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Abstract— Policy gradient methods have become popular in
multi-agent reinforcement learning, but they suffer from high
variance due to the presence of environmental stochasticity and
exploring agents (i.e., non-stationarity), which is potentially
worsened by the difficulty in credit assignment. As a result,
there is a need for a method that is not only capable of
efficiently solving the above two problems but also robust
enough to solve a variety of tasks. To this end, we propose
a new multi-agent policy gradient method, called Robust Local
Advantage (ROLA) Actor-Critic. ROLA allows each agent to
learn an individual action-value function as a local critic as
well as ameliorating environment non-stationarity via a novel
centralized training approach based on a centralized critic.
By using this local critic, each agent calculates a baseline
to reduce variance on its policy gradient estimation, which
results in an expected advantage action-value over other agents’
choices that implicitly improves credit assignment. We evaluate
ROLA across diverse benchmarks and show its robustness
and effectiveness over a number of state-of-the-art multi-agent
policy gradient algorithms.

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) has shown
many successes in solving real-world multi-robot tasks, such
as hallway navigation [1], autonomous vehicles in merging
traffic [2], warehouse tool delivery [3] and unmanned aerial
vehicle coordination [4]. Recently, MARL has made signifi-
cant progress on learning decentralized policies for a group
of agents to achieve collaborative behaviors by operating
based on only local information under uncertainty [5]–[8].
In practice, having decentralized policies for each robot is
preferable since fast and perfect online communication is
often hard to guarantee in many real-world applications.

MARL methods often build off of single-agent RL meth-
ods. In terms of taking advantage of single-agent reinforce-
ment learning techniques, the independent learning (IL)
framework is the simplest solution, allowing each agent to
learn an individual policy in such environments [9]. Although
IL may sometimes work in practice, it encounters a crucial
theoretical issue: the environment becomes non-stationary
from each agent’s perspective as other agents explore and up-
date policies. This so-called environmental non-stationarity
is known to generate a high variance on value and gradient
estimations and impedes agents from collaborating well.

Centralized training with decentralized execution
(CTDE) [10], [11] has been a very promising learning
framework for improving solution quality while maintaining
decentralized execution in MARL. CTDE has been
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implemented with both value-based [12]–[15] and policy-
gradient-based approaches [16]–[21]. In particular, policy
gradient algorithms based on an actor-critic framework have
become prominent for implementing the CTDE paradigm.
The key idea is to train a centralized critic conditioned
on accessible global information for directing each
decentralized actor’s optimization. This centralized critic
is favored for its stationary learning targets, overcoming
the major theoretical problem in IL, and has become the
basis of many recent advances. However, with a global
reward function in multi-agent cooperative problems,
simply applying a shared centralized critic to compute the
gradient for each agent’s action still causes a severe credit
assignment issue. It introduces extra variance on gradient
estimation for each agent’s policy since the critic conditions
on joint observations and actions, where the joint space is
of exponential size.

COMA [16], as a representative multi-agent actor-critic-
based method, achieves variance reduction by using a coun-
terfactual baseline, inspired from difference rewards [22], to
credit each agent. The counterfactual baseline is a promising
idea, but it estimates the contribution of each agent’s action
by marginalizing over only the corresponding agent’s coun-
terfactual action choices while keeping other agents’ actions
fixed. As a result, the estimation variance caused by other
agents’ explorations still exists, which leads to noisy credit
assignments. SQDDPG [19] extends COMA’s idea to capture
the average contribution of an agent’s action by sequentially
adding the agent into a set of sampled coalitions. Although
it theoretically improves the effectiveness of resolving the
two problems mentioned above, it has a strong requirement
on a prior distribution over the coalition space, which is
often not available without having good knowledge of a
given domain’s properties. MAAC [20] utilizes a centralized
attention mechanism to solve tasks that require agents to
selectively focus on different things in order to produce
rich collaborations. However, it still suffers from inefficient
credit assignment and variance reduction due to the pure
dependency on COMA’s counterfactual scheme. LIIR [21]
explicitly approximates each agent’s individual reward based
on global reward signals, and its performance highly depends
on the underlying complexity of the ground truth credit
assignment shaped by the domain reward function.

Value function factorization has also become popular
in MARL for learning individual Q-functions [12]–[15].
Such methods have recently been introduced into actor-
critic frameworks [23], [24] to learn critics. However, these
factorization methods have an inherent limitation caused by
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restricting the relationship between the joint Q-values and
decentralized Q-values, such as assuming a linear summa-
tion constraint, a non-linear monotonic constraint, or other
weighted constraints. These constraints prevent the methods
from learning the true joint action-value function in general
and potentially limit each method to work well in particular
tasks (such as the SMAC domains [6] in most related papers)
but perform worse in some other domains [25].

In this paper, we propose a novel policy gradient actor-
critic framework that not only is able to efficiently address
both credit assignment and learning variance problems but
also possesses high robustness, where the ‘robustness’ means
that the proposed method always gains outstanding perfor-
mance over multiple domains. To this end, we introduce a
Robust Local Advantage (ROLA) Actor-Critic policy gradi-
ent algorithm to learn decentralized policies.

ROLA features a new centralized training approach that
incorporates a centralized critic into each agent’s local critic
optimization with the benefits including: a) alleviating the
effectiveness of environmental non-stationarity; b) counter-
acting the overestimation often existing in learning with a
single value approximator; c) generating extra joint-action
selections from the centralized perspective as training data
rather than using only decentralized trajectories in exist-
ing CTDE-based policy gradient approaches. d) facilitating
agents to avoid local optima to learn good collaborations. The
local critic is also allowed to access extra global information
but only conditions on each agent’s own action. The resulting
critic provides an estimated action-value over other agents’
behaviors, implicitly completing the credit assignment. Fur-
thermore, by using this local critic, each agent can obtain a
low-variance advantage action-value estimation that can be
used for policy updates.

II. BACKGROUND

We start by formalizing our fully cooperative multi-agent
reinforcement learning problem and then introduce the fun-
damental reinforcement learning algorithms that our new
approach builds on.

A. Dec-POMDPs

In a fully cooperative task, a team of agents behaves
in a decentralized operating manner, individually choosing
actions purely based on local observations, with state and
outcome uncertainties can be described as a decentral-
ized partially observable Markov decision process (Dec-
POMDP) [26], defined as a tuple 〈I, S,A,Ω, T,O,R〉. I =
{1, ..., n} represents a finite set of agents; S is a finite set
of environment true states; A = ×iAi and Ω = ×iΩi stand
for the joint action space and the joint observation space
over agents respectively. At every time-step, each agent i
synchronously executes its own action ai, which induces
that the environment transits from the current state s to
a new state s′ according to the state transition function
T (s,~a, s′) = P (s′|s,~a), where a joint action formed as
~a = ×iai ∈ A; meanwhile, an immediate reward r(s,~a)
shared over agents is generated by the global reward function

R : S×A→ R; successively, due to the partial observability,
agents can only obtain a joint observation ~o = ×ioi ∈ Ω
under the new state s′, drawn according to the observation
function O(~o,~a, s′) = P (~o|~a, s′), and each agent’s policy
πi(ai|τi) is thus modeled as a mapping from individual
action-observation history τi to actions. The objective is
to optimize a joint policy ~π = ×iπi that maximizes the
expectation of a long-term discounted return from an initial
state s0, V ~π(s0) = E~π

[∑h−1
t=0 γ

tr(st,~at)|s0
]
, where h is the

horizon of the task and γ ∈ [0, 1] is a discount factor.

B. Advantage Actor-Critic (A2C)

Policy gradient is one popular reinforcement learning
technique with the aim to directly optimize a parame-
terized policy πθ by performing gradient ascent on the
expectation of discounted returns Eπθ [G]. Based on the
single-agent policy gradient theorem [27], the gradient with
respect to policy’s parameters in POMDPs can be writ-
ten as ∇θJ(θ) = Eπθ [∇θ log πθ(a|τ)Qπθ (a, τ)]. In actor-
critic framework [28], the on-policy action-value Qπθ is
approximated by using an action-value function Qπθφ (critic)
learned via temporal-difference (TD) learning. As a common
choice, people often train a state-value function in MDPs but
history-value function V πθw (τ) in POMDPs as the critic and
incorporate it into the policy gradient in a variance reduction
format [27] ending up with an advantage actor-critic (A2C)
policy gradient that can be written as:

∇θJ(θ) = Eπθ
[
∇θ log πθ(a|τ)A(τ, a)

]
(1)

where, A(τ, a) = r(τ, a) + γV πθw (τ ′)− V πθw (τ).

C. Independent Advantage Actor-Critic (IA2C)

In the light of independent Q-learning [9], independent
advantage actor-critic (IA2C) [16] is a straightforward ex-
tension of single-agent A2C to multi-agent scenarios. The
specific version of IA2C considered in this paper is formu-
lated as:

∇θiJ(θi) = E~πθ
[
∇θi log πθi(ai|τi)A(τi, ai)

]
(2)

where, A(τi, ai) = r + γV
πθi
wi (τ ′i)− V

πθi
wi (τi) with a shared

reward r assigned by the global reward function R. Agents
independently optimize each own actor πθi and critic V

πθi
wi

purely based on local experiences. While decentralized poli-
cies can be directly learned in this simple decomposition
manner, each independent learner suffers from several innate
limitations: the difficulty in distinguishing environmental
natural stochasticity from other agents’ explorations; the
dilemma of the environmental non-stationarity from a local
perspective caused by the existence of other learning agents;
the tendency of settling at a local optimum due to rare
information sharing over agents.

D. Counterfactual Multi-Agent Policy Gradients

With the mission of addressing the aforementioned limi-
tations in IA2C, Counterfactual multi-agent (COMA) policy
gradients [16], as the first A2C-based method adopting



centralized training with decentralized execution (CTDE),
proposes to learn a centralized critic, Q~πθφ (s,~a), conditioning
on full state information and all agents’ actions to annihilate
the non-stationary environment issue, and achieves variance
reduction and credit assignment by designing a counter-
factual baseline with respect to each agent’s policy in an
advantage function. The corresponding policy gradient for
each agent is then defined as:

∇θiJ(θi) = E~πθ
[
∇θi log πθi(ai|τi)Ai(s,~a)

]
(3)

Ai(s,~a) = Q~πθφ (s,~a)−
∑
ȧi

πθi(ȧi|τi)Q
~πθ
φ (s, ȧi,~a−i) (4)

We notice that, in Eq. 4, the counterfactual baseline is
calculated by marginalizing the action of agent i while keep-
ing others’ fixed. However, it is inefficient on both variance
reduction and credit assignment due to the freeze of other
agents’ actions in the counterfactual baseline computation
such that: (a) from agent i’s perspective, this counterfactual
variance reduction trick will malfunction when the variance
is caused by the explorations of other agents rather than agent
i; (b) the credit assignment attained by Eq.4 then becomes
just a sampled advantage value for the agent’s action ai under
a specific joint-action taken by teammates, which potentially
still leads to high variance on the agent’s policy gradient
related to the action ai in Eq. 3. It is a variant of the
multi-action variance that lives in vanilla multi-agent policy
gradients with a single centralized critic [24], [29].

The above two underlying flaws in COMA’s counterfactual
design can also be visualized by taking a further derivation
from Eq. 3 as follows:

∇θiJ(πθi) = E~πθ
[
∇θi log πθi(ai|τi)Ai(s,~a)

]
= Eπθi ,~πθ−i

[
∇θi log πθi(ai|τi)Ai(s, ai,~a−i)

]
(5)

= Eπθi

[
E~πθ−i

[
∇θi log πθi(ai|τi)Ai(s, ai,~a−i)

]]
(6)

= Eπθi

[
∇θi log πθi(ai|τi)E~πθ−i

[
Ai(s, ai,~a−i)

]]
(7)

Eventually, we reach an expected counterfactual advan-
tage policy gradient (ECA) as shown in Eq. 7, which can
be considered as an extension of the single-agent expected
policy gradient [30] to multi-agent CTDE framework.

Eq. 7 indicates that, in order to obtain a more accurate
value estimation on agent i’s action ai with low variance, we
are supposed to either explicitly compute the expected ad-
vantage value of ai or approximate it. It is a straightforward
marginalization process in the centralized training paradigm
with a centralized critic, where we can directly compute
the expectation using the policies and the critic. However,
it introduces significant computational costs exponentially
increasing with the number of agents and each agent’s action

space. Also, note that obtaining an approximation of ECA is
exactly what IA2C is trying to do, but several fatal defects
exist as mentioned in section II-C.

In this paper, we propose an approach to tackle the
above issues by letting each agent learn an individual local
critic only conditioning on its local action but in a novel
on-policy centralized training procedure which relieves the
environmental non-stationarity as well as achieving credit
assignment implicitly. Furthermore, the local critic is then
used to calculate a local advantage value for each agent to
reduce gradient variance more efficiently.

III. APPROACH

This section presents a new CTDE algorithm called Robust
Local Advantage (ROLA) Actor-Critic. The main idea of
ROLA is to learn a local action-value function as the critic of
each agent but inheriting a centralized insight that facilitates
agents to discover good coordinative behaviors. ROLA also
implicitly carries out multi-agent credit assignment and uses
this local critic in advantage action-value estimation to
produce variance reduction on each agent’s policy gradients.

Specifically, at the first step, ROLA learns a fully central-
ized critic, Q~πθφ (x,~a). As an on-policy evaluation of joint
actions, it is updated by minimizing the square TD-error loss:

L(φ) = E~πθ
[(
Q~πθφ (x,~a)− y

)2]
(8)

y = r + γQ
~πθ−
φ− (x′, a′1, ..., a

′
n) |a′i∼πθ−

i
(τ ′i)

(9)

where, each agent’s target policy πθ−i
with delayed pa-

rameters θ−i is used to sample the following action for
calculating the target prediction to further stabilizing the
learning. x denotes the accessible global signals such as joint
observations, joint action-observation histories, or the true
environmental state.

Secondly, ROLA defines a semi-centralized action-value
function, Qπθi (x, ai), for each agent i, that conditions only
on the corresponding agent’s action but is allowed to ac-
cess additional centralized information. This implies that
Qπθi (x, ai) satisfies the Bellman equation of either Dec-
MDP [26] or Dec-POMDP depending on if the information
encoded in x is the ground truth environment state or action-
observation histories. We, therefore, are able to use a neural
network function approximator with weights ψi to esti-
mate Qπθi (x, ai) via sample-based model-free reinforcement
learning approaches. This function approximator is referred
to as each agent’s local critic, represented as Qlocψi (x, ai).

Training this local critic to provide an accurate value
estimation on each agent’s action for assisting the decen-
tralized actor optimization via policy gradients is a non-
trivial problem, as it does not have access to other agents’
actions. As a result, it still confronts the curse of the envi-
ronmental non-stationarity and may diverge the cooperative
objective’s policies. To deal with this issue, we develop
a novel centralized-double-critic training framework taking
advantage of a fully centralized critic to update individual
local critics.



Fig. 1: Architecture of ROLA.

More concretely, in order to let each agent’s local critic,
Qlocψi (x, ai), precisely measure the value of a given action ai
under global information x, it has to be capable to capture the
expected effect of other agent action selections. We achieve
this by first using the centralized critic, Q~πθφ (x,~a), to sample
a joint next action ~a ′ via ‘softmax’ operation, from which
the corresponding agent’s next action a′i is then extracted
and passed into the target value calculation for computing a
local square TD-error being minimized during training:

L(ψi) = E~πθ
[(
Qlocψi (x, ai)− y

)2]
(10)

y = r + γQloc
ψ−i

(x′, a′i) |a′i←~a ′∼softmax
(
Q
~πθ
φ (x′,~a ′)

) (11)

In Eq. 11, sampling a joint action from the perspective of
the centralized critic incorporates other agents’ concurrent
behaviors into each agent’s local critic updating. It endows
each agent’s local critic with the capability of evaluating the
utility of the agent’s action over teammates’ options under
a given x, which is how the credit assignment proceeds.
Furthermore, another strength by applying the sampling in
Eq. 11 is that each agent’s local critic intrinsically inherits
the benefit from a centralized control attitude, being able
to facilitate the decentralized actor to be updated towards
the cooperative direction even though it only has the agent’s
own action as input. Additionally, the global information
considered in the local critic does not have to be the same as
the one in the centralized critic. There could be many variants
in practice depending on the domains’ properties. Without
loss of generality, we use environment state information in
experiments.

A natural limitation of conventional CTDE-based methods
is that the training depends on the actions generated via
only decentralized execution. Therefore, it is also important
to note that this new idea for learning local critic offers
centralized action-selection data as extra assets, which breaks
through the above limitation of CTDE framework.

In the end, we fuse each agent’s local critic into the cor-
responding policy gradient with a local advantage function
for each agent’s action, which can be expressed as:

∇θiJ(θi) = E~πθ
[
∇θi log πθi(ai|τi)Ai(x, ai)

]
(12)

Ai(x, ai) = Qlocψi (x, ai)−
∑
ȧi

πθi(ȧi|τi)Qlocψi (x, ȧi) (13)

Now, to each agent, the expected advantage of taking a
particular action under a specific state over whatever other
agents behave is assessed in Eq. 13, so that the poten-
tial punishment caused by other agents can be alleviated.
Moreover, ROLA calculates a separate baseline using each
agent individual local critic, serving as a recipe to reduce
the variance on policy gradient estimation provoked by the
explorations of its own and other agents during training.

Fig. 1 displays the architecture of ROLA. Although we
only describe an on-policy version of ROLA above, the off-
policy training can be easily done by implementing a replay
buffer and importance sampling weights.

IV. EXPERIMENTS

A. Domains Setup

To investigate the robustness and effectiveness of ROLA
versus existing multi-agent policy gradient algorithms, we se-
lect four popular benchmark problems: Capture Target [31],
a variant version of Box Pushing [32], OpenAI Cooperative
Navigation [17] and Antipodal Navigation [25] with partial
observability. The properties of these domains differ from
each other in terms of reward density, environmental stochas-
ticity, collaborative format, and the number of agents.

Capture Target. Two agents move around in a toroidal
grid world by executing actions: up, down, left, right and
stay, with the transition dynamics as 0.1 probability of
arriving at an unintended adjacent cell. Only a terminal
reward +1 can be received when two agents capture the
target together by simultaneously locating the cell where the
target is. Agents can perfectly observe their own positions
but cannot receive teammate’s location, and they see the

(a) Capture Target (b) Box Pushing

(c) Cooperative Navigation (d) Antipodal Navigation

Fig. 2: Experimental domains.



TABLE I: Multi-Agent Actor-Critic Baselines.

Algorithm Feature Description CTDE VDN-Based On-Policy
Learning

Off-Policy
Learning

IA2C Refer to Section II-C - - Yes -
Central-V [16] Decentralized actors with a state-value function as the centralized critic Yes - Yes -
COMA [16] Counterfactual advantage value Yes - Yes -
LIIR [21] Learn intrinsic reward for each agent Yes - Yes -
SQDDPG [19] Approximate marginal contribution of agent’s action as local critic Yes - - Yes

using sampled coalitions
MAAC [20] Learn local critics with a centralized attention mechanism Yes - - Yes
DOP [24] Centralized critic is a linear weighted summation of individual critics Yes Yes Yes Yes

optimized by minimizing a mixing of on-policy and off-policy losses
VDAC-mix [23] Centralized critic is a non-linear mixing of individual critics Yes Yes Yes -
VDAC-sum [23] Centralized critic is a linear summation of individual critics Yes Yes Yes -
ECA Explicitly compute expected counterfactual advantage value Yes - Yes -

target with a probability of 0.7. Thus it is a high noisy
domain in terms of the environmental stochasticity and the
aliased information in the observation, selected for studying
the utility of ROLA on variance reduction.

Box Pushing. The available actions to each agent include:
move forward, turn left, turn right and stay; and the objective
is to push two boxes to the top goal area. Each agent can
move any box towards the north by executing move forward
while facing it. When any agent successfully pushes one box
to the goal, the entire team receives a shared reward +100,
and the episode also immediately terminates. We design this
domain on purpose to check if ROLA benefits each agent to
quickly deduce its own contribution to a reward, especially
when the box is pushed to the goal by the teammate.

Cooperative Navigation. We extend OpenAI cooperative
navigation task with partial observability by imposing a view
range, as the shallow circle in Fig. 2c, that restricts each
agent from capturing the information of other agents and
landmarks out of the view. Agents have to cooperatively
spread out to cover all the landmarks by applying physical
force actions (equally discretized into eight directions) to
move, where the entire 2-D working space is continuous
and unbounded, but agents and landmarks are initialized in
a (−1, 1)2 region as shown in Fig. 2c. At each timestep, the
shared penalty is the negative sum of the landmark-nearest-
agent-distances plus extra penalties for collisions. We use
this domain to examine ROLA’s performance when dealing
with dense reward signals rather than the sparse case in the
above two.

Antipodal Navigation. We make this environment to be
partially observable in the same way as described above
while keeping anything else as the default in [25], where
each agent aims to cover an allocated target landmark (shown
with the same color as the agent in Fig. 2d and receives
an individual reward equaling to the negative distance to
its target. The initial position of agents and their target
landmarks are sampled in an antipodal configuration with
a probability of 0.7, rather than always randomly initialized
as in the above cooperative case. We want to check whether
ROLA is still competitive under such a less collaborative
scenario without global reward or not.

B. Algorithm Implementations

We investigate ROLA’s advantages against a broad set
of state-of-the-art multi-agent actor-critic methods that are
summarized in Table I.

All methods use the same actor-net architecture consisting
of one fully connected (FC) layer with Leaky-Relu as the
activation function, one LSTM layer [33] and one more FC
layer as the output, where each layer has 64 units. Our
critic-net implementation uses the same architecture across
all methods, which contains two 64-unit FC layers with
Leaky-Relu activation function and one FC output layer in
the end, except, for IAC, an LSTM module replaces the
middle layer due to its condition on local observations. For
MAAC and VDN-based algorithms, we keep the critic’s
architecture as the original design. ROLA, IA2C, Central-
V, and ECA handle explorations via a linear decaying ε-soft
policy and use n-step TD prediction, while other methods use
the default exploration schemes and TD(λ) in their published
implementations.

Different methods have different properties so that each
method may require a particular set of hyper-parameters
to achieve the best performance. Therefore, in training, we
perform decent hyper-parameter tuning for each method over
a wide range of hyper-parameters via exhaustive grid search
and pick out the best performance of each method depending
on its final converged value as the first priority and the
learning speed as the second.

C. Experimental Scheme

We conduct experiments under each domain with modifi-
cations on task difficulty by either increasing the grid world
size or decreasing the agent’s observation range. For each
method, we perform 20 independent training trials to solve
all the tasks. Each training trial suspends every 100 episodes
to evaluate the learned policies at the moment across another
10 episodes, which generates an averaged discounted return
received by the multi-agent team over the evaluating episodes
as one testing result. Finally, we calculate the mean testing
performance of each method over the 20 trials and plot
the curves (smoothed by a window size 10) with a 95%
confidence interval.
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Fig. 3: Comparison against baseline algorithms in two scenarios of each domain.

V. RESULTS AND DISCUSSIONS

In this section, we report the performance of ROLA
against all the baselines on two environmental configurations
under each domain. The comparisons between ROLA and the
baselines are organized as the following pattern:

Comparison 1 (Fig. 3). We first compare ROLA with
IA2C, Central-V, COMA, LIIR, SQDDPG, and MAAC, in
order to: (a) examine the effectiveness of ROLA on credit
assignment and variance reduction; (b) check if ROLA has
strong robustness such that it can consistently outstand the
baselines across different domains.

Comparison 2 (Fig. 4). Here, we compare ROLA with
DOP, VDAC-mix, and VDAC-sum, intending to study
ROLA’s advance on learning local critics against value
decomposition-based manners.

Comparison 3 (Fig. 5). In the end, we want to validate
ROLA’s superiorities over the ECA algorithm (explicitly
compute the expectation over other agents’ joint action
space) and highlight the differences between the two ap-
proaches.

A. Overall Effectiveness and Robustness of ROLA
In this section, we provide an analysis of the results shown

in Fig. 3.
Capture Target is a classical Dec-POMDP benchmark,

in which the transition uncertainties, noisy observation setup
and the extremely sparse reward potentially lead to high
learning variance [31]. As an on-policy method, under such
an environment, ROLA achieves the highest performance
with much lower variance on evaluations than Central-
V and IA2C (shown in Fig 3a-b) in various grid world

sizes, which manifests the significant strength of ROLA
on variance reduction. As an off-policy learning approach
with a replay buffer, SQDDPG is more sample-efficient
than other on-policy methods. It is why SQDDPG can learn
quickly with low variance in the early stage; however, it is
troubled with a local optimum as the world space gets large.
We blame this on the shortcoming of its credit assignment
mechanism, depending on difference rewards, to deal with
such scenarios with sparse reward and unique coalition.
LIIR certainly suffers from the challenge of approximating
intrinsic reward with inadequate external reward. In this
task, the optimal strategy for each agent is to focus on
the target to discern its dynamics while moving towards
it, rather than concentrating on the teammate’s movements.
MAAC’s failure thus makes sense because it brings extra
puzzles to agents by encouraging them to pay attention to
each other. Additionally, COMA’s defects are also exposed
in this domain.

In Box Pushing, in order to quickly learn the optimal
collaboration, each agent has to reason about its responsi-
bility for a global reward accurately. Otherwise, it is likely
to reach a sub-optimum where only one agent pushes a
small box to the goal. In both the small grid world and
the bigger one, ROLA always converges to the optimal
values (dash line in Fig. 3c-d) at the fastest speed over
other baselines, which proves ROLA’s efficiency on credit
assignment. Furthermore, when the grid world becomes
larger, almost all other baselines’ performance fluctuations
increase while ROLA can keep it relatively low, which
shows the advantage of its baseline calculated using the local
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Fig. 4: Comparison against VDN-based algorithms in two scenarios of each domain.

critic on variance reduction. Also, IA2C outperforms other
centralized baselines because the optimal behaviors require
each agent to only focus on pushing the nearest box rather
than the other agent’s actions, which is also the main reason
why both MAAC and SQDDPG perform such poorly due
to the attention bias and the strong assumption on coalitions
respectively. The low efficiency of LIIR and COMA on credit
assignment is shown by the slower learning speed even than
Central-V.

Unlike the above two domains, Cooperative Navigation
generates very dense reward signals throughout the entire
episode. At the same time, ROLA still outstands other
baselines with a minor performance variance, the fastest
convergence speed, and the highest averaged testing return,
shown in Fig. 3e-f, which is one solid evidence for ROLA’s
robustness. We also notice that the smaller each agent’s view
field, the more difficult the task is, and the more pronounced
ROLA’s advantages will be compared to other baselines. This
domain requires agents to reach an agreement on the target
landmarks allocation. IA2C traps at a local optimum due
to the lack of information sharing over agents under this
partially observable scenario. Even having a replay buffer,
MAAC learns slowly and tends to converge to a suboptimal
solution because it enforces each agent to pay attention to
other agents more or less at every step, which is unneces-
sary for this task and can potentially result in inaccurate
credit assignment. Same to LIIR, it measures each agent’s
marginalized contribution over possible coalitions at every
time-step, which violates a truth in this domain that agents
may only need to coordinate in a few time-steps depending

on their positions and landmarks’ configuration. As the lim-
itations of LIIR and COMA mentioned in the introduction,
the shaped reward designed in this domain certainly causes
big trouble for LIIR to learn a correct individual reward for
each agent and make COMA’s counterfactual mechanism out
of operation. Central-V avoids the sub-optimum due to the
less biased underlying uniform credit assignment model.

Antipodal Navigation is a less cooperative task; this
is why SQDDPG performs the worst due to the redun-
dant consideration over all possible coalitions as shown in
Fig. 3g-h. Thanks to the individual reward function design,
LIIR’s training improves significantly, and IA2C achieves the
second-best performance. The inefficiency of COMA’s credit
assignment design is again affirmed by the phenomenon
that both MAAC and COMA run into sub-optimums. Even
though ROLA’s learning is just slightly faster than IA2C and
Central-V here, ROLA still performs the best under such a
domain where agents have independent goals, demonstrating
ROLA’s robustness from another degree.

B. Advantages of ROLA’s Learning for Local Critics

VDAC-sum, VDAC-mix, and DOP all implicitly learn
local critics via value decomposition networks. VDAC-sum
represents the centralized critic as a summation of local
critics that severely limits the complexity of the learned
centralized value function. The local critics in VDAC-sum
thus often cannot provide reliable value estimations for
policies updates so that VDAC-sum performs the worst in
the comparison shown in Fig. 4. Despite the fact that the
centralized critic of VDAC-mix uses a hyper-network to
provide a non-linear mixing of local critics, it is still limited
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Fig. 5: Comparison against ECA algorithm in two scenarios of each domain.

by the monotonicity constraint of the mixing weights learned
from global state information. Also, the hyper-network takes
a longer time to train, so that it delays the decentral-
ized policy optimizations, which explains why VDAC-mix
converges slower than ROLA in all considered domains.
DOP factorizes the centralized critic as a weighted linear
summation of individual critics. With a replay buffer, DOP’s
loss for training critics is a mechanism that balances off-
policy TD and on-policy TD. It is why DOP outputs better
sample efficiency and has less variance than the two versions
of VDAC. Nevertheless, DOP’s entire performance is still not
competitive to ROLA due to the decomposition constraint
enforced there. Unlike the above VDN-based methods, the
centralized critic learned in ROLA approximates the true
state-joint-action value function without any constraint. We
believe, as the results shown in Fig. 4, ROLA’s outperfor-
mance over the three VDN-based policy gradient algorithms
significantly proves the benefit of training local critics via
sampling target-actions from the joint Q-value function,
which provides necessary data from a centralized perspective
to promote learning high-quality decentralized policies.

C. Superiorities of ROLA over ECA

The comparison between ROLA and ECA is shown in
Fig. 5, where the performance of ROLA exceeds ECA’s
a lot in terms of both final converged return and sample
efficiency under all environments. We notice that explicitly
calculating the ECA-value using the learned centralized Q-
value function actually leads to a strong single approximator
bias when the centralized Q-value function has not been fully
trained for all agents’ joint actions, which is the main reason

why ECA performs such poorly. Instead, ROLA avoids this
bias by learning a global action-value approximator with
separate local action-value approximators. Moreover, as an
on-policy CTDE algorithm, the advantage value estimation
in ECA is still with respect to decentralized policies, while
ROLA, again, takes extra benefits from the centralized sam-
pling operation. In addition, ECA’s calculation encounters
an exponentially increased computational cost, while ROLA
learns each local critic in the new sampling way that is much
more practical.

VI. CONCLUSION

This paper introduces a new multi-agent actor-critic policy
gradient algorithm, named ROLA, to learn decentralized
policies with two types of critics. ROLA implicitly delivers
credit assignment over agents by using each agent’s local
critic that is trained by taking advantage of a centralized
critic in a novel sampling process, which enables the CTDE
paradigm to utilize action data from centralized selections
rather than purely depending on decentralized execution
data. Variance reduction on each agent’s decentralized policy
gradient estimation is then accomplished by computing local
advantage action-values based on the local critic. The overall
robustness and effectiveness of ROLA is empirically estab-
lished by attaining faster learning, higher returns, and lower
variance than a set of state-of-the-art actor-critic methods in
diverse multi-agent domains.
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VII. APPENDIX

A. Algorithm

We summarize the on-policy version of ROLA in Algorithm 1, which is the one we use for generating the results in the
main paper. The corresponding off-policy learning version can be obtained by disabling line-23 and implementing important
sampling weights in line-16, 19, 21

Algorithm 1 Robust Local Advantage (ROLA) Actor-Critic

1: Initialize centralized critic networks: Q~πθφ , Q~πθ
φ−

2: Initialize local critic networks for each agent i: Qlocψi , Qloc
ψ−i

3: Initialize decentralized policy networks for each agent i: πθi , π
θ−i

4: Initialize a joint buffer B
5: for episode = 1 to M do
6: t = 0
7: Reset env
8: while st not terminal and t < T do
9: for each agent i do

10: ai,t ∼ πθi (oi,t, τi,t−1; ε)

11: Get reward rt, next observations ~ot+1, next state st+1

12: Collect 〈st, ~ot,~at, rt, ~ot+1〉 into buffer B
13: t← t+ 1
14: if episode mod Itrain == 0 then
15: Perform a gradient decent step on

(
Q
~πθ
φ (s,~a)− y

)2
B

16: y = r + γQ
~π
θ−
φ−

(s, a′1, ..., a
′
n) |a′j∼πθ−

j

(τ ′j)

17: for 1 ... num local critic update do
18: Perform a gradient decent step on

(
Qlocψi

(s, ai)− y
)2
B

19: y = r + γQloc
ψ−i

(s, a′i) |a′i←~a ′∼softmax
(
Q
~πθ
φ

(s′,~a ′)
)

20: for each agent i do

21: Perform a gradient ascent on ∇θiJ(θi) = E~πθ

[
∇θi log πθi (ai|τi)Ai(s, ai)

]
22: Ai(s, ai) = Qlocψi

(s, ai)−
∑̇
ai

πθi (ȧi|τi)Q
loc
ψi

(s, ȧi)

23: Reset buffer B
24: if episode mod ITargetUpdate = 0 then
25: Update centralized critic target network φ− ← φ
26: Update each agent i’s local critic target network ψ−i ← ψi
27: Update each agent i’s decentralized policy target network θ−i ← θi



B. Domain Details

Capture Target.

Goal: Two agents move in a n× n toroidal grid world to capture a moving target by simultaneously arriving same grid
cell as where the target is. The positions of agents and the target are randomly initialized.

State: The global state information involve the positions of each agent and the target under a gird world.
Action Space: Each agent has five applicable actions: up, down, left, right and stay.
Observation Space: Each agent can always observe its own location (not teammate’s) and sometimes observe the target’s

location with a probability 0.7.
Dynamics: The transition noise for each agent is a probability 0.1 of accidentally locating at a random adjacent cell,

which the target deterministically moves towards east.
Reward: Agents can only receive a terminal reward +1 when they successfully capture the target.
Termination: Each episode terminates either the target captured or after 60 time-steps.

Small Box Pushing.

Goal: Two agents are tasked with pushing two boxes to the goal area at the top of a grid world. Agents and boxes are
initialized deterministically.

State: The global state information consist of the each agent’s location and each box’s position in a grid world.
Action Space: Each agent has four applicable actions: move forward, turn left, turn right, and stay.
Observation Space: Each agent is only allowed to capture the front cell’s state: empty, box, teammate, or boundary.
Dynamics: The transition in this task is deterministic. The box is only allowed to be moved towards north when any

agent faces it at the south side and executes move forward.
Reward: When any box is pushed to the goal area, the team receive a reward +100.
Termination: Each episode terminates when any box is pushed to the goal area, or after 100 time-steps.



Cooperative Navigation.

Goal: Three agents move around in a unbounded continuous 2-D space and target on covering three randomly initialized
static landmarks while avoid colliding with each other. Agents and landmarks are Initialized within the space (−1, 1)2.

State: The global state information includes each agent’s absolute 2-D position (x, y) ∈ R2 and velocity (vx, vy) ∈ R2.
Action Space: Agent’s movement is achieved by applying forces on the agent’s physical body. There are 9 discrete force

vectors: [0, 0], [1, 0], [1,−1], [−1,−1], [−1, 0], [−1,−1], [−1, 0], [−1, 1] and [0, 1].
Observation Space: Each agent’s observation includes: its own absolute position and velocity, landmarks’ absolute

positions and other agents’ relative positions and velocities with respect to itself in side of a pre-defined view field.
Dynamics: A simple physics model involves inertia and friction effects. Contact force also exists when collision happens.
Reward: At each time step, agents obtain a global reward that is the negative summation of the distance from each

landmark to the corresponding closest agent.
Termination: Each episode terminates after 25 time-steps.

Antipodal Navigation.

Goal: Four agents move in an unbounded continuous 2-D space with the objective to cover each own allocated target
landmark. With probability 0.2, the initial positions of landmarks and agents are uniformly drawn in the 2-D space (−1, 1)2,
otherwise their positions are initialized in an antipodal configuration shown above.

State: The global state information includes each agent’s absolute 2-D position (x, y) ∈ R2 and velocity (vx, vy) ∈ R2.
Action Space: Agent’s movement is achieved by applying forces on the agent’s physical body. There are 5 discrete force

vectors: [0, 0], [1, 0], [−1, 0], [0,−1] and [0, 1].
Observation Space: Each agent’s observation includes: its own absolute position and velocity, landmarks’ absolute

positions and other agents’ relative positions and velocities with respect to itself in side of a pre-defined view field.
Dynamics: A simple physics model involves inertia and friction effects. Contact force also exists when collision happens.
Reward: At every time-step, an individual reward is assigned to each agent, which is the negative distance between the

agent and its target landmark. Besides, a penalty −1 is issued to the corresponding agent when it collides with other agents.
Termination. Each episode terminates when agents’ distances to their targets are all less than 0.05, or after 50 time steps.



C. Hyper-parameter Summarization

TABLE II: Hyper-parameters used for methods achieving the best performance in Capture Target 6x6 grid world.

Parameter ROLA DOP VDAC-mix VDAC-sum MAAC SQDDPG LIIR COMA Central-V IA2C

Training Episodes 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5
Actor learning rate 5e-4 5e-4 5e-4 3e-4 1e3 5e-4 5e-4 5e-4 3e-4 5e-4
Critic learning rate 5e-4 5e-4 5e-4 3e-3 1e-3 5e-4 5e-4 1e-3 3e-3 5e-4
Episodes per train 2 2 2 2 N/A N/A 8 8 8 2
Target-net update freq (episode) 16 32 64 32 N/A 200 (step) 32 32 16 32
N-step TD 3 N/A N/A N/A 1 1 N/A N/A 1 1
Num centralized critic update 1 1 1 1 4 4 1 1 1 N/A
Num local critic update 1 1 1 1 N/A N/A N/A N/A N/A 1
εstart 1.0 1.0 1.0 1.0 N/A N/A 1.0 1.0 1.0 1.0
εend 0.05 0.05 0.05 0.05 N/A N/A 0.05 0.05 0.05 0.05
εdecay (episode) 15e3 15e3 15e3 15e3 N/A N/A 15e3 15e3 15e3 15e3
TD(λ) N/A 0.3 0.8 0.8 N/A N/A 0.3 0.3 N/A N/A
Steps per train N/A N/A N/A N/A 25 25 N/A N/A N/A N/A
Target-net soft-update rate N/A N/A N/A N/A 5e-3 1e-2 N/A N/A N/A N/A
Entropy loss weight N/A N/A N/A N/A 1e-4 1e-4 N/A N/A N/A N/A
Replay buffer size N/A 5000 N/A N/A 5e3 5e3 N/A N/A N/A N/A
Batch size (episode) N/A 32 N/A N/A 4 4 N/A N/A N/A N/A
Num attention head N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A

TABLE III: Hyper-parameters used for methods achieving the best performance in Capture Target 8x8 grid world.

Parameter ROLA DOP VDAC-mix VDAC-sum MAAC SQDDPG LIIR COMA Central-V IA2C

Training Episodes 2e5 2e5 2e5 2e5 2e5 2e5 2e5 2e5 2e5 2e5
Actor learning rate 5e-4 5e-4 3e-4 5e-4 1e-3 5e-4 5e-4 5e-4 3e-4 5e-4
Critic learning rate 5e-4 5e-4 3e-3 5e-4 1e-3 5e-4 1e-3 1e-3 3e-3 5e-4
Episodes per train 2 8 2 2 N/A N/A 8 8 8 8
Target-net update freq (episode) 64 64 64 32 N/A 200 (step) 16 64 16 64
N-step TD 3 N/A N/A N/A 1 1 N/A N/A 1 1
Num centralized critic update 1 1 1 1 4 4 1 1 1 N/A
Num local critic update 1 1 1 1 N/A N/A N/A N/A N/A 1
εstart 1.0 1.0 1.0 1.0 N/A N/A 1.0 1.0 1.0 1.0
εend 0.05 0.05 0.05 0.05 N/A N/A 0.05 0.05 0.05 0.05
εdecay (episode) 15e3 15e3 15e3 15e3 N/A N/A 15e3 15e3 15e3 15e3
TD(λ) N/A 0.3 0.3 0.8 N/A N/A 0.3 0.3 N/A N/A
Steps per train N/A N/A N/A N/A 50 25 N/A N/A N/A N/A
Target-net soft-update rate N/A N/A N/A N/A 5e-3 1e-2 N/A N/A N/A N/A
Entropy loss weight N/A N/A N/A N/A 1e-4 1e-4 N/A N/A N/A N/A
Replay buffer size N/A 5000 N/A N/A 5e3 5e3 N/A N/A N/A N/A
Batch size (episode) N/A 32 N/A N/A 4 4 N/A N/A N/A N/A
Num attention head N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A

TABLE IV: Hyper-parameters used for methods achieving the best performance in Box Pushing 6x6 grid world.

Parameter ROLA DOP VDAC-mix VDAC-sum MAAC SQDDPG LIIR COMA Central-V IA2C

Training Episodes 4e3 4e3 4e3 4e3 4e3 4e3 4e3 4e3 4e3 4e3
Actor learning rate 1e-3 1e-3 1e-3 1e-3 5e-4 1e-3 1e-3 1e-3 1e-3 1e-3
Critic learning rate 3e-3 1e-3 1e-3 1e-3 1e-3 1e-3 5e-3 3e-3 5e-3 5e-3
Episodes per train 2 2 4 2 N/A N/A 4 8 2 2
Target-net update freq (episode) 32 32 32 32 N/A N/A 64 16 64 32
N-step TD 3 N/A N/A N/A 1 1 N/A N/A 3 5
Num centralized critic update 1 1 1 1 4 4 1 1 1 N/A
Num local critic update 4 1 1 1 N/A N/A N/A N/A N/A 1
εstart 1.0 1.0 1.0 1.0 N/A N/A 1.0 1.0 1.0 1.0
εend 0.01 0.01 0.01 0.01 N/A N/A 0.01 0.01 0.01 0.01
εdecay (episode) 2e3 2e3 2e3 2e3 N/A N/A 2e3 2e3 2e3 2e3
TD(λ) N/A 0.8 0.4 0.4 N/A N/A 0.8 0.4 N/A N/A
Steps per train N/A N/A N/A N/A 25 25 N/A N/A N/A N/A
Target-net soft-update rate N/A N/A N/A N/A 5e-3 1e-1 N/A N/A N/A N/A
Entropy loss weight N/A N/A N/A N/A 1e-2 1e-3 N/A N/A N/A N/A
Replay buffer size N/A 500 N/A N/A 2e3 5e2 N/A N/A N/A N/A
Batch size (episode) N/A 32 N/A N/A 32 16 N/A N/A N/A N/A
Num attention head N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A



TABLE V: Hyper-parameters used for methods achieving the best performance in Box Pushing 10x10 grid world.

Parameter ROLA DOP VDAC-mix VDAC-sum MAAC SQDDPG LIIR COMA Central-V IA2C

Training Episodes 4e3 4e3 4e3 4e3 4e3 4e3 4e3 4e3 4e3 4e3
Actor learning rate 5e-4 1e-3 1e-3 1e-4 1e-4 5e-4 1e-3 3e-4 5e-4 1e-3
Critic learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 5e-4 5e-3 3e-3 5e-4 3e-3
Episodes per train 2 2 2 2 N/A N/A 8 8 4 2
Target-net update freq (episode) 16 16 16 32 N/A N/A 64 16 16 64
N-step TD 1 N/A N/A N/A 1 1 N/A N/A 1 5
Num centralized critic update 1 1 1 1 4 4 1 1 1 N/A
Num local critic update 4 1 1 1 N/A N/A N/A N/A N/A 1
εstart 1.0 1.0 1.0 1.0 N/A N/A 1.0 1.0 1.0 1.0
εend 0.01 0.01 0.01 0.01 N/A N/A 0.01 0.01 0.01 0.01
εdecay (episode) 4e3 4e3 4e3 4e3 N/A N/A 4e3 4e3 4e3 4e3
TD(λ) N/A 0.8 0.4 0.4 N/A N/A 0.8 0.4 N/A N/A
Steps per train N/A N/A N/A N/A 50 25 N/A N/A N/A N/A
Target-net soft-update rate N/A N/A N/A N/A 5e-3 1e-1 N/A N/A N/A N/A
Entropy loss weight N/A N/A N/A N/A 1e-2 1e-3 N/A N/A N/A N/A
Replay buffer size N/A 500 N/A N/A 3e3 5e2 N/A N/A N/A N/A
Batch size (episode) N/A 32 N/A N/A 16 16 N/A N/A N/A N/A
Num attention head N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A

TABLE VI: Hyper-parameters used for methods achieving the best performance in Cooperative Navigation with observation
radius 1.6.

Parameter ROLA DOP VDAC-mix VDAC-sum MAAC SQDDPG LIIR COMA Central-V IA2C

Training Episodes 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5
Actor learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 5e-4 5e-4 1e-3 5e-4
Critic learning rate 1e-3 5e-3 5e-3 5e-3 1e-3 1e-3 5e-4 1e-3 1e-3 3e-3
Episodes per train 2 2 4 4 N/A N/A 2 2 2 2
Target-net update freq (episode) 16 32 32 16 N/A N/A 16 8 8 8
N-step TD 5 N/A N/A N/A 1 1 N/A N/A 3 5
Num centralized critic update 1 1 1 1 4 4 1 1 1 N/A
Num local critic update 4 1 1 1 N/A N/A N/A N/A N/A 1
εstart 1.0 1.0 1.0 1.0 N/A N/A 1.0 1.0 1.0 1.0
εend 0.05 0.05 0.05 0.05 N/A N/A 0.05 0.05 0.05 0.05
εdecay (episode) 5e4 5e4 5e4 5e4 N/A N/A 5e4 5e4 5e4 5e4
TD(λ) N/A 0.3 0.8 0.8 N/A N/A 0.3 0.3 N/A N/A
Steps per train N/A N/A N/A N/A 100 100 N/A N/A N/A N/A
Target-net soft-update rate N/A N/A N/A N/A 5e-3 1e-1 N/A N/A N/A N/A
Entropy loss weight N/A N/A N/A N/A 1e-2 1e-3 N/A N/A N/A N/A
Replay buffer size N/A 5000 N/A N/A 1e4 1e4 N/A N/A N/A N/A
Batch size (episode) N/A 32 N/A N/A 32 8 N/A N/A N/A N/A
Num attention head N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A

TABLE VII: Hyper-parameters used for methods achieving the best performance in Cooperative Navigation with observation
radius 1.4.

Parameter ROLA DOP VDAC-mix VDAC-sum MAAC SQDDPG LIIR COMA Central-V IA2C

Training Episodes 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5
Actor learning rate 1e-3 1e-3 1e-3 5e-4 1e-4 1e-3 5e-4 5e-4 5e-4 3e-4
Critic learning rate 1e-3 5e-3 5e-3 3e-3 1e-3 1e-3 5e-4 1e-3 3e-3 3e-3
Episodes per train 2 2 2 4 N/A N/A 2 2 2 2
Target-net update freq (episode) 8 8 16 16 N/A N/A 16 8 16 16
N-step TD 5 N/A N/A N/A 1 1 N/A N/A 3 5
Num centralized critic update 1 1 1 1 4 4 1 1 1 N/A
Num local critic update 4 1 1 1 N/A N/A N/A N/A N/A 1
εstart 1.0 1.0 1.0 1.0 N/A N/A 1.0 1.0 1.0 1.0
εend 0.05 0.05 0.05 0.05 N/A N/A 0.05 0.05 0.05 0.05
εdecay (episode) 5e4 5e4 5e4 5e4 N/A N/A 5e4 5e4 5e4 5e4
TD(λ) N/A 0.3 0.3 0.8 N/A N/A 0.3 0.3 N/A N/A
Steps per train N/A N/A N/A N/A 100 100 N/A N/A N/A N/A
Target-net soft-update rate N/A N/A N/A N/A 5e-3 1e-2 N/A N/A N/A N/A
Entropy loss weight N/A N/A N/A N/A 1e-3 1e-3 N/A N/A N/A N/A
Replay buffer size N/A 5000 N/A N/A 1e4 1e4 N/A N/A N/A N/A
Batch size (episode) N/A 32 N/A N/A 32 8 N/A N/A N/A N/A
Num attention head N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A



TABLE VIII: Hyper-parameters used for methods achieving the best performance in Antipodal Navigation with observation
radius 1.6.

Parameter ROLA DOP VDAC-mix VDAC-sum MAAC SQDDPG LIIR COMA Central-V IA2C

Training Episodes 3e4 3e4 3e4 3e4 3e4 3e4 3e4 3e4 3e4 3e4
Actor learning rate 5e-4 1e-3 5e-4 5e-4 1e-3 5e-4 5e-4 5e-4 3e-4 3e-4
Critic learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 5e-4 5e-4 5e-4 3e-3 3e-3
Episodes per train 2 2 2 8 N/A N/A 2 2 2 2
Target-net update freq (episode) 8 32 8 8 N/A N/A 16 8 8 16
N-step TD 5 N/A N/A N/A 1 1 N/A N/A 5 5
Num centralized critic update 1 1 1 1 4 4 1 1 1 N/A
Num local critic update 4 1 1 1 N/A N/A N/A N/A N/A 1
εstart 1.0 1.0 1.0 1.0 N/A N/A 1.0 1.0 1.0 1.0
εend 0.05 0.05 0.05 0.05 N/A N/A 0.05 0.05 0.05 0.05
εdecay (episode) 2e4 2e4 2e4 2e4 N/A N/A 2e4 2e4 2e4 2e4
TD(λ) N/A 0.6 0.8 0.8 N/A N/A 0.6 0.8 N/A N/A
Steps per train N/A N/A N/A N/A 100 100 N/A N/A N/A N/A
Target-net soft-update rate N/A N/A N/A N/A 5e-3 1e-1 N/A N/A N/A N/A
Entropy loss weight N/A N/A N/A N/A 1e-3 1e-2 N/A N/A N/A N/A
Replay buffer size N/A 5000 N/A N/A 1e4 1e4 N/A N/A N/A N/A
Batch size (episode) N/A 32 N/A N/A 2 8 N/A N/A N/A N/A
Num attention head N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A

TABLE IX: Hyper-parameters used for methods achieving the best performance in Antipodal Navigation with observation
radius 1.4.

Parameter ROLA DOP VDAC-mix VDAC-sum MAAC SQDDPG LIIR COMA Central-V IA2C

Training Episodes 3e4 3e4 3e4 3e4 3e4 3e4 3e4 3e4 3e4 3e4
Actor learning rate 5e-4 1e-3 5e-4 5e-4 1e-3 5e-4 5e-4 5e-4 3e-4 3e-4
Critic learning rate 1e-3 1e-3 3e-3 1e-3 1e-3 5e-4 5e-4 5e-4 3e-3 3e-3
Episodes per train 2 2 2 8 N/A N/A 2 2 2 2
Target-net update freq (episode) 16 16 32 32 N/A N/A 16 8 8 16
N-step TD 5 N/A N/A N/A 1 1 N/A N/A 5 5
Num centralized critic update 1 1 1 1 4 4 1 1 1 N/A
Num local critic update 4 1 1 1 N/A N/A N/A N/A N/A 1
εstart 1.0 1.0 1.0 1.0 N/A N/A 1.0 1.0 1.0 1.0
εend 0.05 0.05 0.05 0.05 N/A N/A 0.05 0.05 0.05 0.05
εdecay (episode) 2e4 2e4 2e4 2e4 N/A N/A 2e4 2e4 2e4 2e4
TD(λ) N/A 0.6 0.6 0.8 N/A N/A 0.6 0.8 N/A N/A
Steps per train N/A N/A N/A N/A 100 100 N/A N/A N/A N/A
Target-net soft-update rate N/A N/A N/A N/A 5e-3 1e-1 N/A N/A N/A N/A
Entropy loss weight N/A N/A N/A N/A 1e-3 1e-2 N/A N/A N/A N/A
Replay buffer size N/A 5000 N/A N/A 1e4 1e4 N/A N/A N/A N/A
Batch size (episode) N/A 32 N/A N/A 2 8 N/A N/A N/A N/A
Num attention head N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A
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