A Distributed Algorithm for Operating Large-Scale
Ridesourcing Systems

Ruolin Zhang', Neda Masoud'

' Civil and Environmental Engineering, University of Michigan, Ann Arbor
Corresponding Author — Email: nmasoud@umich.edu

Abstract

With ridesourcing services gaining popularity in the past few years, there has been growing interest in algorithms
that could enable real-time operation of these systems. As ridesourcing systems rely on independent entities to
build the supply and demand sides of the market, they have been shown to operate more successfully in
metropolitan areas where there is a high level of demand for rides as well as a high number of drivers, and a
large volume of trips occurring within a geographically constrained region. Despite the suitable ecosystem that
metropolitan areas offer for ridesourcing operations, there is a lack of methods that can provide high-quality
matching solutions in real-time. To fill this gap, this paper introduces a framework that allows for solving the
large-scale matching problems by means of solving smaller problems in a distributed fashion. The proposed
methodology is based on constructing approximately-uniform clusters of trip requests, where vehicle tours
form cluster centers. Using the New York Taxi dataset, we compare the performance of the proposed
methodology against three benchmark methods to showcase its advantages in terms of solution quality and
solution time.

1. Introduction

In recent years, population and economic growth have led to the formation of traffic jams in metropolitan
areas, with direct influence on pollution of exhaust emissions and increasing travel time and cost. Single-
occupancy vehicles are a major source for generating carbon dioxide emissions (Hensher 2008)—a problem that
is exacerbated due to congestion. However, scaling-up the infrastructure to meet the growing demand is
constrained and costly. Therefore, seeking solutions to increase the utilization rate of the existing transportation
infrastructure has been the focus of extensive research in the past decade.

A number of alternative modes of transportation have been introduced to expand the utilization rate of the
existing transportation infrastructure. Public transportation is a traditional means to reduce the number of
single-occupancy vehicles. Public transportation systems, such as buses and rail systems, are generally regulated
on a fixed schedule and operated on established routes, and charge a posted fee for each trip. Although having
a fixed schedule and route could lead to offering more reliable services, the limited operational flexibility of
public transportation services leads to more constrained coverage, both spatially and temporally. This has led
to a growing interest in shared mobility options, which introduce more flexibility and comfort compared to
fixed public transportation options, but offer discounted prices compared to taxis and other private modes of
transportation.

Technological advancements such as GPS-enabled smart personal devices, online payment systems and big
data together with a global quest for environmentally-friendly and cost-efficient mobility options have led to
the emergence of a significant number of internet-based companies around the globe that offer ride-sharing
and ridesourcing services to satisfy on-demand requests. Examples ((Chan and Shaheen 2012)) include Flinc
(Flinc 2011 (accessed Dec. 15, 2020)), Ville Fluide (Fluide 2011 (accessed Dec. 15, 2020)), Carticipate
(Carticipate 2008 (accessed Dec. 15, 2020)), Uber (Uber 2009 (accessed Dec. 15, 2020)), and Lyft (Lyft 2012
(accessed Dec. 15, 2020)). Benefits of ride-sharing consist of saving travel cost and possibly travel time for

drivers and riders, alleviating traffic congestion, conserving fuel, and mitigating air pollution. According to the
National Household Travel Survey (NHTS), which is the authoritative source reporting on the travel behavior
of the American public, the average light vehicle occupancy (the number of travelers per vehicle trip) is relatively
low—1.67 in 2017, unchanged from 2009. Therefore, ride-sharing services have great potential for development.
As such, devising algorithmic tools for real-time matching of drivers and riders in a ride-sharing system, or
ridesourcing with pooling, also known as the ride-matching problem, is an important and timely topic of
research.

This paper introduces a methodology for efficiently solving the one-to-many ride-matching problem, in
which a driver can carry multiple passengers at once or in sequence. More specifically, we introduce a clustering
method to decompose the problem into multiple sub-problems such that sub-problems can be optimized
independently of each other and in parallel. The proposed method guarantees that the sizes of the sub-problems
remain approximately uniform, since the computational complexity of the ride-matching problem grows
exponentially with the size of the problem. We use the New York City Taxi dataset (NYC.gov (accessed Dec.
15, 2020)) to perform numerical experiments. To evaluate the performance of our proposed methodology, we
compare the results with the optimal solution as well as three partitioning methods from the literature, namely
point-based, balanced point-based, and trip-based partitioning. We also conduct sensitivity analysis to test the
impact of the degree of uniformity in the size of sub-problems and the number of clusters on the computation
time and the objective function.

2. Literature Review

In this section we will review the relevant studies from the graph partitioning and ridesharing literature.

2.1. Graph Partitioning

When modeling problems in different application domains, researchers often use graphs as abstractions (Buluc
et al. 2016). Splitting a graph into smaller sub-graphs is one of the basic algorithmic operations that allows for
solving a large-scale problem by means of solving smaller problems that correspond to sub-graphs, in a
distributed fashion. In the past decade, graph partitioning has gained increasingly higher popularity due to the
emergence of larger problem instances in various application domains. Applications of graph partitioning in
practice can be found in parallel processing (Chu and Cheng 2011; Boman, Devine, and Rajamanickam 2013),
complex networks (Fortunato 2010), transportation networks (Luxen and Schieferdecker 2015; Kieritz et al.
2010), and image processing (Grady and Schwartz 2006; Peng, Zhang, and Zhang 2013), among others.

A graph can be represented by a set of vertices and weighted edges. A graph partitioning problem seeks to
partition vertices and/or edges into different sub-graphs. In a number of application domains, balancing
constraints are also imposed during graph portioning to ensure that all clusters have (approximately) equal
weights, number of edges, or number of vertices. An imbalance parameter &€ can be used to impose the
balancing constraint.

Graph partitioning can be formulated to optimize different objective functions, which reflect different
objectives of graph partitioning for different application domains. The most prominent objective function is to
minimize the total cut, typically quantified by the total weight of removed edges from the original graph. It has
been shown that the problem of dividing a graph into k clusters with approximately equal size to minimize an
objective function is NP-complete (Grady and Schwartz 20006). (Andreev and Racke 2006) shows that on a
general graph, a petfectly balanced pattitioning (€ = 0) has no constant-factor approximation. If € € (0,1], a
0(log?n) factor approximation can be achieved.

There are a large number of methods to solve the graph partitioning problem. They can be divided into two
groups, namely, global algorithms, and local algorithms (Buluc et al. 2016). Global algorithms are methods that
apply to the entire graph and directly obtain the solution. This family of algorithms could include exact methods
(Delling and Werneck 2012; Masoud and Jayakrishnan 2017b; Karisch, Rendl, and Clausen 2000; Regue,
Masoud, and Recker 2016; Masoud et al. 2017; Lloret-Batlle, Masoud, and Nam 2017) and heuristic algorithms

(Kernighan and Lin 1970; Nam et al. 2018; Zhang, Tafreshian, and Masoud 2020; Masoud and Jayakrishnan
2017c). These algorithms are usually used for smaller graphs. Many of these methods are limited to bi-
partitioning but can also be applied to k-clustering by recutrsion (Buluc et al. 2016). Local algorithms, on the
other hand, are based on a starting solution, where this starting solution is iteratively improved. Examples of
this family of algorithms include local search (Kernighan and Lin 1970; Fiduccia and Mattheyses 1982) and
flow-based improvement (Sanders and Schulz 2013; Akhremtsev, Sanders, and Schulz 2017).

Many applications in the transportation domain can be modeled using graphs, rendering graph partitioning
an important tool, especially due to the higher penetration rate of shared mobility as well as emergence of
connectivity that lead to higher complexity of transportation problems. In this paper, we propose a
methodology that utilizes approximately-uniform graph partitioning/clustering for the real-time ride-matching
problem. We formulate the problem as a clustering problem that assigns trips to clusters such that a total cost
is minimized, where we use vehicle tours as cluster representatives, and impose uniformity constraints on
clusters.

2.2. Dynamic Ride-sharing

According to the 2018 Global Traffic Scorecard, Americans lost an average of 97 hours a year due to traffic
congestion, costing nearly $87 billion in 2018, an average of $1,348 per driver. Increasing the utilization rate of
vehicles can be an effective way to reduce vehicle-miles-traveled (VMT) and improve traffic congestion.

Ride-sharing has garnered plenty of attention in recent years due to its effectiveness in utilizing empty car
seats (Furuhata et al. 2013). A ride-sharing system aims to bring together participants with compatible routes
and time schedules to share a vehicle. Here, we focus on a dynamic ride-sharing system, where requests to
participate in the system can be made at any point in time. Dynamic ride-sharing concentrates on single, non-
recurtring trips, differentiating it from conventional carpooling (Baldacci and Mingozzi 2004; Li, Liu, and Zhang
2018), which focuses on recurring trips. In such a system, participants can request a trip as riders or provide
rides as drivers. Participants input their requests, including the origins and destinations of their trips and their
trip timelines, and the operator of the system makes arrangements to match drivers with riders on a short notice
or even en-route. In a dynamic ride-sharing system, typically a central ride-matching problem is solved
periodically.

Ride-matching problems can have different objectives, such as minimizing system-wide VMT (Tafreshian
et al. 2021), maximizing the operator’s profit (Jafari et al. 2016), and maximizing the number of matched
participants (Masoud and Jayakrishnan 2017a), among others. When matching a driver with a rider, several
constraints must be considered. Many studies let a rider or driver provide their earliest departure and latest
arrival times, constructing a time window that constrains the matches (Agatz et al. 2012). In addition to travel
time, a number of other constraints may be imposed to satisfy a participant’s needs and preferences (Ghoseiri
2012).

A ride-sharing system can adopt one of several possible strategies when matching riders with drivers: (1) a
single rider matched with a single driver, (2) a single driver matched to multiple riders (i.c., pooling), (3) a single
rider matched with multiple drivers (ie., multi-hop matching), and (4) multiple rider, multiple driver
arrangements (i.e., pooling in a multi-hop system) (Agatz et al. 2012; Furuhata et al. 2013). Typically, ride-
matching algorithms are developed assuming that rider and driver roles are fixed. However, a number of studies
have considered the more general but complex scenario where a portion of participants are flexible and can
take any role that is assigned to them by the system (Agatz et al. 2011; Tafreshian and Masoud 2020b). A review
of ride-matching algorithms for different system configurations is shown in Table [table:1]. A comprehensive
review of ride-matching methods can be found in (Tafreshian, Masoud, and Yin 2020).

The simplest form of ride-matching involves matching a single rider with precisely a single driver, also
known as one-to-one matching. (Agatz et al. 2011) formulates the one-to-one ride-matching problem as a
maximum weight bipartite matching problem. They use the optimization-based approaches with a rolling
horizon strategy to solve the ride-matching problem. (Najmi, Rey, and Rashidi 2017) proposes a clustering
heuristic algorithm to solve the one-to-one matching problem. More complicated forms of the ride-matching
problems aim to increase the number of riders on board beyond a single rider to take advantage of empty seats

in a vehicle. (Herbawi and Weber 2012) proposes a genetic and insertion heuristic algorithm to solve the ride-
marching problem in which a driver can serve more than one rider, also known as the one-to-many ride-
matching problem. (Di Febbraro, Gattorna, and Sacco 2013) formulates the one-to-many ride-matching
problem as a mixed integer-linear programming problem that can be solved by commercial optimization
engines. (Stiglic et al. 2015) models the system as a maximum weight bipartite matching problem, where the
number of stops for a rider is limited to two. (Alonso-Mora et al. 2017) presents a scalable mathematical
formulation of the one-to-many problem, where within multiple steps vehicles are matched with groups of
passengers. Through numerical experiments, they demonstrate that when re-purposed for ridesharing, only a
fraction of taxis in the New York Taxi dataset can serve almost the entire demand for rides.

The one-to-many matching problem, also known as the pooling problem, arises in systems similar to
ridesharing, such as taxi sharing and pooled variants of ridesourcing. To serve on-demand requests by shared
taxis, (Ma, Yu, and Wolfson 2013) first prunes the search space by identifying candidate taxis that can potentially
serve a request, and then uses a scheduling algorithm to find a match that imposes the least added distance
traveled. (Santos and Xavier 2015) proposes a greedy randomized adaptive search procedure to operate a
ridesharing/taxi sharing system with on-demand request, and demonstrates using numerical experiments that
pooling could reduce the cost of trips by about 30% compared to private rides. (Zhan et al. 2021) proposes an
artificial bee colony algorithm for serving requests in a pooled ridesourcing system, where the objective is to
maximize the number of served ride requests while at the same time minimizing travel time and cost ratios.
Their numerical experiments demonstrate that pooling in ridesourcing systems can lead to substantial cost
savings with minimal increase in travel time.

A number of studies allow a rider to transfer between multiple vehicles to complete his/her trip, giving rise
to multi-hop systems. (Herbawi and Weber 2011) proposes an evolutionary multi-objective route planning
algorithm to solve a many-to-one ride-matching problem in which riders can transfer between different drivers,
but a driver can transport a single passenger. (Drews and Luxen 2013) provides a solution to a ride-matching
problem with an arbitrary number of transfers that respect the users’ personal preferences using a graph
searching algorithm. Many-to-many matching problems are the most complex problems that allow riders to
transfer between different drivers and, at the same time, drivers to have more than one riders on board. (Cortés,
Matamala, and Contardo 2010) models the many-to-many ride-matching problem and solve relatively small
instances of the problem using a branch-and-cut method. (Ghoseiri 2012) proposes a spatial, temporal, and
hierarchical decomposition solution strategy to solve the many-to-many ride-matching problem, formulated by
a mixed-integer problem. However, the number of transfers is limited. (Masoud and Jayakrishnan 2017a)
models the multi-hop ride-matching problem as a binary program and propose a decomposition algorithm to
solve this problem. A comprehensive review of ride-matching problems for different system configurations,
including ride-sharing, Ridesourcing, taxi-sharing, and demand-responsive services, can be found in
(Tafreshian, Masoud, and Yin 2020; Wang and Yang 2019; Chakraborty et al. 2020). For a comprehensive
literature review on the dial-a-ride problem, see (Cordeau and Laporte 2003, 2007; Ho et al. 2018).

In major metropolitan areas where thousands of ride requests arrive dynamically, centralized ride-matching
methods may fall short in providing high-quality solutions in real-time. Consequently, several attempts have
been made in the literature to develop decentralized optimization schemes. One approach to decentralize the
decision-making process is adopting agent-based models. (Winter and Nittel 2006) considers the transportation
network as a mobile geo-sensor network of agents that interact locally by short-range communication and
heuristic way-finding strategies. (Mes, Heijden, and Harten 2007) introduces an agent-based approach where
intelligent vehicle agents schedule their routes. (Nourinejad and Roorda 2016) sets up a single-shot first-price
Vickrey auction where the virtual driver—passenger agents are matched.

Another approach to decentralized decision making is dividing the problem into multiple smaller sub-
problems that can be solved independently of each other. (Pelzer et al. 2015) partitions the road network into
distinct sub-networks that define the search space for ride matches. Recently, (Najmi, Rey, and Rashidi 2017)
proposed a framework that embeds a network clustering heuristic within an on-demand ride-sharing system.
To address participants whose origins and destinations fall in different clusters, they solve an additional
matching problem. We refer to this method as “point-based clustering”.

Table 1: A review of ride-matching methods. (If the study focuses on dynamic ride-matching, the number listed under the No. of participants column is the
number of participants during a one-hour horizon.)

No. of

Computation

Study Dynamic Configuration . . Solution Methodology
participants time (s)
(Agatz et al. o
2011) Yes single rider, single driver 4,933 78 Max-weight bipartite matching with rolling hotizon strategy
(Najmi, Rey, and :
Rashidi 2017) Yes single rider, single driver 15,412 80.21 Clustering heuristic algorithm with rolling horizon strategy
g;:ggj\;% ? Izl)d Yes iilli: driver, multiple 744 100 Genetic and insertion heuristic algorithms
(Stiglic et al. single driver, multiple
2015) No riders 2,849 150 Bipartite matching formulation with meeting points
(Herbawi and Yes multiple drivers, single 250 1476 Evolutionary multi-objective route planning problem solved by
Weber 2011) c rider : the NSGA-II algorithm
(Masoud and multiple drivers, multipl An exact decomposition algotith
Jayakrishnan No nultiple drivers, multiple 400 6 n exact decomposition algorithm
2017a) riders
(Nourinejad and all but multiple drivers, Decentralized (dynamic auction-based multi-agent) optimization
No o 0-2000 .
Rootda 2016) multiple riders algorithms
(Pelzer et al. A iy i .
2015) Yes single rider, single driver 4,500 partition-based match-making algorithm
(Tafreshian and L)
Masoud 2020a) Yes single rider, single driver 22,000 36.32 A graph partitioning methodology
This paper Ves single driver, multiple 20,000 42,31 Approximately-uniform clustering with tours as cluster

riders

representative

In another recent work, (Tafreshian and Masoud 2020a) proposed a trip-based graph partitioning method
for dynamic ridesharing systems. In contrast to (Najmi, Rey, and Rashidi 2017), they used complete trips, rather
than trip ends, to form clusters, leading to partitions that may be geographically overlapping. Furthermore, they
form clusters that are approximately uniform in size to reduce solution time. In Section 7, we use three
benchmark methods to evaluate the performance of our proposed methodology: point-based clustering,
balanced point-based clustering in which uniformity constraints are imposed when forming clusters in point-
based clustering, and trip-based clustering.

2.3. Our Contributions

In this paper, we propose a framework to solve the one-to-many ride-matching problem that arises in ride-
sharing and Ridesourcing systems in a distributed fashion. Our proposed method forms approximately-uniform
clusters of trips, and assigns drivers to trip clusters proportional to the cluster sizes. Different from the existing
literature that uses points or trips as cluster centers during partitioning, we use webicle fours as cluster
representatives to capture the fact that ride requests can be pooled and served by a single vehicle even when
they do not share the same origin, destination, or time window. This allows for obtaining higher-quality
solutions for one-to-many ridesharing systems or ridesourcing systems with pooling. The proposed method
decomposes the original problem into smaller sub-problems that are approximately uniform in size within a
threshold of €. The value of € captures the trade-off between the complexity of solving the sub-problems and
the lost performance due to pattitioning: While setting € = 0 ensures all sub-problems are uniform in size and
therefore the solution time is minimized, to obtain such uniform partitioning more potential matches are
ignored, thereby affecting the solution quality. Finally, we compare the results of our proposed methodology
with three benchmark methods, namely point-based, balanced point-based, and trip-based partitioning, as well
as the optimal solution.

As such, the contributions of this paper can be summarized as follows. This is the first study to propose an
approximately-uniform clustering method with tours as cluster representatives, which as demonstrated in the
numerical experiments section, outperforms existing clustering approaches. We develop an iterative procedure
based on Lloyd’s algorithm (Lloyd 1982) to find approximately-uniform clusters, and show that this clustering
approach has favorable properties, such as monotonically converging to a local optimal solution in a finite
number of steps.

3. Problem statement

Consider a dynamic ride-sharing system that matches drivers with riders in a region over time. Let us divide the
study area into a set of stations S = {S1,5;,*,Sy}, where drivers and riders start or end their trips.
Furthermore, we divide the time horizon, e.g., an hour, into a series of short time intervals, e.g., 1 min. After
this discretization in time and space, a travel time matrix T can be used to retrieve the shortest path travel time
between any pair of stations.

Let us consider a set of drivers D and a set of riders R in this system, and introduce set P = R U D to

include all participants. A rider r € R registers her trip, including her origin station S,? , destination station STD ,

her earliest departure time tEP and her latest arrival time t-4. A driver d € D registers her origin station S5

and her carliest departure time t5°. After serving a rider, the driver’s time and location will be updated to the
rider’s drop-off time and location, respectively. Without loss of generality, here we assume that drivers are
available for the entirety of the study time horizon.

To accommodate the inherent uncertainty present in a dynamic ride-sharing system, we adopt a rolling
horizon strategy, in which the system operator solves the ride-matching problem periodically, at evenly-spaced
points in time to which we refer as re-optimization times. The time period between two consecutive re-
optimization times is a re-optimization period.

Table 2: Table of notations

Sets

S ={s} set of stations where drivers and riders start or finish their trips

D ={1,-,D} set of drivers

R={1,- R} set of riders/trips

P=RUD set of participants p

R¢ set of riders whose trips do not lie on tours

K={1,-,%} set of clusters

T set of time intervals t

L set of links of | = (t;,5;,t;,5;)) ETXSXT XS €L

Ly set of links that are accessible by participant p

Lyq set of links on which driver d can serve rider r, where L4 = L, U L,

L set of links where £(i, j) € L indicates rider j can be served after rider i

Indices

0, J indices for rider/trip

d index for driver/vehicle

p index for participant (driver or rider)

k index for cluster/tour

€= (,)) link £ exists if rider 7j can be served following rider 1;

Parameters

Sg origin station of participant p

Sz? destination station of participant p

th earliest departure time of participant p

tzL,A latest arrival time of participant p

cap, the capacity of (the vehicle of) driver d (i.e., the maximum number of ridets allowed on
board at one time)

Functions

T(si, Sj) shortest-path travel time between station { and station j

c(r, k) the primary cost between rider trip 7 and tour k

d(r, k) the secondary cost between rider trip 7 and tour k

y(d, k) the cost between driver d and tour k

Decision Vaablesti

Wrg binary decision variable that holds the value 1 if rider 7 is matched with driver d, and the
value 0 otherwise

x4 binary decision vatiable that holds value 1 if driver d travels on link [, and value 0
otherwise

yta binary decision variable that holds value 1 if rider 7 is served by driver d on link I, and
value 0 otherwise

Vij binary decision variable that holds the value 1 if link €;; is selected as a part of the tour

u, and value 0 otherwise

a binary variable that holds the value 1 if trip 7 is assigned to cluster k, and value 0
otherwise

binary decision vatiable that holds the value 1 if driver d is assigned to cluster k, and the
value 0 otherwise

At each re-optimization time 1, we formulate a ride-matching problem that consists of all announced trips
that have not yet expired or finalized. An announced trip is considered expired if its latest departure time, i.e.,
tkd — T (s, sP), occurs before the end of the current re-optimization period. In Fig. 1, for example, all trips
whose announcement times are before re-optimization time M and latest departure times are after re-
optimization time M + 1 will be considered in the ride-matching problem in the specified re-optimization
petiod. (Note that we requite the latest departure time of a trip to be higher than n + 1 to account for solution
time.) An announced trip is considered finalized if it has been previously matched in the ride-matching problem.
Drivers who are matched previously can always be part of the new ride-matching problem after accounting for
their previous assignments, i.e., the new origin station and earliest departure time of a driver who is transporting
a passenger will be set to the drop off location and time of their onboard passenger, respectively. The objective
of the ride-matching problem is to maximize the number of served riders. Since the dynamic ridesharing system
solves ride-matching problems that are structurally similar across re-optimization periods, in rest of this paper
we focus our discussion on the optimization problem in a single re-optimization period.

re-optimization period

n n+1 n+2 time

announcement time latest departure time

Figure 1: The rolling horizon implementation

4. The Ride-matching Problem

In this paper, we consider a one-to-many ride-matching problem in which a driver can serve multiple riders.
This ride-matching problem may arise in ride-sharing or ridesourcing systems with pooling and can be
formulated as in model (A.1) in Appendix I. This optimization problem is an NP-hard problem, and cannot be
readily adopted in a dynamic system. Hence, in this paper we introduce a solution methodology that
decomposes the original matching problem into multiple smaller sup-problems that will be solved
independently of each other, using model (A.1).

5. Illustrative Example

We use a small instance of a ridesourcing problem to clearly demonstrate each step of our proposed method
for a single static optimization problem. This example includes 4 drivers and 20 riders. We use data form the
New York City Taxi dataset (NYC.gov (accessed Dec. 15, 2020)) to construct this example. Due to the small
size of the problem, we only consider a single optimization period. Table 8 in Appendix II provides information
on the 24 participants in this example, including their roles (rider/dtiver), their origin and destination stations,
and their earliest departure and latest arrival times. Tables 9 and 10 in Appendix III provide shortest path travel
times between all pick-up and drop-off stations in this example. We solved the ride-matching problem in model
(A.1) for this small example using the CPLEX solver in AMPL. The optimal matching results are demonstrated
in Table 3. In the rest of the paper, we apply the algorithms in each section to this example, and eventually
compare the outcome of the proposed methodology with that of the optimal solution.

Table 3: Optimal solution of the illustrative example. The itinerary of each driver is indicated as a sequence of
tuples. A tuple (t, s) indicates that the driver visits station t at time interval s.

Driver Served riders Vehicle itinerary

d, T, o T (19:00,162)—(19:15,103)—(19:22,97)—(19:23,97)—(19:30,56) > (19:47,50)— (19:54,
e 121)—(19:59,125)—(20:06,128)

d, o T Trg (19:12,95)—(19:25,52)—(19:35,124)—(19:36,124)—(19:43,76)—(19:54,58) = (19:56,
Y 58)—(20:04,159)

d - (19:00,161)—(19:13,80)—(19:25,33)—
T (19:33,60)—(19:45,78)—(19:47,78)—>(19:58,161)

(19:07,80)—(19:16,129)—(19:32,98)—(19:34,98)—(19:40,97)—
dy 13,710,716

(19:50,98)—(19:52,98)—= (20:00,130)

6. Methodology

The matching problem in (A.1) can be solved quickly for the instance presented in section 5 using commercial
solvers, because of the problem’s relatively small size. However, solving the optimization problem in model
(A.1) for larger instances of the ride-matching problem can be computationally prohibitive for real-time
implementations. As such, in this paper, we propose a framework to produce high-quality solutions in near
real-time, depicted in Figure 2.

This framework includes a clustering algorithm, which we call &-uniform tour-based clustering. This
clustering algorithm includes a tour-forming problem, in which a tour, i.c., sequence of trips, is formed in each
cluster to represent the trips in the cluster, and an assighment step, in which trips are assigned to clusters based
on their proximity to the tours representing the clusters and subject to a uniformity constraint. By iteratively
solving these two problems, the clustering algorithm groups trips into multiple clusters that can be optimized
independently of each other. After the clusters of trips are formed, in section 6.2 we present an optimization-
based algorithm to assign drivers to clusters of trips. Finally, the matching problem presented in Appendix A
can be solved independently for each cluster.

Toutr-based €-uniform clustering Driver assignment
(Algorithm 2, section 6.1) (Algorithm 3, section 6.2)
e Driver set
Initialization
Split R trips into K clusters randomly l
l €-uniform Assign drivers to clusters
K Clusters
Solve the tour-forming o) .
> of trips
problem for each cluster s —

(section 6.1.1) g B

Q (=g

g B

Assign trips to clusters 5 E Solve the matching problem
. . (=)
under uniformity = 9 for each cluster

. R lad

constraints & 3

. =3

(section 6.1.3) @

»

Continue until the change in total cost between two Vehicle and rider itineraries

consecutive iterations is smaller than a threshold

Figure 2: The general flow of the proposed framework.

6.1. &-uniform tour-based Clustering

The proposed €-uniform tour-based clustering algorithm iterates between the following two steps until
convergence: (1) partitioning trip requests into approximately-uniform clusters so as to minimize the intra-
cluster distances, and (2) finding the best representative for each cluster. In sections 6.1.1, 6.1.2, and 6.1.3, we
describe different components of the proposed clustering approach and demonstrate each component using
the illustrative example presented in Section 5. In section 6.1.4, we combine the components to present the
clustering method. Section 6.1.5 describes the properties of the clustering approach.

6.1.1 The Tour Forming Problem

This problem can be represented by a graph G = (R, L), where R is the set of ride requests and L is the link
set. A link £;; € L between riders i and j exists in graph G if rider j can always be served following rider i. This
condition can be mathematically expressed in inequality (1). This inequality ensures that a driver who drops off
rider I at her latest arrival time still has enough time to transport rider j to her destination within this ridet’s
requested time window. Furthermore, we introduce two nodes, O and D, such that there is an outgoing link
from node O to all other nodes and an incoming link from all nodes to node D.

thA + T(sP,sP) < tfA = T(sP, sP 1)

Under this setting, we seek to find the longest tour, i.e., the tour that contains the greatest number of trips.
This tour-finding problem can be formulated as a longest path problem, as presented in model (1). The decision
variable v;; is a binary variable that takes the value 1 if link #;; is selected as a part of the tour, and the value 0
otherwise. The objective function in (2a) maximizes the number of trips that lie on the selected tour. Constraints
(2b) and (2¢) ensure that the tour begins at O and ends at D, respectively. Constraint (2d) is the flow balance

constraint.
E 22
max w = Vi j ()

i,JER

S.t. Z V(?j =1 (Zb)
JER
Z vip =1 (20)
i€ER
Zvir—Zvri=0 VreRr 2d)
1ER LER
Uij (S {0,1} A4 l,] €ER (26)

To cleatly demonstrate the tour-forming problem, we apply it to the illustrative example in section 5. We
randomly split the 20 rider trips in this problem into two clusters of size 10, and solve the tour-forming problem
on the graph G = (R, £) for each cluster, as demonstrated in Figure 3. Each graph has 12 nodes, including 10
nodes associated with riders, node O, and node D. The dashed arrows in this figure represent the link set £,
obtained based on inequality (1). The longest path problem in model (1) can be solved efficiently using
polynomial time algorithms, such as the Network Simplex algorithm. After solving the longest path problem,
we obtain the following tours (i.e., sequences of stations): [80 = 129 — 33 = 60 — 124 — 156] for cluster
1,and [161 = 80 = 98 = 97 — 78 — 161] for cluster 2. These tours are demonstrated in Figure 3.

10

(a) Optimal tour in graph G for cluster 1 (b) Optimal tour in graph G for cluster 2

Figure 3: Tours associated with the two clusters in the illustrative example

6.1.2 The Cost Function

Once tours are formed to represent each cluster, we need to define a measure of distance between a trip and a
tour. This measure will be later used to assign trips to tours so as to minimize the sum of the intra-cluster
distances under uniformity constraints. Let us define the cost function ¢, whose value c¢(r, k) denotes the
distance between rider s trip and tour k, as presented in Equation (3). We denote this cost as the primary cost,
and define it as follows. If tour k contains trip 7, then the value of the cost function is zero; otherwise, if trip
7 is not on tour k, then the value of cost function is set to M—a large positive number. Note that this cost

function is selected to guarantee the convergence of the clustering algorithm, as will be discussed later in section
6.1.5.

if trip 7 is on the tour k

k) =1{y) o)

if trip 7 is not on the tour k

When we assign trips to tours based on this primary cost, there might be many trips that do not readily lie
on any tour. In this case, a tie-breaking rule is needed. Here, we use a secondary objective function to break the
ties, to which we refer as the secondary cost. Since tours and trips are both sequences of stations, we use an
algorithm inspired by dynamic time warping (DTW) to measure the cost of assigning a trip to a tour. DTW is
a method developed for measuring the similarity between two sequences by finding an optimal match between
their elements (Senin 2008). Consider a tour k that has a sequence of m stations Ky =
[sx (1), sx(2),...,s(M)], i.e., m/2 sequential trips. Let us represent a trip 7 as a sequence of stations, denoted
by R, = [Sr(l) =5s2,5.(2) = sP] We measure the distance between each pair of stations i and j by the
shortest-path travel time between them, denoted by T (i,).

The distance between a trip and a tour can be calculated as the smallest total distance between the origin
and destination of the trip (i.e., S,(1) and s,-(2)) from any station on the tour, under the condition that the
station on the tour that is matched to the trip destination should appear after the station matched to the trip
origin. Mathematically, this condition can be specified as ¢ + 1 < 5,(2) < m when s,(1) = q. (Note that
here we use equality to indicate the matching of two stations.) It is easy to see that one can enumerate all the
possible matchings between the two sequences [s,(1),s,(2)] and [sx(1),sx(2),...,sk(M)] to find the
matching that provides the smallest distance. Algorithm 1 lays out the details of measuring this distance without
having to enumerate all the possibilities, rendering this step more computationally efficient. This algorithm
starts by defining a 2 X m matrix D, corresponding to the size of the two sequences. The first row of this
matrix is the shortest path travel time between the trip origin and the stations on the tour. In the second row
of this matrix, all distances are set to infinity, except for the distance between the trip destination and the last
station on the tour. The distances between other stations and the trip destination are calculated recursively
using Equation (5). Finally, Equation (6) evaluates the total distances between the trip ends and their best
matched stations on the tour, and finds the smallest of these distances as the secondary cost.

11

Algorithm 1: Obtaining the dissimilarity between a trip and a tour
Input: A trip [Sr (D), Sr(z)]
A tour [(1),5,(2),...,s,(M)]
Shortest-path travel time matrix T
Output: The distance d (7, k) between trip r and tour k
1 Step 1: Assume an initial distance matrix D of size 2 X m as follows

= [T @use@) - T(s, (D5 tm = 1) T (1), 5 (m))

2 . . (5,2, 5c(m) Y
3 Step 2 Update the distance matrix D
4 forq=m-—1,---,1do
D[2,q] = min{ T(s;(2), 5 (@) , DI2,q + 1]} ©)
5 Step 3 Calculate the distance between trip 1 and tour k
d(r,k) = min{ D[1,q] + D[2,q] } ©6)

Using these two cost functions, we calculate the primary and secondary costs, c(r, k) and d(r, k), between
trips and tours. In our illustrative example, the primary costs between trips R3, R, and R15 and tour Ky, and
between trips R, R1g, and Rq4 and tour K, are zero. The primary costs between other trips and the two
tours are M. The primary and secondary costs of all trips in the illustrative example are displayed in Table 2 in
Appendix D.

6.1.3 The Two-Step Trip Assignment Process

In this section, we discuss assignment of trips to clusters under a uniformity constraint. The output of this step
is a revised set of clusters. In a conventional clustering problem, objects are allocated to clusters so as to
minimize sum of intra-cluster costs. Here, our end goal is not to cluster trips, but to solve the optimization
problem in model (A.1) for each cluster in near real-time. Since the computational complexity of the
optimization problem in each cluster depends on the number of trips in that cluster, clustering instances in
which cluster sizes are highly non-uniform are not of interest, since larger clusters would create a computational
bottleneck. As such, we strive to form clusters that are approximately uniform in their number of trips.

In this paper, we consider a two-step assignment process. The first assignment problem seeks to allocate
trips to clusters so as to minimize the total primary cost, as indicated in the objective function (7a). Here, the

decision variable fy takes value 1 if trip 7 is assigned to cluster k, and value 0 otherwise. Constraint (7b)
ensures that each trip is allocated to a single cluster. The assignment problem in model (7) has a trivial solution
wherein trips that lie on a tours, i.e., trips for which ¢(r, k) = 0, would be allocated to the cluster represented

by that tour.
min zy = Z Z c(r,k) frx (72)

TER kKEK
st Z fr =1 vr € R (7b)
keK
frr € {0,1} Vr €R, Vk €K (79)

After this initial assignment, we solve a second assignment problem to allocate trips that do not readily lie
on a tour. This allocation problem can be formulated as an €-uniform assignment problem in model (8). Let us

12

define the set R to include ride requests that do not readily lie on a tout, i.e., trips for which c¢(r, k) = M. The
objective function in (8a) minimizes sum of the secondary costs between trips and their associated cluster
representatives. Constraint (8b) ensures that each trip is assigned to a single cluster. constraint (8c) ensures that
the difference between the number of trips in set R€ in any two clusters is at most €|R€|. The parameter € is
an imbalance parameter, whose value affects the size clusters. € = 0 ensures that all clusters have the exact
same size, while € = K — 1 imposes no constraint on cluster sizes. Note that the &-uniform assignment
problem was first proposed in (Tafreshian and Masoud 2020a) for a peer-to-peer ridesharing system. Model (8)
is based on the work in (Tafreshian and Masoud 2020a), customized for a ridesourcing system with one-to-
many matching.

min Zg = Z Z d (r, k) fx (8a)
TERC kEK
s.t. Z frir =1 Vr € R (8b)
keK
|R€|
ZfrkS T 1+¢) vk € K (8¢c)
TERC
frk € {0,1} Vr € RS, Vk € K (8d)

Figure 5 shows the outcome of this two-step assignment process for the illustrative example. In this figure,
trips that lie on tours all have primary cost of zero. Other trips are allocated to tours so as to minimize the
secondaty cost under the uniformity constraint for cluster sizes.

@ @ @@
T A
@ @

() (@9
&

Figure 4: Assignment in iteration 1 of the illustrative example. The trips on tours have primary cost of zero. Othet
trips are allocated to clusters based on their secondary costs, as outlined in Table 2 in Appendix D.

r e

6.1.4 The £-uniform tour-based Clustering Algorithm

In the previous sections, we outlined different components of the €-uniform tour-based clustering algorithm,
ie., the tour-forming problem, the assighment problems, and the cost measures to quantify the distance
between a tour and a trip.

The &-uniform tour-based clustering algorithm is described in Algorithm 2. The inputs to this algorithm are
the set of trips, the number of clusters, and the uniformity parameter, and the maximum number of iterations.
The algorithm starts (step 0) by randomly assigning R trips into K clusters. In step 1, a tour is formed using
the set of trips in each cluster. In step 2, distances between trips and tours are obtained, allowing for computing
the new total intra-cluster distances. In the assignment step (step 3), first, the assignment solution based on the
primary costs is obtained. Next, the £-uniform assignment problem is solved, where trips that do not readily lie
on tours are assigned to clusters based on their proximity to tours as well as the uniformity constraint applied
to cluster sizes. The objective function value corresponding to the optimal assignment based on the primary

13

costs provides the total sum of intra-cluster distances. Step 4 assesses the termination criteria. If the total intra-
cluster distance obtained from assignments in two consecutive iterations (obtained in steps 2 and 3) remains
the same or the maximum number of iterations is reached, then the algorithm terminates, providing a local
optimal solution. Otherwise, the iteration counter & is increased by 1, and steps 1 through 3 are repeated. Since
this process provides a local optimal solution, we repeat it for a total of itr times, and report the final set of
clusters, and their associated tours, that provide the lowest overall intra-cluster distance.

The final clustering results for the illustrative example are shown in Figure 5. The solution consists of two
tours, one including three trips and the other one including four trips. As Figure 7 demonstrates, convergence
is obtained in only three steps.

Algorithm 2: The &-uniform tour-based clustering Algorithm

Input: Set of trips, R
Number of clusters, K
Uniformity parameter, &
Max number of iterations, @y ax

Output: clusters of trips and their corresponding tours, T

—_-

fora=1,...,irdo
Step 0: Initialization
Obtain f;7%(0) by randomly dividing R trips into K clusters
a«<1

g A W N

Step 1 Tour formation

Choose a random sample of trips in each cluster (where clusters are determined by

6 fix(@a —1)) to form new tours by solving the optimization problem in model (3) for
each cluster. Let w* be the optimal value of the objective function.

7 vii(a) < argmax w”

8 Step 2 Cost update

Calculate the new primary and secondary costs, c(n,k) and d(n, k), respectively, using

’ Equation (3) and Algorithm 1, and based on f7} (@ — 1) and v{;(a)

10 Calculate hy = Y%, YR . ¢ (r,k)

1 Step 3 Assignment

1 Assign R trips to K clusters. Set z* as the number of trips on tours, and find zg by solving the
optimization problems in model (8).

13 hgv1 < 27

W f(Q) < argmin 7

15 Step 4 Termination criteria

16 if hy = hgyq of @ = Q% then

17 C, = h,

18 Tq = {fr*k(a)»vzsj(a)}

19 Terminate

20 else

21 a<—a+1

22 Go to Step 1

23 T* « T, corresponding to the solution with the minimum C,

14

N @
n o

|

©)
®
®
6)
Number of trips on tours
[=2] (=]
[=] [}
\\

o
n

wn

=}
o
=
w
~

2
Iteration

(a) Tours and assignments (b) Convergence of Algorithm 2

Figure 5: Final assignment for the illustrative example

6.1.5 Properties of the €-uniform tour-based Clustering Algorithm

In this section, we first prove that the objective function of the &-uniform tour-based clustering problem
decreases with iterations in Algorithm 2. Next, we prove the convergence of the algorithm.

Proposition 1. The objective function in model (7) decreases with iterations of Algorithm 2.

Proof. In step 1 of Algorithm 2, the optimization problem in model (2) seeks to find the longest tour within each
cluster. It is easy to see that finding the tour with maximum length is equivalent to solving an optimization
problem that finds the min-cost tour, where the cost function is described in Equation (3). In step 3 of
Algorithm 2, the first step of the assighment is completed under the same cost function. Therefore, it is easy
to see that each of these two main steps in Algorithm 2 attempt to minimize the same cost function, and the
results follow.

Proposition 2. Algorithm 2 Converges in a finite number of steps.

Proof. There are possibly many but finite number of ways to assign R trips to K clusters. Furthermore, in
Proposition 1 we showed that the objective function decreases from one iteration to the next (otherwise, we
stop). As such, there are a finite number of ways in which clusters could change, and the algorithm is designed
such that no solution is visited twice (unless at convergence, at which point we stop). The results follow.

6.2. Driver Assignment

After clusters of trips are formed, we need to allocate drivers to these clusters. Algorithm 3 details the steps
of this procedure. In the first step of this algorithm, the cost of assigning a driver d to a cluster k is calculated.
This cost is based on the time distance between the origin location of driver d to the pick-up location of the
first trip on tour k that can be served by d, and the number of remaining trips on the tour. In general, the
higher the time distance, the higher the cost of allocating the driver to the cluster. Adversely, the higher the
number of the remaining trips on tour k, the more effective driver d can be in serving the cluster, and therefore
the cost would be lower.

In the second step of Algorithm 3, we solve the bipartite matching problem outlined in model (9) to allocate
the set of drivers to clusters. The decision variable zgj, takes the value 1 if driver d is assigned to cluster k, and
the value 0 otherwise. The objective function in (9) minimizes the total driver-cluster assignment cost.
Constraint (9b) ensures that the proportion of drivers allocated to a cluster is approximately equal to the
proportion of trips in that cluster. Constraint (9¢) ensures that each driver is allocated to exactly one cluster.
Constraint (9d) imposes the binary condition on the decision variable Zg. Note that the constraint coefficient
matrix in model (9) has a totally unimodular structure, relaxing this optimization problem to a linear program
that can be easily solved in real-time. The assignment of drivers to clusters is demonstrated in Table 1. The
optimization problem in model (9) allocates drivers 1 and 3 to cluster 1, and drivers 2 and 4 to cluster 2.

15

Algorithm 3: Assignment of drivers to clusters

Input: X tours, T*

Set of drivers, D, with their origins, 53 and earliest departure times, th

Output: Driver assignment to clusters, Zg,, Vd € D,k € K

1 ny < number of trips in cluster k under T

2 Step 1 Average cost of driver-tour assignment
3 ford € D do
4 for k € K do
5 Find the first trip in tour k that can be served by d based on t5P.
Denote this trip as 7. Denote the number of trips after this trip on the tour as Ny,
6

0 0
y(d k) = Toet)

Nyemt1

rem

7 Step 2 The driver assighment problem

8 Solve the optimization problem in (9) to obtain the optimal driver-cluster assignment, Zgy,

min Z Z y(d, k) zg

deD kek
ZnER fr*k
Z Zgk = lT
deD
Zarw =1
kek
Zar € {0,1}

D]

vd € D,

Vk €K

vd €D

Vk €K

(92)

(Ob)

)

(Od)

Table 4: The final ride-matching results

. . Number of
Driver Matched with . .
riders being served

d Ty, Tg, T 3
Cluster 1 1 L7679

ds 2,710,714 3

d, 7, T 2

4, M6
Cluster 2 d ’
4 13,717,112, T20 4

7. Numerical Experiments

In this section, we use the New York City Taxi dataset (NYC.gov (accessed Dec. 15, 2020)) to demonstrate the
performance of the g-uniform tour-based clustering method.

7.1. Dataset

The New York City Taxi and Limousine Commission (NYC TLC), in partnership with the NYC Department
of Information Technology and Telecommunications (DOITT), has published millions of trip records from
yellow medallion taxis and green SHLs for several years. These records include attributes such as pick-up and
drop-off dates, times, and locations, trip distances, itemized fares, rate types, payment types, and driver-reported

passenger counts.

16

The data used in this study belongs to the evening peak hour (19:00-20:00) of Feb 19th in 2016. We select
trips that are geographically concentrated in the Manhattan area, thereby creating ride-matching problems that
are large-scale due to the high number of trips as well as the high spatiotemporal proximity between them.

7.2. Simulation Settings

In this study, we adopt a rolling-horizon approach with a re-optimization period of 1 minute, indicating that
the ride-matching optimization problem will be solved every 1 minute starting from 18:59pm. We assume that
all trips will be completed on their shortest travel time paths, and obtain the travel times for every re-
optimization period from the Google Maps API. In this study, we set the ratio of riders to drivers to 4, i.e., the
total number of riders is 4 times the number of drivers. We generate the earliest departure times of drivers
uniformly from the window 18:59 to 20:00. We assume that riders request a ride a few minutes ahead of their
carliest departure times. Since the dataset does not contain the times when ride requests are issued, we generate
a uniform random number from 0 to 30 for each rider, and subtract it from their earliest departure time to
obtain their ride-request time. Doing this allows us to have a mixture of pre-arranged and on-the-fly trip
requests. We assume that the study area consists of 184 pre-defined stations, denoted by S, where participants
start/end their trips. Stations are distributed in the network so as to make sure that there is at least one station
within the walking distance (< 0.15 miles) of a typical trip’s origin/destination. (Fig. 8). We set the capacity of
each vehicle to four.

Englewood

Cliffs
O} P
ESFW“”- 3 : - faast ey
BN [%
fudsoniBari a7]
Overpeck "‘IJ‘ ; ‘*‘:7@ New¥ork
County Park ! 2 ’ BotanicallGarden
Fort Leeli
Palisades Park s
BRONX
Ridgefield (&
G ¥ 378,
i &) Cliffside Park S8 9 w
& Ay
North Bergen
y Rikers Island
West New
York
n City. e
2]
p:
awken -
2
o,
I E
B w

Foresti|

Google B

Map data ©2021 Google United States Terms Privacy Send feedback

Figure 6: The pre-defined stations distribution of the Manhattan area.

7.3. Results

In this section, we first define a base experimental setting and conduct extensive numerical analysis to draw a
comparison between our proposed method, three benchmarks from the literature, and the optimal solution.
Next, we observe the convergence properties of Algorithm 2, and study the impact of sample size in this

17

algorithm. Finally, we conduct sensitivity analysis over some of the critical parameters of our method. For all
experiments conducted in this section, we consider a planning horizon of one hour, with sixty one-minute re-
optimization periods.

7.3.1 Base Experiment

In our base experimental setting, we set the total number of ride requests to 2000, and the sample size in
Algorithm 2 to 150. We set the value of € to 0.1, and the maximum number of iterations to 10.

Figure 7 demonstrates the clustering results, where for a given trip request, both trip ends are colored based
on the clusters to which the trip is assigned. It is interesting to note that the clusters in Figure 7 have a high
level of spatial overlap.

(a) Two clusters. (b) Three clusters. (c) Four clusters.

Figure 7: e-uniform tour-based clustering results. Trip ends are colored based on their assigned clusters.

In order to objectively assess the performance of the proposed method, we compare it against three
benchmark methods form the literature, including point-based clustering (Najmi, Rey, and Rashidi 2017),
balanced point-based clustering (point-based clustering with uniform clusters), £-uniform trip-based clustering
(Tafreshian and Masoud 2020a), and the exact mathematical formulation presented in model (A.1), solved to
optimality. These comparisons allow us to position our proposed method in terms of solution quality and the
required computational effort.

In the point-based method, trip ends (i.e., origin and destination locations) of all trips (i.e., both rider and
driver trips) are the objects in clustering. Once the clusters are obtained, an optimization problem can be solved
independently for each cluster. Trips whose origin and destination locations fall in different clusters will not be
served. The balanced point-based clustering is similar to point-based clustering, except that balance constraints
are imposed on the number of objects within clusters. In trip-based clustering, each trip (whether it is a rider
or a driver trip) is considered an object in clustering. Once clustering is concluded, the rider and driver trips
within each cluster are matched independent of other clusters.

Tables 5, 6 and 7 summarize the results. The value of k in these tables indicates the number of clusters. The
reported computation time is the total time spent on solving the ride-matching problem, and the time for
clustering where applicable, over 60 re-optimization periods, each of duration 1 min. For the €-uniform tout-
based method, the computation time is provided in more detail, breaking the total time into the clustering and
optimization times. The clustering time consists of the time required for generating the network, computing
the costs, and the assignment steps. The optimization solution time is the sum of the time spent on model
construction and obtaining a solution from a commercial solver. The numbers in parenthesis are the average
computation times across all re-optimization periods. The optimal solution finds a match for 60.40% of the
ride requests. We normalize the optimal matching rate to 100%, and report the solution quality of all other
methods as their matching rate divided by the optimal matching rate.

18

Table 5: Comparison of matching rate and solution time between the proposed €-uniform tour-based method, the
optimal solution, and the point-based clustering benchmark. The matching rate of the optimal solution is normalized
to 100%, and the matching rates obtained by other methods are reported in terms of the percentage of the optimal
matching rate. The value of K refers to the number of clusters.

Optimal Point-based Tour-based
. . . , Computation Time (Sec))
Computation Solution K Computation Solution K Graoh — Solution
Time (Sec) quality Time (Sec) quality Total Partirt?cr)) ning O%igﬁf:rion quality
1834 973 366

1 9 2 62% | 2 1 22 959
(30.56) 100% (16.22) 82.62% 6.1) 46 0 94.95%

942 o 283 0
3 (15.70) 67.30% | 3 472) 163 120 77.15%

933 o 197 o
(13.88) 60.60% | 4 (3.28) 151 46 65.98%

Table 6: Comparison of matching rate and solution time between the proposed €-uniform tour-based method, the
optimal solution, and the balanced point-based clustering benchmark. The matching rate of the optimal solution is
normalized to 100%, and the matching rates obtained by other methods are reported in terms of the percentage of
the optimal matching rate. The value of K refers to the number of clusters.

Optimal Balanced Point-based Tour-based
. . : _ Computation Time (Sec) .
Computation Solution Computation Solution K Gk — Solution
Time (Sec) quality Time (Sec) quality Total Partirt?g ning O%tirorﬁf:;llon quality
1834 343 366
1 1009 2 75.32% | 2 146 220 94.959
(30.56) /o (5.72) o 6.1) &
251 283
2.43° 1 12 159
3 (4.18) 62.43% | 3 4.72) 63 0 77.15%
173 197
4 54.37% | 4 151 46 65.98%
(2.88) (3.28)

Table 7: Comparison of matching rate and solution time between the proposed €-uniform tour-based method, the
optimal solution, and the €-uniform trip-based clustering benchmark. The matching rate of the optimal solution is
normalized to 100%, and the matching rates obtained by other methods are reported in terms of the percentage of
the optimal matching rate. The value of K refers to the number of clusters.

Optimal Trip-based Tour-based
. .) . Computation Time (Sec) .
Computation Solution Computation Solution K o — Solution
Time (Sec) quality Time (Sec) quality Total Parct}irt?cr))njng O%trlgl;lz::rllon quality
1834 350 366
1009 2 61% | 2 146 220 .959
(30.56) 00% (5.9) 83.61% 6.1) 94.95%
279 283
3 549 1 12 159
(4.65) 68.54% | 3 4.72) 63 0 77.15%
185 o 197
. 46 989
4 (3.08) 59.85% | 4 (3.28) 151 65.98%

19

Table 5 compares the €-uniform tour-based clustering method with point-based clustering and the optimal
solution. This table demonstrates that the gap in solution quality by the two methods decreases as we increase
the number of clusters. This is due to the fact that when forming clusters, both methods disregard potential
matches between objects that are assigned to different clusters. The higher solution times for the point-based
method can be explained by the fact that this method does not seek to construct uniform clusters, implying
that some clusters may have a significantly higher number of trips, and thereby higher optimization times. This
imbalance in the size of clusters under point-based clustering is demonstrated in Figure 8. The lower solution
quality of the point-based method is due to the fact that in this method clusters are constructed based on trip
ends, rather than whole trips. Therefore, since after clustering the matching optimization problems are solved
independently for each cluster, trips whose trip ends lie in different clusters are not served. This is a drawback
that is addressed by the trip-based clustering method in which an entire trip is considered as a clustering object.

point-based

balanced point-based
4 trip-based

tour-based

k=2 k=3 k=4

Figure 8: Cluster sizes for point-based, balanced point-based, trip-based and tour-based methods.

Table 6 compares the g-uniform tour-based clustering method with balanced point-based clustering, in
which a uniformity constraint is incorporated in the clustering algorithm, and the optimal solution. This table
suggests that when we seek to balance cluster sizes in point-based clustering, the computation time decreases
significantly. However, unsurprisingly, the solution quality of the balanced point-based clustering is worse than
that of the unbalanced point-based clustering and the tour-based method. This table suggests that with k = 2,
the solution quality of the tour-based method is higher that of the balanced point-based method by about 20%.
This is due to the fact that when forming uniform clusters, the system has a lower level of flexibility to assign
trips to clusters, thereby resulting in lower quality solutions.

Finally, Table 7 compares the tour-based and trip-based clustering approaches. The tour-based method
outperforms the solution quality of the trip-based method by about 11% under two clusters. The reason behind
this improvement in solution quality can be attributed to the fact that in tour-based clustering trips that are
close to any trip on the representative tour are assigned to that cluster. As a result, not only are trips that are
spatio-temporally close assigned to the same cluster, as is the case in trip-based clustering, but also trips assigned
to a cluster can be served sequentially by a single vehicle. This makes it more likely for the matching problem
to make a more effective use of the vehicles in serving ride requests.

The gap between these solutions is reduced to 6% under 4 clusters for the same reasons discussed above.
The difference in solution times of these two methods is not statistically significant, as both methods strive to
generate clusters that are balanced in size within a threshed. The main difference between the balanced point-
based, trip-based, and tour-based approaches is what they consider as a unit of analysis: the point-based method
considers a trip end as a unit of modeling, while the trip-based method considers an entire trip, and the tour-
based method considers a tour—a sequence of trips—as a cluster representative. The tour-based method provides
the highest quality solution because the cluster representatives can more closely capture the ultimate product
of the matching problem, which in a ridesourcing setting is a set of vehicle tours.

7.3.2 Algorithm Properties

In this section, we first study the convergence rate of our base experimental setting. Next, we investigate the
impact of sample size on the quality of solutions.

20

Convergence Properties

Figure 9 demonstrates the convergence of the objective function in model (8) in our base experiment, using a
randomly-selected instance. This figure clearly shows that the objective function increases monotonically, which
is equivalent to the cost function decreasing monotonically. As demonstrated in this figure, the objective

function typically converges in a few iterations.

25.01 A o~ Number of riders on tours | 133000
\ —4— Secondary cost

22.5 A \, -
4 i r 130000
3
£ 20.0 1
5 3
¥ 17.5 F 125000 S
] g
2 / 3
o« 15.0 1 /
5 / L 120000 §
Z12s / &

-2 / A
: /)
/ Th L
< 10.01 / . 115000
/ ‘\'“;,
31 ‘ - 110000
0 1 2 4 5 6 8

Iteration

Figure 9: Primary and secondary costs per iteration.

Tmpact of Sample Size on Solution Quality

Figure 10 shows the impact of sample size in Algorithm 2 on the computation time and the secondary cost in
the tour forming problem. Figure 10(a) displays that the computation time increases super-linearly with sample
size. Figure 10(b) demonstrates that the secondary cost decreases with sample size. This is due to the fact that
increasing the sample size increases the likelihood of obtaining tours that better represent their corresponding
clusters, resulting in a smaller secondary cost for the entire set of trips. However, there is a critical sample size
beyond which the reduction in cost becomes negligible. In our experimental setting, this sample size is about
150 trips, which is the number utilized in our experiments.

- 130000
801 .
=01 _./ 120000 | S
g 604 N
£ / o —
5 50 ' < 110000 —,
- / E\
c d
o 4 M
S 404 e b=
] e 5
5 / S 100000
8301 Ve &
S 20 e
g 900001
10 "
«
T ‘ 80000 ‘ ‘ - ‘ ‘ .
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Sample size Sample size

(a) Computation time (b) Total cost

Figure 10: The computation time and the secondary cost of the tour forming problem with different sample
sizes.

21

7.3.3

The Imbalance Parameter

Sensitivity Analysis

Figure 11 shows the impact of changing the value of € on the number of served trips as well as the computation
time of the &-uniform tour-based clustering method under different numbers of clusters. Figure 11 (a) displays
that as the value of € increases, the number of served riders increases for all values of K. This is because a
higher value for & provides a higher level of flexibility to assign trips to clusters, thereby resulting in higher
quality solutions. Figure 11 (b) demonstrates that the computation time increases with € over all values of K.

This is due to the fact that the increased level of flexibility that accompanies a higher € value results in less
uniform cluster sizes. As such, some clusters will be larger than others, increasing the overall solution time.

€ (imbalance parameter)

(a) Number of riders being served.

€ (imbalance parameter)

(b) Computation time.

1300
B k=2 500 A) —e— k=2
—————— k=3 —— k=3
o 12001 +— e kea 5 4501 . - k=4
3 3
z < 4001 -
- 1100 g
@ —A = g
e = 350+
< 10001 . 2 - I
2 - £ 300 e
L - =] S
=) o
E 900 - E250{
= - o B
— -
o 200 1 P T
800 -
, , , , 1501 " , i i
0.01 0.10 0.20 0.50 0.01 0.10 0.20 0.50

Figure 11: Number of served riders and computation time of the proposed algorithm with different values of &

Figure 12 provides a more detailed view of the change in computation time for different values of €. Figures
12(a) and 12(b) demonstrate the distribution of computation time under 3 and 4 clusters, respectively. These

figures indicate that the cluster sizes become less uniform as we increase &, resulting in the larger clusters taking
longer to optimize.

€ (imbalance parameter)

(a) Number of clusters = 3.

3001 T 200 A T
175
_ 2501 _
S S
1 @ l__l__\
s — 21504 b—/H
o o
£ 2001 £
= = 125
s s
" "
3 1501 5 100+ 0o
§ §
S S 751
100 4
50
50 25
0.01 0.1 0.2 0.5 0.01 0.1 0.2 0.5

€ (imbalance parameter)

(b) Number of clusters = 4.

Figure 12: Distribution of computation time

22

Number of System Participants

Figure 13 displays the influence of the size of participants on the computation time and the number of served
riders under different numbers of clusters and € = 0.1. Note that k = 1 provides the optimal solution. Figure
13 (a) demonstrates that the computation time decreases with the number of clusters regardless of the number
of participants. Still, the rate of reduction in solution time decreases as the number of clusters becomes larger.
This is because the larger number of clusters indicates that there are fewer participants in each cluster, which
results in less computation time. However, once the number of clusters reaches a threshold, the reduction in
solution time as we increase the number of clusters becomes small, indicating that there is a critical threshold
for k where having more clusters does not help with reducing solution time any further, but decreases system
throughput (Figure 13 (b)). Additionally, Figure 13 (a) shows that once the number of clusters is over a critical
threshold, the computation time is not substantially affected by the number of participants anymore.

—&— no. of riders = 2500 14000 4 —&— no. of riders = 2500
8000 4 —¥— no. of riders = 5000 —¥— no. of riders = 5000
—&— no. of riders = 10000 12000 4 —&— no. of riders = 10000
no. of riders = 20000 no. of riders = 20000
- 4
2 6000 4 ¥ 10000 4
= 2
w o
£ @
= ¢ 8000 4
[[
H o
£ 4000 5 —
= [T -] 4 T—
2 —~——— g 6000 —
2000 4 Te— - 4000 1 - o——— .
-_— —a —_— -
——— ——
- = 1 e
. 2000 —
— — S — S S - —e — —— — .
0 ® @
2 3 4 2 3 4
k (number of clusters) k (number of clusters)
(a) Time (b) Number of served riders

Figure 13: Number of served riders and computation time under different numbers of clusters

Figure 13 (b) shows that increasing the number of clusters reduces the matching rate; however, this
reduction is smaller when the base number of participants is lower. This is due to the fact that with higher trip
density produced by a higher number of participants, clustering leads to removing a higher number of potential
matches from the feasible region of the solution, leading to higher loss in system throughput. This figure also
shows that the rate of reduction in system throughput decreases between k = 3 and k = 2, compared to k =
2 and k = 1. Figure 13 shows that, regardless of the number of participants, there is a a critical value for k,
where increasing the number of clusters beyond this value does not reduce the solution time any further, but
reduces system throughput. For our expetimental setting, this critical value is k = 2.

8. Conclusion

In this paper we devise a framework to solve the ride-matching problem that arises in dynamic ridesourcing
systems in a distributed fashion. The methodology is based on clustering, where ride requests are grouped into
a number of clusters so as to (1) maximize the intra-cluster similarity between trips within a cluster, and (2)
guarantee cluster sizes to be uniform within a threshold. The proposed clustering approach accounts for the
fact the ultimate goal is to form vehicle tours in each cluster, thereby using tours, i.e., sequences of trips, as
cluster representative. We devise what we call the &-uniform tour-based algorithm to assign trips to clusters,

23

and prove its convergence. Next, we optimally assign drivers to clusters, and solve the ride-matching problem
for clusters independently of each other.

Using the New York City taxi dataset, we conduct extensive numerical experiments to analyze the
performance of the proposed methodology and compare it against three state-of-the-art benchmarks, namely
point-based, balanced point-based, and trip-based clustering, as well as the optimal solution. First, we
demonstrate that the proposed methodology has favorable convergence properties, providing solutions in a
few iterations. Secondly, we demonstrate the importance of forming approximately-uniform clusters, and
showcase the resulting trade-offs between solution time and quality. Finally, we show that our proposed
methodology could result in a statistically significant increase in the matching rate compared to the benchmarks,
where this improvement decreases with the number of clusters.

Acknowledgment
The work described in this paper was supported by NSF award 2046372.

Appendix A

we consider a one-to-many ride-matching problem in which a driver can serve multiple riders. In such systems,
a trip can be denoted by a link, | = (ti, Si, tj, Sj) ET XS XT XS, where T is an ordered set of time intervals
during the study time horizon. Due to the large size of the transportation network and the number of time
intervals in the study horizon, solving such a ride-matching problem can be computationally prohibitive.
Therefore, we adopt the pre-processing procedure proposed by (Masoud and Jayakrishnan 2017a) to reduce
the size of the link sets.

The rationale of the pre-processing procedure is that the spatiotemporal constraints enforced by travel time
windows of participants limit their access to members of the link set L. This pre-processing procedure starts
by forming an ellipse for each participant, where the foci of the ellipse are set to the participant’s origin and
destination stations, the distance between the foci is the Euclidean distance between the participant’s origin and
destination stations, and the distance between the vertices of the ellipse is set to an upper-bound on the distance
that the participant can travel within their travel time window. This ellipse defines a reduced graph, where any
link with at least one station outside the ellipse will be infeasible for the participants as it will violate at least one
of the spatio-temporal constraints.

This pre-processing procedure provides Ly € L and L, € L as the set of links accessible to driver d and
rider T, respectively. Furthermore, we define L,q = L, N Lg. Finally, T, € T and Ty € T are sets of time
intervals within the time window of rider 7 and driver d, respectively. The ride-matching problem can be
modeled on a graph G = (S, L), where S is the set of pick-up and drop-off stations, and L is the set of links.

This problem can be mathematically formulated as an integer programming model in (A.1). In this model,
the decision variable w4 is a binary vatiable that takes on the value 1 if rider 7 is matched with driver d, and
the value 0 otherwise. There are two additional sets of binary variables : (1) x4 which takes the value 1 if driver
d travels on link [, and the value 0 otherwise; and (2) ytq which takes the value 1 if rider 7 is transported by
driver d on link [, and the value 0 otherwise.

The objective function in (A.1a) maximizes the total number of served riders. Constraints (A.1b) and (A.1c)
ensure that drivers start their trips from their origin stations and end their trips at their destination stations,
respectively. Constraint (A.1d) guarantees the flow conservation of vehicles. Constraints (A.le) and (A.1f)
ensure that served riders depart from their origin stations and arrive at their destination stations within their
specified time windows. Constraint (A.1g) guarantees the flow conservation of riders. Constraint (A.1h) states
that riders can be matched with only one driver. Constraint (A.1i) limits the capacities of the vehicles.

24

max

s.t.

25

Wrq (Ala)
Tr€ER deD
Z xh — Z xh=1 vV d € D;
lELd: lELd: (Alb)
Si=Sg;ti,tjETd Sj=Sg;t‘i,tjETd
Z xk - Z xh=1 vV d € D; (A0
l€Ly: l€Lg: ’
S]'=Sg;ti,tjETd Si=Sg;ti,tjETd
2 xh — 2 x4 =0 VdeDVteT,Vs€S\{sgUsi} (A1d)
ti,Si ti,Si
l=(ti,Si,t,S)€Ld l=(t,S,ti,Si)€Ld
Z Y — Z Vi = Wrg Vr€ERVYdED; (A.le)
lELTd:Si=ST(?; lEer:Sj=S,Q;
fi,tjETr tirtjETT
Z ylg— Z Yl = wrq VreRVdEeD; (A.1f)
lEer:sj=s,@; lEer:Sl:s,?;
tit;ETy titjeT,
Al
2 Z yﬁd—z Z ylg=0 VreRVLtET,Vs € S\{s?uUsP} (A-1g)
deD ti,S; deD ti,Si
1=(t;,5;,t,S)ELyq 1=(t;,5;,t,S)ELrq
(A.1h)
Z wq <1 VTreR
deD
Zyﬁd < cap, vdeDVIeEL;Q2) (A.1i)
TER
Appendix B
Table 8: Information of participants in the illustrative example
. Origin Destination Hatliest Latest arrival ~ Shortest path
Participant Role ¢
station station departure time time travel time
n rider 162 103 19:00 19:19 15
Ty rider 161 80 19:00 19:15 13
T3 rider 80 129 19:07 19:16 9
7 rider 95 52 19:12 19:30 13
Ts rider 97 56 19:16 19:36 16
Te rider 97 121 19:23 19:55 30
r; rider 33 60 19:25 19:39 8
Tg rider 50 35 19:28 19:53 20
Ty rider 56 50 19:30 19:56 17
10 rider 98 97 19:34 19:41 6
711 rider 124 76 19:36 19:45 7
710 rider 26 71 19:38 19:50 9
T13 rider 57 131 19:42 19:52 7
Tia rider 78 161 19:47 20:02 11

Tys rider 124 156 19:50 19:54 3

Ti6 rider 98 130 19:52 20:05 8

717 rider 49 124 19:53 20:03 10

Tig rider 58 159 19:56 20:06 8

Tig rider 128 100 19:58 20:10 9

20 rider 125 128 19:59 20:15 13

dy driver 98 NA 18:50 NA NA

d, driver 57 NA 19:00 NA NA

ds driver 31 NA 18:50 NA NA

d, driver 78 NA 19:00 NA NA

Appendix C
Table 9: Shortest path travel time for illustrative example (I)
Origin Destination Station
Stmtion 26 31 33 35 49 50 52 56 57 58 60 71 76 78 80 95

26 0 25 16 29 7 1 20 29 33 38 37 9 13 19 23 13
31 10 11 18 11 9 6 16 21 26 36 19 10 7 11 20
33 14 15 13 10 7 12 17 8 23 14 11 10 24
35 18 4 0 19 17 14 5 10 21 27 18 15 14 28
49 7 21 28 31 0 14 26 30 35 46 9 10 16 20 10
50 6 17 26 20 12 10 23 27 32 43 11 7 13 17 11
52 11 7 18 25 11 0 18 23 28 28 20 10 9 13 20
56 18 4 19 17 12 10 3 27 18 33 39 28
57 21 11 3 2220 15 16 30 21 16 12 31
58 24 14 10 25 23 18 0 11 33 24 19 15 34
60 34 24 20 16 35 33 28 16 13 10 O 43 34 29 25 43
71 13 24 24 35 10 14 19 28 32 37 38 0 12 18 22 12
76 17 12 19 23 13 11 16 20 25 36 22 0 10 10
78 16 6 13 17 17 15 7 10 14 19 30 25 11 0 21
80 22 12 9 13 23 21 13 6 10 15 26 31 22 13 32
95 15 18 15 29 11 9 13 22 26 31 18 20 6 12 16 0
97 22 1219 23 22 20 11 16 20 25 36 31 11 10 12
98 19 9 16 20 20 18 10 13 17 22 33 28 14 3 18
100 26 16 12 15 27 25 17 8 12 17 28 35 26 17 4 29
103 32 22 18 14 33 31 26 14 11 10 18 41 32 25 18 32
121 16 27 34 38 13 17 22 31 35 40 47 7 15 21 25 12
124 17 22 29 33 14 13 17 26 30 35 45 16 16 20
125 18 21 28 32 14 12 16 25 29 34 42 21 15 19
128 22 12 19 23 23 21 13 16 20 25 31 31 17 6 10 21

26

129 28 16 9 23 25 22 18 18 21 21 26 27 15 9 9 17

130 31 21 17 20 32 30 22 13 17 21 26 40 27 16 9 27

131 28 18 14 17 29 27 22 10 14 18 23 37 28 21 12 30

156 22 25 32 3 18 16 20 29 33 38 40 15 13 19 23 7

159 28 18 25 29 26 24 19 22 26 31 36 30 21 12 16 15

161 29 19 21 24 30 28 20 17 21 26 30 38 24 13 13 24

162 32 22 12 23 33 31 23 16 20 24 26 38 27 16 12 23

Table 10: Shortest path travel time for illustrative example (II)

Origin Destination Station

Smtion 97 98 100 103 121 124 125 128 129 130 131 156 159 161 162
26 21 22 26 36 13 11 14 25 28 28 31 16 23 30 30
31 16 10 14 24 23 21 21 13 16 16 19 26 19 18 20
33 20 14 13 23 27 25 25 17 19 15 18 30 23 22 19
35 24 18 17 16 31 29 29 21 23 19 22 34 27 26 23
49 18 19 23 33 13 11 14 22 25 25 28 16 23 27 29
50 15 16 20 30 15 13 16 19 22 22 25 18 21 24 26
52 13 12 16 26 24 22 21 15 13 18 21 17 21 20 22
56 22 16 12 16 31 18 29 19 18 14 17 14 25 38 18
57 25 19 15 11 34 32 32 22 21 17 7 37 28 13 20
58 28 22 18 6 37 35 35 25 21 18 15 38 27 18 15
60 4 32 28 15 47 15 40 30 26 23 20 43 32 23 20
71 20 21 25 35 4 10 13 24 27 27 30 12 20 26 25
76 13 23 26 16 11 16 15 15 18 18 14 17 19
78 9 7 17 29 27 22 6 9 9 12 27 12 11 13
80 22 16 3 13 35 33 29 15 9 5 8 32 21 12 9
95 18 21 19 29 21 6 5 14 17 19 22 11 13 19 21
97 0 13 23 30 18 13 11 14 20 12 31 14
98 0 10 20 32 24 19 3 6 11 24 9 8 11
100 21 15 0 10 39 31 26 12 2 5 29 18 9 6
103 28 22 15 0 44 34 29 19 15 12 9 11 21 12
121 20 23 28 36 0 11 21 24 24 27 8 16 22 21
124 12 15 23 33 15 16 19 21 24 3 12 19 19
125 11 14 22 31 20 13 16 18 21 9 16 16
128 9 3 9 18 33 23 18 0 3 5 8 21 5 8
129 9 6 6 15 24 19 16 0 4 9 17 9
130 19 13 5 13 39 29 24 10 4 0 27 16
131 14 18 9 10 41 32 27 15 9 5 0 30 19 10
156 15 17 22 29 12 6 4 14 17 17 20 0 8 15 14

27

159 15 9 15 24 27 17 12 6 9 11 14 15 0 7 10
161 16 10 9 18 36 26 21 7 3 5 8 24 9 0
162 19 13 8 15 35 25 20 10 6 3 6 23 12 16

Appendix D
Table 11: The costs between trips and tours for the illustrative example

) Preliminary Cost Secondary Cost

Rider
tour kq tour K, tour kq tour k,

el M M 21 28
T M 0
T3 0 M
Ty M M 21 28
Ty M M 19 23
Ts M M 26 20
T 0 M
Tg M M 31 28
Ty M M 32 30
T10 M 0
711 M M 20 16
T12 M M 21 37
T13 M M 23 21
T14 M 0
T1is 0 M
Tie M M 10 13
117 M M 30 11
T1g M M 25 30
T19 M M 14 9
720 M M 17 19

Reference

Agatz, Niels, Alan L. Erera, Martin W. P. Savelsbergh, and Wang Xing. 2011. “Dynamic Ride-Sharing: A
Simulation Study in Metro Atlanta.” Transportation Research Part B Methodological, 1450—64.

Agatz, Niels, Alan Erera, Martin Savelsbergh, and Xing Wang. 2012. “Optimization for Dynamic Ride-
Sharing: A Review.” European Journal of Operational Research, 295-303.

Akhremtsev, Yaroslav, Peter Sanders, and Christian Schulz. 2017. “High-Quality Shared-Memory Graph
Partitioning.” IEEE Transactions on Parallel and Distributed Systems.

Alonso-Mora, Javier, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus. 2017. “On-
Demand High-Capacity Ride-Sharing via Dynamic Trip-Vehicle Assignment.” Proceedings of the National Academy
of Sciences 114 (3): 462—67.

28

Andreev, Konstantin, and Harald Racke. 2006. “Balanced Graph Partitioning.” Theory of Computing Systems,
929-39.

Baldacci, Roberto, and Maniezzo Aristide Mingozzi. 2004. “An Exact Method for the Car Pooling Problem
Based on Lagrangean Column Generation.” Operations Research, 422-39.

Boman, E. G., K. D. Devine, and S. Rajamanickam. 2013. “Scalable Matrix Computations on Large Scale-
Free Graphs Using 2d Graph Partitioning.” In SC °73: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 1-12.

Buluc, Aydin, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. 2016. Recent Advances
in Graph Partitioning. Springer International Publishing.
Carticipate. 2008 (accessed Dec. 15, 2020). “The United States.” https://www.catticipate.com/.

Chakraborty, Jayita, Debapratim Pandit, Felix Chan, and Jianhong Xia. 2020. “A Review of Ride-Matching
Strategies for Ridesourcing and Other Similar Services.” Transport Reviews, 1-22.

Chan, Nelson D, and Susan A Shaheen. 2012. “Ridesharing in North America: Past, Present, and Future.”
Transport Reviews, 93—112.

Chu, Shumo, and James Cheng. 2011. “Triangle Listing in Massive Networks and Its Applications.” In Aew
Sigkdd International Conference on Knowledge Discovery & Data Mining.

Cordeau, Jean-Francois, and Gilbert Laporte. 2003. “The Dial-a-Ride Problem (DARP): Variants, Modeling
Issues and Algorithms.” Quarterly Journal of the Belgian, French and Italian Operations Research Societies 1 (2): 89—-101.
. 2007. “The Dial-a-Ride Problem: Models and Algorithms.” Annals of Operations Research 153 (1):

29-46.

Cortés, Cristian E., Martin Matamala, and Claudio Contardo. 2010. “The Pickup and Delivery Problem with
Transfers: Formulation and a Branch-and-Cut Solution Method.” European Journal of Operational Research, 711—
24.

Delling, Daniel, and Renato Werneck. 2012. “Better Bounds for Graph Bisection.” Algorithms—ESA 2012,
407-18.

Di Febbraro, A., E. Gattorna, and N. Sacco. 2013. “Optimization of Dynamic Ridesharing Systems.”
Transportation Research Record Journal of the Transportation Research Board, 44-50.

Drews, F., and D. Luxen. 2013. “Multi-Hop Ride Sharing.” Proceedings of the 6th Annual Symposium on
Combinatorial Search, SoCS 2013, 71-79.

Fiduccia, C, and R Mattheyses. 1982. “A Linear-Time Heuristic for Improving Network Partitions.”
Proceedings of the 19th Design Automation Conference, 175-81.

Flinc. 2011 (accessed Dec. 15, 2020). “Germany.” https:/ /flinc.org/.
Fluide, Ville. 2011 (accessed Dec. 15, 2020). “France.” http://www.villefluide.fr/.
Fortunato, Santo. 2010. “Community Detection in Graphs.” Physics Reports, 75—174.

Furuhata, Masabumi, Maged Dessouky, Fernando Ordé?Ez, Marc Etienne Brunet, Xiaoqging Wang, and
Sven Koenig. 2013. “Ridesharing: The State-of-the-Art and Future Directions.” Transportation Research Part B
Methodological, 28—46.

Ghoseiri, Keivan. 2012. “Dynamic Rideshare Optimized Matching Problem.” Dissertations & Theses -
Gradworks.

Grady, Leo, and Eric L Schwartz. 20006. “Isoperimetric Graph Partitioning for Image Segmentation.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 469—75.

Hensher, David A. 2008. “Climate Change, Enhanced Greenhouse Gas Emissions and Passenger
Transport—What Can We Do to Make a Difference?” Transportation Research Part D: Transport and Environment,
95-111.

Herbawi, Wesam, and Michael Weber. 2011. “Evolutionary Multiobjective Route Planning in Dynamic
Multi-Hop Ridesharing.” In Ewolutionary Computation in Combinatorial Optimization, 84-95. Springer Berlin
Heidelberg.

29

https://www.carticipate.com/
https://flinc.org/
http://www.villefluide.fr/

. 2012, “A Genetic and Insertion Heuristic Algorithm for Solving the Dynamic Ridematching
Problem with Time Windows.” GECCO’12 - Proceedings of the 14th International Conference on Genetic and Evolutionary
Computation.

Ho, Sin C, Wai Yuen Szeto, Yong-Hong Kuo, Janny MY Leung, Matthew Petering, and Terence WH Tou.
2018. “A Survey of Dial-a-Ride Problems: Literature Review and Recent Developments.” Transportation Research
Part B: Methodological 111: 395-421.

Jafari, E., T. Rambha, A. Khani, and S. D. Boyles. 2016. “The for-Profit Dial-a-Ride Problem on Dynamic
Networks.” In Transportation Research Board 961th Annual Meeting.

Karisch, Stefan E, Franz Rendl, and Jens Clausen. 2000. “Solving Graph Bisection Problems with
Semidefinite Programming.” INFORMS Journal on Computing, 177-91.

Kernighan, Brian W, and Shen Lin. 1970. “An Efficient Heuristic Procedure for Partitioning Graphs.” The
Bell System Technical Jonrnal, 291-307.

Kieritz, Tim, Dennis Luxen, Peter Sanders, and Christian Vetter. 2010. “Distributed Time-Dependent
Contraction Hierarchies.” Experimental Algorithms, 83-93.

Li, Ruimin, Zhiyong Liu, and Ruibo Zhang. 2018. “Studying the Benefits of Carpooling in an Urban Area
Using Automatic Vehicle Identification Data.” Transportation Research Part C: Emerging Technologies, 367—80.

Lloret-Batlle, Roger, Neda Masoud, and Daisik Nam. 2017. “Peer-to-Peer Ridesharing with Ride-Back on
High-Occupancy-Vehicle Lanes: Toward a Practical Alternative Mode for Daily Commuting.” Transportation
Research Record 2668 (1): 21-28.

Lloyd, S. P. 1982. “Least Squares Quantization in PCM.” IEEE Trans 28 (2): 129-37.

TLuxen, Dennis, and Dennis Schieferdecker. 2015. “Candidate Sets for Alternative Routes in Road
Networks.” Journal of Experimental Algorithmics (JEA), 1-28.

Lyft. 2012 (accessed Dec. 15, 2020). “United States.” https://www.lyft.com/.

Ma, S., Z. Yu, and O. Wolfson. 2013. ““T-Share: A Large-Scale Dynamic Taxi Ridesharing Service.” In IEEE
International Conference on Data Engineering.

Masoud, Neda, and R Jayakrishnan. 2017a. “A Decomposition Algorithm to Solve the Multi-Hop Peer-to-
Peer Ride-Matching Problem.” Transportation Research Part B Methodological, 1-29.
. 2017b. “A Real-Time Algorithm to Solve the Peer-to-Peer Ride-Matching Problem in a Flexible
Ridesharing System.” Transportation Research Part B: Methodological 106: 218-30.
. 2017c. “Autonomous or Driver-Less Vehicles: Implementation Strategies and Operational
Concerns.” Transportation Research Part E: Logistics and Transportation Review 108: 179-94.

Masoud, Neda, Daisik Nam, Jiangbo Yu, and R. Jayakrishnan. 2017. “Promoting Peer-to-Peer Ridesharing
Services as Transit System Feeders.” Transportation Research Record: Journal of the Transportation Research Board, 74—
83.

Mes, Martijn, Matthieu Van Der Heijden, and Aart Van Harten. 2007. “Comparison of Agent-Based
Scheduling to Look-Ahead Heuristics for Real-Time Transportation Problems.” Ewuropean Journal of Operational
Research, 59-75.

Najmi, Ali, David Rey, and Taha H Rashidi. 2017. “Novel Dynamic Formulations for Real-Time Ride-
Sharing Systems.” Transportation Research Part E: Logistics and Transportation Review 108: 122—40.

Nam, Daisik, Dingtong Yang, Sunghi An, Jiangbo Gabriel Yu, R. Jayakrishnan, and Neda Masoud. 2018.
“Designing a Transit-Feeder System Using Multiple Sustainable Modes: Peer-to-Peer (P2p) Ridesharing, Bike
Sharing, and Walking.” Transportation Research Record Journal of the Transportation Research Board.

Nourinejad, Mehdi, and Matthew J. Roorda. 2016. “Agent Based Model for Dynamic Ridesharing.”
Transportation Research Part C, 117-32.

NYC.gov. (accessed Dec. 15, 2020). “The New York City Taxi Dataset.”
https:/ /wwwl.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

30

https://www.lyft.com/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Pelzer, Dominik, Jiajian Xiao, Daniel Zehe, Michael H Lees, Alois C Knoll, and Heiko Aydt. 2015. “A
Partition-Based Match Making Algorithm for Dynamic Ridesharing.” IEEE Transactions on Intelligent
Transportation Systems, 2587-98.

Peng, Bo, Lei Zhang, and David Zhang. 2013. “A Survey of Graph Theoretical Approaches to Image
Segmentation.” Pattern Recognition, 1020-38.

Regue, Robert, Neda Masoud, and Will Recker. 2016. “Car2work: Shared Mobility Concept to Connect
Commuters with Workplaces.” Transportation Research Record: Journal of the Transportation Research Board 2542
(January): 102—10. https://doi.otg/10.3141/2542-12.

Sanders, Peter, and Christian Schulz. 2013. Engineering Multilevel Graph Partitioning Algorithms. Springer Betlin
Heidelberg.

Santos, Douglas O, and Eduardo C Xavier. 2015. “Taxi and Ride Sharing: A Dynamic Dial-a-Ride Problem
with Money as an Incentive.” Expert Systems with Applications 42 (19): 6728-37.

Senin, Pavel. 2008. “Dynamic Time Warping Algorithm Review.” Information and Computer Science Department
University of Hawaii at Manoa Honoluln, USA, 40.

Stiglic, Mitja, Niels Agatz, Martin Savelsbergh, and Mirko Gradisar. 2015. “The Benefits of Meeting Points
in Ride-Sharing Systems.” Transportation Research Part B.

Tafreshian, Amirmahdi, Mojtaba Abdolmaleki, Neda Masoud, and Huizhu Wang. 2021. “Proactive Shuttle
Dispatching in Large-Scale Dynamic Dial-a-Ride Systems.” Transportation Research Part B: Methodological 150: 227—
59.

Tafreshian, Amirmahdi, and Neda Masoud. 2020a. “Trip-Based Graph Partitioning in Dynamic
Ridesharing.” Transportation Research Part C: Emerging Technologies, 532-53.
. 2020b. “Using Subsidies to Stabilize Peer-to-Peer Ridesharing Markets with Role Assighment.”
Transportation Research Part C: Emerging Technologies 120.

Tafreshian, Amirmahdi, Neda Masoud, and Yafeng Yin. 2020. “Frontiers in Service Science: Ride Matching
for Peer-to-Peer Ride Sharing: A Review and Future Directions.” Service Science 12 (2-3): 44—60.

Ubert. 2009 (accessed Dec. 15, 2020). “The United States.” https://www.ubet.com/.

Wang, Hai, and Hai Yang. 2019. “Ridesourcing Systems: A Framework and Review.” Transportation Research
Part B: Methodological 129: 122-55.

Winter, Stephan, and Silvia Nittel. 2006. “Ad Hoc Shared-ride Trip Planning by Mobile Geosensor
Networks.” International Journal of Geographical Information Science, 899-916.

Zhan, Xingbin, WY Szeto, CS Shui, and Xiqun Michael Chen. 2021. “A Modified Artificial Bee Colony
Algorithm for the Dynamic Ride-Hailing Sharing Problem.” Transportation Research Part E: Logistics and
Transportation Review 150: 102124,

Zhang, Zhenhao, Amirmahdi Tafreshian, and Neda Masoud. 2020. “Modular Transit: Using Autonomy and
Modularity to Improve Performance in Public Transportation.” Transportation Research Part E: Logistics and
Transportation Review 141: 102033.

:9101-7.

31

https://doi.org/10.3141/2542-12
https://www.uber.com/

	Abstract
	1. Introduction
	2. Literature Review
	2.1. Graph Partitioning
	2.2. Dynamic Ride-sharing
	2.3. Our Contributions

	3. Problem statement
	4. The Ride-matching Problem
	5. Illustrative Example
	6. Methodology
	6.1. 𝜺-uniform tour-based Clustering
	6.1.1 The Tour Forming Problem
	6.1.2 The Cost Function
	6.1.3 The Two-Step Trip Assignment Process
	6.1.4 The 𝜺-uniform tour-based Clustering Algorithm
	6.1.5 Properties of the 𝜺-uniform tour-based Clustering Algorithm

	6.2. Driver Assignment

	7. Numerical Experiments
	7.1. Dataset
	7.2. Simulation Settings
	7.3. Results
	7.3.1 Base Experiment
	7.3.2 Algorithm Properties
	7.3.3 Sensitivity Analysis

	8. Conclusion
	Acknowledgment
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Reference

Accessibility Report

		Filename:

		EM_ridesharing.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

