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CELL BIOLOGY

Cellular costs underpin micronutrient

limitation in phytoplankton

J. Scott P. McCain'?*, Alessandro Tagliabue®*, Edward Susko?*, Eric P. Achterberg®,

Andrew E. Allen®’, Erin M. Bertrand'%*

Micronutrients control phytoplankton growth in the ocean, influencing carbon export and fisheries. It is currently
unclear how micronutrient scarcity affects cellular processes and how interdependence across micronutrients
arises. We show that proximate causes of micronutrient growth limitation and interdependence are governed by
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cumulative cellular costs of acquiring and using micronutrients. Using a mechanistic proteomic allocation model
of a polar diatom focused on iron and manganese, we demonstrate how cellular processes fundamentally underpin
micronutrient limitation, and how they interact and compensate for each other to shape cellular elemental stoichiometry
and resource interdependence. We coupled our model with metaproteomic and environmental data, yielding an
approach for estimating biogeochemical metrics, including taxon-specific growth rates. Our results show that
cumulative cellular costs govern how environmental conditions modify phytoplankton growth.

INTRODUCTION

Marine phytoplankton are responsible for approximately half of
global net primary productivity, supporting key ecosystem services
(1). Micronutrients, such as iron, are often depleted in the ocean,
limiting phytoplankton growth and therefore affecting fisheries
productivity and carbon export globally (2-4). These resources are
cofactors for enzymes that catalyze intracellular reactions, and
unlike the macronutrients nitrogen and phosphorus, they comprise
a negligible fraction of biomass. Cellular micronutrient stoichiome-
try is highly variable (5), and elements can conditionally substitute
for one another (6). Therefore, traditional approaches that simply
link growth rate to resource scarcity may not apply.

Growth is the emergent outcome of a range of internal cellular
processes competing for shared resources (7) that are governed by
costs [e.g., number of amino acids per protein or energetic require-
ments (8-10)] and constraints [e.g., limits of protein density in a
membrane (11)]. Protein synthesis capacity has been identified as
a key growth-limiting process in model heterotrophic organisms
with various carbon sources (12, 13). Only recently have other non-
carbon macronutrients been considered and additional complexi-
ties been revealed (14) [e.g., transcriptional limitation under low
phosphorus (7)]. Currently, we lack knowledge regarding which
internal processes limit growth under micronutrient deficiency.
Furthermore, while we know that multiple nutrients can simultane-
ously affect growth rate (15), the mechanisms by which they interact
appear to vary for each nutrient pair (6).

The overriding conceptual view in oceanography is not suffi-
cient to mechanistically represent micronutrient limitation and
resource interdependence. Currently, external resource scarcity
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(e.g., bioavailable forms of nitrogen, phosphorus, iron, etc.), relative
to fixed requirements, is assumed to control growth and carbon
fixation rates (16, 17). However, this ignores the role of internal
processes in limiting growth. It also prevents general mechanisms
of resource interdependence, which may arise because different
internal processes compete for shared cellular resources from being
included in large-scale ocean models. While external resource scarcity
is clearly the ultimate cause of limitation, the proximate causes drive
the sensitivity to environmental change. For example, temperature-
driven changes in ribosomal translation rates might influence cellular
nitrogen-to-phosphorus ratios because ribosomes are a large por-
tion of phosphorus quotas (18). Currently, ocean models used for
climate change projections parameterize growth as a simple func-
tion of the single most limiting resource (17), which introduces sub-
stantial uncertainties in a changing environment (3). While some
phytoplankton models have leveraged quantitative, mechanistic
insights into cellular processes (18-23), none have examined inter-
actions between micronutrients or used in situ gene expression data
to resolve cellular processes.

In this study, we quantify the proximate costs and constraints
associated with micronutrient limitation via a novel coupling of
cellular modeling and metaproteomics from the Southern Ocean.
By deriving a phenomenological model, we identify key factors con-
trolling interdependence across micronutrients. Last, we demon-
strate a framework for inferring critical biogeochemical metrics,
such as growth rates, by coupling in situ gene expression and
geochemical data with cellular modeling. Together, this framework
quantifies cellular costs and constraints to examine the mechanistic
underpinnings of phytoplankton growth in the ocean.

RESULTS AND DISCUSSION

Estimating cellular costs and constraints with a diatom
proteomic allocation model

We estimated the cellular costs and constraints of micronutrient
limitation in phytoplankton by developing a mechanistic, proteomic
allocation model for the polar diatom Fragilariopsis cylindrus
(24, 25). Our model considers the essential micronutrients iron and
manganese, which both influence primary productivity in the

10f17

120Z ‘9 1snBny uo /610 Bewasusios saoueApe//:diy Woll papeojumo(


mailto:j.scott.mccain@dal.ca
mailto:a.tagliabue@liverpool.ac.uk
mailto:a.tagliabue@liverpool.ac.uk
mailto:erin.bertrand@dal.ca
http://advances.sciencemag.org/

SCIENCE ADVANCES | RESEARCH ARTICLE

Southern Ocean (4, 26-28), and represents the various processes
underlying cellular growth, such as photosynthesis and translation
(25, 29-31). The model is composed of several “coarse-grained”
protein pools (i.e., proteins grouped together with related functions;
Fig. 1A): iron- and manganese-specific transporters, photosystem
units, nitrogen uptake and metabolism (from nitrate to amino
acids), and antioxidants [represented here by manganese super-
oxide dismutase (MnSOD)]. Each protein pool has an associated cost,
which is proportional to the number of amino acids per pool [esti-
mated using the F. cylindrus genome (24)]. Ribosomes are assumed
to be allocated to maximize the steady-state specific growth rate,
and each protein pool, metabolite, and internal free pool of Fe and
Mn is described by an ordinary differential equation (ODE). The
system of ODE:s is connected by various stoichiometric coefficients
obtained from the literature, for example, Mn atoms per MnSOD or
the total number of Fe atoms within all proteins involved in con-
verting nitrate into amino acids. We then integrated the system of
ODE:s forward in time to obtain steady-state estimates of each state
variable, from which we calculate the specific growth rate. In our
model, we define the specific growth rate as the rate of biosynthesis
of amino acids relative to the average protein per cell (25). We used
Bayesian optimization to determine the optimal ribosomal allocation
under a given set of dissolved Mn (dMn), Fe (dFe), and light conditions
(Materials and Methods). Iron and Mn interact via oxidative stress,
where under low dFe, electrons leak more frequently from electron
transport (32), thus increasing the requirement for the Mn-containing
antioxidant SOD (33). Under low antioxidant availability, the cell
must replace proteins damaged by reactive oxygen species (ROS) by
increasing protein synthesis. Accordingly, the mismatch between
superoxide production and its consumption via MnSOD leads to
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a protein synthesis rate penalty in our model (see Materials and
Methods).

We then leveraged proteomic and metaproteomic data to esti-
mate three key costs and constraints: (i) internal Fe and Mn protein
cost, (ii) available membrane space for transporters (34), and (iii)
catalytic efficiency of MnSOD (Materials and Methods). (i) refers to
all proteins required for acquiring, shuttling, and storing Fe within
the cell [e.g., ferritin (35)], which is dynamic such that Fe protein
cost increases with Fe quota (an identical cost is applied for Mn; see
Supplementary Discussion). (ii) refers to the proportion of mem-
brane space available for metal transporters (11, 34), for which we
extended a mechanistic nutrient uptake model (36-38), accounting
for competition for membrane space between iron and manganese
transporters. (iil) represents the effectiveness of a single MnSOD unit.

Model parameters were estimated using Approximate Bayesian
Computation (ABC) in a novel combination with diatom proteomes
inferred from a metaproteomic time series (39). The metaproteome
characterization coupled peptide mass spectrometry with meta-
transcriptomics (40) to examine protein expression over time at the
Antarctic sea ice edge, where concurrent bottle incubations indicated
a transition into micronutrient stress [cobalamin, Mn, and Fe (28, 41)].
Coarse-grained diatom protein pool biomass was estimated using
the sum of diatom-specific peptide intensities (fig. S1) (42). Coarse-
graining is necessary to prevent biases in peptide detectability and
quantification across complex samples (43). Last, we combined the
inferred diatom proteome observations with two previously pub-
lished diatom proteomic datasets to estimate each parameter
(Materials and Methods; fig. S2) (44, 45). We have assessed various
forms of biases and developed methods for connecting environmen-
tal gene expression data to quantitative models of cellular processes
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Fig. 1. A polar diatom-based proteomic allocation model combined with metaproteomic observations reproduces expected cell behavior. (A) Schematic of
proteomic allocation model. Micronutrients are taken up via nutrient-specific protein transporters (left). Internal pools of Mn and Fe (black boxes) are then accessible for
protein synthesis. Photosystems require both Fe and Mn and are the source of energetic equivalents (“e”; black box), which are then used by protein synthesis, micronutrient
uptake, and nitrogen metabolism (the latter two are not shown with arrows). Protein pools are synthesized via ribosomes and represented with circle-ended lines. All
model runs were conducted with nitrate at saturating levels. (B) Growth rates across a range of Fe and Mn concentrations are quantitatively similar to growth rates in
culture (fig. S4). (C) Fe transporters decrease with increased Fe concentrations (dMn =500 pM), a commonly observed phenomena in cultures (49, 70).

20f17

McCain et al., Sci. Adv. 2021; 7 : eabg6501 6 August 2021

120Z ‘9 1snBny uo /610 Bewasusios saoueApe//:diy Woll papeojumo(


http://advances.sciencemag.org/

SCIENCE ADVANCES | RESEARCH ARTICLE

(Materials and Methods), providing a path forward to leverage
large-scale datasets in this way.

Our model reproduces expected cellular behavior across a range
of dFe and dMn concentrations (Fig. 1, B and C, and fig. S3; using
posterior modes for estimated parameters, fig. S2). For example, the
model quantitatively reproduces growth rates (46), Mn and Fe
cellular quotas (33, 47), and dFe uptake rates within observational
constraints (48), despite no prescribed parameterization or model
training on these data types (figs. S4 to S7). We are also able to re-
produce the observed increase in transporters under low dFe and
dMn (Fig. 1C and fig. S8) (20, 49), the expected interaction between
light and Fe quota (fig. S9 and Supplementary Discussion) (50), and the
increase in ribosomes with growth rate (Fig. 2 and fig. S8) (13, 51).
Our analysis suggests that dMn and dFe interactively influence
growth more at high dFe, rather than at low dFe, and a reframing of
previous results supports this conclusion (fig. S10, Supplementary
Discussion). Overall, these results show that our model is able to
represent how diatom cells respond in different environments and
is consistent with a variety of empirical observations.

Multiple internal processes, governed by cellular costs

and constraints, control growth

Internal processes, which are a function of cellular costs, are the
proximate causes of limitation. We conducted a set of computational

experiments by systematically increasing each model parameter,
which allowed us to examine the effect of different internal processes
on growth (Fig. 2A and figs. S11 and S12). As expected, increasing
stoichiometric coefficients for micronutrients (e.g., Fe per photo-
system unit) had large, negative impacts on growth rates (Fig. 2A).
However, protein costs (in terms of amino acids), internal rates,
and energetic costs also had similarly large impacts (Fig. 2A). More-
over, the magnitude by which a given process affected growth dif-
fered depending on both dMn and dFe concentrations, illustrating
the inadequacy of a simple “single-resource scarcity” view that
underpins many ocean models. Our results highlight the need to
reframe growth as the emergent outcome of internal cellular pro-
cesses (Fig. 2B). This concept is well known in cell systems biology
[e.g., (7)], but it is rarely represented in oceanography (52). In our
model, growth rate is proportional to the number of biosynthetic
pathway units per cell (25) (i.e., all proteins involved in converting
nitrate into amino acids; Fig. 1A), which is, in turn, controlled by (i)
available Fe for incorporation as cofactors, (ii) available ribosomes,
(iii) sufficient amino acids for protein synthesis, and (iv) sufficient
energy (Fig. 2C and fig. S13). This suite of internal processes simul-
taneously control growth rate, and the strength of their influence
varies under different dFe and dMn concentrations.

The multiplicity of internal processes controlling growth can
have significant consequences for cellular stoichiometry and gene
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Fig. 2. Cellular costs and constraints influence growth rate across a range of Fe and Mn concentrations. (A) Model experiments showing how a fivefold increase in
each parameter value influences growth rate, relative to the base model. Note that the parameter Fixed Proteome Percentage is divided by 5. (B) Micronutrient-controlled
growth is the outcome of a range of internal processes, simultaneously controlling growth rate (proximate processes controlling growth rate are shown with black ar-
rows). These internal processes are a function of cellular costs and constraints. (C) One internal, modeled process directly controlling growth is the number of ribosomes

per cell, shown across iron and manganese concentrations.
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expression. For example, under low Mn conditions, synthesis of
Mn-containing antioxidants was impeded, leading to more oxida-
tive stress (Fig. 3A). In our model, the consequence of oxidative
stress is damaged proteins. This resulted in increased ribosomes per
cell, which maintains total protein synthesis under high oxidative
stress (Fig. 3A). Ribosomes are a large portion of phytoplankton
phosphorus quotas (53), and they increase by ~150% as Mn is
lowered from 3 to 1 pM, suggesting that antioxidant allocation and
the dynamics of oxidative stress can influence cell macronutrient
demands and cellular stoichiometry. This interaction between Fe, Mn,
and phosphorus around oxidative stress arises because our model is
able to explicitly represent the internal processes that compensate
for each other under micronutrient limitation, which, in turn, influ-
ences the cellular stoichiometry of Fe, Mn, and phosphorus.

Under certain conditions (i.e., low dFe and low dMn; Fig. 3B), a
diversity of protein allocation strategies to counteract oxidative
stress still resulted in similar growth rates in our model. We ob-
served two sources of variation across predictions. First, under
low dFe (e.g., at or below 50 pM dFe), there was a trade-off between
allocating ribosomes to synthesize ribosomes or antioxidants (Fig. 3B).
Either approach maintains similar total protein synthesis and
growth rates. Second, cells sometimes allocate more ribosomes to
Fe transporters and therefore increase the total Fe quota, alleviating
electron leakage. This led to a bimodal distribution of Fe quota
across these low dFe and dMn conditions (Fig. 3C). We predicted a
range of strategies with similar growth rates, despite explicitly using
an optimization model to explore adaptive hypotheses about pro-
tein expression (54). We speculate that this range of strategies may
underlie the diversity of antioxidant systems seen across microbes
(55). Furthermore, some variation in microbial metabolic strategies
may be due to different configurations of gene expression (with
similar cellular costs), yielding similar cellular level outcomes.

Nutrient interdependence is influenced by both
nutrient-specific and background costs

We quantified how different cellular processes contribute to inter-
dependence between Mn and Fe, in addition to the explicit inter-
action via oxidative stress (described above; Materials and Methods).
Resources such as micronutrients can be considered independent if
only a single nutrient controls growth rate, and altering the avail-
ability of another resource has no impact on the growth rate (in
accordance with Liebig’s Law of the Minimum). In contrast, inter-
dependence between resources occurs when there are multiple,
simultaneously limiting nutrients whose availability affects growth.
We used the parameter perturbation experiments conducted at
different concentrations of dMn and dFe (as above) and quantified
how every parameter influences the strength of interactivity be-
tween Fe and Mn (see Materials and Methods). Two parameters
that exhibited high interactivity were amino acids per ribosome and
internal Mn protein cost (fig. S14). A higher protein cost per ribo-
some decreases the growth rate across all conditions, while internal
Mn protein cost is only directly related to Mn.

We derived a simple model of an idealized proteome to examine
mechanisms of resource interdependence related to these parame-
ters. In this idealized proteome, there are only ribosomes and
Mn- and Fe-related proteins (Materials and Methods) wherein dFe
and dMn control growth by regulating how much of the proteome
can be allocated to ribosomes (rather than the micronutrient-specific
components). This revealed two mechanisms of interdependence:
(i) the global background cost and (ii) the ratio of Fe and Mn cellu-
lar costs. By only increasing the global background cost (analogous
to the amino acids per ribosome parameter), interdependence
across nutrients is strongly altered by depressing the growth rate
across all conditions (Fig. 4, A to C). In our proteomic allocation
model, increasing the amino acids per ribosome parameter led to
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the number of ribosomes consequently increased (with constant dFe =1000 pM). (B) Examining the distribution of multiple optimization runs revealed a diversity of
strategies with similar growth rates (with constant dMn = 1000 pM, n = 20 replicate model runs, and variable dFe displayed as shapes). (C) Bimodal distributions of total
Fe quota per cell, generated from the same optimization runs shown in (B), demonstrate another dimension of this antioxidant-allocation strategy (kernel density of

distribution shown).
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Fig. 4. Interdependence across micronutrients arises from background cellu-
lar costs and the ratio of nutrient-specific costs. (A) A phenomenological model
of a three-component proteome composed of ribosomes (R), Mn-related proteins
(Mn), and Fe-related proteins (Fe). Growth rate is proportional to dFe and dMn
concentrations, and micronutrients influence growth rate by removing potential
resources allocated to ribosomes (see Materials and Methods for equations). (B and
C) The background cost of growth (independent of Fe or Mn) can influence the
apparent interaction between Mn and Fe (Wr. equal to 0.5; see Materials and Methods
for equations). Growth rate is lower overall in (B) compared with (C) because the
pie charts represent ribosomal mass fraction (total protein mass in ribosomes), not
number of ribosomes, and this corresponds to the parameter perturbation “amino
acids per ribosome” (fig. S14). (D) The ratio of micronutrient-specific protein costs
affects the apparent interaction between micronutrients (K equal to 5), as shown in
(E) and (F). In (B) and (C) and (E) and (F), units are given as relative concentrations,
arbitrarily ranging from 0 to 50.

lower available cellular resources overall, resulting in more inter-
dependence between Fe and Mn. Similar to an ecosystem, when
resource availability decreases, competition for this smaller pool of
resources increases. In addition to protein synthesis capacity, we
hypothesize that this extends to other shared cellular resources (e.g.,
available membrane space).

Examining the ratio of cellular costs for Mn and Fe showed that
maximum interdependence occurs when the cellular costs of Fe and Mn
are equal (Fig. 4, D and F; Materials and Methods). For example, the

McCain et al., Sci. Adv. 2021; 7 : eabg6501 6 August 2021

internal Mn protein cost parameter had a high interaction index
(fig. S14); when increased, it led to more similar protein costs be-
tween Fe and Mn. When cellular costs are similar across resources,
they place similar demands on the pool of shared resources, which
consequently increases their interdependence. These two mecha-
nisms provide a tractable means to include interdependence in
global ocean models because it suggests that estimating cellular
costs for individual nutrients is sufficient to parameterize the over-
all interaction strength. We speculate that considering relative costs
across resources may also apply to other nutrient pairs and help to
explain previously observed patterns of interdependencies. For
instance, the independent relationship between cobalamin and phos-
phorus (56) implies large differences in their cellular costs, whereas
similar cellular costs between nitrogen and phosphorus may con-
tribute to their interdependence (57).

Inferring in situ rates and quotas by coupling cellular
modeling with metaproteomics

While our modeling framework can be combined with proteomic
data to estimate the costs and constraints associated with micro-
nutrients, this coupled approach can also be used to predict in situ
biogeochemical metrics (Fig. 5A). In this way, our model is able to
quantitatively reproduce growth rates under high and low dFe from
a diatom culture (despite no model training on growth rate data;
Fig. 5B). Using in situ dMn and dFe concentrations and metapro-
teomes from field samples at the Antarctic sea ice edge, in situ
diatom-specific growth rates (Fig. 5C), Fe cellular quotas (Fig. 5D),
and Fe uptake rates (Fig. 5E) can be estimated. These metrics are
typically difficult or impossible to measure from in situ microbial
communities directly but have important consequences for ocean
biogeochemistry and ecosystem services. Our approach connects
these rates and quotas directly with resource allocation strategies
used by diatoms, highlighting a decrease in protein allocated to
photosynthesis and an increase in protein allocated to iron acquisi-
tion in the transition into micronutrient stress (fig. S15), resulting
in decreased growth rates and iron quotas (Fig. 5, C and D). These
process-based insights are critical for characterizing the role of
micronutrients in Southern Ocean phytoplankton bloom progres-
sion and fate (58).

Outlook
We combined mechanistic, proteomic modeling with metaproteomics
to estimate the costs and constraints associated with micronutrient-
controlled growth in a polar diatom. Our results highlight the role
of cellular costs rather than environmental scarcity in shaping growth,
with two key factors: the internal protein cost associated with
micronutrient use and the available membrane space for trans-
porters. Identifying the differences in protein cost for vacuolar
versus ferritin-based Fe storage and other micronutrient-associated
costs would further connect ecological strategies with gene expres-
sion. Available membrane space has an established temperature
dependence and is an important constraint on nutrient uptake
kinetics [via membrane saturation (34, 59, 60)], making it critical
to quantify in a changing ocean. Our approach relied on rich in situ
gene expression datasets to estimate parameters, highlighting a means
to quantify cellular costs and constraints.

Parameterizations of phytoplankton growth in global ocean
models can have dramatic consequences for projections of ecosystem
services in the context of changing upper ocean resource availability
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Fig. 5. By combining cellular modeling with metaproteomic data, we inferred in situ rates and quotas. (A) Schematic for combining environmental parameters (e.g.,
light and dFe), cellular modeling, and metaproteomic observations, to infer rates and elemental quotas. (B) We first demonstrated that the proteomic allocation model
quantitatively reproduces growth rates from the cultured diatom T. pseudonana (45) under low and high Fe (culture data do not correspond to a posterior probability,
error bars represent the standard deviation across four replicate cultures). (C to E) Coupling the metaproteome-derived diatom proteome with the cellular model, we can
quantitatively infer the growth rates, iron quotas, and iron uptake rates of diatoms in these two time points from a complex microbial community. Week 1 corresponds
to higher dFe and dMn, and week 3 corresponds to lower dFe and dMn [concentrations shown in (C)].

(3). Embedding a mechanistic representationof resource limitation
within global ocean models will leverage rapidly expanding “omics”
datasets to improve predictions of growth responses to environ-
mental change. Developing phenomenological models to represent
the outcomes of mechanistic cellular models is a tractable next step.
In this way, mechanistic modeling can provide the biological flexi-
bility and realism (61) necessary for predicting potential tipping
points in ecosystem services. Mechanistic cellular models, in con-
junction with in situ gene expression measurements and biogeo-
chemical models, will improve projections of ecosystem services
and further characterize the biological underpinnings of nutrient
limitation in the changing ocean.

MATERIALS AND METHODS

Model description

We developed a coarse-grained model of intracellular protein
allocation in the polar diatom F. cylindrus (24), extending coarse-
grained kinetic models previously developed for a range of prokaryotes
(25, 29-31). Uniquely, we considered micronutrient controls on
proteomic allocation and applied these principles to a eukaryotic
phytoplankton. We used Bayesian optimization to determine the
optimal proportion of ribosomes synthesizing different coarse-grained
proteomic pools to maximize the steady-state specific growth rate.
The cost of producing a given coarse-grained pool is a function of
the protein length or the sum of protein lengths (in units of amino
acids) within a pool. Specifically, the rate of synthesizing one unit of

McCain et al., Sci. Adv. 2021; 7 : eabg6501 6 August 2021

a protein pool is inversely related to the number of amino acids per
pool. The units of each intracellular variable (metabolites, proteins,
and free metal pools) are in molecules per cell. As in (25, 31), we
used a photosynthetic model (62) to parameterize energy produc-
tion rate and similarly calculated a biosynthesis-specific growth rate.
We first provide a high-level overview of the model structure and
then give detailed descriptions of parameterizations.

System of equations

The dynamics of each internal metabolite and protein pool are
described using a differential equation, all with growth rate as a loss
term (25). The internal free manganese pool (Mn;) increases with Mn
uptake rate (V) and decreases with PSU protein synthesis (photo-
system unit, yp) at a fixed stoichiometry (@, p) and antioxidant protein
synthesis (y4) at a fixed stoichiometry (@as,,4). We solve this system of
equations by integrating them forward in time to a pseudo-steady state
(described in more detail in the Supplementary Materials)

a "= Vit — @uinpYp — Paimaya — W[ Mn'] (1)

The internal free iron pool (Fe;) is controlled by protein synthe-
sis of Fe-containing protein pools: PSUs and nitrogen metabolism.
The fixed stoichiometric coefficient for PSUs is larger for Fe com-
pared with Mn, reflecting the higher Fe demand for photosynthesis
(@re,p). Also, the nitrogen metabolism pathway (yn) requires a fixed
Fe stoichiometry per pathway ((ge,n)
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dFe; ;
I * = Vie— QFepYr — QreNYN — L[ Fe'] (2)

The internal free energy pool e increases with photosynthetic en-
ergy production v,, multiplied by a stoichiometric coefficient that
implies a fixed number of ATP (adenosine 5’-triphosphate) and
NADPH (reduced form of nicotinamide adenine dinucleotide phos-
phate) molecules produced per photosynthetic activation (¢,). There
is a small amount of energy required for Mn and Fe uptake (@7as, Qrre)
and a large energetic requirement for nitrogen metabolism (@y).
The total rate of conversion of nitrate into amino acids, V,, is sub-
sequently used to calculate a biosynthesis-specific growth rate,
where V,, is the product of Tyo, and ke, 1,. Energy is also con-
sumed through protein synthesis. We used the sum of protein
synthesis rates for each protein pool multiplied by the amino acids
per pool (n;) and multiplied the entire sum by m,, the energetic
requirement per amino acid elongation

g—te = QeVeadjusted — PTMn Viatn — PTEe Ve — (PNVN _ mYanYj - [e]
J
(3)

Amino acids are produced via nitrogen metabolism (V,,); we
multiplied this rate by the inverse of the average number of nitrogen
atoms within each amino acid. Amino acids are then consumed by
protein synthesis and diluted by growth

dg—f = m,V,— X0y — ilaal (4)
J

All protein pools are governed by similar dynamics, such that an
increase can only arise from protein synthesis (y;) and a decrease
can only arise from dilution by growth

dProtein; ) 5
L= v-ul ©)
j € A,P,Tyn,Tre, Tno,, R (6)

Internal protein cost of iron and manganese

We represented the internal cost of iron and manganese by dynam-
ically changing the Fe uptake cost per transporter (nrr,) as a func-
tion of dFe uptake rate, scaled by growth rate (i.e., %) and multiplied
by a constant coefficient (8). This approach was similarly applied to
Mn uptake and Mn transporter cost. nrg, and nryy, are the uptake
and internal management protein costs

VFe
NTFe = nTFe,unadjusted + eT (7)
VMn
NiMn = nTMn,unadjusted + GT (8)

Nutrient uptake kinetics

We modeled nutrient uptake rates of dFe and dMn to include
both a variable maximum uptake rate and a diffusion layer
(36-38, 63, 64). A flexible maximum uptake rate (i.e., Vinay) has been
observed experimentally (49) and predicted theoretically (36, 65),
and the diffusion layer affects the total diffusive flux to the cell sur-
face at low bulk substrate concentrations. At high substrate concen-
trations (i.e., nutrient replete), the nutrient uptake rate approaches
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the total transporters divided by the “handling time” (h). Note that
handling time (seconds per substrate) is equivalent to the inverse
of the maximum turnover rate (kc)—a commonly measured pa-
rameter in enzyme kinetics.

As the substrate concentration decreases (i.e., nutrient deplete),
the uptake rate approaches the product of cellular affinity (o) and
substrate concentration (S). Affinity is a function of cellular radius,
the molecular diffusivity coefficient, and the proportion of cellular
area covered by transporters (37). We assumed that Fe and Mn
uptake can only be from the dissolved phase and used a molecular
diffusivity coefficient of 0.9 x 10~ m? s~! for both (66). For nitrate,
we used a molecular diffusivity coefficient of 1.17 x 108 m?s7 (67),
with a transporter radius of 1 x 10~° m (36).

For modeling multiple nutrient uptake rates simultaneously, we
adjusted the nutrient uptake model above by multiplying the diffu-
sive flux term (4Dnr) by the proportion of surface area covered by
other transporters not corresponding to nutrient i (§), where D is
the diffusivity coefficient and r is the cellular radius. Given that
approximately 50% of a lipid membrane must consist of phospho-
lipids to maintain membrane integrity (68), and there is a signifi-
cant requirement for macronutrient transporters, we also restrict
the “available” area for iron and manganese transporters, hypothe-
sizing that a subset of membrane area is available (x). To model the
proportion of membrane space available, we modified the diffusive
flux term using the original derivation (63). Below, S is the bulk
concentration of nutrient i, #; is the number of transporters for
nutrient i, and s is the radius of the transporter for nutrient i. Trans-
porters are modeled as circular planes with constant radii on a
sphere (69). In addition to the uptake model (37), we included an
additional Michaelis-Menten term of energy dependence

: v o= by i _da)( L]
Nutrient Uptake Rate = V; = 2a<1 1 l’]2><Ke+ [e]) 9)

-1 _ h
b= o5 T (10)
B h _ mp
a= 4nDrSn,<< T’liS> an
2
nimws
= — 12
P 4mr? (12)
e (1 annsz (13)
- j¢i41<7rr2
-5 .
§:{1x10,1f§<9 (14)
&, otherwise
nis
o = 4DT|:TE_,K m (15)
i € [Mn],[Fe] (16)

Iron speciation

At low concentrations, dFe uptake is bound by physical limits of
diffusion to a cell membrane (70, 71). Under these conditions, cells
are under “diffusion limitation,” as dFe uptake rates are close to the
diffusive flux. These studies considered Fe uptake when only Fe’
(free, inorganic Fe) was bioavailable and Fe-EDTA is not signifi-
cantly taken up by eukaryotic phytoplankton (72). Yet, in the ocean,
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most of the dissolved Fe is organically complexed (FeL) (73), which
is, to some extent, bioavailable for uptake. We therefore included
both sources of iron for uptake. While a large portion of the dFe
pool is likely bioavailable, not all dFe species are equally bioavailable
(74, 75). Ligand-bound Fe has maximum uptake rates roughly three
orders of magnitude lower than Fe’ (48, 72, 74). We modeled dFe
uptake by splitting the dFe pool into subcomponents of Fe’ and FeL,
and then summing the uptake rates. This formulation assumes that
phytoplankton in the ocean are simultaneously under diffusion and
“ligand exchange” limitation (71). This can be extended to any
number of distinct dFe pools with corresponding uptake rate charac-
teristics. Fe’ would primarily be controlled by diffusion limitation
and is limited by the chemistry and physics of diffusion to the cell
surface and, therefore, only affected by o (which is a function of the
cell radius, r, diffusivity coefficient of dFe, D, and the proportion of
cell surface area covered by transporters). FeL uptake (ligand ex-
change limitation) is limited by the rate constants of uptake (i.e., the
handling time) and the number of transporters.

We first split the dFe pool into Fe’ and FeL, by multiplying the
bulk concentration of dFe by 2 and 98%, respectively (71). We then
use separate kinetic constants, where the maximum turnover rate
per transporter of the FeL pool is kg, per X 107,

Consequences of reactive oxygen species

ROS can hamper photosynthesis by negatively affecting protein
synthesis (76). We aimed to capture an overrarching consequence of
ROS in phytoplankton cells in this model—damaged proteins. Cells can
combat ROS production by producing antioxidants, such as superoxide
dismutase (e.g., Mn/FeSOD), or alternatively manage the consequences
by resynthesizing damaged proteins. We represented this trade-off in
the model by “leaking” a proportion of energy synthesis from PSUs into
superoxide. Superoxide is represented implicitly in the model structure
and not as an internal pool. Superoxide is produced from electrons
leaked by photosynthetic energy production and consumed by
MnSOD. Excess superoxide that is not consumed by SOD then penal-
izes the maximum protein synthesis rate, while overinvestment in SOD
diverts protein synthesis away from other protein pools. We also model
the relationship between electron leakiness and Fe quota (proportion of
electrons leaked is €, below), as previous work suggests that the tenden-
cy of an electron to be donated to molecular oxygen increases under
Fe stress.

Oxidative stress can result from a mismatch between ROS
consumption rate (via antioxidants) and production rate (electron
transport). We modeled ROS consumption rate as the product of
the maximum turnover rate of MnSOD (k.4tros, MnSOD) and the
number of MnSOD copies per cell (A). The rate of ROS production
is a proportion (€, see below) of energy production (v.). Higher
rates of energy production require increased investment in MnSOD.
The €, parameter represents the efficacy per MnSOD and is empir-
ically estimated (described below)

VRos = kearros + [A] (17)
€pVe — €,VROS

®, = _—p’e Fa’ROS (18)
€pVe + €5VROS
o, ifo,>0

o= {0 o 19)
0 ifw,<0
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An imbalance between production of ROS and available MnSOD
(w) decreases the maximum protein synthesis. We represented this
phenomenologically by multiplying the protein synthesis rate by a
value ranging from 0 to 1 (p,,). A phenomenological variable Ry is
used here with a value of 10

R,®

2—0 (20)
R +1

Po =

Electrons that are leaked not only produce ROS but also decrease
energy production (fewer electrons can be used to create ATP or
NADPH). We therefore modified the photosynthetic electron pro-
duction term above by the proportion of leaked electrons

Veadjusted = (1 - €p) Ve (21)
Photosynthetic energy production
We used a previously published photosynthetic model (25, 62). This
model assumes a two-state configuration of photosystem units. We
obtained an expression for energy production [as in (25)], by writing
this model as a system of two ODEs, where the inactivated PSUs
are synthesized (yp), and both inactivated (P% and activated PSUs
(P¥) are diluted via growth (u). The rate of PSU activation is v;, and
the rate of switching back to an inactive PSU is v,

0
4B -t ve-u [P (22)
42 = v ve- - [P) (23)

The rate of PSU activation is a function of the absorption cross
section (o), the amount of irradiance (I), and the amount of inactivated
PSUs. The rate of conversion from activated to inactivated PSUs is
a function of electron turnover rate (1)

(24)

ve = 1[P7] (25)
We can then assume a pseudo-steady state between the inactivated
and activated PSUs and solve for the energy production rate (v,)

(6-1)

ve = [Pl oy

(26)
Calculating growth rate

We calculated growth rate as in (25) with some slight modifications.
We calculated a biosynthesis-specific growth rate (13, 25, 30) by cal-
culating the rate of biosynthesis relative to the average protein mass
per cell. We assumed a fixed average protein mass per cell (Mc),
using data from (77) [from file S1 in (77)] for the median picograms
of protein per cell from Pseudonitzschia, which is converted to ami-
no acids per cell. In our model, biosynthesis rate is represented as
the conversion of nitrate into amino acids. Total biosynthesis rate
(V,) is equal to the number of biosynthetic pathways multiplied by
rate-limiting enzyme maximum turnover rate (see the “Model
parameterization” section)

Vn = TNO3 . kcat,TN (27)
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A proportion of the proteome is considered growth rate inde-
pendent (78). We included a fixed proteomic pool (A) in our model
that represents “maintenance metabolism”—respiration, lipid bio-
synthesis, etc. This is modeled by multiplying the total protein per
cell by a constant proportion. We assumed that 20% of the pro-
teome is growth rate independent (79), although future research is
required to determine this value in eukaryotic phytoplankton

VN - my

Mee - (1= A) (28)
Relationship between Fe quota and electron leakage
Previous research suggests that the tendency of an electron to be
donated to molecular oxygen increases under Fe stress (32). We
represented this increased leakiness by designating the proportion
of electrons leaked to molecular oxygen, €, as a function of the total
cellular Fe quota. We constrained this from 5 to 30% using observa-
tions of total Fe to carbon ratios observed in the SOFEX cruise (47),
with a range of 5.5 to 30 umol Fe:mol C. Then, by using carbon-
to-volume ratios from (80), we converted the lower and upper
bounds of umol Fe:mol C to a total cellular quota (Fe atoms per
model cell). A linear relationship between €, and total Fe quota was
assumed when the Fe quota is within these observationally con-
strained bounds. Below the minimum Fe cell quota, €, is fixed at
30%; above the maximum Fe cell quota, €, is fixed at 5%. This cor-
responds to the following relationship

0.3 ifFe; < 7,173,653

€ = < 0.05 ifFe; > 39,129,014 (29)
3561 x 1071 — 7.823 x 1077 . Fe; else

Protein synthesis

Protein synthesis connects the internal pools of metabolites and
free micronutrients to proteins

T-20

Temperature Adjusted Protein Synthesis = Y7 = Ymax- Q[ (30)

ROS Adjusted Protein Synthesis = Yros = Y7 po  (31)
Protein Synthesis = y; = B; YROS [R] [e] [aa] (32)
REET K, + [e] Kgq + [aa]

[Fe;]
=y 33
IN =Y K + [Fey) (33)

[Fei] [Mn]

=i 34
TP = Y Ry + [Fei] Kygni + [Mn] (34)

[Mn]
=y 35
A=Y Rymi + [(Mn] (35)
j € A,P, Ty, Tre, Tnos R (36)

In the equations above, yp,y refers to the maximum protein
synthesis rate, which is a function of temperature (degrees Celsius) with
a Qqo value of 2 (18). We calculate a ROS-adjusted protein synthesis
rate, Yros, by multiplying the temperature-adjusted protein synthesis
rate by p,, (ranging from 0 to 1). Protein synthesis to protein pool j
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(y)) is a function of the proportion of ribosomes allocated (B;), the
protein cost (n;; larger protein pools have a slower rate of synthesiz-
ing one unit), the number of ribosomes (R), and the availability of
energy (e) and amino acids (aa). Furthermore, those protein pools
that have cofactor requirements have an additional Michaelis-
Menten term. All half-saturation constants (K., K4, Kpeis and Kpy;)
used for internal metabolites were set to an arbitrarily low value of
10* molecules per cell (implying efficient allocation of resources
within the cell).

Model parameterization

We used the BRENDA database to search for kinetics constants. For
the protein lengths, we examined the F. cylindrus genome (24) and
searched for protein coding genes with Gene Ontology (GO) terms
corresponding to our coarse-grained pools. Generally, the protein
cost reflected the length of all proteins within a coarse-grained
protein pool. Photosynthetic-specific parameters were taken from
previously published datasets.

Ribosomal proteins

To estimate the total proteomic cost per ribosome, we used data
from the model alga Chlamydomonas reinherdtii. In C. reinherdtii,
96 proteins were estimated for cytosolic ribosomes (81). These pro-
teins ranged in size from 12 to 54 kDa. Assuming an average size of
33 kDa, this converts to a protein cost of 3168 kDa (3,168,000 Da),
or 28,800 amino acids (using the average molecular mass per amino
acid, 110 Da). We therefore used 28,800 amino acids per ribosome
as the fixed protein cost.

Photosynthetic proteins

Our protein cost per photosystem unit was taken as 12,177 amino
acids per PSU (82), assuming a 1:1 architecture of PSII:PSI. We
used the reported approximate molecular mass per photosystem
unit (1339.5 kDa) and converted that to amino acids using the aver-
age molecular mass per amino acid (110 Da).

Fe and Mn transporters

We searched the F. cylindrus genome for the GO term “iron ion
transport” (GO:0006826). We used the sum of unique proteins
identified with this search, excluding ferritin, as we explicitly model
that protein (see above). We acknowledge that this approach crudely
approximates the protein requirements for Fe uptake, as the exact
protein stoichiometry and the specific combination of proteins
required are still unclear. We also included the average of the four
copies of FBPI identified in F. cylindrus (83). The total cost per
transporter for Fe uptake was 4028 amino acids.

Four natural resistance-associated macrophage proteins (NRAMPs)
were identified as manganese transporters in the F. cylindrus ge-
nome (84). The average protein length per NRAMP was 372 ami-
no acids.

Nitrate uptake and amino acid biosynthesis

We represented the transformation pathway from nitrate to amino
acids as the core iron-dependent biosynthetic cellular pathway. This
pathway is represented in our model as a single unit with high protein,
energetic, and iron costs. We combined the protein lengths of nitrate
transporters (NRT2 transporters), nitrate reductase (represented as
a homodimer), nitrite reductase, glutamine synthetase, and glutamate
synthase, which sum to 5893 amino acids per pathway.

At substrate saturating conditions assuming fixed pathway stoi-
chiometry, the enzyme in a pathway with the lowest maximum
turnover rate (k) determines the upper bound on pathway flux.
We used this “kinetic bottleneck” approximation to describe the
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conversion of nitrate into glutamine. For the enzymes described
above, we found that glutamine synthetase had the lowest k., for
NH, [2.9657}, Enzyme Commission no. 6.3.1.2 (85)], and we there-
fore use this value to represent the rate-limiting step.

We approximated the energetic requirement for the entire con-
version by summing up the ATP and NADPH cofactors required
for each step in the synthesis of glutamine from imported nitrate.
We accounted for one ATP from nitrate uptake, one NADPH for
nitrate reduction, one NADPH for nitrite reduction, one ATP for
glutamine synthetase, and one NADPH for glutamate synthase.
Assuming an interconversion ratio of 2.6 ATP to 1 NADPH, the
total energetic cost was 9.8 e.

For the Fe requirement in this pathway, we summed up the
per-enzyme atoms of Fe. We accounted for two Fe atoms in nitrate
reductase (one per subunit, but it exists as a homodimer), five Fe
atoms in nitrite reductase in total (one siroheme cofactor and four
in the 4Fe-4S cluster), and three Fe atoms in glutamate synthase.
Thus, the total stoichiometric coefficient for this pathway is 10 Fe
atoms (Qre, N)-

Uptake rate kinetic constants

To obtain kinetic constants for Fe transporters, we leveraged previ-
ously published data and methods for inferring maximum uptake
rate per transporter. Hudson and Morel (70) derive a kinetic con-
stant for the maximum turnover rate per transporter, equivalent to
the inverse of the handling time, by using pulse chase experiments
with labeled Fe. They assume that the whole-cell response of uptake
kinetics approximates that of the kinetic constant of the transporter,
which, in other words, means that there is no downstream regula-
tion of Fe uptake beyond that of the transporter (i.e., internalization
kinetics and saturation). Yet, enzyme kinetics can be regulated at
the pathway level (86); therefore, we challenge the assumption of no
downstream regulation from Fe uptake. Comparing the magnitude
of the maximum turnover rate per transporter reported in (70) to
other nutrient transport kinetics, but derived differently (38),
suggests that using pulse chase experiments to estimate transporter
kinetic constants underestimates these constants because of down-
stream inhibition. However, (70) still provides invaluable measure-
ments of cell-specific uptake rates that can be used to infer kinetic
constants.

We leveraged published uptake rate data (70) and recalculated
the maximum turnover rate using a method described in Eq. 16
(38). This resulted in a k;, value approximately three orders of mag-
nitude higher than inferred in (70), which was much more similar
to values estimated for macronutrient transporters (38). We used
the following values from (70) to recalculate the handling time: a
maximum uptake rate (Vp,.x) of 180 amol cell”! hour™, a half
saturation constant (K,,) of 3.1 nM, a diffusion coefficient (D) of
5.4 x107® m? min ", a cell radius (r) of 5.6 x10™° m, and a transporter
size (s) of 177 m.

Protein synthesis parameters

We used the translation rate from Thalassiosira weissflogii at 20°C of
1.9 amino acids per ribosome per second (18). Assuming a temperature
dependence given by a factor of Q¢ equal to 2 (18), protein synthe-
sis rate is adjusted in the model according to the input temperature
(~1°C for the metaproteomic conditions). For the energy required
per amino acid elongation, we used the equivalent of 3 e units (25).

Photosynthetic parameters

We needed two parameters for the photosynthetic energy pro-
duction model: the absorption cross section and the rate of returning

McCain et al., Sci. Adv. 2021; 7 : eabg6501 6 August 2021

from an activated PSU to an inactivated PSU (t). For the absorption
cross section, we used a value of 0.01 m* uE™! (87), and for the PSU
turnover rate, we used a value of 6000 min™! (88).

Culture diatom comparison
We used two published diatom datasets that examined how Fe
influences the proteome (44, 45). The observed protein data from
both datasets were manually binned into our corresponding model
coarse grains. For (45), we used the sum of spectral counts per pep-
tide as an approximation for the mass per protein group. For (44),
we used the reported normalized spectral abundance factor values
per protein. Note that while both of these datasets used diatoms
(44, 45), the studied diatoms were Thalassiosira pseudonana and
P. granii, and our model is based off of the polar diatom F. cylindrus.
To compare the model predictions under these laboratory con-
ditions, we also modified the temperature and light level inputs to
the model to reflect the culture conditions. The Fe levels in culture
were set with EDTA, and most Fe taken up in culture with FeEDTA
is inorganic free Fe. Therefore, we changed the Fe speciation input
to reflect this, such that there is only a small available FeL pool (1%),
while the inorganic free Fe pool was set to 99% of total dFe.

Southern Ocean Mn, Fe, and light conditions

FISH data

Surface seawater (approximately 3-m depth) was pumped from a
tow FISH into a clean container using a Teflon diaphragm pump
(Almatec A15) connected to a clean oil-free air compressor (JunAir)
and GEOTRACES cruise JR274 (89).

Concentrations of trace metals were determined by isotope dilu-
tion inductively coupled mass spectrometry (ICP-MS), while the
monoisotopic elements Co and Mn were analyzed using a standard
addition approach followed by ICP-MS detection, all according to
methods described in (90). The ICP-MS analyses were conducted
following an off-line preconcentration/matrix removal step (90) on
a Wako chelate resin column (91).

GEOTRACES data

We used the GEOTRACES intermediate data product (92) to deter-
mine average Mn and Fe concentrations within the mixed layer for
cruise stations in the Southern Ocean. To calculate the mixed layer
depth, we calculated the potential density at 10 m and determined
the depth at which this 10-m potential density is 0.03 kg m™> more
dense (93). For each station, we used the discrete data product and
averaged the Fe and Mn concentrations above the mixed layer depth.

We also calculated the median light level (photosynthetically
active radiation, PAR) within the mixed layer. We used monthly
climatology of surface PAR and diffuse attenuation coefficient
(K4490) from the Ocean Color database from 2002-2018. The
median mixed layer light levels were determined using the surface
PAR, K490 and mixed layer depth (94)

I, = Ip - exp(-K;4490 - MLD/2) (37)
where MLD is the inferred mixed layer depth and I is the surface
irradiance.

Metaproteomic sampling and LC-MS/MS

We sampled the microbial community at the sea ice edge in
McMurdo Sound, Ross Sea at the same location (-77.62S, 165.41E)
for 4 weeks [as described in (28)]. We had four sampling dates
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corresponding to weeks 1 to 4: 28 December 2014 and 6, 15, and
22 January 2015. Large volumes of water (150 to 250 liters) were
filtered from 1-m depth at the sea ice edge and passed through three
filters sequentially (3.0, 0.8, and 0.1 um, each 293 mm Supor filters).
Filters with collected biomass were then placed in tubes with a
sucrose-based preservative buffer [20 mM EDTA, 400 mM NaCl,
0.75 M sucrose, and 50 mM tris-HCI (pH 8.0)] and stored at —80°C
until sample processing. We extracted proteins after buffer ex-
change into a 3% SDS solution as previously described (28).

To prepare samples for liquid chromatography tandem mass
spectrometry (LC-MS/MS), the precipitated protein was resus-
pended in 100 pl of 8 M urea, and then we ran a Pierce bicinchoninic
acid protein assay kit (Thermo Fisher Scientific) to quantify the
protein concentration in each sample. We then reduced the protein
sample using 10 pl of 0.5 M dithiothreitol and incubated the sample
for 30 min at 60°C. Samples were then alkylated using 20 pl of 0.7 M
iodoacetamide in the dark for 30 min, diluted with 50 mM ammo-
nium bicarbonate, and digested with trypsin using a 1:50 trypsin:protein
ratio. We then acidified [1.5 ul of trifluoroacetic acid (TFA) and 5 pl
of formic acid added] and desalted samples. We desalted the sam-
ples by first conditioning the solid-phase columns with methanol
(1 ml), then 50% acetonitrile (ACN) and 0.1% TFA, and then 2x
1 ml of 0.1% TFA. Samples were loaded onto columns that were
subsequently washed 5x with 1 ml of 0.1% TFA. Last, peptides were
eluted from the columns with 2x 0.6 ml of 50% ACN and 0.1% TFA,
and 1x 0.6 ml of 70% ACN and 0.1% TFA.

We used a one-dimensional LC-MS/MS to characterize the
metaproteome. For the largest filter size (3.0 um), we used three
injections per sample and two injections per sample for the 0.8- and
0.1-um filters. We ensured that the protein concentration in each
urea-resuspended sample was equivalent across sampling weeks
and within each filter size. We used an LC gradient from 0 to
10.5 min with 0.3 ul/min flow of 5% solution B; from 10.5 to 60 min,
the flow was 0.25 pl/min, and solution B increased to 25.0%; from
60 to 90 min, %B increased to 60%; from 90 to 97 min, %B increased
t0 95%; from 97 to 102 min, %B remained at 95%; from 102 to 105 min,
the flow rate increased to 0.3 ul/min and %B decreased to 5%
for 20 min. Solution A is 0.1% formic acid in water, and solution B is
0.1% formic acid in ACN. Peptides were injected onto a 75 pm x 30 cm
column (New Objective, Woburn, MA) self-packed with 4 pm,
90 A, Proteo C18 material (Phenomenex, Torrance, CA), and then
online LC was performed using a Dionex Ultimate 3000 UHPLC
(Thermo Fisher Scientific, San Jose, CA).

We used a data-dependent acquisition approach with a VelosPRO
Orbitrap mass spectrometer (MS; Thermo Fisher Scientific, San Jose,
CA) to characterize the metaproteome for each sample. We used an
MS method with the following parameters: dynamic exclusion
enabled, with an exclusion list of 500 and an exclusion duration of
25 s; a mass/charge ratio (m/z) precursor mass range from 300 to
2000 m/z; and a resolution of 60,000. MS2 scans were collected with
a TopN method (N = 10), using collision-induced dissociation with a
normalized collision energy of 35.0, an isolation width of 2.0 m/z, a
minimum signal of 30,000 required, and a default charge state of 2.
Ions with charge states less than 2 were rejected, and those above 2
were not rejected. Last, we used polysiloxane as a lock mass.

For a database of potential proteins present, we used a metatran-
scriptome obtained from a nutrient incubation experiment con-
ducted using water collected during week 2 of protein sampling
(40). Before database searching, we removed all redundant protein
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sequences (P. Wilmarth, fasta-utilities) and appended the cRAP
(Global Proteome Machine Organization common Repository of
Adventitious Proteins) database of common laboratory contami-
nants. We then applied a Savitzky-Golay noise filter, a baseline
filter, and applied a high-resolution peak picking approach to cen-
troid the MS data (95). To identify peptides, we conducted a data-
base search with MSGF+ (96). We used a 1% false discovery rate at
the peptide-spectrum match level. Once we had identified peptides
within each MS injection, we quantified these peptides at the
MS1 level using the “FeatureFinderIdentification” approach (97),
where peptides identified in one injection can aid identifying pep-
tides in a different injection without corresponding MS2 spectra. In
this approach, the user must identify a group of samples across
which peptides can be cross-mapped. We grouped our samples by
filter sizes, with replicate injections also within each group for cross-
mapping. Mass spectrometry mzML files within each group were
then aligned using MapAlignerIdentification (95), and then we ap-
plied FeatureFinderIdentification to obtain peptide-specific MS1
intensities. Once peptides were quantified for each injection, we
then obtained a sample-specific peptide quantity, which was the av-
erage peptide-specific intensity across injections. We only used this
quantity if a given peptide was observed across all injections.

We then mapped peptides to taxa and to protein functions.
Peptides were mapped to taxa only if they uniquely correspond to a
given taxonomic group. Coarse taxonomic groups (presented at the
phylum level) were chosen because coarse-graining is robust to
various MS-induced biases (43). We suggest that the sum of taxon-
specific peptide abundances (MS1 intensities in this case) can be
used as a proxy for biomass. To evaluate this approach, we used a
previously published, artificially assembled metaproteome (42). In
this dataset, we identified all taxon-specific peptides and then ex-
amined the correlation between the amount of protein used for a
taxonomic group and the sum of peptide intensities that correspond
to that taxa. We found a high correlation between the sum of
peptide intensities and the total protein (fig. S1). In addition, we
examined different MS chromatographic methods [data files
“Runland2_Ul.pep.xml” and “Run4and5_U1.pep.xml” from (42)].
We show that there is a high correlation between the amount of
protein and the sum of peptide intensities across three orders of
magnitude (fig. S1), and this correlation is higher in the longer
chromatographic run.

Mapping peptides to taxon-specific functional groups has addi-
tional challenges because there can be multiple functional labels for
a given protein, and the functional label can differ on the basis of
the annotation used. To address this issue, we used five different
functional annotations [KEGG (Kyoto Encyclopedia of Genes and
Genomes), KO (KEGG Orthology), KOG (Eukaryotic Orthologous
Groups), Pfam, and TIGRFAM annotations (98-102)] and mapped
coarse-grained functional associations by matching a list of strings, i.e.,
keywords (which were identified in the construction of the model). In
addition, we manually examined the matched proteins to ensure we
were not capturing incorrectly mapped proteins to coarse grains.

ABC for parameter estimation

Metaproteomic-to-model data comparison

To infer parameters of the model given the proteomic data, we need
to determine how similar the observations are to the model predic-
tions. However, there are several challenges associated with com-
paring the proteomic data with the protein allocation model output.
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The main challenge with doing a direct comparison of model
output (i.e., with protein mass fraction) is the components of the
observed proteome that we are not modeling. For example, we do
not include DNA synthesis proteins in our cellular model, yet we
anticipate this protein mass fraction to vary with growth rate. The
consequence of this issue is a poor model fit, which can hamper
parameter inference.

We propose a general approach to address this challenge using
the ratio of the protein pool abundance from the two conditions
observed. By using this ratio, we can still capture the change in pro-
tein expression across conditions, but we bypass the issue of the
nonmodeled proteome. Specifically, we used the ratio of protein
group abundance from the low Fe to high Fe condition in the cul-
ture diatom proteomes, and the third sampling point to the first
sampling point from the metaproteomic time series. This general
approach for model-to-metaproteome comparisons might be use-
ful in other contexts, as we anticipate this issue would be pervasive,
because no proteomic allocation model can explicity include all
proteins synthesized.

There are also several transformations and considerations re-
quired to make comparisons between the model and the observa-
tions. The first transformation is to calculate protein mass fraction
from the model. The true mass fraction from our model considers
the free amino acid pool, yet this pool would not be observed using
typical proteomic methods. Thus, we first recalculate the total ob-
servable protein mass from the model. This is done by multiplying
all protein abundances by the amino acids per protein pool. For Fe
and Mn uptake, this cost is dynamic, so we recalculate the dynamic
cost per transporter and internal machinery first. Once we have
recalculated protein mass, the next consideration is the observed
proteins. This is straightforward for all the protein pools except for
Fe and Mn uptake and internal cost. This is because the observed
proteins for this protein pool can be considered part of the internal
or external protein pool (or both). For each of the datasets, we
examined the Fe transporters and internal Fe cost proteins and
determined whether it is appropriate to use the external or internal
protein pool from the model as a comparison. We did not ob-
serve ferritin in any dataset; the main protein observed for this
protein pool was phytotransferrin (ISIP2a). We considered phy-
totransferrin to be both an internal and an external cost, given that
the protein is endocytosed (48). These transformations for each
dataset enabled a careful comparison between the data and the
observations.

ABC for parameter inference

We used ABC to draw inferences about the three unconstrained
parameters in the model: the efficacy per MnSOD, €,; the available
space on the membrane for Mn and Fe transporters, «; and the
internal Fe and Mn cost coefficient, 6. Note that we assumed that
0 is constant for both Mn and Fe, although with additional data, we
would be able to further discriminate across these costs.

We used ABC to obtain a posterior distributions for parameters
and predictive distributions for observed data. The stochastic
model was combined with our cellular model to allow for errors in
approximation. To obtain a posterior distribution for each parameter,
we accounted for error in the model and observations. Specifically,
our cellular model (f) generates observations (y;) from a vector of
parameters [v; = (€4, K5, 0;)]. We included an error term (e;), which
we assume is normally distributed with a common standard
deviation (h)
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yi = flvi)+ e (38)

e; ~ N(0,h°) (39)

We treated the standard deviation £ as fixed, and estimation
of the posterior distribution is described below. The priors for
the elements of v = (€,, k, 0) were independently uniform, €, ~
U(0.00001,0.1), x ~ U(0.001,16), and 8 ~ U(0.001,0.15). For €,, we
drew from a uniform bounded by 0.00001 and 0.1, because initial
tests suggested that this range resulted in a Mn:Fe ratio and a
Mn-PSU:Mn-SOD ratio consistent with empirical observations
(45). For 6, we drew from a uniform bounded by 0.001 and 16. The
upper bound assumes that all internal Fe is stored in ferritin, which
would result in a very high internal Fe cost. The lower bound rep-
resents an arbitrarily low protein cost. For k, we used a lower bound
0f0.001 and an upper bound of 0.15. We hypothesized that the pro-
portion of membrane space available for Fe and Mn transporters is
likely within these bounds, considering that only approximately 50%
of the membrane can even have transporter proteins (68), and there
must be a large proportion dedicated to macronutrient transporters.

We used an ABC algorithm to approximate the exact posterior
(39, 103). The approach simulates vy, ..., vg from the uniform priors
and then generates y; = f{vy), ..., yp = f{vp) from the cellular model.
For each y;, a weight w;(h) € {0,1} is generated from a Bernoulli
distribution [a;(h)] where

2
ai(h)=exp [7_”% ~ ol ]

2h? (40)

For any function g(v), its posterior expectation is approximated by

Elemiyl~ =55 )

We can determine P(v; < t|yo) at each point along the grid and
then convert these estimates from a cumulative distribution to a
probability density. We do so by calculating the height of the kth
bin [t;_ 1, tx] as

(41)

P(v; < tglyo) =P(v; < te 1l yo) (42)

Intuitively, if the Euclidean distance of a simulated dataset y; to
yois very low, then it is very likely that the parameter vector v; would be
included in the posterior. This approach gives an approximation of
E[g(v) | yo] with a fixed and known h. We then conducted the pos-
terior sampling M times to infer the approximate posterior distri-
bution at fixed intervals (i.e., the posterior as a histogram, with
M = 400,000). Overall, this method allows for a probabilistic sam-
pling of the posterior, as we transform our deterministic model out-
put to a stochastic model, with the stochasticity coming from the
error term (39). Without this step, our posterior variance estimates
would solely be a function of the tolerance that we use for inclusion
in an approximate posterior (104).

After sampling from the prior distribution (182,171 samples
drawn), we ran the cellular model and generated a set of model out-
puts for each of three datasets: the metaproteome-derived diatom
proteome at two time points with corresponding in situ dMn and
dFe concentrations, T. pseudonana proteome under high and low
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Fe (45), and P. granii diatom proteome under high and low Fe (44).
We then compared the model output with each of these datasets,
and the success probabilites given above are calculated by combining
observations and model predictions across all three datasets. We
combined these datasets to estimate the first-order effects; however,
it is possible that the parameters included are environment depen-
dent. For example, the temperature is different across each dataset,
yet we assume that the membrane space parameter (k) is from a
single distribution. Numerical integration and optimization param-
eters were adjusted to enable faster sampling of parameter space;
specifically, we shortened the integration time to a length of 1 x
10® (with steps of 10). Optimization settings are given in the Sup-
plementary Materials.

Estimating standard deviation of the error term: h

The standard deviation of the error term, A, is an important param-
eter for conducting ABC. This error term encompasses error from
mass spectrometry, sample processing, and natural biological
variability. We empirically estimated this parameter by using cul-
ture replicates from (45). We calculated the average standard devia-
tion of the ratio of protein pools across replicates. To do so, we
randomly paired biological replicates and determined the sample

standard deviation
. 2R i - p)?
N-1

We inferred an average sample standard deviation (across all
pairs of biological replicates) of 0.007. However, with such a low
standard deviation, our ABC approach was not feasible because the
probability of acceptance was so low across all parameter vectors.
We therefore increase the value of & to a conservative value of 2,
likely overestimating the standard deviation of the error distribution.

(43)

Model settings, parameter perturbation experiments,

and interaction index

We generated model output for a range of dFe and dMn values: 1,
50, 100, 500, 1000, 2000, and 3000 pM in a full factorial combination,
with light levels set to 50 uE m™* s™". For the three unconstrained
parameters (described above), we used the modes of their posterior
probability distributions for the inferred parameter value. We then
conducted 20 replicate model runs for each unique combination of
dFe and dMn with the following settings: nitrate at saturating
conditions (input nitrate set to arbitrarily high concentration of
1 x 10° nM; note that our kinetic bottleneck approximation is
satisfied only under saturating conditions) and an integration
time 3 x 10° for the second stage of optimization (with steps of
10; see the Supplementary Materials for additional details on op-
timization settings).

We multiplied every parameter individually by 5 and examined
the change in growth rate (except the “Fixed Proteome Percentage”
parameter, which was divided by 5 because the base value was 20%).
Each perturbation experiment was conducted three replicate times,
and the average growth rate of these three was then divided by the
base model (i.e., with no parameters altered, also run three times).
Four environmental conditions were chosen for parameter perturbation
experiments, corresponding to high and low dFe and dMn (all com-
binations of these conditions). The high dFe and dMn conditions were
set to 3000 pM. The low conditions were determined by fitting a
Monod-style growth function to modeled growth rates (figs. S11 and
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$12) and then using the half-saturation constants. For dMn, this corre-
sponded to 1.42 pM, and for dFe, this corresponded to 88.9 pM.

We used the parameter perturbation experiments and the fol-
lowing equation to obtain a quantitative metric of how different
cellular processes contribute to interdependence between dFe and
dMn (p corresponds to the growth rate)

Interaction index = min(lJ-HighFe,Loan: uLoer,Higth ) — WLowFe,LowMn
(44)

A phenomenological model of nutrient interdependence
Scott et al. (13) develop a phenomenological model connecting growth
rate with gene expression. We extended a similar framework to
micronutrients and explored interdependence across elemental metab-
olisms using this framework. Consider a three-component pro-
teomic model, ¢ (ribosomal mass fraction), ¢, (Fe-metabolism
protein mass fraction), and ¢, (Mn-metabolism protein mass
fraction). Scott et al. (13) suggest that
B o< OR (45)
Under high micronutrient concentrations, we anticipate that the
proteomic mass fraction required to acquire these nutrients decreases,

such that ¢p, and ¢y, are inversely proportional to the amount of
dFe and dMn

o L
Ore o (46)
Opn o< 1 (47)
" dMn

It follows that the increased mass fraction required for process-
ing and obtaining Fe and Mn negatively influences the growth rate
via decreasing the ribosomal mass fraction (¢r)

Moo 1- q)Fe - ¢Mn (48)

If we then assume a saturating function of the proteomic mass

fractions (0pe,my) dependent on the micronutrient concentration

___dFe
dFe + K

where K is the half saturation constant for Fe and is equivalent (for
simplicity) to the half saturation for Mn. We then obtain an expres-
sion for the growth rate

Ope = 1 (49)

“@erw) (i)

However, the expression above requires some proteomic cost
weighting factor; otherwise, the expression could result in negative
growth rates. If we define the proteomic cost weight for Mn and Fe
to be y, and g, we obtain

poes 1= (1 (50)

dMn ) (51)

Mo 1— WFe(l _d;i%) - WM”(l TdMn + K

Yumn + Yre = 1 (52)

We found that when protein costs have similar values for Fe and
Mn (i.e., W is 0.5), the apparent amount of interdependence is
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greatest. This is demonstrated by looking at the gradient of the
growth rate function with respect to dMn and dFe

du KWFe
d(dFe) (dFe + K)?
Vu = = 53
H du 1 K(yr-1) 53)
d(dMn) (dMn + K)?

If we then assume that both dFe and dMn are at concentrations
equivalent to their half-maximal growth (i.e., K), the gradient func-
tion then simplifies to

YEe
4K

-1 (WFe - 1)
4K

Vu = (54)

From this function, we can then show that the direction that cor-
responds to the most elemental interdependence is when the slope
is closest to 1, or that the elements of the gradient with respect to
dFe and dMn are equivalent. When we equate the elements of the
gradient, evaluated when dFe and dMn are at half-maximal growth,
we find that the iron cost parameter is equivalent to 0.5, and there-
fore, so is the manganese cost parameter. This phenomenological
model suggests that when the ratios of proteomic costs are similar,
the extent of elemental interdependence is greatest. Note that
“proteomic” cost in this case can be extended to other cellular costs,
for example, available membrane space.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/32/eabg6501/DC1
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paper are present in the paper and/or the Supplementary Materials, and all data are publicly
available. Model runs, experiments, and output from metaproteomic bioinformatics are
deposited in Dryad and can be found at https://doi.org/10.5061/dryad.xd2547dfs. Model
parameters used are provided in a table (table S1) in addition to being described in the
Supplementary Information. The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier
PXD022995 (105). Code for all metaproteomic analyses is available from https://github.com/
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bertrand-lab/ross-sea-meta-omics, and code for all other analyses is available from https://
github.com/bertrand-lab/mn-fe-allocation.
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