, U., Ghosh, G., Medda, R. A., 2008.
935 Dating the oldest greenstone in India: a 3.51-Ga precise U-Pb SHRIMP zircon age for dacitic lava of the
936 southern Iron Ore Group, Singhbhum craton. *The Journal of Geology* 116, 449-461.

937 Mukhopadhyay, J., Crowley, Q.G., Ghosh, S., Ghosh, G., Chakrabarti, K., Misra, B., Heron, K. and Bose,
938 S., 2014. Oxygenation of the Archean atmosphere: New paleosol constraints from eastern India. *Geology*
939 42, 923-926.

940 Naqvi, S.M., Rogers, J.J.W., 1987. Precambrian Geology of India. Oxford University Press, Oxford, pp.
941 223.

942 Nelson, D.R., Bhattacharya, H.N., Thern, E.R., Altermann, W., 2014. Geochemical and ion-microprobe
943 U-Pb zircon constraints on the Archaean evolution of Singhbhum Craton, eastern India. *Precambrian*
944 *Research* 255, 412–432.

945 Nagaraju, E., Parashuramulu, V., Ramesh Babu, N., & Narayana, A. C., 2018a. A 2207 Ma radiating mafic
946 dyke swarm from eastern Dharwar craton, Southern India: Drift history through Paleoproterozoic.
947 *Precambrian Research*, 317, 89–100. <https://doi.org/10.1016/j.precamres.2018.08.009>

948 Nagaraju, E., Parashuramulu, V., Anil Kumar, & Srinivas Sarma, D., 2018b. Paleomagnetism and
949 geochronological studies on a 450 km long 2216 Ma dyke from the Dharwar craton, southern India.
950 *Physics of the Earth and Planetary Interiors*, 274(, 222–231. <https://doi.org/10.1016/j.pepi.2017.11.006>

951 Peng, P., Zhai, M.-G., Zhang, H.-F., Guo, J.-H., 2005. Geochronological constraints on the
952 Paleoproterozoic evolution of the North China craton: SHRIMP zircon ages of different types of Mafic
953 dikes. *International Geological Reviews* 47, 492–508.

954 Piper, J.D.A., Zhang, J.-S., Huang, B.-C., Roberts, A.P., 2011. Paleomagnetism of Precambrian Dyke
955 Swarms in the North China Shield: The 1.8 Ga LIP event and crustal consolidation in late Paleoproterozoic
956 times. *Journal of Asian Earth Sciences* 41, 504–524.

957 Pisarevsky, S.A., Sokolov, S.J., 2001. The magnetostratigraphy and a 1780 Ma paleomagnetic pole from
958 the red sandstones of the Vazhinka River section, Karelia, Russia. *Geophysical Journal International*,
959 146, 531-538.

960

961 Pisarevsky S., A., Biswal, T.K., Xuan-Ce Wang, B.C., De Waele, B.E., Ernst, R., Ulf Söderlund, U.H.,
962 Tait, J.A., Ratre, K., Singh, Y.K., Cleve, Mads, 2013. Palaeomagnetic, geochronological, and geochemical
963 study of Mesoproterozoic Lakhna Dykes in the Bastar Craton, India: implications for the Mesoproterozoic
964 supercontinent. *Lithosphere* 174, 125-143.

965 Pisarevsky, S.A., Elming, S.Å., Pesonen, L.J., Li, Z.X., 2014. Mesoproterozoic paleogeography:
966 supercontinent and beyond. *Precambrian Research* 244, 207-225.

967 Pivarunas, A. F., Meert, J. G., Pandit, M. K., Sinha, A., 2019. Paleomagnetism and geochronology of
968 mafic dykes from the Southern Granulite Terrane, India: Expanding the Dharwar craton
969 southward. *Tectonophysics* 760, 4-22.

970 Pradhan, V.R., Meert, J.G., Pandit, M.K., Kamenov, G., Gregory, L.C., Malone, S.J., 2010. India's
971 changing place in global Proterozoic reconstructions: New geochronologic constraints on key
972 paleomagnetic poles from the Dharwar and Aravalli/Bundelkhand cratons. *Journal of Geodynamics* 50,
973 224–242.

974 Pradhan, V.R., Meery, J.G., Pandit, M.K., Kamenov, G., and Mondal, Md. E.A., 2012. Paleomagnetic and
975 geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for
976 the tectonic evolution and paleogeographic reconstructions. *Precambrian Research* 198-199, 51-79.

977 Pullaiah, G.E., Irving, E., Buchan, K.L., Dunlop, D.J., 1975. Magnetization changes caused by burial
978 and uplift. *Earth and Planetary Science Letters* 28, 133-143.

979 Radhakrishna, T., Krishnendu, N., Balasubramonian, G., 2013. Palaeoproterozoic Indian shield in the
980 global continental assembly: evidence from the palaeomagnetism of mafic dyke swarms. *Earth Science
981 Reviews* 126, 370–389.

982 Rajesham, T, Bhaskar Rao, Y.J., Murti, K.S., 1993. The Karimnagar granulite terrain – a new sapphirine-
983 bearing granulite province, South India. *Journal of the Geological Society of India* 41, 51-59.

984 Ramakrishnan, M., and Vaidyanadhan, R., 2008. *Geology of India*. Bangalore, Geological Society of
985 India, 552 pp.

986 Samal, A.K., Srivastava, R., Sinha, L.K., 2015. ArcGIS studies and field relationships of
987 Paleoproterozoic mafic dyke swarms from the south of Devarakonda area, eastern Dharwar craton,
988 southern India: implications for their relative ages, *Journal of Earth Systems Science* 124, 1075-1084.

989 Santosh, M., Yokoyama, K., & Acharyya, S. K. 2004. Geochronology and tectonic evolution of
990 Karimnagar and Bhopalpatnam Granulite Belts, Central India. *Gondwana Research*, 7(2), 501–518.
991 [https://doi.org/10.1016/S1342-937X\(05\)70801-7](https://doi.org/10.1016/S1342-937X(05)70801-7)

992 Shankar, R., Vijayagopal, B., Kumar, A., 2014. Precise Pb–Pb baddeleyite ages of 1765 Ma for a
993 Singhbhum ‘newer dolerite’ dyke swarm. *Current Science* 106, 1306–1310.

994 Shankar, R., Sarma, D. S., Babu, N. R., Parashuramulu, V., 2017. Paleomagnetic study of 1765 Ma dyke
995 swarm from the Singhbhum Craton: Implications to the paleogeography of India. *Journal of Asian Earth*
996 *Sciences*.

997 Sengupta, P., Arijit Ray, A., Pramanik, S., 2014. Mineralogical and chemical characteristics of newer
998 dolerite dyke around Keonjhar, Orissa: Implication for hydrothermal activity in subduction zone setting.
999 *Journal of Earth System Science* 123, 887–904.

1000 Sharma, R.S., 2009. Cratons and Fold Belts of India. Springer Verlag, Heidelberg, 324 pp.

1001 Shellnutt, J. G., Hari, K. R., Liao, A. C. Y., Denyszyn, S. W., Vishwakarma, N., 2018. A 1.88 Ga giant
1002 radiating mafic dyke swarm across southern India and Western Australia. *Precambrian Research* 308, 58-
1003 74.

1004 Singh, A. K., Upadhyay, D., Pruseth, K. L., Mezger, K., Nanda, J. K., Maiti, S., and Saha, D., 2021.
1005 Shock Metamorphic Features in the Archean Simlipal Complex, Singhbhum Craton, Eastern India:
1006 Possible Remnant of a Large Impact Structure. *Journal of the Geological Society of India* 97, 35-
1007 47.

1008 Söderlund, U., Bleeker, W., Demirer, K., Srivastava, R. K., Hamilton, M., Nilsson, M., Srinivas, M.,
1009 2019. Emplacement ages of Paleoproterozoic mafic dyke swarms in eastern Dharwar craton, India:
1010 Implications for paleoreconstructions and support for a~ 30° change in dyke trends from south to north.
Precambrian Research 329, 26-43.

1011 Sreenivas, B., Dey, S., Rao, Y.B., Kumar, T.V., Babu, E.V.S.S.K. and Williams, I.S., 2019. A new
1012 cache of Eoarchean detrital zircons from the Singhbhum craton, eastern India and constraints on early
1013 Earth geodynamics. *Geoscience Frontiers* 10, 1359-1370.

1014 Srivastava, R.K., Ellam, R.M. and Gautam, G.C., 2009. Sr–Nd isotope geochemistry of the early
1015 Precambrian sub-alkaline mafic igneous rocks from the southern Bastar craton, Central India. *Mineralogy*
1016 and *Petrology* 96, 71-79.

1017 Srivastava, R.K., Söderlund, U., Ernst, R.E., Mondal, S.K., Samal, A.K., 2019. Precambrian mafic dyke
1018 swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar
1019 craton (southern India), *Precambrian Research* 329, 5-17.

1020 Srivastava, R.K., Singh, R.K., Verma, R., 2000. Juxtaposition of India and Antarctica During the
1021 Precambrian: Inferences from Geochemistry of Mafic Dykes. *Gondwana Research*, v.3, p. 227-234.

1022 Tauxe, L. Shaar, R., Jonestrask, L., Swanson-Hysell, N.L., Minnett, R., Koppers, A.A.P., Constable, G.C.,
1023 Jarboe, N., Gaastra, K. Fairchild, L. 2016. PmagPy: Software package for paleomagnetic data analysis
1024 and a bridge to the Magnetics Information Consortium (MagIC) Database, *Geochemistry, Geophysics*
1025 *Geosystems* 17, doi:10.1002/2016GC006307.

1026 Torsvik, T.H., Doubrovine, P., Domeier, M., 2016. IAPD 2016. Center for Earth Evolution and Dynamics.

1027 Upadhyay, D., Chattopadhyay, S. and Mezger, K., 2019. Formation of Paleoarchean-Mesoarchean Na-
1028 rich (TTG) and K-rich granitoid crust of the Singhbhum craton, eastern India: Constraints from major and
1029 trace element geochemistry and Sr-Nd-Hf isotope composition. *Precambrian Research* 327, 255-272.

1030 Van der Voo, R., 1990. The reliability of paleomagnetic data. *Tectonophysics* 184, 1-9.

1032 Venkateshwarlu, M., & Chalapathi Rao, N. V., 2013. New palaeomagnetic and rock magnetic results on
1033 Mesoproterozoic kimberlites from the Eastern Dharwar craton, southern India: Towards constraining
1034 India's position in Rodinia. *Precambrian Research* 224, 588–596.
1035 <https://doi.org/10.1016/j.precamres.2012.11.003>

1036 Verma, R.K., Prasad, S.N., 1974. Paleomagnetic Study and Chemistry of Newer Dolerites from
1037 Singhbhum, Bihar, India. *Canadian Journal of Earth Sciences* 11, 1043–1054.

1038 Wang, Y.-J., Fan, W.-M., Zhang, Y.-H., Guo, F., Zhang, H.-F., Peng, T.-P., 2004. Geochem-
1039 ical, $^{40}\text{Ar}/^{39}\text{Ar}$ geochronological and Sr–Nd isotopic constraints on the origin of Paleoproterozoic mafic
1040 dikes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China
1041 Craton. *Precambrian Research* 135, 55–77.

1042 Xu, H., Yeng, Z., Peng, P., Meert, J.G., Zhu, R., 2014. Paleoposition of the North China craton within the
1043 supercontinent Columbia: constraints from new Paleoproterozoic paleomagnetic results, *Precambrian*
1044 *Research* 255, 276–293.

1045 Zhang, S.-H., Li, Z.-X., Evans, D.A.D., Wu, H.-C., Li, H.-Y., Dong, J., 2012. Pre-Rodinia supercontinent
1046 Nuna shaping up: A global synthesis with new paleomagnetic results from North China. *Earth and*
1047 *Planetary Science Letters* 353, 145–155.

1048 Zhang J., Zhao G., Sun M., Wilde S.A., Li S., Liu S. 2006. High-pressure mafic granulites in the Trans-
1049 North China Orogen: tectonic significance and age. *Gondwana Research* 9, 349–362,
1050 <https://doi.org/10.1016/j.gr.2005.10.005>

1051 Zhao, G.-C., Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1–1.8Ga orogens:
1052 implications for a pre-Rodinia supercontinent. *Earth-Science Reviews* 59, 125–162.

1053 Zhao, G.-C., Sun, M., Wilde, S.A., 2003. Correlations between the eastern block of the North China craton
1054 and the south Indian block of the Indian Shield: an Archaean to Paleoproterozoic link. *Precambrian*
1055 *Research* 122, 201–233.

Tables

Tables are placed here to use the landscape page orientation so as not to cut off data.

Table 1: 1765 Ma paleomagnetic results from Singhbhum Craton

Site	Lat (°N)	Lon (°E)	Trend (°)	N/n	Dec (°)	Inc (°)	a95 (°)	k	VGP Lat (°N)	VGP Lon (°E)
I144	22.6137	86.1000	130	9/8	284.4°	-16.5°	12.2°	21.5	9.8°	342.6°
I145	22.6077	86.0790	130	13/11	133.9°	-18.1°	12.5°	14.3	43.9°	347°
I147	22.6317	86.0607	20	7/3	342°	-18.1°	GC	GC	53.5°	296.9°
I1765 ¹	21.5932	85.7263	120	5/59/48	327.4°	-17.4°	11.4°	65.8	45.8°	315.5°
I176 ²	21.5983	85.7460	130	2/23/16	323.4°	-9.9°	42.0°	37.4	45.4°	323.5°
I1720 ³	21.5177	85.9115	100	2/23/20	333.4°	-18.9°	12.7°	388.5	49.3°	308.5°
I1723	21.8068	85.8436	20	14/8	295.1°	-9.3°	15.0°	14.6	21.2°	341.4°
I1729	21.3513	85.9962	15	25/16	329.0°	5.0°	GC	GC	54.4°	328.2°
I1734 ⁴	21.3727	86.1479	120	2/19/15	345.4°	-28.8°	15.8°	250.4	50.6°	288.6°
K11	21.59324	85.74369	122	10/10	332.5°	-35.1°	7.0°	56.0	41.0°	301.0°
K1	21.55161	86.01773	111	10/10	308.3°	-21.8°	2.0°	482.0	29.6°	328.2°
K15	21.43021	86.18127	118	8/8	326.5°	-22.4°	5.0°	129.0	43.4°	314.2°
K30	21.59685	85.88517	123	10/10	343.4°	-21.0°	6.0°	65.0	53.7°	294.2°
Mean Result				13 sites; N=230 n=183	321.6°	-15.7°	A95=12.9°	K=17.2	43.2°	319.9°

Notes: Site = name of cooling unit, + indicates multiple sites combined for a mean direction, (¹ = II 637, II 71, II 72, II 722, K10, SKJ10; ² = II 76+K12; ³ = II 720+K18; ⁴ = II 734+K14), italics are reported data from Shankar et al. (2017).. SLat = site latitude, SLLon = site longitude, Trend = trend of dyke, N/n = total number of samples analyzed/number of samples suitable for analysis (a third number here reflects if multiple sites were taken at the same cooling unit, Dec = paleomagnetic declination, Inc = paleomagnetic inclination, a95/A95 = cone of 95% confidence about the mean direction/mean of virtual geomagnetic poles, k/K = kappa precision parameter (Fisher, 1953) for mean of directions/virtual geomagnetic poles, VGP Lat = virtual geomagnetic pole latitude, VGP Lon = virtual geomagnetic pole longitude (these last two calculated from directional data and site location). GC=great circle analysis used to determine mean direction.

Table 2: Consistent paleomagnetic overprint directions from Singhbhum dykes

Site	Lat (°N)	Lon (°E)	Trend (°)	n	Component	Dec (°)	Inc (°)	a95 (°)	k
2a: Overprints from ~1765 Ma									
II48	22.6317	86.0600	130	8	LT-pyrr	314°	-12°	8.4°	45
II411	22.4053	86.1475	150	9	LC	164.9°	15°	8.6°	36
II418	22.6193	85.9807	40	6	LT	353°	-3°	11.8°	33
II433	21.6428	85.6507	5	5	LT	345°	10.1°	21.9°	13
II442	21.8317	85.8612	20	4	LT-pyrr	318°	28.6°	18.6°	28.6
II429	21.4039	85.7399	24	9	LT	155°	4.1°	8°	43
II636	21.5921	85.7251	10	10	LT	317.2°	22.8°	13.3°	14.1
II643	21.5514	86.0173	140	15	LT/MT/HC	304.2°	-2.8°	24.7°	3.4
II646	21.5534	86.0178	140	7	LT/MC	331.3°	-29.4°	13.8°	20
II647 ¹	21.5534	86.0178	40	4	LT	317.6°	-37°	19.2°	42
II74	21.5944	85.7292	10	10	HC/LT	338.8°	-27.5°	24.3°	10
II77	21.6842	85.854	21	4	LT/LC	309.9°	-9°	7.8°	138
Mean				12/87		327.5°	-6.8°	14.1°	10.4
2b: Overprints on dykes of ~1765 Ma age									
II76	21.5983	85.746	130	11	LC/HT	212.1°	79.7°	9.5°	24.3
II720	21.5177	85.9115	100	3	LC/HT	95.4°	72.3°	10.2°	147.5
II729	21.3513	85.9962	15	7	LC/MT	128.1°	-70°	4.3°	447.6
II734	21.3727	86.1479	120	4	LC/HT	17.1°	86.2°	4°	227.7
2c: Overprints consistent with present day field									
II427	21.5506	85.6618	140	8	LT	10.1°	50.2°	11.6°	23.6
II645	21.5516	86.0184	20	6	LT	358.8°	11.2°	11.9°	32.9
II650	21.5205	86.0171	125	8	LT	13.8°	27.5°	17.8°	10.6
II718	21.5733	21.5733	21	12	LT	5.5°	42.4°	16°	8.3
II727	21.3514	21.3514	21	11	LT	358.6°	33.3°	3.8°	142.1

11732	21.3878	21.3878	21	13	LT	359.3°	41.2°	4.7°	77.3
-------	---------	---------	----	----	----	--------	-------	------	------

Notes: Site = name of cooling unit, + indicates multiple sites combined for a mean direction, italics are reported data from Shankar et al. (2017), SLat = site latitude, SLon = site longitude, Trend = trend of dyke, N/n = total number of samples analyzed/number of samples suitable for analysis (a third number here reflects if multiple sites were taken at the same cooling unit, Dec = paleomagnetic declination, Inc = paleomagnetic inclination, a95 = cone of 95% confidence about the mean direction, k = kappa precision parameter (Fisher, 1953)

Table 3: Steep-intermediate inclination paleomagnetic results from Singhbhum Craton dykes of NNE (Neoproterozoic) and WNW trends

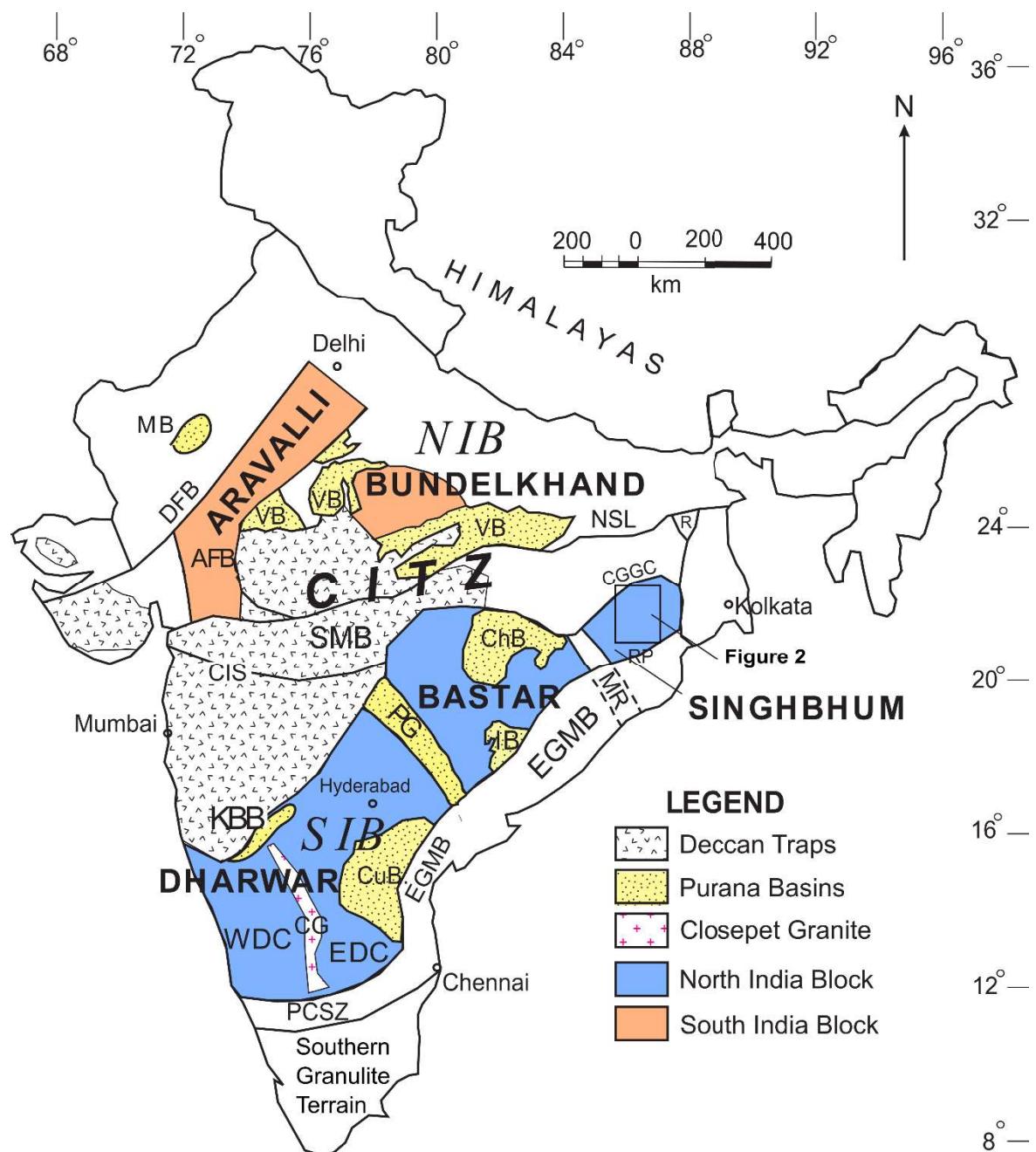
Site	Lat (°N)	Lon (°E)	Trend (°)	N/n	Component	Dec (°)	Inc (°)	a95/MAD (°)	k	Plat (°N)	VGP Lat (°N)	VGP Lon (°E)
3a: Singhbhum Paleomagnetic Group 1												
1148*	22.6317	86.06	130	11/6	GC	75.3°	71.7°	10.2°	GC	56.5°	26.8°	122.8°
1149	22.6214	86.0049	10	7/7	HT/HC	21.7°	72.9°	5.7°	114.7	58.4°	51.0°	103.9°
11427	21.5506	85.6618	140	14/13	HT/HC	65.9°	78°	8.1°	27.3	67.0°	29.1°	109.8°
11429*	21.4039	85.7399	24	11/9	HT/HC	67.9°	65.6°	3.9°	178.3	47.8°	30.4°	131.9°
11432	21.31675	85.81697	165	6/5	HT	332°	76°	11.8°	43	63.5°	43.8°	68.9°
11441	22.2062	86.1811	25	7/3	HC	207°	-82°	25°	26	-74.3°	-35.9°	274.9°
11445	22.53	85.8657	40	7/5	GC	28°	76°	25.9°	GC	63.5°	45.0°	103.1°
11450	22.423	86.078	40	10/10	HT/HC	228.3°	-67°	5.9°	67.1	-49.7°	-43.5°	307.9°
11639	21.5656	85.7053	30	5/5	HT/HC	172.4°	-66.6°	6.1°	156.3	49.1°	-61.8°	255.2°
11641+ ¹	21.5526	86.0172	120	2/17/16	HT/HC	74.3°	65.9°	4.6°	64.2	48.2°	26.2°	131.7°
11645	21.5516	86.0184	20	6/6	HT	348°	80°	5.1°	175	70.6°	40.5°	80.8°
11646+ ² *	21.5534	86.0178	140	2/13/9	HT/HC	59.5°	68.7°	6.8°	68	52.1°	35.4°	126.6°
11647+ ³ *	21.5534	86.0178	40	2/23/11	HT/HC	342.4°	75.7°	7.9°	34.1	63.0°	46.9°	74.4°
11650	21.5205	86.0171	125	8/8	HT/HC	73.7°	74.2°	2.3°	589.1	60.5°	26.6°	117.9°
1173	21.5944	85.7282	10	11/11	HT/HC	142.1°	-70.9°	5.8°	63.7	-55.3°	-46.1°	235.5°
1174*	21.5944	85.7292	10	15/7	HT	77°	75°	7.4°	67	61.8°	25.0°	116.3°
11718	21.5733	85.9943	175	13/6	HT/HC	151.2°	-78°	5.7°	138.8	-67.0°	-41.1°	251.5°
11726	21.3532	85.9929	30	19/13	HT	10.3°	73.2°	2.8°	221.5	58.9°	51.8°	94.6°
11733+ ⁴	22.5584	85.892	20	2/28/16	HT/HC	100.1°	66.6°	4.6°	64.5	49.1°	10.6°	126.8°

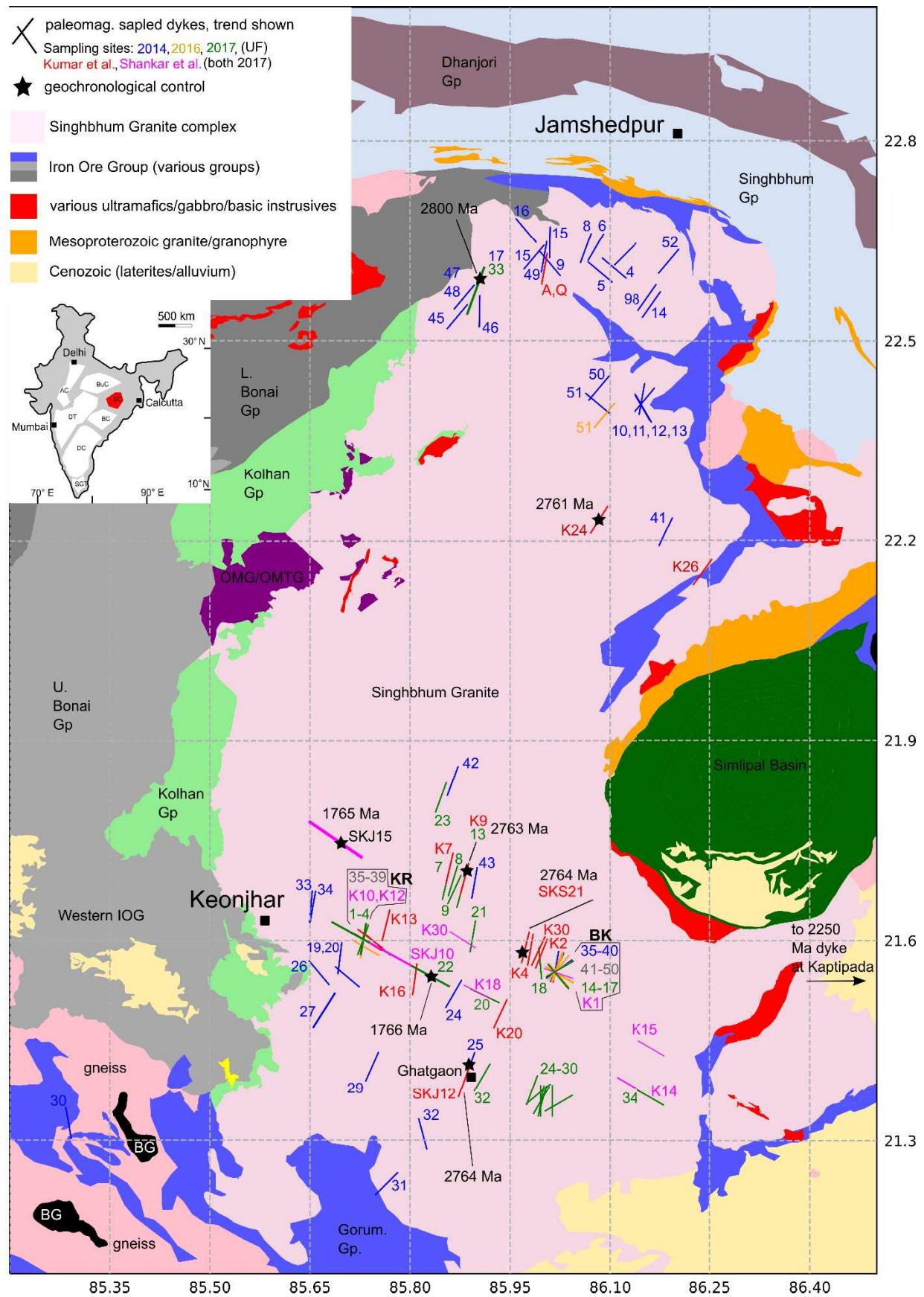
Mean-Downward			B=19	51.5°	+76.4°	5.7°	49.4		
Mean-Upward			B=5	179.9°	-75.6	11.9°	42.3		
Mean			B=24, n=166	218°	-77.3°	5.3°	41	65.3°	40.2°
3b: Singlbbhum Paleomagnetic Group 2									
11424	21.5131	85.8614	30	11/8	HT/HC	284.8°	72.5°	4.9°	128.9
11426	21.5676	85.6551	140	9/9	HT	228.8°	68.3	7.7°	45.8
11636*	21.5921	85.7251	10	10/7	HT	326.6°	-81.3	12.6°	23.8
11649	21.5539	86.0175	20	7/7	LT/HT	140.8°	84.1	6.1°	98.3
11651	22.3823	86.0863	40	8/6	HT	230.1°	78.2	6.9°	95.2
11774 ^{5*}	21.6842	85.8554	17	2/22/20	HT/HC	11.7°	-67	8.8°	806
1178	21.6829	85.8548	10	13/11	HT/HC	192.1°	67°	9.2°	25.6
11713 ⁶	21.6645	85.8742	15	2/28/15	GC	103.6°	-68.2°	GC	GC
11721	21.5983	85.8927	10	13/13	HT/HC	324.5°	-77.8°	4.4°	90.3
11724	21.3678	85.98	20	14/14	HT/HC	203.9°	70.8°	2.6°	228.9
11725	21.3643	85.986	50	16/15	HT/HC	91.9°	86.2°	2.2°	299.3
11728	21.3513	85.9956	0	7/7	HT/HC	132.2°	80.8°	4.6°	169.9
11732	21.3878	85.9041	30	15/14	HT	156.5°	70.3°	2.6°	242.6
Mean-Downward			B=9			204.6°	+81.7°	4.6°	53.8
Mean-Upward			B=4			33.0°	-82.2°	15.0°	26.8
Our Mean			B=13			202°	+80°	7°	36
Grand Mean			B=24, n=233			206.2°	+81.8°	4.3°	47.5
3c: Singlbbhum Paleomagnetic Group 3									
BKBig ^{7*}	21.5519	86.0174	120	4/33/23	HT/HC	101.3°	-46°	5.3°	33.3
11635	21.5891	85.7286	10	7/5	HT	74.5°	-38.5°	6.5°	137.8
11442*	21.8317	85.8612	20	6/5	HT	112.6°	-45.1°	4.8°	252.9

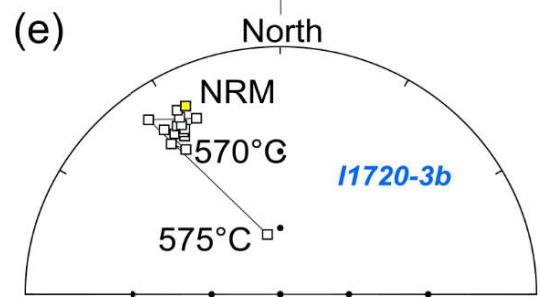
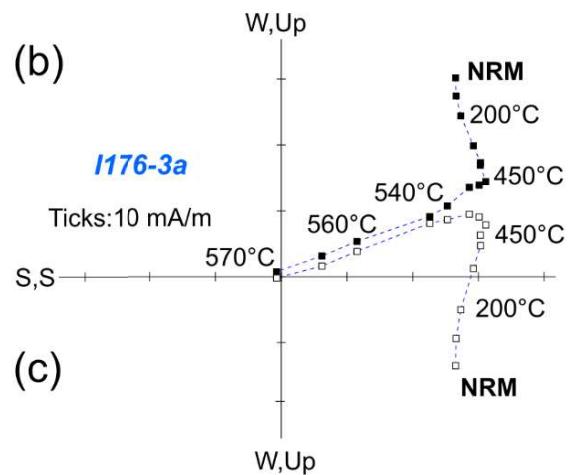
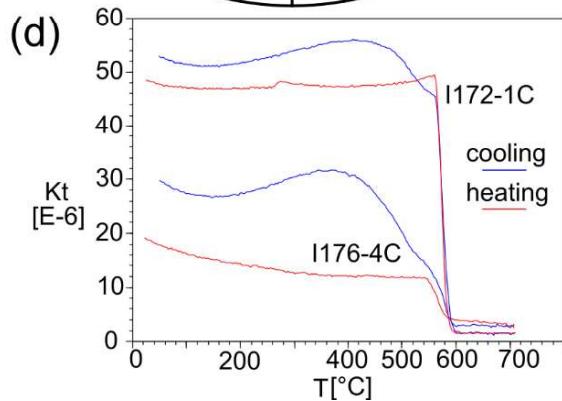
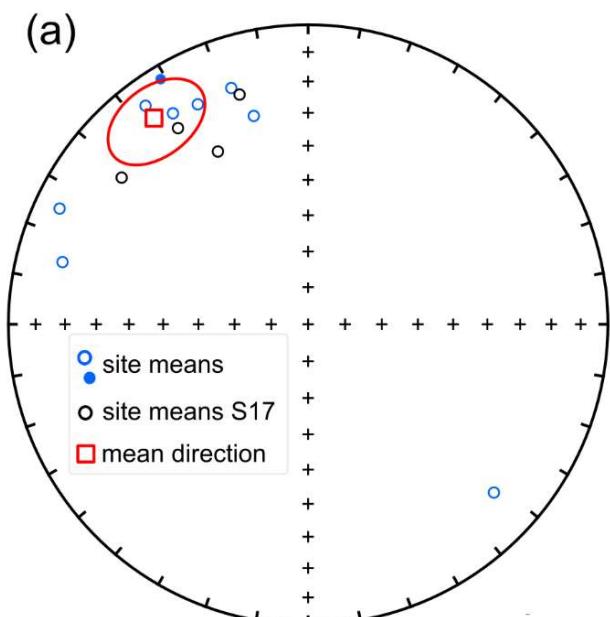
11437	21.5526	86.0172	55	8/8	HT	55.9°	-51°	2.6°	454.8	-31.7°	14.5°	219.3°
11452	22.6135	86.1838	40	10/8	HT	99.5°	-43.4°	11.9°	22.5	-25.3°	-17.6°	196.9°
11730*	21.3516	86.0132	0	10/5	HT/HC	273°	57°	6.2°	151	37.6°	15.1°	31.0°
Mean				B=6, n=87		89.9°	-48.4°	12.8°	28.4	-29.4°	-10.4°	203.9°
3d: Singbhum Paleomagnetic												
Group 4												
11413	22.4053	86.1475	40	10/8	LT/LC	109.1°	58.1°	4.6°	148	38.8°	0.2°	133.6°
11441	22.2062	86.1811	25	7/5	HT	240.6°	-45.3°	10.7°	52.5	-26.8°	-35.2°	338.2°
11451	22.4112	86.0751	130	10/10	HT/HC	84.3°	59.8°	4.9°	98.9	40.7°	18.5°	138.8°
11727	21.3514	85.9952	10	12/11	HT	258.1°	-42.4°	6°	58.4	-24.5°	-19.0°	336.3°
11643+8*	21.5514	86.0173	140	2/21/4	HT	261.2°	-45.2°	13.7°	45.6	-26.7°	-17.0°	333.4°
Mean				B=5, n=56		261.0°	-51.1°	12.7°	36.75	-31.7°	-18.2°	327.6°

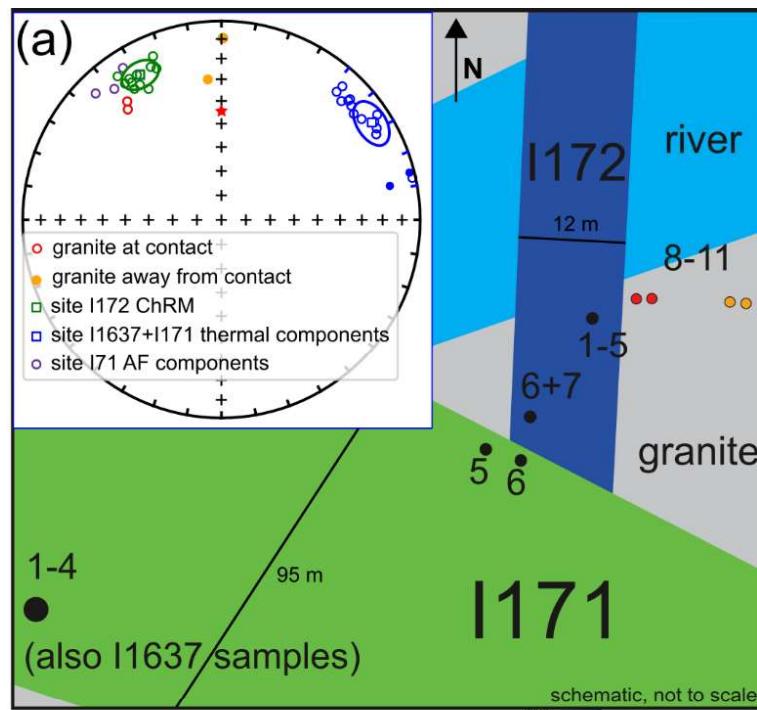
Notes: Site = name of cooling unit, +indicates data from multiple sites combined in mean (^ sites 11438+11641, ^ 2 11646+11440, ^ 3 sites 11647+11439+11717, ^ 4 11733+11417, ^ 5 11713+K9, ^ 6 1177+K7, ^ 7 11642+11644+11435+11714+11715, ^ 8 11643+11436), asterisk indicates that site has an overprint consistent with 1765 Ma directions (see Fig. 8). 1. SLat = site latitude, SLong = site longitude, Trend = trend of dyke, N/n = total number of samples analyzed/number of samples suitable for analysis (a third number here reflects if multiple sites were taken at the same cooling unit), Component = demagnetization that best isolated mean component from site specimens (HC = high coercivity, HT = medium temperature, LT = low temperature, LC = low coercivity), Dec = paleomagnetic declination, Inc = paleomagnetic inclination, a95 = cone of 95% confidence about the mean direction, k = kappa precision parameter (Fisher, 1953), VGP Lat = virtual geomagnetic pole latitude, VGP Lon = virtual geomagnetic pole longitude (these last two calculated from directional data and site location). GC=great circle analysis used to determine mean direction.

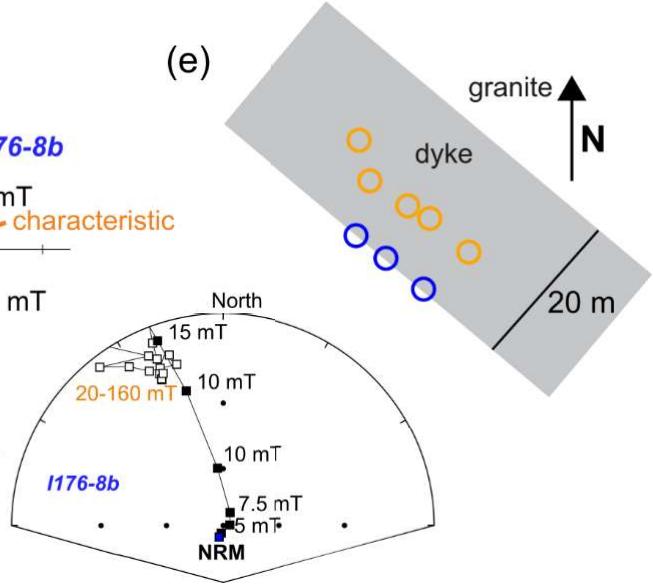
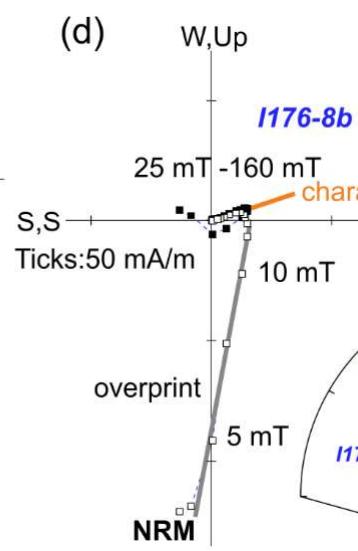
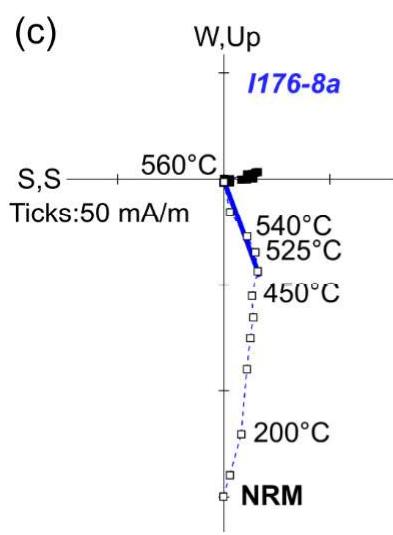
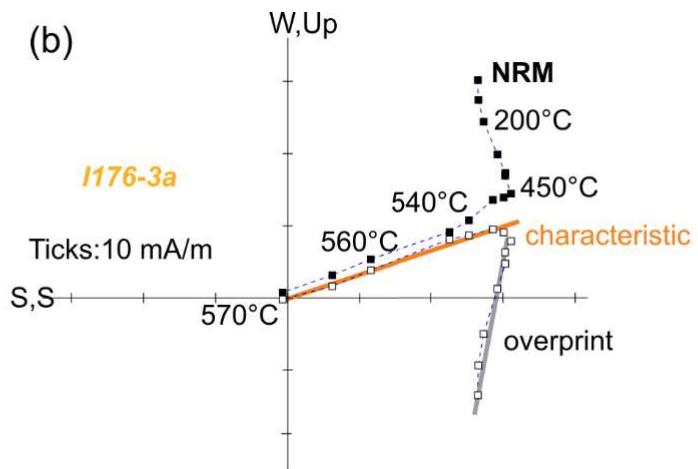
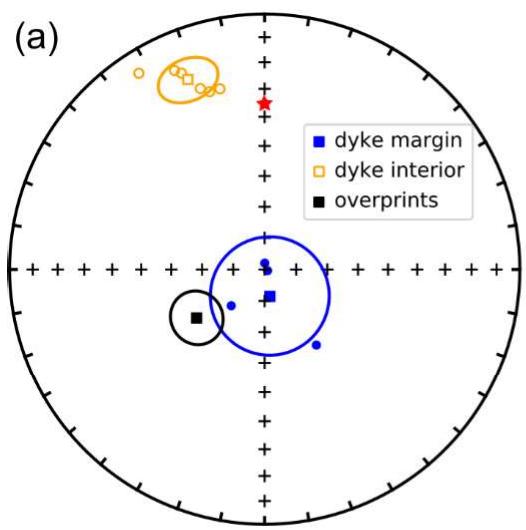
Table 4: Poles from SPG1-4 as well as Paleoproterozoic poles from Dharwar Craton for comparison.


Names	Craton	Plat (°N)	Plon (°N)	R. Plat (°N)	R. Plon (°E)	A95 (°)	Age	Reference
SPG1	Singhbhum	40.2°	104.6°	15.4°	110.8°	9.5°	2250 Ma?	this study
SPG2	Singhbhum	07.9°	079.2°	18.0°	69.6°	8.4°	2765 Ma?	this study; Kumar et al., 2017
SPG3	Singhbhum	10.4°	023.9°	60.8°	21.4°	16°	unknown	this study
SPG4	Singhbhum	18.2°	147.6°	-26.2°	121.5°	15.6°	unknown	this study
2367 Ma	Dharwar	12.8°	062.0°	-	-	4.6°	2367 Ma	Belica et al., 2014
2250 Ma	Dharwar	12.8°	116.0°	-	-	14°	2250 Ma	Nagaraju et al., 2018a
2216 Ma	Dharwar	33.5°	124.0°	-	-	6.6°	2216 Ma	Nagaraju et al., 2018b
2207 Ma	Dharwar	51.2°	108.0°	-	-	9.2°	2207 Ma	Nagaraju et al., 2018a
2082 Ma	Dharwar	40.8	184.0°	-	-	4.6°	2082 Ma	Kumar et al., 2015
1888 Ma	Dharwar	34.0°	334.0°	-	-	4.5°	1885 Ma	Belica et al., 2014


Euler pole used to rotate SPG1-4 is (21°N, 84°E, -60°).





Table 5: Selected poles from other cratons for comparison with the Singhbhum Craton at \sim 1770 Ma


Names	Terrane	Plat	Plon	A95	Age	Reference
Volyn-Dniestr-Bug intrusions	Sarmatia	27°	169°	4°	1755 Ma	Elming et al., 2010
Mean-Hoting, Shoksa, Lake Ladoga, Kallax	Fennoscandia	46°	223°	10°	1785 Ma	Elming et al., 2009
Cleaver Dykes	Laurentia	19°	277°	6°	1741 Ma	Irving et al., 2004
Avanavero mafic rocks	Amazonia	-48°	28°	9°	1789 Ma	Bispos-Santos et al., 2014
Para de Minas dykes	Congo-Sao Francisco	-40°	197°	17°	1790 Ma	Agrella-Filho et al., 2020
Elgety Formation	Siberia	7°	184°	12.8°	1732 Ma	Didenko et al., 2015
Taihang dykes	North China	41°	246°	4°	1769 Ma	Halls et al., 2000; Xu et al., 2014
Newer Dolerites 1765 Ma group	South India	43°	320°	11°	1765 Ma	this study






Figures

