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ABSTRACT

Centralized Training for Decentralized Execution, where agents are
trained offline using centralized information but execute in a decen-
tralized manner online, has gained popularity in the multi-agent
reinforcement learning community. In particular, actor-critic meth-
ods with a centralized critic and decentralized actors are a com-
mon instance of this idea. However, the implications of using a
centralized critic in this context are not fully discussed and under-
stood even though it is the standard choice of many algorithms.
We therefore formally analyze centralized and decentralized critic
approaches, providing a deeper understanding of the implications
of critic choice. Because our theory makes unrealistic assumptions,
we also empirically compare the centralized and decentralized critic
methods over a wide set of environments to validate our theories
and to provide practical advice. We show that there exist miscon-
ceptions regarding centralized critics in the current literature and
show that the centralized critic design is not strictly beneficial, but
rather both centralized and decentralized critics have different pros
and cons that should be taken into account by algorithm designers.
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1 INTRODUCTION

Centralized Training for Decentralized Execution (CTDE), where
agents are trained offline using centralized information but execute
in a decentralized manner online, has seen widespread adoption in
multi-agent reinforcement learning (MARL) [9, 15, 28]. In particular,
actor-critic methods with centralized critics have become popular
after being proposed by Foerster et al. [10] and Lowe et al. [20],
since the critic can be discarded once the individual actors are
trained. Despite the popularity of centralized critics, the choice is
not discussed extensively and its implications for learning remain
largely unknown.

One reason for this lack of analysis is that recent state-of-the-art
works built on top of a centralized critic focus on other issues such as
multi-agent credit assignment [10, 43], multi-agent exploration [8],

Yuchen Xiao
Northeastern University
xiao.yuch@northeastern.edu

Christopher Amato
Northeastern University
c.amato@northeastern.edu

teaching [29] or emergent tool use [1]. However, state-of-the-art
methods with a centralized critic do not compare with decentral-
ized critic versions of their methods. Therefore, without precise
theory or tests, previous works relied on intuitions and educated
guesses. For example, one of the pioneering works on centralized
critics, MADDPG [20], mentions that providing more information
to critics eases learning and makes learning coordinated behavior
easier. Later works echoed similar viewpoints, suspecting that a
centralized critic might speed up training [49], or that it reduces
variance [6], is more robust [36], improves performance [18] or
stabilizes training [19].

In short, previous works generally give the impression that a
centralized critic is an obvious choice without compromises under
CTDE, and there are mainly two advertised benefits: a) a central-
ized critic fosters “cooperative behavior”, b) a centralized critic also
stabilizes (or speeds up) training. It makes intuitive sense because
training a global value function on its own (i.e., joint learning [5])
would help with cooperation issues and has much better conver-
gence guarantees due to the stationary learning targets. However,
these intuitions have never been formally proven or empirically
tested; since most related works focus on additional improvements
on top of a centralized critic, the centralized critic is usually seen as
part of a basic framework rather than an optional hyperparameter
choice.! In this paper, we look into these unvalidated claims and
point out that common intuitions turn out to be inaccurate.

First, we show theoretically that a centralized critic does not
necessarily improve cooperation compared to a set of decentralized
critics. We prove that the two types of critics provide the decen-
tralized policies with precisely the same gradients in expectation.
We validate this theory on classical cooperation games and more
realistic domains and report results supporting our theory.

Second, we show theoretically that the centralized critic results
in higher variance updates of the decentralized actors assuming
converged on-policy value functions. Therefore, we emphasize that
stability of value function learning does not directly translate to a
reduced variance in policy learning. We also discuss that, in practice,
this results in a bias-variance trade-off. We analyze straightforward
examples and empirical evaluations, confirming our theory and
showing that the centralized critic often makes the policy learning
less stable, contrary to the common intuition.
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!Methods are also typically implemented with state-based critics [8, 10, 43, 49] instead
of the history-based critics we use in this paper, which might be another reason for
performance differences. However, we only consider history-based critics to fairly com-
pare the use of centralized and decentralized critics with the same type of information.
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Finally, we test standard implementations of the methods over a
wide range of popular domains and discuss our empirical findings
where decentralized critics often outperform a centralized critic.
We further analyze the results and discuss possible reasons for
these performance differences. We therefore demonstrate room
for improvement with current methods while laying theoretical
groundwork for future work.

2 RELATED WORK

Recent deep MARL works often use the CTDE training paradigm.
Value function based CTDE approaches (7, 23, 33, 34, 38, 39, 44, 45,
48] focus on how centrally learned value functions can be reason-
ably decoupled into decentralized ones and have shown promising
results. Policy gradient methods on CTDE, on the other hand, have
heavily relied on centralized critics. One of the first works utiliz-
ing a centralized critic was COMA [10], a framework adopting a
centralized critic with a counterfactual baseline. For convergence
properties, COMA establishes that the overall effect on decentral-
ized policy gradient with a centralized critic can be reduced to
a single-agent actor-critic approach, which ensures convergence
under similar assumptions [17]. In this paper, we take the theory
one step further and show convergence properties for centralized
and decentralized critics as well as their respective policies, while
giving a detailed bias-variance analysis.

Concurrently with COMA, MADDPG [20] proposed to use a
dedicated centralized critic for each agent in semi-competitive do-
mains, demonstrating compelling empirical results in continuous
action environments. M3DDPG [19] focuses on the competitive
case and extends MADDPG to learn robust policies against altering
adversarial policies by optimizing a minimax objective. On the co-
operative side, SQDDPG [43] borrows the counterfactual baseline
idea from COMA and extends MADDPG to achieve credit assign-
ment in fully cooperative domains by reasoning over each agent’s
marginal contribution. Other researchers also use critic centraliza-
tion for emergent communication with decentralized execution in
TarMAC [6] and ATOC [13]. There are also efforts utilizing an at-
tention mechanism addressing scalability problems in MAAC [12].
Besides, teacher-student style transfer learning LeCTR [29] also
builds on top of centralized critics, which does not assume expert
teachers. Other focuses include multi-agent exploration and credit
assignment in LIIR [8], goal-conditioned policies with CM3 [49],
and for temporally abstracted policies [4]. Based on a centralized
critic, extensive tests on a more realistic environment using self-
play for hide-and-seek [1] have demonstrated impressive results
showing emergent tool use. However, as mentioned before, these
works use centralized critics, but none of them specifically investi-
gate the effectiveness of centralized critics, which is the main focus
of this paper.

3 BACKGROUND

This section introduces the formal problem definition of cooperative
MARL with decentralized execution and partial observability. We
also introduce the single-agent actor-critic method and its most
straight-forward multi-agent extensions.
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3.1 Dec-POMDPs

A decentralized partially observable Markov decision process (Dec-
POMDP) is an extension of an MDP in decentralized multi-agent
settings with partial observability [27]. A Dec-POMDP is formally
defined by the tuple (7, S, {A;}, T, R, {Q;}, O), in which

e [ is the set of agents,

o S is the set of states including initial state sy,

o A = X;Aj; is the set of joint actions,

e 7 : 8 x A — S is the transition dynamics,

e R:S xAxXS — Ris the reward function,

o Q = X;Q; is the set of observations for each agent,
e 0:8 XA — Qis the observation probabilities.

At each timestep t, a joint action a = {ay¢, ..., alf\,t> is taken, each
agent receives its corresponding local observation (o1 ¢, . .., 0| 7| +) ~
O(st,a;) and a global reward r; = R(st, ar, sy+1). The joint ex-
pected discounted return is G = Zthl y'rs where y is a discount
factor. Agent i’s action-observation history for timestep ¢t is de-
fined as (0i1,ai,1,0i2,...,4it-1,0i¢), and we define history re-
cursively as h;; = (hjs—1,ait-1,0i), likewise, a joint history is
h; = (hs_1,a;_1,0:).2 To solve a Dec-POMDP is to find a set of
policies & = (nl,,..,n|]|) where 7; : hijy — aj; such that the
joint expected discounted return G is maximized.

Notation. For notational readability, we denote the parameter-
ized decentralized policy 7y, as 7;, on-policy G estimate Q7 as Q;,
and Q7 as Q. We denote the objective (discounted expected return)
for any agent with a decentralized critic as J; and the objective
with a centralized critic as J.. In addition, a timestep ¢ is implied
for s, h, hj, a or a;.

3.2 Actor Critic method (AC)

Actor critic (AC) [17] is a widely used policy gradient (PG) ar-
chitecture and is the basis for many single-agent policy gradient
approaches. Directly optimizing a policy, policy gradient (PG) algo-
rithms perturb policy parameters € in the direction of the gradient
of the expected return VoE([Gy, ], which is conveniently given by
the policy gradient theorem [17, 41]:

VoE[Gry] = Epa[Vologmg(a | h)Q™ (h.a)] (1)

Actor-critic (AC) methods [17] directly implement the policy gra-
dient theorem by learning the value function Q% i.e., the critic,
commonly through TD learning [40]. The policy gradient for up-
dating the policy (i.e., the actor) then follows the return estimates
given by the critic (Equation 1).

3.3 Multi-Agent Actor Critic methods

We introduce three extensions of single-agent Actor Critic methods
to multi-agent settings, which are highlighted in Table 1.

The first AC multi-agent extension, Joint Actor Critic (JAC) [2,
46], treats the multi-agent environment as a single-agent environ-
ment and learns in the joint observation-action space; JAC learns
a centralized actor, 7 (a | h;0), and a centralized value function

2For Proposition 1 and all following results, we employ a fixed-memory history where
the history only consists of the past k observations and actions. Formally, a history
at timestep ¢ with memory length k is defined as h; g = (h;_1 k-1, @;—1, 0;) when
k > 0and t > 0, otherwise @.
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Method ‘ Critic Actor
JAC [2, 46] Centralized Centralized
IAC [10, 42] Decentralized Decentralized
IACC [10, 20] | Centralized Decentralized

Table 1: Our Multi-agent Actor Critic Naming Scheme.

(critic), Q" (h, a; ¢). The policy gradient for JAC follows that of
single-agent actor critic:

VJ(0) =EqplViogm(a | h;0)Q" (ha;¢)]. @

The second AC multi-agent extension, called Independent Ac-
tor Critic (IAC) [10, 42], learns a decentralized policy and critic
(mi(a; | hi; 0;), Qi(hi, ai; $i)) for each of the agents locally. At ev-
ery timestep t, a local experience (h; s, a; ;) is generated for agent i.
The policy gradient learning for agent i is defined as

Vo, Ja(0:) = Bqp[Viog mi(a; | hi;0:)Qi(hi, aiz¢i)]. (3)

Finally, we define Independent Actor with Centralized Critic
(IACC), a class of centralized critic methods where a joint value
function Q” (h, a; ¢) is used to update each decentralized policy
g, [2, 10].3 Naturally, the policy gradient for decentralized policies
with a centralized critic is defined as

Vo, Je(0;) = Bgp[Vlog m;(a; | hi; 6:)07 (h,a; 9)]. 4)

At any timestep, the joint expected return estimate Q” (h, a; ¢)
is used to update the decentralized policy n(a; | hj; 6;). Notice
that the centralized critic Q7 (h, a; ¢) estimates the return based on
joint information (all agents’ action-histories) that differs from the
decentralized case in Eq. 3. In the following section, we shall show
that from a local viewpoint of agent i, for each joint action-history
(ht,az), Q" (ht, ar; §) is a sample from the return distribution given
local action-histories Pr(Gy.1 | hit, ai,r), while the decentralized
critic Q;(h;¢, ai¢) provides an expectation.

4 BIAS ANALYSIS

In this section, we prove policies have the same expected gradi-
ent whether using centralized or decentralized critics. We prove
that the centralized critic provides unbiased and correct on-policy
return estimates, but at the same time makes the agents suffer
from the same action shadowing problem [24] seen in decentral-
ized learning. It is reassuring that the centralized critic will not
encourage a decentralized policy to pursue a joint policy that is
only achievable in a centralized manner, but also calls into question
the benefits of a centralized critic. We provide a theoretical proof
on bias equivalence, then analyze a classic example for intuitive
understanding.

4.1 Equivalence in Expected Gradient

We first show the gradient updates for IAC and IACC are the same
in expectation. We assume the existence of a limiting distribution
Pr(h) over fixed-length histories, analogous to a steady-state as-
sumption. That is, we treat fixed-memory trajectories as nodes in a

3For example, COMA [10] is then considered as an IACC approach with a variance
reduction baseline.
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Markov chain for which the policies induce a stationary distribu-
tion.

PROPOSITION 1. Suppose that agent histories are truncated to an
arbitrary but finite length. A stationary distribution on the set of
all possible histories of this length is guaranteed to exist under any
collection of agent policies.

We provide formal justification for Proposition 1 in Appen-
dix A.1 [22], necessary to derive Bellman equations in our following
theoretical results. With this, we begin by establishing novel con-
vergence results for the centralized and decentralized critics in
Lemmas 1 and 2 below, which culminate in Theorem 1 regarding
the expected policy gradient.

LEMMA 1. Given the existence of a steady-state history distribu-
tion (Proposition 1), training of the centralized critic is character-
ized by the Bellman operator B, which admits a unique fixed point
Q% (hi, hj, ai, aj) where Q" is the true expected return under the joint
policy .

LEMMA 2. Given the existence of a steady-state history distribution
(Proposition 1), training of the i-th decentralized critic is character-
ized by a Bellman operator By which admits a unique fixed point
Ep,q, [Q7 (hi, hj, ai, aj)| where Q™ is the true expected return under
the joint policy 7.

THEOREM 1. After convergence of the critics’ value functions, the
expected policy gradients for the centralized actor and the decentral-
ized actors are equal. That is,

E[VoJe(0)] =E[VgJa(0)] ®)
where J. and J; are the respective objective functions for the central
and decentralized actors, and the expectation is taken over all joint
histories and joint actions. All actors are assumed to have the same
policy parameterization.

Proof sketch: We derive Bellman equations for the centralized
and decentralized critics and express them as Q-function operators.
We show that these operators are contraction mappings and admit
fixed points at Q” (h;, hj, a;, aj) and Ehj,aj [Q”(h,-, hj, ai, aj)], re-
spectively. These convergence results reveal that the decentralized
critic becomes the marginal expectation of the centralized critic
after training for an infinite amount of time. Under the total ex-
pectation over joint histories and joint actions, these fixed points
are identically equal, implying that gradients computed for the
centralized and decentralized actors are the same in expectation
and therefore unbiased. The full proofs for Lemmas 1 and 2 and
Theorem 1 are respectively provided in Appendices A.2, A.3, and
A4

Our theory assumes that the critics are trained sufficiently to
converge to their true on-policy values. This assumption often
exists in the form of infinitesimal step sizes for the actors [3, 10,
17, 37, 50] for convergence arguments of AC, since the critics are
on-policy return estimates and the actors need an unbiased and
up-to-date critic. Although this assumption is in line with previous
theoretical works, it is nevertheless unrealistic; we discuss the
practical implications of relaxing this assumption in Section 6.1.

4While it appears that we analyze the case with two agents, agent i and j, the result
holds for arbitrarily many agents by letting j represent all agents except i.
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4.2 Climb Game as an Intuitive Example

We use a classic matrix game as an example to intuitively highlight
that IAC and IACC give the same policy gradient in expectation.
The Climb Game [5], whose reward function is shown in Table 2, is
a matrix game (a state-less game) in which agents are supposed to
cooperatively try to achieve the highest reward of 11 by taking the
joint action (uy, u1), facing the risk of being punished by —30 or 0
when agents miscoordinate. It is difficult for independent learners
to converge onto the optimal (uy, u1) actions due to low expected
return for agent 1 to take u; when agent 2’s policy is not already
favoring u; and vise versa.

This cooperation issue arises when some potentially good action
a has low ("shadowed") on-policy values because yielding a high re-
turn depends on other agents’ cooperating policies, but frequently
taking action a is essential for other agents to learn to adjust their
policies accordingly, creating a dilemma where agents are unwilling
to frequently take the low-value action and are therefore stuck in
a local optimum. In the case of the Climb Game, the value of u; is
often shadowed, because u; does not produce a satisfactory return
unless the other agent also takes u; frequently enough. This com-
monly occurring multi-agent local optimum is called a shadowed
equilibrium [11, 31], a known difficulty in independent learning
which usually requires an additional cooperative mechanism (e.g.,
some form of centralization) to overcome.

Solving the Climb Game independently with IAC, assume the
agents start with uniformly random policies. In expectation, IAC’s
decentralized critic would estimate Q1 (u1) at (1/3) X 11+ (1/3) x
(—30) + 0 » —6.3, making u3 (with Q1(u3) ~ 3.7) a much more
attractive action, and the same applies for agent 2. Naturally, both
agents will update towards favoring us; continuing this path, agents
would never favor u; and never discover the optimal value of u;:
Q7 (u1) = 11.

In the case of an IACC method, unsurprisingly, the centralized
critic can quickly learn the correct values, including the value of the
optimal joint action Q(u1,u1) = 11 since there is no environmental
stochasticity. However, consider at timestep ¢ agent 1 takes optimal
action up, the (centralized) Q value estimate used in policy gradient
VO(u1, agt)m1(ur) actually depends on what action agent 2 chooses
to take according to its policy az; ~ m2. Again assuming uniform
policies, consider a rollout where action ay; is sampled from the
policy of agent 2; then with sufficient sampling, we expect the mean
policy gradient (given by centralized critic) for updating 71 (u1)
would be

Er,VJc(0 | a1 =wu)
= mo(u1) VO(u1, u1) i (u1) + w2 (u2) VO (u1, uz) 1 (u1)
+ 2 (us) VQ (u1, uz)m (u1)
= (1/3)V1ilma(ug) + (1/3)V = 3071 (u1) + (1/3)VOry (u1)
~ —6.3- Vi (uy)

(6)

That is, with probabilities 72 (u1), 72(u2) and 72 (u3), the joint Q-
values 11,—30 and 0 are sampled for generating the policy gradient
of action 1 for agent 1, 71 (u1). It implies that the sample-average
gradient for 71 (u1) is high only when agent 2 takes action u; fre-
quently. If agent 2 has a uniform policy, the sample-average gradient
—6.3V 1 (u1) cannot compete with the gradient for us at 1.7V (u3).
Therefore, in the JACC case with a centralized critic, we see the
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Figure 1: Climb Game empiricalengsults (50 runs per method)
showing both decentralized and centralized critic methods
succumb to the shadowed equilibrium problem.

agent 1
Uy uz U3
up |11 -30 0
agent2 wu; | -30 7 6
uz | 0 0 5

Table 2: Return values for Climb Game [5].

rise of an almost identical action shadowing problem we described
for IAC, even though the centralized critic trained jointly and has
the correct estimate of the optimal joint action.

Empirical evaluation on the Climb Game (shown in Figure 1)
conforms to our analysis, showing both methods converge to the
suboptimal solution (as, a3). At the same time, unsurprisingly, a
centralized controller always gives the optimal solution (aj, a1). In
general, we observe that the centralized critic has the information
of the optimal solution, information that is only obtainable in a
centralized fashion and is valuable for agents to break out of their
cooperative local optima. However, this information is unable to be
effectively utilized on the individual actors to form a cooperative
policy. Therefore, contrary to the common intuition, in its current
form, the centralized critic is unable to foster cooperative behavior
more easily than the decentralized critics.

5 VARIANCE ANALYSIS

In this section, we first show that with true on-policy value func-
tions, the centralized critic formulation can increase policy gradient
variance. More precisely, we prove that the policy gradient variance
using a centralized critic is at least as large as the policy gradient
variance with decentralized critics. We again assume that the critics
have converged under fixed policies, thus ignoring the variance
due to value function learning; we discuss the relaxation of this
assumption in Section 6.

We begin by comparing the policy gradient variance between
centralized and decentralized critics:

THEOREM 2. Assume that all agents have the same policy param-
eterization. After convergence of the value functions, the variance of
the policy gradient using a centralized critic is at least as large as that
of a decentralized critic along every dimension.

Proof sketch: As with our proof of Theorem 1, Lemmas 1 and 2
show that a decentralized critic’s value estimate is equal to the
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marginal expectation of the central critic’s Q-function after con-
vergence. This implies that the decentralized critics have already
averaged out the randomness caused by the other agents’ deci-
sions. Since each agent has the same policy parameterization, their
policy gradient covariance matrices are equal up to the scale fac-
tors induced by the critics’ value estimates. By Jensen’s inequality,
we show that the additional stochasticity of the central critic can
increase (but not decrease) these scale factors compared to a decen-
tralized critic; hence, Var(J.(6)) > Var(J;(0)) element-wise.

In the following subsections, we define and analyze this variance
increase by examining its two independent sources: the “Multi-
Action Variance” (MAV) induced by the other actors’ policies, and
the “Multi-Observation Variance” (MOV) induced by uncertainty
regarding the other agents’ histories from the local perspective of
a single agent. We introduce these concepts along with concrete
examples to illustrate how they affect learning.

5.1 Multi-Action Variance (MAV)

We discuss MAV in the fully observable case and will address the
partially observable case in MOV. Intuitively, from the local per-
spective of agent i, when taking an action @’ at state s, MAV is
the variance Var[G(s, a;)] in return estimates due to the fact that
teammates might take different actions according to their own sto-
chastic policies. With decentralized critics, MAV is averaged into
the value function (Lemma 2) which is an expectation incorporating
teammates actions aj; thus, at given timestep ¢, Q;(s, a;) has no
variance. On the other hand, a centralized critic Q(s, a;, a 1) distin-
guishes between all action combinations (a;, a;) (Lemma 1), but a;
is sampled by agent j during execution: a; ~ 7;(s); therefore, the
value of Q(s, a;, aj) varies during policy updates depending on a;.
We propose a simple domain to clarify this variance’s cause and
effect and show that a centralized critic transfers MAV directly to
policy updates.

5.1.1 The Morning Game and the MAV. The Morning Game, in-
spired by Peshkin et al. [32], shown in Table 3, consists of two
agents collaborating on making breakfast in which the most de-
sired combination is {cereal, milk). Since there is no environmental
stochasticity, a centralized critic can robustly learn all the values
correctly after only a few samples. In contrast, the decentralized
critics need to average over unobserved teammate actions. Take
a closer look at action cereal: for a centralized critic, cereal with
milk returns 3 and cereal with vodka returns 0; meanwhile, a decen-
tralized critic receives stochastic targets (3 or 0) for taking action
cereal, and only when agent 2 favors milk, a return of 3 comes
more often, which then would make Q1 (cereal) a higher estimate.
Therefore, the centralized critic has a lower variance (zero in this
case), and the decentralized critic has a large variance on the update
target.

Often neglected is that using a centralized critic has higher vari-
ance when it comes to updating decentralized policies. Suppose
agents employ uniform random policies for both IAC and IACC,
in which case agent 1’s local expected return for cereal would be
Q1 (cereal) = my(milk) - 3 + my(vodka) - 0 = 1.5. Assuming con-
verged value functions, then in IACC, a centralized critic would uni-
formly give either Q(cereal, milk) = 3 or Q(cereal, vodka) = 0 for
1 (cereal) updates, and Q(pickles, milk) = 0 or Q(pickles,vodka) =
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agent 1
pickles cereal
vodka | 1 0
agent 2
milk 0 3

Table 3: Return values for the proposed Morning Game.

1 for 71 (pickles) updates. With IAC, a decentralized critic always
gives Q(cereal) = 1.5 for my(cereal), and Q(pickle) = 0.5 for
7z (pickle). Obviously, under both methods, 7; converges towards
cereal, but the decentralized critic makes the update direction less
variable and much more deterministic in favor of cereal.

5.2 Multi-Observation Variance (MOV)

In the partially observable case, another source of variance in local
value Var[G(h;, a;)] comes from factored observations. More con-
cretely, for an agent in a particular local trajectory h;, other agents’
experiences hj € H; may vary, over which the decentralized agent
has to average. A decentralized critic is designed to average over
this observation variance and provide and single expected value
for each local trajectory Qj(h;, a;). The centralized critic, on the
other hand, is able to distinguish each combination of trajectories
(hi, hj), but when used for a decentralized policy at h;, teammate
history h; can be considered to be sampled from Pr(h; | h;), and
we expect the mean estimated return during the update process to
be Eth(hi, hj, a).

We use a thought experiment® as an example. Consider a one-
step task where two agents have binary actions and are individually
rewarded r if the action matches the other’s randomly given binary
observations and —r for a mismatch; that is, R(h;, hj, a;) = r when
hj = a; and —r otherwise. With any policy, assuming converged
value functions, a decentralized critic would estimate Q(h;, a;) = 0
with zero variance. On the other hand, a centralized critic with
a global scope is able to recognize whether the current situation
(hi, hj, a;) would result in a return of 1 or 0, hence estimates r with
probability 0.5 (when hj = a; by definition) and —r with probability
0.5 (when hj # a;), resulting in a variance of 2. In this example, we
see that a centralized critic produces returns estimates with more
significant variance when agents have varying observations.

6 DISCUSSION

In this section, we discuss the anticipated trade-off in practice. We
look at the practical aspects of a centralized critic and address the
unrealistic true value function assumption. We note that, although
both types of critics have the same expected gradient for policy
updates, they have different amount of actual bias in practice. We
also discuss how and why the way of handling variance is different
for IAC and IACC. We conclude that we do not expect one method
to dominate the other in terms of performance in general.

6.1 Value Function Learning

So far, in terms of theory, we have only considered value functions
that are assumed to be correct. However, in practice, value functions

SWe also propose a toy domain called Guess Game based on this thought experiment,
which we elaborate and show empirical results in Appendix C.
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are difficult to learn. We argue that it is generally more so with
decentralized value functions.

In MARL, the on-policy value function is non-stationary since
the return distributions heavily depend on the current joint policy.
When policies update and change, the value function is partially
obsolete and is biased towards the historical policy-induced re-
turn distribution. Bootstrapping from outdated values creates bias.
Compounding bias can cause learning instability depending on the
learning rate and how drastically the policy changes.

The non-stationarity applies for both types of critics since they
are both on-policy estimates. However, centralized value function
learning is generally better equipped in the face of non-stationarity
because it has no variance in the update targets. Therefore, the
bootstrapping may be more stable in the case of a centralized critic.
As a result, in a cooperative environment with a moderate number
of agents (as discussed later), we expect a centralized critic would
learn more stably and be less biased, perhaps counteracting the
effect of having larger variance in the policy gradient.

6.2 Handling MAV and MOV

Learning a decentralized policy requires reasoning about local opti-
mality. That is, given local information h;, agent i needs to explicitly
or implicitly consider the distribution of global information: other
agents’ experiences and actions Pr(aj,hj | h;), through which
agent i needs to take the expectation of global action-history val-
ues. Abstractly, the process of learning via sampling over the joint
space of a; and h; thus generates MAV and MOV for agent i’s pol-
icy gradient. Interestingly, this process is inevitable but takes place
in different forms: during IAC and IACC training, this averaging
process is done by different entities. In IAC, those expectations are
implicitly taken by the decentralized critic and produce a single
expected value for the local history; this is precisely why decen-
tralized critic learning has unstable learning targets as discussed in
Section 6.1. On the other hand, in IACC, the expectation takes place
directly in the policy learning. Different samples of global value
estimates are used in policy updates for a local trajectory, hence
the higher policy gradient variance we discussed in Section 5. Thus,
for decentralized policy learning purposes, we expect decentralized
critics to give estimates with more bias and less variance, and the
centralized critic to give estimates with less bias and more variance.
Consequently, the trade-off largely depends on the domain; as we
shall see in the next section, certain domains favor a more stable
policy while others favor a more accurate critic.

6.3 Scalability

Another important consideration is the scale of the task. A central-
ized critic’s feature representation needs to scale linearly (in the
best case) or exponentially (in the worse case) with the system’s
number of agents. In contrast, a decentralized critic’s number of
features can remain constant, and in homogeneous-agent systems,
decentralized critics can even share parameters. Also, some envi-
ronments may not require much reasoning from other agents. For
example, in environments where agents’ decisions rarely depend
on other agents’ trajectories, the gain of learning value functions
jointly is likely to be minimal, and we expect decentralized critics
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to perform better while having better sample efficiency in those
domains. We show this empirically in Section 7.4.

The impact of variance will also change as the number of agents
increases. In particular, when learning stochastic policies with a
centralized critic in IACC, the maximum potential variance in the
policy gradient also scales with the number of agents (see Theo-
rem 2). On the other hand, IAC’s decentralized critics potentially
have less stable learning targets in critic bootstrapping with in-
creasing numbers of agents, but the policy updates still have low
variance. Therefore, scalability may be an issue for both methods,
and the actual performance is likely to depend on the domain, func-
tion approximation setups, and other factors. However, we expect
that IAC should be a better starting point due to more stable policy
updates and potentially shared parameters.

6.4 The Overall Trade-off

Combining our discussions in Sections 6.1 and 6.2, we conclude that
whether to use critic centralization can be essentially considered a
bias-variance trade-off decision. More specifically, it is a trade-off
between variance in policy updates and bias in the value function:
a centralized critic should have a lower bias because it will have
more stable Q-values that can be updated straightforwardly when
policies change, but higher variance because the policy updates
need to be averaged over (potentially many) other agents. In other
words, the policies trained by centralized critics avoid more-biased
estimates usually produced by decentralized critics, but in return
suffer more variance in the training process. The optimal choice is
then largely dependent on the environment settings. Regardless,
the centralized critic likely faces more severe scalability issues in
not only critic learning but also in policy gradient variance. As a
result, we do not expect one method will always dominate the other
in terms of performance.

7 EXPERIMENTS AND ANALYSIS

In this section, we present experimental results comparing cen-
tralized and decentralized critics. We test on a variety of popular
research domains including (but not limited to) classical matrix
games, the StarCraft Multi-Agent Challenge [35], the Particle En-
vironments [25], and the MARL Environments Compilation [14].
Our hyperparameter tuning uses grid search. Each figure, if not
otherwise specified, shows the aggregation of 20 runs per method.

7.1 Variance in the Morning Game

As we can see in Figures 2a and 2b, the variance per rollout in
the policy gradient for both actions is zero for IAC and non-zero
for IACC, validating our theoretical variance analysis. Figure 2c
shows how the Q-values evolve for the optimal action a3 in both
methods. First, observe that both types of critics converged to the
correct value 3, which confirms our bias analysis. Second, the two
methods’ Q-value variance in fact comes from different sources.
For the decentralized critic, the variance comes from the critics
having different biases across trials. For centralized critics, there is
the additional variance that comes from incorporating other agent
actions, producing a high value when a teammate chooses milk
and a low value when a teammate chooses vodka.
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7.2 Unstable Policies

7.2.1  Dec-Tiger. We test on the classic yet difficult Dec-Tiger do-
main [26], a multi-agent extension to the Tiger domain [16]. To end
an episode, each agent has a high-reward action (opening a door
with treasure inside) and a high-punishment action (opening a door
with tiger inside). The treasure and tiger are randomly initialized in
each episode, hence, a third action (listen) gathers noisy information
regarding which of the two doors is the rewarding one. The multi-
agent extension of Tiger requires two agents to open the correct
door simultaneously in order to gain maximum return. Conversely,
if the bad action is taken simultaneously, the agents take less pun-
ishment. Note that any fast-changing decentralized policies are less
likely to coordinate the simultaneous actions with high probability,
thus lowering return estimates for the critic and hindering joint
policy improvement. As expected, we see in Figure 3a that IACC
(with a centralized critic and higher policy gradient variance) does
not perform as well as IAC due. In the end, the IACC agent learns to
avoid high punishment (agents simultaneously open different doors,
—100) by not gathering any information (listen) and opening an
agreed-upon door on the first timestep. IACC gives up completely
on high returns (where both agents listen for some timesteps and
open the correct door at the same time, +20) because the unstable
policies make coordinating a high return of +20 extremely unlikely.

7.2.2  Cleaner. We observe similar policy degradation in the Cleaner
domain [14], a grid-world maze in which agents are rewarded for
stepping onto novel locations in the maze. The optimal policy is
to have the agents split up and cover as much ground as possible.
The maze has two non-colliding paths (refer to Appendix D.3 for
visualization) so that as soon as the agents split up, they can follow
a locally greedy policy to get an optimal return. However, with
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a centralized critic (IACC), both agents start to take the longer
path with more locations to "clean." The performance is shown in
Figure 3b. When policy-shifting agents are not completely locally
greedy, the issue is that they cannot "clean" enough ground in their
paths. Subsequently, they discover that having both agents go for
the longer path (the lower path) yields a better return, converging
to a suboptimal solution. Again we see that in IACC with central-
ized critic, due to the high variance we discussed in Section 6.2,
the safer option is favored, resulting in both agents completely
ignoring the other path (performance shown in Figure 3b). Overall,
we see that high variance in the policy gradient (in the case of the
centralized critic) makes the policy more volatile and can result
in poor coordination performance in environments that require
coordinated series of actions to discover the optimal solution.

7.3 Shadowed Equilibrium

Move Box [14] is another commonly used domain, where grid-world
agents are rewarded by pushing a heavy box (requiring both agents)
onto any of the two destinations (see Appendix D.4 for details). The
farther destination gives +100 reward while the nearer destination
gives +10. Naturally, the optimal policy is for both agents to go for
+100, but if either of the agents is unwilling to do so, this optimal
option is "shadowed" and both agents will have to go for +10. We
see in Figure 3c that both methods fall for the shadowed equilibrium,
favoring the safe but less rewarding option.

Analogous to the Climb Game, even if the centralized critic is
able to learn the optimal values due to its unbiased on-policy nature
shown in Section 4.1, the on-policy return of the optimal option is
extremely low due to an uncooperative teammate policy; thus, the
optimal actions are rarely sampled when updating the policies. The
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same applies to both agents, so the system reaches a suboptimal
equilibrium, even though IACC is trained in a centralized manner.

7.4 Robustness in Performance

Through tests on Go Together [14], Merge [49], Predator and Prey [20],
Capture Target [30, 47], Small Box Pushing and SMAC [35] tasks
(see Appendices D, E, F, G, H, I, and J), we observe that the two
types of critics perform similarly in all these domains, with IACC
(with a centralized critic) being less stable in only a few other do-
mains shown in Figures 3 and 4. Since the performance of the two
critic types is similar in most results, we expect that it is due to
the fact that both are unbiased asymptotically (Lemmas 1, 2 and
Theorem 1). We observe that, although decentralized critics might
be more biased when considering finite training, it does not affect
real-world performance in a significant fashion in these domains.
In cooperative navigation domains Antipodal, Cross [25, 49], and
Find Treasure [14], we observe a more pronounced performance
difference among runs (Figure 4). In these cooperative navigation
domains (details in Appendices D.2 and E), there are no suboptimal
equilibria that trap the agents, and on most of the timesteps, the
optimal action aligns with the locally greedy action. Those tasks
only require agents to coordinate their actions for a few timesteps
to avoid collisions. It appears that those tasks are easy to solve, but
the observation space is continuous, thus causing large MOV in the
gradient updates for IACC. Observe that some IACC runs struggle to
reach the optimal solution robustly, while IAC robustly converges,
conforming to our scalability discussion regarding large MOV. A
centralized critic induces higher variance for policy updates, where
the shifting policies can become a drag on the value estimates which,
in turn, become a hindrance to improving the policies themselves.
The scalability issue can be better highlighted in environments
where we can increase the observation space. For example, in Cap-
ture Target [21] where agents are rewarded by simultaneously
catching a moving target in a grid world (details in Appendix G),

by increasing the grid size from 4 X 4 to 12 X 12, we see a no-
table comparative drop in overall performance for IACC (Figure 5).
Since an increase in observation space leads to an increase in Multi-
Observation Variance (MOV) and nothing else, it indicates that here
the policies of IACC do not handle MOV as well as the decentralized
critics in IAC. The result might imply that, for large environments,
decentralized critics scale better in the face of MOV due to the fact
that they do not involve MOV in policy learning.

8 CONCLUSION

In this paper, we present an examination of critic centralization
theoretically and empirically. The core takeaways are: 1) in theory,
centralized and decentralized critics are the same in expectation
for the purpose of updating decentralized policies; 2) in theory,
centralized critics will lead to higher variance in policy updates; 3) in
practice, there is a bias-variance trade-off due to potentially higher
bias with limited samples and less-correct value functions with
decentralized critics; 4) in practice, a decentralized critic regularly
gives more robust performance since stable policy gradients appear
to be more crucial than stable value functions in our domains.

Although IACC uses a centralized critic that is trained in a cen-
tralized manner, the method does not produce policies that exploit
centralized knowledge. Therefore, future work on IACC may ex-
plore feasible ways of biasing the decentralized policies towards a
better joint policy by exploiting the centralized information. Reduc-
ing variance in policy updates and other methods that make better
use of centralized training are promising future directions.
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