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Abstract 

With ridesourcing services gaining popularity in the past few years, there has been growing interest in algorithms 
that could enable real-time operation of these systems. As ridesourcing systems rely on independent entities to 
build the supply and demand sides of the market, they have been shown to operate more successfully in 
metropolitan areas where there is a high level of demand for rides as well as a high number of drivers, and a 
large volume of trips occurring within a geographically constrained region. Despite the suitable ecosystem that 
metropolitan areas offer for ridesourcing operations, there is a lack of methods that can provide high-quality 
matching solutions in real-time. To fill this gap, this paper introduces a framework that allows for solving the 
large-scale matching problems by means of solving smaller problems in a distributed fashion. The proposed 
methodology is based on constructing approximately-uniform clusters of trip requests, where vehicle tours 
form cluster centers. Using the New York Taxi dataset, we compare the performance of the proposed 
methodology against three benchmark methods to showcase its advantages in terms of solution quality and 
solution time. 

1. Introduction 

In recent years, population and economic growth have led to the formation of traffic jams in metropolitan 
areas, with direct influence on pollution of exhaust emissions and increasing travel time and cost. Single-
occupancy vehicles are a major source for generating carbon dioxide emissions (Hensher 2008)–a problem that 
is exacerbated due to congestion. However, scaling-up the infrastructure to meet the growing demand is 
constrained and costly. Therefore, seeking solutions to increase the utilization rate of the existing transportation 
infrastructure has been the focus of extensive research in the past decade. 

A number of alternative modes of transportation have been introduced to expand the utilization rate of the 
existing transportation infrastructure. Public transportation is a traditional means to reduce the number of 
single-occupancy vehicles. Public transportation systems, such as buses and rail systems, are generally regulated 
on a fixed schedule and operated on established routes, and charge a posted fee for each trip. Although having 
a fixed schedule and route could lead to offering more reliable services, the limited operational flexibility of 
public transportation services leads to more constrained coverage, both spatially and temporally. This has led 
to a growing interest in shared mobility options, which introduce more flexibility and comfort compared to 
fixed public transportation options, but offer discounted prices compared to taxis and other private modes of 
transportation. 

Technological advancements such as GPS-enabled smart personal devices, online payment systems and big 
data together with a global quest for environmentally-friendly and cost-efficient mobility options have led to 
the emergence of a significant number of internet-based companies around the globe that offer ride-sharing 
and ridesourcing services to satisfy on-demand requests. Examples ((Chan and Shaheen 2012)) include Flinc 
(Flinc 2011 (accessed Dec. 15, 2020)), Ville Fluide (Fluide 2011 (accessed Dec. 15, 2020)), Carticipate 
(Carticipate 2008 (accessed Dec. 15, 2020)), Uber (Uber 2009 (accessed Dec. 15, 2020)), and Lyft (Lyft 2012 
(accessed Dec. 15, 2020)). Benefits of ride-sharing consist of saving travel cost and possibly travel time for 
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drivers and riders, alleviating traffic congestion, conserving fuel, and mitigating air pollution. According to the 
National Household Travel Survey (NHTS), which is the authoritative source reporting on the travel behavior 
of the American public, the average light vehicle occupancy (the number of travelers per vehicle trip) is relatively 
low–1.67 in 2017, unchanged from 2009. Therefore, ride-sharing services have great potential for development. 
As such, devising algorithmic tools for real-time matching of drivers and riders in a ride-sharing system, or 
ridesourcing with pooling, also known as the ride-matching problem, is an important and timely topic of 
research. 

This paper introduces a methodology for efficiently solving the one-to-many ride-matching problem, in 
which a driver can carry multiple passengers at once or in sequence. More specifically, we introduce a clustering 
method to decompose the problem into multiple sub-problems such that sub-problems can be optimized 
independently of each other and in parallel. The proposed method guarantees that the sizes of the sub-problems 
remain approximately uniform, since the computational complexity of the ride-matching problem grows 
exponentially with the size of the problem. We use the New York City Taxi dataset (NYC.gov (accessed Dec. 
15, 2020)) to perform numerical experiments. To evaluate the performance of our proposed methodology, we 
compare the results with the optimal solution as well as three partitioning methods from the literature, namely 
point-based, balanced point-based, and trip-based partitioning. We also conduct sensitivity analysis to test the 
impact of the degree of uniformity in the size of sub-problems and the number of clusters on the computation 
time and the objective function. 

2. Literature Review 

In this section we will review the relevant studies from the graph partitioning and ridesharing literature. 

2.1. Graph Partitioning 

When modeling problems in different application domains, researchers often use graphs as abstractions (Buluc 
et al. 2016). Splitting a graph into smaller sub-graphs is one of the basic algorithmic operations that allows for 
solving a large-scale problem by means of solving smaller problems that correspond to sub-graphs, in a 
distributed fashion. In the past decade, graph partitioning has gained increasingly higher popularity due to the 
emergence of larger problem instances in various application domains. Applications of graph partitioning in 
practice can be found in parallel processing (Chu and Cheng 2011; Boman, Devine, and Rajamanickam 2013), 
complex networks (Fortunato 2010), transportation networks (Luxen and Schieferdecker 2015; Kieritz et al. 
2010), and image processing (Grady and Schwartz 2006; Peng, Zhang, and Zhang 2013), among others. 

A graph can be represented by a set of vertices and weighted edges. A graph partitioning problem seeks to 
partition vertices and/or edges into different sub-graphs. In a number of application domains, balancing 
constraints are also imposed during graph portioning to ensure that all clusters have (approximately) equal 

weights, number of edges, or number of vertices. An imbalance parameter 𝜀 can be used to impose the 
balancing constraint. 

Graph partitioning can be formulated to optimize different objective functions, which reflect different 
objectives of graph partitioning for different application domains. The most prominent objective function is to 
minimize the total cut, typically quantified by the total weight of removed edges from the original graph. It has 

been shown that the problem of dividing a graph into 𝑘 clusters with approximately equal size to minimize an 
objective function is NP-complete (Grady and Schwartz 2006). (Andreev and Racke 2006) shows that on a 

general graph, a perfectly balanced partitioning (𝜀 = 0) has no constant-factor approximation. If 𝜀 ∈ (0,1], a 

O(log2𝑛) factor approximation can be achieved. 

There are a large number of methods to solve the graph partitioning problem. They can be divided into two 
groups, namely, global algorithms, and local algorithms (Buluc et al. 2016). Global algorithms are methods that 
apply to the entire graph and directly obtain the solution. This family of algorithms could include exact methods 
(Delling and Werneck 2012; Masoud and Jayakrishnan 2017b; Karisch, Rendl, and Clausen 2000; Regue, 
Masoud, and Recker 2016; Masoud et al. 2017; Lloret-Batlle, Masoud, and Nam 2017) and heuristic algorithms 
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(Kernighan and Lin 1970; Nam et al. 2018; Zhang, Tafreshian, and Masoud 2020; Masoud and Jayakrishnan 
2017c). These algorithms are usually used for smaller graphs. Many of these methods are limited to bi-

partitioning but can also be applied to 𝑘-clustering by recursion (Buluc et al. 2016). Local algorithms, on the 
other hand, are based on a starting solution, where this starting solution is iteratively improved. Examples of 
this family of algorithms include local search (Kernighan and Lin 1970; Fiduccia and Mattheyses 1982) and 
flow-based improvement (Sanders and Schulz 2013; Akhremtsev, Sanders, and Schulz 2017). 

Many applications in the transportation domain can be modeled using graphs, rendering graph partitioning 
an important tool, especially due to the higher penetration rate of shared mobility as well as emergence of 
connectivity that lead to higher complexity of transportation problems. In this paper, we propose a 
methodology that utilizes approximately-uniform graph partitioning/clustering for the real-time ride-matching 
problem. We formulate the problem as a clustering problem that assigns trips to clusters such that a total cost 
is minimized, where we use vehicle tours as cluster representatives, and impose uniformity constraints on 
clusters. 

2.2. Dynamic Ride-sharing 

According to the 2018 Global Traffic Scorecard, Americans lost an average of 97 hours a year due to traffic 
congestion, costing nearly $87 billion in 2018, an average of $1,348 per driver. Increasing the utilization rate of 
vehicles can be an effective way to reduce vehicle-miles-traveled (VMT) and improve traffic congestion. 

Ride-sharing has garnered plenty of attention in recent years due to its effectiveness in utilizing empty car 
seats (Furuhata et al. 2013). A ride-sharing system aims to bring together participants with compatible routes 
and time schedules to share a vehicle. Here, we focus on a dynamic ride-sharing system, where requests to 
participate in the system can be made at any point in time. Dynamic ride-sharing concentrates on single, non-
recurring trips, differentiating it from conventional carpooling (Baldacci and Mingozzi 2004; Li, Liu, and Zhang 
2018), which focuses on recurring trips. In such a system, participants can request a trip as riders or provide 
rides as drivers. Participants input their requests, including the origins and destinations of their trips and their 
trip timelines, and the operator of the system makes arrangements to match drivers with riders on a short notice 
or even en-route. In a dynamic ride-sharing system, typically a central ride-matching problem is solved 
periodically. 

Ride-matching problems can have different objectives, such as minimizing system-wide VMT (Tafreshian 
et al. 2021), maximizing the operator’s profit (Jafari et al. 2016), and maximizing the number of matched 
participants (Masoud and Jayakrishnan 2017a), among others. When matching a driver with a rider, several 
constraints must be considered. Many studies let a rider or driver provide their earliest departure and latest 
arrival times, constructing a time window that constrains the matches (Agatz et al. 2012). In addition to travel 
time, a number of other constraints may be imposed to satisfy a participant’s needs and preferences (Ghoseiri 
2012). 

A ride-sharing system can adopt one of several possible strategies when matching riders with drivers: (1) a 
single rider matched with a single driver, (2) a single driver matched to multiple riders (i.e., pooling), (3) a single 
rider matched with multiple drivers (i.e., multi-hop matching), and (4) multiple rider, multiple driver 
arrangements (i.e., pooling in a multi-hop system) (Agatz et al. 2012; Furuhata et al. 2013). Typically, ride-
matching algorithms are developed assuming that rider and driver roles are fixed. However, a number of studies 
have considered the more general but complex scenario where a portion of participants are flexible and can 
take any role that is assigned to them by the system (Agatz et al. 2011; Tafreshian and Masoud 2020b). A review 
of ride-matching algorithms for different system configurations is shown in Table [table:1]. A comprehensive 
review of ride-matching methods can be found in (Tafreshian, Masoud, and Yin 2020). 

The simplest form of ride-matching involves matching a single rider with precisely a single driver, also 
known as one-to-one matching. (Agatz et al. 2011) formulates the one-to-one ride-matching problem as a 
maximum weight bipartite matching problem. They use the optimization-based approaches with a rolling 
horizon strategy to solve the ride-matching problem. (Najmi, Rey, and Rashidi 2017) proposes a clustering 
heuristic algorithm to solve the one-to-one matching problem. More complicated forms of the ride-matching 
problems aim to increase the number of riders on board beyond a single rider to take advantage of empty seats 
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in a vehicle. (Herbawi and Weber 2012) proposes a genetic and insertion heuristic algorithm to solve the ride-
marching problem in which a driver can serve more than one rider, also known as the one-to-many ride-
matching problem. (Di Febbraro, Gattorna, and Sacco 2013) formulates the one-to-many ride-matching 
problem as a mixed integer-linear programming problem that can be solved by commercial optimization 
engines. (Stiglic et al. 2015) models the system as a maximum weight bipartite matching problem, where the 
number of stops for a rider is limited to two. (Alonso-Mora et al. 2017) presents a scalable mathematical 
formulation of the one-to-many problem, where within multiple steps vehicles are matched with groups of 
passengers. Through numerical experiments, they demonstrate that when re-purposed for ridesharing, only a 
fraction of taxis in the New York Taxi dataset can serve almost the entire demand for rides. 

The one-to-many matching problem, also known as the pooling problem, arises in systems similar to 
ridesharing, such as taxi sharing and pooled variants of ridesourcing. To serve on-demand requests by shared 
taxis, (Ma, Yu, and Wolfson 2013) first prunes the search space by identifying candidate taxis that can potentially 
serve a request, and then uses a scheduling algorithm to find a match that imposes the least added distance 
traveled. (Santos and Xavier 2015) proposes a greedy randomized adaptive search procedure to operate a 
ridesharing/taxi sharing system with on-demand request, and demonstrates using numerical experiments that 
pooling could reduce the cost of trips by about 30% compared to private rides. (Zhan et al. 2021) proposes an 
artificial bee colony algorithm for serving requests in a pooled ridesourcing system, where the objective is to 
maximize the number of served ride requests while at the same time minimizing travel time and cost ratios. 
Their numerical experiments demonstrate that pooling in ridesourcing systems can lead to substantial cost 
savings with minimal increase in travel time. 

A number of studies allow a rider to transfer between multiple vehicles to complete his/her trip, giving rise 
to multi-hop systems. (Herbawi and Weber 2011) proposes an evolutionary multi-objective route planning 
algorithm to solve a many-to-one ride-matching problem in which riders can transfer between different drivers, 
but a driver can transport a single passenger. (Drews and Luxen 2013) provides a solution to a ride-matching 
problem with an arbitrary number of transfers that respect the users’ personal preferences using a graph 
searching algorithm. Many-to-many matching problems are the most complex problems that allow riders to 
transfer between different drivers and, at the same time, drivers to have more than one riders on board. (Cortés, 
Matamala, and Contardo 2010) models the many-to-many ride-matching problem and solve relatively small 
instances of the problem using a branch-and-cut method. (Ghoseiri 2012) proposes a spatial, temporal, and 
hierarchical decomposition solution strategy to solve the many-to-many ride-matching problem, formulated by 
a mixed-integer problem. However, the number of transfers is limited. (Masoud and Jayakrishnan 2017a) 
models the multi-hop ride-matching problem as a binary program and propose a decomposition algorithm to 
solve this problem. A comprehensive review of ride-matching problems for different system configurations, 
including ride-sharing, Ridesourcing, taxi-sharing, and demand-responsive services, can be found in 
(Tafreshian, Masoud, and Yin 2020; Wang and Yang 2019; Chakraborty et al. 2020). For a comprehensive 
literature review on the dial-a-ride problem, see (Cordeau and Laporte 2003, 2007; Ho et al. 2018). 

In major metropolitan areas where thousands of ride requests arrive dynamically, centralized ride-matching 
methods may fall short in providing high-quality solutions in real-time. Consequently, several attempts have 
been made in the literature to develop decentralized optimization schemes. One approach to decentralize the 
decision-making process is adopting agent-based models. (Winter and Nittel 2006) considers the transportation 
network as a mobile geo-sensor network of agents that interact locally by short-range communication and 
heuristic way-finding strategies. (Mes, Heijden, and Harten 2007) introduces an agent-based approach where 
intelligent vehicle agents schedule their routes. (Nourinejad and Roorda 2016) sets up a single-shot first-price 
Vickrey auction where the virtual driver–passenger agents are matched. 

Another approach to decentralized decision making is dividing the problem into multiple smaller sub-
problems that can be solved independently of each other. (Pelzer et al. 2015) partitions the road network into 
distinct sub-networks that define the search space for ride matches. Recently, (Najmi, Rey, and Rashidi 2017) 
proposed a framework that embeds a network clustering heuristic within an on-demand ride-sharing system. 
To address participants whose origins and destinations fall in different clusters, they solve an additional 
matching problem. We refer to this method as “point-based clustering”.  
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Table 1: A review of ride-matching methods. (If the study focuses on dynamic ride-matching, the number listed under the No. of participants column is the 
number of participants during a one-hour horizon.) 

Study Dynamic Configuration 
No. of  

participants 
Computation 

time (s) 
Solution Methodology 

(Agatz et al. 
2011) 

Yes single rider, single driver 4,933 78 Max-weight bipartite matching with rolling horizon strategy 

(Najmi, Rey, and 
Rashidi 2017) 

Yes single rider, single driver 15,412 80.21 Clustering heuristic algorithm with rolling horizon strategy 

(Herbawi and 
Weber 2012) 

Yes 
single driver, multiple 
riders 

744 100 Genetic and insertion heuristic algorithms 

(Stiglic et al. 
2015) 

No 
single driver, multiple 
riders 

2,849 150 Bipartite matching formulation with meeting points 

(Herbawi and 
Weber 2011) 

Yes 
multiple drivers, single 
rider 

250 1.476 
Evolutionary multi-objective route planning problem solved by 
the NSGA-II algorithm 

(Masoud and 
Jayakrishnan 
2017a) 

No 
multiple drivers, multiple 
riders 

400 6 
An exact decomposition algorithm 

 
(Nourinejad and 
Roorda 2016) 

No 
all but multiple drivers, 
multiple riders 

0-2000  
Decentralized (dynamic auction-based multi-agent) optimization 
algorithms 

(Pelzer et al. 
2015) 

Yes single rider, single driver 4,500  A partition-based match-making algorithm 

(Tafreshian and 
Masoud 2020a) 

Yes single rider, single driver 22,000 36.32 A graph partitioning methodology 

This paper Yes 
single driver, multiple 
riders 

20,000 42.31 
Approximately-uniform clustering with tours as cluster 
representative 
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In another recent work, (Tafreshian and Masoud 2020a) proposed a trip-based graph partitioning method 
for dynamic ridesharing systems. In contrast to (Najmi, Rey, and Rashidi 2017), they used complete trips, rather 
than trip ends, to form clusters, leading to partitions that may be geographically overlapping. Furthermore, they 
form clusters that are approximately uniform in size to reduce solution time. In Section 7, we use three 
benchmark methods to evaluate the performance of our proposed methodology: point-based clustering, 
balanced point-based clustering in which uniformity constraints are imposed when forming clusters in point-
based clustering, and trip-based clustering.  

2.3. Our Contributions 

In this paper, we propose a framework to solve the one-to-many ride-matching problem that arises in ride-
sharing and Ridesourcing systems in a distributed fashion. Our proposed method forms approximately-uniform 
clusters of trips, and assigns drivers to trip clusters proportional to the cluster sizes. Different from the existing 
literature that uses points or trips as cluster centers during partitioning, we use vehicle tours as cluster 
representatives to capture the fact that ride requests can be pooled and served by a single vehicle even when 
they do not share the same origin, destination, or time window. This allows for obtaining higher-quality 
solutions for one-to-many ridesharing systems or ridesourcing systems with pooling. The proposed method 
decomposes the original problem into smaller sub-problems that are approximately uniform in size within a 

threshold of 𝜀. The value of 𝜀 captures the trade-off between the complexity of solving the sub-problems and 

the lost performance due to partitioning: While setting 𝜀 = 0 ensures all sub-problems are uniform in size and 
therefore the solution time is minimized, to obtain such uniform partitioning more potential matches are 
ignored, thereby affecting the solution quality. Finally, we compare the results of our proposed methodology 
with three benchmark methods, namely point-based, balanced point-based, and trip-based partitioning, as well 
as the optimal solution. 

As such, the contributions of this paper can be summarized as follows. This is the first study to propose an 
approximately-uniform clustering method with tours as cluster representatives, which as demonstrated in the 
numerical experiments section, outperforms existing clustering approaches. We develop an iterative procedure 
based on Lloyd’s algorithm (Lloyd 1982) to find approximately-uniform clusters, and show that this clustering 
approach has favorable properties, such as monotonically converging to a local optimal solution in a finite 
number of steps. 

3. Problem statement 

Consider a dynamic ride-sharing system that matches drivers with riders in a region over time. Let us divide the 

study area into a set of stations 𝑆 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑚}, where drivers and riders start or end their trips. 
Furthermore, we divide the time horizon, e.g., an hour, into a series of short time intervals, e.g., 1 min. After 

this discretization in time and space, a travel time matrix 𝑇 can be used to retrieve the shortest path travel time 
between any pair of stations. 

Let us consider a set of drivers 𝐷 and a set of riders 𝑅 in this system, and introduce set 𝑃 = 𝑅 ∪ 𝐷 to 

include all participants. A rider 𝑟 ∈ 𝑅 registers her trip, including her origin station 𝑠𝑟
𝒪, destination station 𝑠𝑟

𝒟, 

her earliest departure time 𝑡𝑟
𝐸𝐷 , and her latest arrival time 𝑡𝑟

𝐿𝐴 . A driver 𝑑 ∈ 𝐷 registers her origin station 𝑠𝑑
𝒪 

and her earliest departure time 𝑡𝑑
𝐸𝐷 . After serving a rider, the driver’s time and location will be updated to the 

rider’s drop-off time and location, respectively. Without loss of generality, here we assume that drivers are 
available for the entirety of the study time horizon. 

To accommodate the inherent uncertainty present in a dynamic ride-sharing system, we adopt a rolling 
horizon strategy, in which the system operator solves the ride-matching problem periodically, at evenly-spaced 
points in time to which we refer as re-optimization times. The time period between two consecutive re-
optimization times is a re-optimization period. 
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Table 2: Table of notations 

Sets 

𝑆 = {𝑠}  set of stations where drivers and riders start or finish their trips 

𝐷 = {1, ⋯ , 𝒟} set of drivers 

𝑅 = {1, ⋯ , ℛ}  set of riders/trips 

𝑃 = 𝑅 ∪ 𝐷  set of participants 𝑝 

𝑅𝑐  set of riders whose trips do not lie on tours 

𝐾 = {1, ⋯ , 𝒦}  set of clusters 

𝑇  set of time intervals 𝑡 

𝐿   set of links of 𝑙 = (𝑡𝑖 , 𝑠𝑖 , 𝑡𝑗 , 𝑠𝑗) ∈ 𝑇 × 𝑆 × 𝑇 × 𝑆 ∈ 𝐿 

𝐿𝑝   set of links that are accessible by participant 𝑝 

𝐿𝑟𝑑  set of links on which driver 𝑑 can serve rider 𝑟, where 𝐿𝑟𝑑 = 𝐿𝑟 ∪ 𝐿𝑑 

ℒ  set of links where ℓ(𝑖, 𝑗) ∈ ℒ indicates rider 𝑗 can be served after rider 𝑖 

Indices 

𝑟, 𝑖, 𝑗  indices for rider/trip 

𝑑  index for driver/vehicle 

𝑝  index for participant (driver or rider) 

𝑘  index for cluster/tour 

ℓ = (𝑖, 𝑗)  link ℓ exists if rider 𝑟𝑗  can be served following rider 𝑟𝑖  

Parameters 

𝑠𝑝
𝒪   origin station of participant 𝑝 

𝑠𝑝
𝒟  destination station of participant 𝑝 

𝑡𝑝
𝐸𝐷  earliest departure time of participant 𝑝 

𝑡𝑝
𝐿𝐴  latest arrival time of participant 𝑝 

cap
𝑑

  the capacity of (the vehicle of) driver 𝑑 (i.e., the maximum number of riders allowed on 
board at one time) 

Functions 

𝑇(𝑠𝑖 , 𝑠𝑗)  shortest-path travel time between station 𝑖 and station 𝑗 

𝑐(𝑟, 𝑘)  the primary cost between rider trip  𝑟 and tour 𝑘 

𝑑(𝑟, 𝑘)  the secondary cost between rider trip  𝑟 and tour 𝑘 

𝛾(𝑑, 𝑘)  the cost between driver  𝑑 and tour 𝑘 

Decision Vaablesri 

𝜔𝑟𝑑  binary decision variable that holds the value 1 if rider 𝑟 is matched with driver 𝑑, and the 
value 0 otherwise 

𝑥𝑑
𝑙   binary decision variable that holds value 1 if driver 𝑑 travels on link 𝑙, and value 0 

otherwise 

𝑦𝑟𝑑
𝑙   binary decision variable that holds value 1 if rider 𝑟 is served by driver 𝑑 on link 𝑙, and 

value 0 otherwise 

𝑣𝑖𝑗  binary decision variable that holds the value 1 if link ℓ𝑖𝑗 is selected as a part of the tour 

𝑢, and value 0 otherwise 

𝑓𝑟𝑘  a binary variable that holds the value 1 if trip 𝑟 is assigned to cluster 𝑘, and value 0 
otherwise 

𝑧𝑑𝑘  binary decision variable that holds the value 1 if driver 𝑑 is assigned to cluster 𝑘, and the 
value 0 otherwise 
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At each re-optimization time 𝑛, we formulate a ride-matching problem that consists of all announced trips 
that have not yet expired or finalized. An announced trip is considered expired if its latest departure time, i.e., 

𝑡𝑟
𝐿𝐴 − 𝑇(𝑠𝑟

𝑂, 𝑠𝑟
𝐷), occurs before the end of the current re-optimization period. In Fig. 1, for example, all trips 

whose announcement times are before re-optimization time 𝑛 and latest departure times are after re-

optimization time 𝑛 + 1 will be considered in the ride-matching problem in the specified re-optimization 

period. (Note that we require the latest departure time of a trip to be higher than 𝑛 + 1 to account for solution 
time.) An announced trip is considered finalized if it has been previously matched in the ride-matching problem.  
Drivers who are matched previously can always be part of the new ride-matching problem after accounting for 
their previous assignments, i.e., the new origin station and earliest departure time of a driver who is transporting 
a passenger will be set to the drop off location and time of their onboard passenger, respectively. The objective 
of the ride-matching problem is to maximize the number of served riders. Since the dynamic ridesharing system 
solves ride-matching problems that are structurally similar across re-optimization periods, in rest of this paper 
we focus our discussion on the optimization problem in a single re-optimization period. 

 
Figure 1: The rolling horizon implementation 

4. The Ride-matching Problem 

In this paper, we consider a one-to-many ride-matching problem in which a driver can serve multiple riders. 
This ride-matching problem may arise in ride-sharing or ridesourcing systems with pooling and can be 
formulated as in model (A.1) in Appendix I. This optimization problem is an NP-hard problem, and cannot be 
readily adopted in a dynamic system. Hence, in this paper we introduce a solution methodology that 
decomposes the original matching problem into multiple smaller sup-problems that will be solved 
independently of each other, using model (A.1). 

5. Illustrative Example 

We use a small instance of a ridesourcing problem to clearly demonstrate each step of our proposed method 
for a single static optimization problem. This example includes 4 drivers and 20 riders. We use data form the 
New York City Taxi dataset (NYC.gov (accessed Dec. 15, 2020)) to construct this example. Due to the small 
size of the problem, we only consider a single optimization period. Table 8 in Appendix II provides information 
on the 24 participants in this example, including their roles (rider/driver), their origin and destination stations, 
and their earliest departure and latest arrival times. Tables 9 and 10 in Appendix III provide shortest path travel 
times between all pick-up and drop-off stations in this example. We solved the ride-matching problem in model 
(A.1) for this small example using the CPLEX solver in AMPL. The optimal matching results are demonstrated 
in Table 3. In the rest of the paper, we apply the algorithms in each section to this example, and eventually 
compare the outcome of the proposed methodology with that of the optimal solution. 
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Table 3: Optimal solution of the illustrative example. The itinerary of each driver is indicated as a sequence of 

tuples. A tuple (𝑡, 𝑠) indicates that the driver visits station 𝑡 at time interval s. 

Driver Served riders Vehicle itinerary 

𝑑1 𝑟1, 𝑟6, 𝑟9, 𝑟20 
(19:00,162)→(19:15,103)→(19:22,97)→(19:23,97)→(19:30,56)→(19:47,50)→(19:54,

121)→(19:59,125)→(20:06,128) 

𝑑2 𝑟4, 𝑟11, 𝑟18 
(19:12,95)→(19:25,52)→(19:35,124)→(19:36,124)→(19:43,76)→(19:54,58)→(19:56,

58)→(20:04,159) 

𝑑3 𝑟2, 𝑟7, 𝑟14 
(19:00,161)→(19:13,80)→(19:25,33)→ 

(19:33,60)→(19:45,78)→(19:47,78)→(19:58,161) 

𝑑4 𝑟3, 𝑟10, 𝑟16 
(19:07,80)→(19:16,129)→(19:32,98)→(19:34,98)→(19:40,97)→ 

(19:50,98)→(19:52,98)→ (20:00,130) 

6. Methodology 

The matching problem in (A.1) can be solved quickly for the instance presented in section 5 using commercial 
solvers, because of the problem’s relatively small size. However, solving the optimization problem in model 
(A.1) for larger instances of the ride-matching problem can be computationally prohibitive for real-time 
implementations. As such, in this paper, we propose a framework to produce high-quality solutions in near 
real-time, depicted in Figure 2. 

This framework includes a clustering algorithm, which we call 𝜀-uniform tour-based clustering. This 
clustering algorithm includes a tour-forming problem, in which a tour, i.e., sequence of trips, is formed in each 
cluster to represent the trips in the cluster, and an assignment step, in which trips are assigned to clusters based 
on their proximity to the tours representing the clusters and subject to a uniformity constraint. By iteratively 
solving these two problems, the clustering algorithm groups trips into multiple clusters that can be optimized 
independently of each other. After the clusters of trips are formed, in section 6.2 we present an optimization-
based algorithm to assign drivers to clusters of trips. Finally, the matching problem presented in Appendix A 
can be solved independently for each cluster. 

 

 
Figure 2: The general flow of the proposed framework. 
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6.1. 𝜺-uniform tour-based Clustering 

 The proposed 𝜀-uniform tour-based clustering algorithm iterates between the following two steps until 
convergence: (1) partitioning trip requests into approximately-uniform clusters so as to minimize the intra-
cluster distances, and (2) finding the best representative for each cluster. In sections 6.1.1, 6.1.2, and 6.1.3, we 
describe different components of the proposed clustering approach and demonstrate each component using 
the illustrative example presented in Section 5. In section 6.1.4, we combine the components to present the 
clustering method. Section 6.1.5 describes the properties of the clustering approach.  

6.1.1 The Tour Forming Problem 

This problem can be represented by a graph 𝐺 = (𝑅, ℒ), where 𝑅 is the set of ride requests and ℒ is the link 

set. A link ℓ𝑖𝑗 ∈ ℒ between riders 𝑖 and 𝑗 exists in graph 𝐺 if rider 𝑗 can always be served following rider 𝑖. This 

condition can be mathematically expressed in inequality (1). This inequality ensures that a driver who drops off 

rider 𝑖 at her latest arrival time still has enough time to transport rider 𝑗 to her destination within this rider’s 

requested time window. Furthermore, we introduce two nodes,  and , such that there is an outgoing link 

from node 𝒪 to all other nodes and an incoming link from all nodes to node 𝒟. 

 𝑡𝐿𝐴
𝑖 + 𝑇(𝑠𝒟

𝑖 , 𝑠𝒪
𝑗 ) ≤ 𝑡𝐿𝐴

𝑗 − 𝑇(𝑠𝒪
𝑗 , 𝑠𝒟

𝑗 ) (1) 

Under this setting, we seek to find the longest tour, i.e., the tour that contains the greatest number of trips. 
This tour-finding problem can be formulated as a longest path problem, as presented in model (1). The decision 

variable 𝑣𝑖𝑗 is a binary variable that takes the value 1 if link ℓ𝑖𝑗 is selected as a part of the tour, and the value 0 

𝒪 𝒟

otherwise. The objective function in (2a) maximizes the number of trips that lie on the selected tour. Constraints 

b) and (2c) ensure that the tour begins at 𝒪 and ends at 𝒟, respectively. Constraint (2d) is the flow balance 
nstraint. 

(2a) 
max 𝑤 = ∑ 𝑣𝑖𝑗

𝑖,𝑗∈𝑅  

s.t. ∑ 𝑣𝒪𝑗 = 1 (2b) 

𝑗∈𝑅  
 

∑ 𝑣𝑖𝒟 = 1 (2c) 
𝑖∈𝑅

 
∑ 𝑣𝑖𝑟 − ∑ 𝑣𝑟𝑖 = 0 ∀ 𝑟 ∈ 𝑅

(2d) 
𝑖∈𝑅 𝑖∈𝑅

𝑣𝑖𝑗 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝑅   (2e) 

To clearly demonstrate the tour-forming problem, we apply it to the illustrative example in section 5. We 
ndomly split the 20 rider trips in this problem into two clusters of size 10, and solve the tour-forming problem 

 the graph 𝒢 = (𝑅, ℒ) for each cluster, as demonstrated in Figure 3. Each graph has 12 nodes, including 10 

des associated with riders, node 𝒪, and node 𝒟. The dashed arrows in this figure represent the link set ℒ, 
tained based on inequality (1). The longest path problem in model (1) can be solved efficiently using 

(2
co

 

ra

on

no
ob
polynomial time algorithms, such as the Network Simplex algorithm. After solving the longest path problem, 

we obtain the following tours (i.e., sequences of stations): [80 → 129 → 33 → 60 → 124 → 156] for cluster 

1, and [161 → 80 → 98 → 97 → 78 → 161] for cluster 2. These tours are demonstrated in Figure 3. 
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(a) Optimal tour in graph 𝒢 for cluster 1 (b) Optimal tour in graph 𝒢 for cluster 2 

Figure 3: Tours associated with the two clusters in the illustrative example 

 

6.1.2 The Cost Function 

Once tours are formed to represent each cluster, we need to define a measure of distance between a trip and a 
tour. This measure will be later used to assign trips to tours so as to minimize the sum of the intra-cluster 

distances under uniformity constraints. Let us define the cost function 𝑐, whose value 𝑐(𝑟, 𝑘) denotes the 

distance between rider 𝑟’s trip and tour 𝑘, as presented in Equation (3). We denote this cost as the primary cost, 

and define it as follows. If tour 𝑘 contains trip 𝑟, then the value of the cost function is zero; otherwise, if trip 

𝑟 is not on tour 𝑘, then the value of cost function is set to 𝑀–a large positive number. Note that this cost 
function is selected to guarantee the convergence of the clustering algorithm, as will be discussed later in section 
6.1.5. 

 0 if trip 𝑟 is on the tour 𝑘
𝑐(𝑟, 𝑘) = {  (3) 

𝑀 if trip 𝑟 is not on the tour 𝑘

When we assign trips to tours based on this primary cost, there might be many trips that do not readily lie 
on any tour. In this case, a tie-breaking rule is needed. Here, we use a secondary objective function to break the 
ties, to which we refer as the secondary cost. Since tours and trips are both sequences of stations, we use an 
algorithm inspired by dynamic time warping (DTW) to measure the cost of assigning a trip to a tour. DTW is 
a method developed for measuring the similarity between two sequences by finding an optimal match between 

their elements (Senin 2008). Consider a tour 𝑘 that has a sequence of 𝑚 stations 𝒦𝑘 =
[𝑠𝑘(1), 𝑠𝑘(2), . . . , 𝑠𝑘(𝑚)], i.e., 𝑚/2 sequential trips. Let us represent a trip 𝑟 as a sequence of stations, denoted 

by ℛ𝑟 = [𝑠𝑟(1) = 𝑠𝒪
𝑟 , 𝑠𝑟(2) = 𝑠𝒟

𝑟 ]. We measure the distance between each pair of stations 𝑖 and 𝑗 by the 

shortest-path travel time between them, denoted by 𝑇(𝑖, 𝑗). 

The distance between a trip and a tour can be calculated as the smallest total distance between the origin 

and destination of the trip (i.e., 𝑠𝑟(1) and 𝑠𝑟(2)) from any station on the tour, under the condition that the 
station on the tour that is matched to the trip destination should appear after the station matched to the trip 

origin. Mathematically, this condition can be specified as 𝑞 + 1 ≤ 𝑠 (2) ≤ 𝑚 when 𝑠 (1) = 𝑞. (Note that 𝑟 𝑟
here we use equality to indicate the matching of two stations.) It is easy to see that one can enumerate all the 

possible matchings between the two sequences [𝑠𝑟(1), 𝑠𝑟(2)] and [𝑠𝑘(1), 𝑠𝑘(2), . . . , 𝑠𝑘(𝑚)] to find the 
matching that provides the smallest distance. Algorithm 1 lays out the details of measuring this distance without 
having to enumerate all the possibilities, rendering this step more computationally efficient. This algorithm 

starts by defining a 2 × 𝑚 matrix 𝐷, corresponding to the size of the two sequences. The first row of this 
matrix is the shortest path travel time between the trip origin and the stations on the tour. In the second row 
of this matrix, all distances are set to infinity, except for the distance between the trip destination and the last 
station on the tour. The distances between other stations and the trip destination are calculated recursively 
using Equation (5). Finally, Equation (6) evaluates the total distances between the trip ends and their best 
matched stations on the tour, and finds the smallest of these distances as the secondary cost.  
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Algorithm 1: Obtaining the dissimilarity between a trip and a tour 

 Input: A trip [𝑠𝑟(1), 𝑠𝑟(2)] 
  A tour [𝑠𝑘(1), 𝑠𝑘(2), . . . , 𝑠𝑘(𝑚)] 
  Shortest-path travel time matrix 𝑇𝑡 
 Output: The distance 𝑑(𝑟, 𝑘) between trip 𝑟 and tour 𝑘 
1 Step 1: Assume an initial distance matrix 𝐷 of size 2 × 𝑚 as follows 

𝑇(𝑠𝑟(1), 𝑠𝑘(1)) ⋯ 𝑇(𝑠𝑟(1), 𝑠𝑘(𝑚 − 1)) 𝑇(𝑠𝑟(1), 𝑠𝑘(𝑚))
2 𝐷 = [ ] (4) 

∞ ⋯ ∞ 𝑇(𝑠𝑟(2), 𝑠𝑘(𝑚))

3 Step 2 Update the distance matrix 𝐷  

4 for 𝑞 = 𝑚 − 1, ⋯ ,1 do  

 
 𝐷[2, 𝑞] = min{ 𝑇(𝑠𝑟(2), 𝑠𝑘(𝑞)) ,  𝐷[2, 𝑞 + 1] } (5) 

5  Step 3 Calculate the distance between trip 𝑟 and tour 𝑘 
 

𝑑(𝑟, 𝑘) = min{ 𝐷[1, 𝑞] + 𝐷[2, 𝑞] } (6) 
𝑞

Using these two cost functions, we calculate the primary and secondary costs, 𝑐(𝑟, 𝑘) and 𝑑(𝑟, 𝑘), between 

trips and tours. In our illustrative example, the primary costs between trips ℛ3, ℛ7, and ℛ15 and tour 𝒦1, and 

between trips ℛ2, ℛ10, and ℛ14 and tour 𝒦2, are zero. The primary costs between other trips and the two 

tours are 𝑀. The primary and secondary costs of all trips in the illustrative example are displayed in Table 2 in 
Appendix D. 

6.1.3 The Two-Step Trip Assignment Process 

In this section, we discuss assignment of trips to clusters under a uniformity constraint. The output of this step 
is a revised set of clusters. In a conventional clustering problem, objects are allocated to clusters so as to 
minimize sum of intra-cluster costs. Here, our end goal is not to cluster trips, but to solve the optimization 
problem in model (A.1) for each cluster in near real-time. Since the computational complexity of the 
optimization problem in each cluster depends on the number of trips in that cluster, clustering instances in 
which cluster sizes are highly non-uniform are not of interest, since larger clusters would create a computational 
bottleneck. As such, we strive to form clusters that are approximately uniform in their number of trips.  

In this paper, we consider a two-step assignment process. The first assignment problem seeks to allocate 
trips to clusters so as to minimize the total primary cost, as indicated in the objective function (7a). Here, the 

decision variable 𝑓𝑟𝑘 takes value 1 if trip 𝑟 is assigned to cluster 𝑘, and value 0 otherwise. Constraint (7b) 
ensures that each trip is allocated to a single cluster. The assignment problem in model (7) has a trivial solution 

wherein trips that lie on a tours, i.e., trips for which 𝑐(𝑟, 𝑘) = 0, would be allocated to the cluster represented 
by that tour. 

 
(7a) min 𝑧𝑝 = ∑ ∑ 𝑐 (𝑟, 𝑘) 𝑓𝑟𝑘

 𝑟∈𝑅 𝑘∈𝐾

 (7b) 
s.t. ∑ 𝑓𝑟𝑘 = 1 ∀𝑟 ∈ 𝑅

 
𝑘∈𝐾

𝑓𝑟𝑘 ∈ {0,1} ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾   (7c) 

After this initial assignment, we solve a second assignment problem to allocate trips that do not readily lie 

on a tour. This allocation problem can be formulated as an 𝜀-uniform assignment problem in model (8). Let us 



 13 

define the set 𝑅𝑐 to include ride requests that do not readily lie on a tour, i.e., trips for which 𝑐(𝑟, 𝑘) = 𝑀. The 
objective function in (8a) minimizes sum of the secondary costs between trips and their associated cluster 
representatives. Constraint (8b) ensures that each trip is assigned to a single cluster. constraint (8c) ensures that 

the difference between the number of trips in set 𝑅𝑐 in any two clusters is at most 𝜀|𝑅𝑐|. The parameter 𝜀 is 

an imbalance parameter, whose value affects the size clusters. 𝜀 = 0 ensures that all clusters have the exact 

same size, while 𝜀 = 𝒦 − 1 imposes no constraint on cluster sizes. Note that the 𝜀-uniform assignment 
problem was first proposed in (Tafreshian and Masoud 2020a) for a peer-to-peer ridesharing system. Model (8) 
is based on the work in (Tafreshian and Masoud 2020a), customized for a ridesourcing system with one-to-
many matching. 

 (8a) 
min 𝑧𝑠 = ∑ ∑ 𝑑 (𝑟, 𝑘) 𝑓𝑟𝑘

𝑟∈𝑅𝑐 𝑘∈𝐾  

s.t. ∑ 𝑓𝑟𝑘 = 1 ∀𝑟 ∈ 𝑅𝑐 (8b) 

𝑘∈𝐾  
 

|𝑅𝑐|
∑ 𝑓𝑟𝑘 ≤ (1 + 𝜀) ∀𝑘 ∈ 𝐾 (8c) 𝒦

𝑟∈𝑅𝑐

(8d) 𝑓𝑟𝑘 ∈ {0,1} ∀𝑟 ∈ 𝑅𝑐 ,  ∀𝑘 ∈ 𝐾  

Figure 5 shows the outcome of this two-step assignment process for the illustrative example. In this figure, 
trips that lie on tours all have primary cost of zero. Other trips are allocated to tours so as to minimize the 
secondary cost under the uniformity constraint for cluster sizes. 

 
Figure 4: Assignment in iteration 1 of the illustrative example. The trips on tours have primary cost of zero. Other 

trips are allocated to clusters based on their secondary costs, as outlined in Table 2 in Appendix D. 

 

6.1.4 The 𝜺-uniform tour-based Clustering Algorithm 

In the previous sections, we outlined different components of the 𝜀-uniform tour-based clustering algorithm, 
i.e., the tour-forming problem, the assignment problems, and the cost measures to quantify the distance 
between a tour and a trip. 

The 𝜀-uniform tour-based clustering algorithm is described in Algorithm 2. The inputs to this algorithm are 
the set of trips, the number of clusters, and the uniformity parameter, and the maximum number of iterations. 

The algorithm starts (step 0) by randomly assigning ℛ trips into 𝒦 clusters. In step 1, a tour is formed using 
the set of trips in each cluster. In step 2, distances between trips and tours are obtained, allowing for computing 
the new total intra-cluster distances. In the assignment step (step 3), first, the assignment solution based on the 

primary costs is obtained. Next, the 𝜀-uniform assignment problem is solved, where trips that do not readily lie 
on tours are assigned to clusters based on their proximity to tours as well as the uniformity constraint applied 
to cluster sizes. The objective function value corresponding to the optimal assignment based on the primary 
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costs provides the total sum of intra-cluster distances. Step 4 assesses the termination criteria. If the total intra-
cluster distance obtained from assignments in two consecutive iterations (obtained in steps 2 and 3) remains 
the same or the maximum number of iterations is reached, then the algorithm terminates, providing a local 

optimal solution. Otherwise, the iteration counter 𝛼 is increased by 1, and steps 1 through 3 are repeated. Since 

this process provides a local optimal solution, we repeat it for a total of 𝑖𝑡𝑟 times, and report the final set of 
clusters, and their associated tours, that provide the lowest overall intra-cluster distance. 

The final clustering results for the illustrative example are shown in Figure 5. The solution consists of two 
tours, one including three trips and the other one including four trips. As Figure 7 demonstrates, convergence 
is obtained in only three steps. 

 

Algorithm 2: The 𝜀-uniform tour-based clustering Algorithm 

 Input: Set of trips, 𝑅 

  Number of clusters, 𝒦 

  Uniformity parameter, 𝜀 

  Max number of iterations, 𝛼max 

 Output: clusters of trips and their corresponding tours, 𝑇∗ 

1 for 𝑎 = 1, . . . , itr do 

2  Step 0: Initialization 

3  Obtain 𝑓∗
𝑟𝑘(0) by randomly dividing ℛ trips into 𝒦 clusters 

4  𝛼 ← 1 

5  Step 1 Tour formation 

 Choose a random sample of trips in each cluster (where clusters are determined by 
∗6 𝑓𝑟𝑘(𝛼 − 1)) to form new tours by solving the optimization problem in model (3) for 

each cluster. Let 𝑤∗ be the optimal value of the objective function. 

 𝑣∗7 𝑖𝑗(𝛼) ← argmax 𝑤∗ 

8  Step 2 Cost update 

 Calculate the new primary and secondary costs, 𝑐(𝑛, 𝑘) and 𝑑(𝑛, 𝑘), respectively, using 
9 

𝑓∗ ∗Equation (3) and Algorithm 1, and based on 𝑟𝑘(𝛼 − 1) and 𝑣𝑖𝑗(𝛼) 

𝒦10  Calculate ℎ𝛼 = ∑𝑘=1 ∑ℛ
𝑟=1 𝑐 (𝑟, 𝑘) 

11  Step 3 Assignment 

 Assign ℛ trips to 𝒦 clusters. Set 𝑧∗ ∗ as the number of trips on tours, and find 𝑧𝑠  by solving the 
12 

optimization problems in model (8). 

13  ℎ𝛼+1 ← 𝑧∗ 

14  𝑓∗
𝑟𝑘(𝛼) ← argmin 𝑧∗

𝑠  

15  Step 4 Termination criteria 

16  if ℎ𝛼 = ℎ𝛼+1 or 𝛼 = 𝛼max then 

17   𝐶𝑎 = ℎ𝛼 

18   𝑇𝑎 = {𝑓∗
𝑟𝑘(𝛼), 𝑣∗

𝑖𝑗(𝛼)} 

19   Terminate 

20  else 

21   𝛼 ← 𝛼 + 1 

22   Go to Step 1 

23  𝑇∗ ← 𝑇𝑎 corresponding to the solution with the minimum 𝐶𝑎 
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(a) Tours and assignments (b) Convergence of Algorithm 2 

Figure 5: Final assignment for the illustrative example 

6.1.5 Properties of the 𝜺-uniform tour-based Clustering Algorithm 

In this section, we first prove that the objective function of the 𝜀-uniform tour-based clustering problem 
decreases with iterations in Algorithm 2. Next, we prove the convergence of the algorithm. 

Proposition 1.  The objective function in model (7) decreases with iterations of Algorithm 2. 

Proof. In step 1 of Algorithm 2, the optimization problem in model (2) seeks to find the longest tour within each 
cluster. It is easy to see that finding the tour with maximum length is equivalent to solving an optimization 
problem that finds the min-cost tour, where the cost function is described in Equation (3). In step 3 of 
Algorithm 2, the first step of the assignment is completed under the same cost function. Therefore, it is easy 
to see that each of these two main steps in Algorithm 2 attempt to minimize the same cost function, and the 
results follow.  

Proposition 2.  Algorithm 2 Converges in a finite number of steps. 

Proof. There are possibly many but finite number of ways to assign ℛ trips to 𝒦 clusters. Furthermore, in 
Proposition 1 we showed that the objective function decreases from one iteration to the next (otherwise, we 
stop). As such, there are a finite number of ways in which clusters could change, and the algorithm is designed 
such that no solution is visited twice (unless at convergence, at which point we stop). The results follow.  

6.2. Driver Assignment 

After clusters of trips are formed, we need to allocate drivers to these clusters. Algorithm 3 details the steps 

of this procedure. In the first step of this algorithm, the cost of assigning a driver 𝑑 to a cluster 𝑘 is calculated. 

This cost is based on the time distance between the origin location of driver 𝑑 to the pick-up location of the 

first trip on tour 𝑘 that can be served by 𝑑, and the number of remaining trips on the tour. In general, the 
higher the time distance, the higher the cost of allocating the driver to the cluster. Adversely, the higher the 

number of the remaining trips on tour 𝑘, the more effective driver 𝑑 can be in serving the cluster, and therefore 
the cost would be lower. 

In the second step of Algorithm 3, we solve the bipartite matching problem outlined in model (9) to allocate 

the set of drivers to clusters. The decision variable 𝑧𝑑𝑘  takes the value 1 if driver 𝑑 is assigned to cluster 𝑘, and 
the value 0 otherwise. The objective function in (9) minimizes the total driver-cluster assignment cost. 
Constraint (9b) ensures that the proportion of drivers allocated to a cluster is approximately equal to the 
proportion of trips in that cluster. Constraint (9c) ensures that each driver is allocated to exactly one cluster. 

Constraint (9d) imposes the binary condition on the decision variable 𝑧𝑑𝑘 . Note that the constraint coefficient 
matrix in model (9) has a totally unimodular structure, relaxing this optimization problem to a linear program 
that can be easily solved in real-time. The assignment of drivers to clusters is demonstrated in Table 1. The 
optimization problem in model (9) allocates drivers 1 and 3 to cluster 1, and drivers 2 and 4 to cluster 2.  
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Algorithm 3: Assignment of drivers to clusters 

 Input: 𝒦 tours, 𝑇∗ 

  Set of drivers, 𝐷, with their origins, 𝑠𝒪
𝑑  and earliest departure times, 𝑡ED

𝑑  

 Output: Driver assignment to clusters, 𝑧∗
𝑑𝑘 , ∀𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾 

1 𝑛𝑘 ← number of trips in cluster 𝑘 under 𝑇∗ 

2 Step 1 Average cost of driver-tour assignment 

3 for 𝑑 ∈ 𝐷 do 

4  for 𝑘 ∈ 𝐾 do 

  Find the first trip in tour 𝑘 that can be served by 𝑑 based on 𝑡ED5 𝑑 . 

Denote this trip as 𝑟. Denote the number of trips after this trip on the tour as 𝑛rem 
6   𝒪𝑇(𝑠 ,𝑠𝒪)

      𝛾(𝑑, 𝑘) = 𝑑 𝑟  
𝑛rem+1

7 Step 2 The driver assignment problem 
∗8 Solve the optimization problem in (9) to obtain the optimal driver-cluster assignment, 𝑧𝑑𝑘  

(9a) 
min ∑ ∑ 𝛾 (𝑑, 𝑘) 𝑧𝑑𝑘

 
𝑑∈𝐷 𝑘∈𝐾

∑ ∗
𝑛∈𝑅 𝑓𝑟𝑘 (9b) 

∑ 𝑧𝑑𝑘 ≥ ⌊  𝒟⌋ ∀𝑘 ∈ 𝐾
 ℛ   

𝑑∈𝐷
(9c) 

∑ 𝑧𝑑𝑘 = 1 ∀𝑑 ∈ 𝐷
 

𝑘∈𝐾

𝑧 ∈ {0,1} ∀𝑑 ∈ 𝐷, ∀𝑘 ∈ 𝐾 (9d) 
𝑑𝑘

 

Table 4: The final ride-matching results 

 Driver Matched with 
Number of 

riders being served 

Cluster 1 
𝑑1 𝑟1, 𝑟6, 𝑟9 3 

𝑑3 𝑟2, 𝑟10, 𝑟14 3 

Cluster 2 
𝑑2 𝑟4, 𝑟16 2 

𝑑4 𝑟3, 𝑟7, 𝑟12, 𝑟20 4 

7. Numerical Experiments 

In this section, we use the New York City Taxi dataset (NYC.gov (accessed Dec. 15, 2020)) to demonstrate the 

performance of the 𝜀-uniform tour-based clustering method. 

7.1. Dataset 

The New York City Taxi and Limousine Commission (NYC TLC), in partnership with the NYC Department 
of Information Technology and Telecommunications (DOITT), has published millions of trip records from 
yellow medallion taxis and green SHLs for several years. These records include attributes such as pick-up and 
drop-off dates, times, and locations, trip distances, itemized fares, rate types, payment types, and driver-reported 
passenger counts. 
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The data used in this study belongs to the evening peak hour (19:00-20:00) of Feb 19th in 2016. We select 
trips that are geographically concentrated in the Manhattan area, thereby creating ride-matching problems that 
are large-scale due to the high number of trips as well as the high spatiotemporal proximity between them. 

7.2. Simulation Settings 

In this study, we adopt a rolling-horizon approach with a re-optimization period of 1 minute, indicating that 
the ride-matching optimization problem will be solved every 1 minute starting from 18:59pm. We assume that 
all trips will be completed on their shortest travel time paths, and obtain the travel times for every re-
optimization period from the Google Maps API. In this study, we set the ratio of riders to drivers to 4, i.e., the 
total number of riders is 4 times the number of drivers. We generate the earliest departure times of drivers 
uniformly from the window 18:59 to 20:00. We assume that riders request a ride a few minutes ahead of their 
earliest departure times. Since the dataset does not contain the times when ride requests are issued, we generate 
a uniform random number from 0 to 30 for each rider, and subtract it from their earliest departure time to 
obtain their ride-request time. Doing this allows us to have a mixture of pre-arranged and on-the-fly trip 

requests. We assume that the study area consists of 184 pre-defined stations, denoted by 𝑆, where participants 
start/end their trips. Stations are distributed in the network so as to make sure that there is at least one station 

within the walking distance (< 0.15 miles) of a typical trip’s origin/destination. (Fig. 8). We set the capacity of 
each vehicle to four.  

 
Figure 6: The pre-defined stations distribution of the Manhattan area. 

 

7.3. Results 

In this section, we first define a base experimental setting and conduct extensive numerical analysis to draw a 
comparison between our proposed method, three benchmarks from the literature, and the optimal solution. 
Next, we observe the convergence properties of Algorithm 2, and study the impact of sample size in this 
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algorithm. Finally, we conduct sensitivity analysis over some of the critical parameters of our method. For all 
experiments conducted in this section, we consider a planning horizon of one hour, with sixty one-minute re-
optimization periods. 

7.3.1 Base Experiment 

In our base experimental setting, we set the total number of ride requests to 2000, and the sample size in 

Algorithm 2 to 150. We set the value of 𝜀 to 0.1, and the maximum number of iterations to 10. 

Figure 7 demonstrates the clustering results, where for a given trip request, both trip ends are colored based 
on the clusters to which the trip is assigned. It is interesting to note that the clusters in Figure 7 have a high 
level of spatial overlap. 

   

(a) Two clusters. (b) Three clusters. (c) Four clusters. 

Figure 7: ε-uniform tour-based clustering results. Trip ends are colored based on their assigned clusters. 
 

In order to objectively assess the performance of the proposed method, we compare it against three 
benchmark methods form the literature, including point-based clustering (Najmi, Rey, and Rashidi 2017), 

balanced point-based clustering (point-based clustering with uniform clusters), 𝜀-uniform trip-based clustering 
(Tafreshian and Masoud 2020a), and the exact mathematical formulation presented in model (A.1), solved to 
optimality. These comparisons allow us to position our proposed method in terms of solution quality and the 
required computational effort. 

In the point-based method, trip ends (i.e., origin and destination locations) of all trips (i.e., both rider and 
driver trips) are the objects in clustering. Once the clusters are obtained, an optimization problem can be solved 
independently for each cluster. Trips whose origin and destination locations fall in different clusters will not be 
served. The balanced point-based clustering is similar to point-based clustering, except that balance constraints 
are imposed on the number of objects within clusters. In trip-based clustering, each trip (whether it is a rider 
or a driver trip) is considered an object in clustering. Once clustering is concluded, the rider and driver trips 
within each cluster are matched independent of other clusters. 

Tables 5, 6 and 7 summarize the results. The value of 𝑘 in these tables indicates the number of clusters. The 
reported computation time is the total time spent on solving the ride-matching problem, and the time for 

clustering where applicable, over 60 re-optimization periods, each of duration 1 min. For the 𝜀-uniform tour-
based method, the computation time is provided in more detail, breaking the total time into the clustering and 
optimization times. The clustering time consists of the time required for generating the network, computing 
the costs, and the assignment steps. The optimization solution time is the sum of the time spent on model 
construction and obtaining a solution from a commercial solver. The numbers in parenthesis are the average 
computation times across all re-optimization periods. The optimal solution finds a match for 60.40% of the 
ride requests. We normalize the optimal matching rate to 100%, and report the solution quality of all other 
methods as their matching rate divided by the optimal matching rate. 
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Table 5: Comparison of matching rate and solution time between the proposed 𝜖-uniform tour-based method, the 
optimal solution, and the point-based clustering benchmark. The matching rate of the optimal solution is normalized 
to 100%, and the matching rates obtained by other methods are reported in terms of the percentage of the optimal 

matching rate. The value of 𝐾 refers to the number of clusters. 

Optimal Point-based Tour-based 

𝑘 
Computation 

Time (Sec) 

Solution 

quality 
𝑘 

Computation 

Time (Sec) 

Solution 

quality 
𝑘 

Computation Time (Sec) 
Solution 

quality Total 
Graph 

Partitioning 

Optimization 
Problem 

1 
1834  

(30.56) 
100% 2 

973  

(16.22) 
82.62% 2 

366 

(6.1) 
146 220 94.95% 

   3 
942 

(15.70) 
67.30% 3 

283 

(4.72) 
163 120 77.15% 

   4   
933 

(13.88) 
60.60% 4 

197 

(3.28) 
151 46 65.98% 

 

Table 6: Comparison of matching rate and solution time between the proposed ϵ-uniform tour-based method, the 
optimal solution, and the balanced point-based clustering benchmark. The matching rate of the optimal solution is 
normalized to 100%, and the matching rates obtained by other methods are reported in terms of the percentage of 
the optimal matching rate. The value of K refers to the number of clusters. 

Optimal Balanced Point-based Tour-based 

𝑘 
Computation 

Time (Sec) 

Solution 

quality 
𝑘 

Computation 

Time (Sec) 

Solution 

quality 
𝑘 

Computation Time (Sec) 
Solution 

quality Total 
Graph 

Partitioning 

Optimization 
Problem 

1 
1834  

(30.56) 
100% 2 

343 

(5.72) 
75.32% 2 

366 

(6.1) 
146 220 94.95% 

   3 
251 

(4.18) 
62.43% 3 

283 

(4.72) 
163 120 77.15% 

   4   
173 

(2.88) 
54.37% 4 

197 

(3.28) 
151 46 65.98% 

 

Table 7: Comparison of matching rate and solution time between the proposed ϵ-uniform tour-based method, the 

optimal solution, and the ϵ-uniform trip-based clustering benchmark. The matching rate of the optimal solution is 
normalized to 100%, and the matching rates obtained by other methods are reported in terms of the percentage of 
the optimal matching rate. The value of K refers to the number of clusters. 

Optimal Trip-based Tour-based 

𝑘 
Computation 

Time (Sec) 

Solution 

quality 
𝑘 

Computation 

Time (Sec) 

Solution 

quality 
𝑘 

Computation Time (Sec) 
Solution 

quality Total 
Graph 

Partitioning 

Optimization 
Problem 

1 
1834  

(30.56) 
100% 2 

350 

(5.8) 
83.61% 2 

366 

(6.1) 
146 220 94.95% 

   3 
279 

(4.65) 
68.54% 3 

283 

(4.72) 
163 120 77.15% 

   4   
185 

(3.08) 
59.85% 4 

197 

(3.28) 
151 46 65.98% 
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Table 5 compares the 𝜀-uniform tour-based clustering method with point-based clustering and the optimal 
solution. This table demonstrates that the gap in solution quality by the two methods decreases as we increase 
the number of clusters. This is due to the fact that when forming clusters, both methods disregard potential 
matches between objects that are assigned to different clusters. The higher solution times for the point-based 
method can be explained by the fact that this method does not seek to construct uniform clusters, implying 
that some clusters may have a significantly higher number of trips, and thereby higher optimization times. This 
imbalance in the size of clusters under point-based clustering is demonstrated in Figure 8. The lower solution 
quality of the point-based method is due to the fact that in this method clusters are constructed based on trip 
ends, rather than whole trips. Therefore, since after clustering the matching optimization problems are solved 
independently for each cluster, trips whose trip ends lie in different clusters are not served. This is a drawback 
that is addressed by the trip-based clustering method in which an entire trip is considered as a clustering object. 

 

 
Figure 8: Cluster sizes for point-based, balanced point-based, trip-based and tour-based methods. 

 

Table 6 compares the 𝜀-uniform tour-based clustering method with balanced point-based clustering, in 
which a uniformity constraint is incorporated in the clustering algorithm, and the optimal solution. This table 
suggests that when we seek to balance cluster sizes in point-based clustering, the computation time decreases 
significantly. However, unsurprisingly, the solution quality of the balanced point-based clustering is worse than 

that of the unbalanced point-based clustering and the tour-based method. This table suggests that with 𝑘 = 2, 
the solution quality of the tour-based method is higher that of the balanced point-based method by about 20%. 
This is due to the fact that when forming uniform clusters, the system has a lower level of flexibility to assign 
trips to clusters, thereby resulting in lower quality solutions. 

Finally, Table 7 compares the tour-based and trip-based clustering approaches. The tour-based method 
outperforms the solution quality of the trip-based method by about 11% under two clusters. The reason behind 
this improvement in solution quality can be attributed to the fact that in tour-based clustering trips that are 
close to any trip on the representative tour are assigned to that cluster. As a result, not only are trips that are 
spatio-temporally close assigned to the same cluster, as is the case in trip-based clustering, but also trips assigned 
to a cluster can be served sequentially by a single vehicle. This makes it more likely for the matching problem 
to make a more effective use of the vehicles in serving ride requests. 

The gap between these solutions is reduced to 6% under 4 clusters for the same reasons discussed above. 
The difference in solution times of these two methods is not statistically significant, as both methods strive to 
generate clusters that are balanced in size within a threshed. The main difference between the balanced point-
based, trip-based, and tour-based approaches is what they consider as a unit of analysis: the point-based method 
considers a trip end as a unit of modeling, while the trip-based method considers an entire trip, and the tour-
based method considers a tour–a sequence of trips–as a cluster representative. The tour-based method provides 
the highest quality solution because the cluster representatives can more closely capture the ultimate product 
of the matching problem, which in a ridesourcing setting is a set of vehicle tours. 

7.3.2 Algorithm Properties 

In this section, we first study the convergence rate of our base experimental setting. Next, we investigate the 
impact of sample size on the quality of solutions. 
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Convergence Properties 

Figure 9 demonstrates the convergence of the objective function in model (8) in our base experiment, using a 
randomly-selected instance. This figure clearly shows that the objective function increases monotonically, which 
is equivalent to the cost function decreasing monotonically. As demonstrated in this figure, the objective 
function typically converges in a few iterations. 

 
Figure 9: Primary and secondary costs per iteration.  

 

Impact of Sample Size on Solution Quality 

Figure 10 shows the impact of sample size in Algorithm 2 on the computation time and the secondary cost in 
the tour forming problem. Figure 10(a) displays that the computation time increases super-linearly with sample 
size. Figure 10(b) demonstrates that the secondary cost decreases with sample size. This is due to the fact that 
increasing the sample size increases the likelihood of obtaining tours that better represent their corresponding 
clusters, resulting in a smaller secondary cost for the entire set of trips. However, there is a critical sample size 
beyond which the reduction in cost becomes negligible. In our experimental setting, this sample size is about 
150 trips, which is the number utilized in our experiments. 

  

(a) Computation time (b) Total cost 

Figure 10: The computation time and the secondary cost of the tour forming problem with different sample 
sizes. 
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7.3.3 Sensitivity Analysis 
The Imbalance Parameter 

Figure 11 shows the impact of changing the value of 𝜀 on the number of served trips as well as the computation 

time of the 𝜀-uniform tour-based clustering method under different numbers of clusters. Figure 11 (a) displays 

that as the value of 𝜀 increases, the number of served riders increases for all values of 𝐾. This is because a 

higher value for 𝜀 provides a higher level of flexibility to assign trips to clusters, thereby resulting in higher 

quality solutions. Figure 11 (b) demonstrates that the computation time increases with 𝜀 over all values of 𝐾. 

This is due to the fact that the increased level of flexibility that accompanies a higher 𝜀 value results in less 
uniform cluster sizes. As such, some clusters will be larger than others, increasing the overall solution time. 

  

(a) Number of riders being served. (b) Computation time. 

Figure 11: Number of served riders and computation time of the proposed algorithm with different values of 𝜀 
 

Figure 12 provides a more detailed view of the change in computation time for different values of 𝜀. Figures 
12(a) and 12(b) demonstrate the distribution of computation time under 3 and 4 clusters, respectively. These 

figures indicate that the cluster sizes become less uniform as we increase 𝜀, resulting in the larger clusters taking 
longer to optimize. 

  

(a) Number of clusters = 3. (b) Number of clusters = 4. 

Figure 12: Distribution of computation time 
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Number of System Participants 

Figure 13 displays the influence of the size of participants on the computation time and the number of served 

riders under different numbers of clusters and 𝜀 = 0.1. Note that 𝑘 = 1 provides the optimal solution. Figure 
13 (a) demonstrates that the computation time decreases with the number of clusters regardless of the number 
of participants. Still, the rate of reduction in solution time decreases as the number of clusters becomes larger. 
This is because the larger number of clusters indicates that there are fewer participants in each cluster, which 
results in less computation time. However, once the number of clusters reaches a threshold, the reduction in 
solution time as we increase the number of clusters becomes small, indicating that there is a critical threshold 

for 𝑘 where having more clusters does not help with reducing solution time any further, but decreases system 
throughput (Figure 13 (b)). Additionally, Figure 13 (a) shows that once the number of clusters is over a critical 
threshold, the computation time is not substantially affected by the number of participants anymore. 

  

(a) Time (b) Number of served riders 

Figure 13: Number of served riders and computation time under different numbers of clusters 

 

Figure 13 (b) shows that increasing the number of clusters reduces the matching rate; however, this 
reduction is smaller when the base number of participants is lower. This is due to the fact that with higher trip 
density produced by a higher number of participants, clustering leads to removing a higher number of potential 
matches from the feasible region of the solution, leading to higher loss in system throughput. This figure also 

shows that the rate of reduction in system throughput decreases between 𝑘 = 3 and 𝑘 = 2, compared to 𝑘 =
2 and 𝑘 = 1. Figure 13 shows that, regardless of the number of participants, there is a a critical value for 𝑘, 
where increasing the number of clusters beyond this value does not reduce the solution time any further, but 

reduces system throughput. For our experimental setting, this critical value is 𝑘 = 2. 

8. Conclusion 

In this paper we devise a framework to solve the ride-matching problem that arises in dynamic ridesourcing 
systems in a distributed fashion. The methodology is based on clustering, where ride requests are grouped into 
a number of clusters so as to (1) maximize the intra-cluster similarity between trips within a cluster, and (2) 
guarantee cluster sizes to be uniform within a threshold. The proposed clustering approach accounts for the 
fact the ultimate goal is to form vehicle tours in each cluster, thereby using tours, i.e., sequences of trips, as 

cluster representative. We devise what we call the 𝜀-uniform tour-based algorithm to assign trips to clusters, 
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and prove its convergence. Next, we optimally assign drivers to clusters, and solve the ride-matching problem 
for clusters independently of each other. 

Using the New York City taxi dataset, we conduct extensive numerical experiments to analyze the 
performance of the proposed methodology and compare it against three state-of-the-art benchmarks, namely 
point-based, balanced point-based, and trip-based clustering, as well as the optimal solution. First, we 
demonstrate that the proposed methodology has favorable convergence properties, providing solutions in a 
few iterations. Secondly, we demonstrate the importance of forming approximately-uniform clusters, and 
showcase the resulting trade-offs between solution time and quality. Finally, we show that our proposed 
methodology could result in a statistically significant increase in the matching rate compared to the benchmarks, 
where this improvement decreases with the number of clusters. 
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Appendix A 

we consider a one-to-many ride-matching problem in which a driver can serve multiple riders. In such systems, 

a trip can be denoted by a link, 𝑙 = (𝑡𝑖 , 𝑠𝑖 , 𝑡𝑗 , 𝑠𝑗) ∈ 𝑇 × 𝑆 × 𝑇 × 𝑆, where 𝑇 is an ordered set of time intervals 

during the study time horizon. Due to the large size of the transportation network and the number of time 
intervals in the study horizon, solving such a ride-matching problem can be computationally prohibitive. 
Therefore, we adopt the pre-processing procedure proposed by (Masoud and Jayakrishnan 2017a) to reduce 
the size of the link sets. 

The rationale of the pre-processing procedure is that the spatiotemporal constraints enforced by travel time 

windows of participants limit their access to members of the link set 𝐿. This pre-processing procedure starts 
by forming an ellipse for each participant, where the foci of the ellipse are set to the participant’s origin and 
destination stations, the distance between the foci is the Euclidean distance between the participant’s origin and 
destination stations, and the distance between the vertices of the ellipse is set to an upper-bound on the distance 
that the participant can travel within their travel time window. This ellipse defines a reduced graph, where any 
link with at least one station outside the ellipse will be infeasible for the participants as it will violate at least one 
of the spatio-temporal constraints. 

This pre-processing procedure provides 𝐿𝑑 ⊂ 𝐿 and 𝐿𝑟 ⊂ 𝐿 as the set of links accessible to driver 𝑑 and 

rider 𝑟, respectively. Furthermore, we define 𝐿𝑟𝑑 = 𝐿𝑟 ∩ 𝐿𝑑 . Finally, 𝑇𝑟 ⊂ 𝑇 and 𝑇𝑑 ⊂ 𝑇 are sets of time 

intervals within the time window of rider 𝑟 and driver 𝑑, respectively. The ride-matching problem can be 

modeled on a graph 𝐺 = (𝑆, 𝐿), where 𝑆 is the set of pick-up and drop-off stations, and 𝐿 is the set of links. 

This problem can be mathematically formulated as an integer programming model in (A.1). In this model, 

the decision variable 𝜔𝑟𝑑 is a binary variable that takes on the value 1 if rider 𝑟 is matched with driver 𝑑, and 

the value 0 otherwise. There are two additional sets of binary variables : (1) 𝑥𝑑
𝑙  which takes the value 1 if driver 

𝑑 travels on link 𝑙, and the value 0 otherwise; and (2) 𝑦𝑟𝑑
𝑙  which takes the value 1 if rider 𝑟 is transported by 

driver 𝑑 on link 𝑙, and the value 0 otherwise. 

The objective function in (A.1a) maximizes the total number of served riders. Constraints (A.1b) and (A.1c) 
ensure that drivers start their trips from their origin stations and end their trips at their destination stations, 
respectively. Constraint (A.1d) guarantees the flow conservation of vehicles. Constraints (A.1e) and (A.1f) 
ensure that served riders depart from their origin stations and arrive at their destination stations within their 
specified time windows. Constraint (A.1g) guarantees the flow conservation of riders. Constraint (A.1h) states 
that riders can be matched with only one driver. Constraint (A.1i) limits the capacities of the vehicles. 
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max  ∑ ∑ 𝜔𝑟𝑑

𝑑∈𝐷𝑟∈𝑅

s.t.  ∑ 𝑥𝑑
𝑙

𝑙∈𝐿𝑑:

𝑠𝑖=𝑠𝑑
𝑂;𝑡𝑖,𝑡𝑗∈𝑇𝑑

− ∑ 𝑥𝑑
𝑙

𝑙∈𝐿𝑑:

𝑠𝑗=𝑠𝑑
𝑂;𝑡𝑖,𝑡𝑗∈𝑇𝑑

= 1 ∀ 𝑑 ∈ 𝐷;

∑ 𝑥𝑑
𝑙

𝑙∈𝐿𝑑:

𝑠𝑗=𝑠𝑑
𝐷;𝑡𝑖,𝑡𝑗∈𝑇𝑑

− ∑ 𝑥𝑑
𝑙

𝑙∈𝐿𝑑:

𝑠𝑖=𝑠𝑑
𝐷;𝑡𝑖,𝑡𝑗∈𝑇𝑑

= 1 ∀ 𝑑 ∈ 𝐷;

∑ 𝑥𝑑
𝑙

𝑡𝑖,𝑠𝑖

𝑙=(𝑡𝑖 ,𝑠𝑖,𝑡,𝑠)∈𝐿𝑑

− ∑ 𝑥𝑑
𝑙

𝑡𝑖,𝑠𝑖

𝑙=(𝑡,𝑠,𝑡𝑖,𝑠𝑖)∈𝐿𝑑

= 0 ∀ 𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇𝑑 , ∀𝑠 ∈ 𝑆\{𝑠𝑑
𝒪 ∪ 𝑠𝑑

𝒟};

∑ 𝑦𝑟𝑑
𝑙

𝑙∈𝐿𝑟𝑑:𝑠𝑖=𝑠𝑟
𝒪;

𝑡𝑖,𝑡𝑗∈𝑇𝑟

− ∑ 𝑦𝑟𝑑
𝑙

𝑙∈𝐿𝑟𝑑:𝑠𝑗=𝑠𝑟
𝑂;

𝑡𝑖,𝑡𝑗∈𝑇𝑟

= 𝜔𝑟𝑑 ∀ 𝑟 ∈ 𝑅, ∀ 𝑑 ∈ 𝐷;

∑ 𝑦𝑟𝑑
𝑙

𝑙∈𝐿𝑟𝑑:𝑠𝑗=𝑠𝑟
𝒟;

𝑡𝑖,𝑡𝑗∈𝑇𝑟

− ∑ 𝑦𝑟𝑑
𝑙

𝑙∈𝐿𝑟𝑑:𝑠𝑖=𝑠𝑟
𝒟;

𝑡𝑖 ,𝑡𝑗∈𝑇𝑟

= 𝜔𝑟𝑑 ∀ 𝑟 ∈ 𝑅, ∀ 𝑑 ∈ 𝐷;

∑ ∑ 𝑦𝑟𝑑
𝑙

𝑡𝑖,𝑠𝑖

𝑙=(𝑡𝑖 ,𝑠𝑖,𝑡,𝑠)∈𝐿𝑟𝑑

𝑑∈𝐷

− ∑ ∑ 𝑦𝑟𝑑
𝑙

𝑡𝑖 ,𝑠𝑖

𝑙=(𝑡𝑖,𝑠𝑖,𝑡,𝑠)∈𝐿𝑟𝑑

𝑑∈𝐷

= 0 ∀ 𝑟 ∈ 𝑅, ∀ 𝑡 ∈ 𝑇𝑟 , ∀𝑠 ∈ 𝑆\{𝑠𝑟
𝒪 ∪ 𝑠𝑟

𝒟};

∑ 𝜔𝑟𝑑

𝑑∈𝐷

≤ 1 ∀ 𝑟 ∈ 𝑅

∑ 𝑦𝑟𝑑
𝑙

𝑟∈𝑅

≤ cap
𝑑

∀ 𝑑 ∈ 𝐷, ∀𝑙 ∈ 𝐿𝑑(2)

 

(A.1a) 

 

(A.1b) 

 

(A.1c) 

 

(A.1d) 

 

(A.1e) 

 

(A.1f) 

 

(A.1g) 

 

(A.1h) 

 

(A.1i) 

Appendix B 

Table 8: Information of participants in the illustrative example 

Participant Role 
Origin 
station 

Destination 
station 

Earliest 
departure time 

Latest arrival 
time 

Shortest path 
travel time 

𝑟1 rider 162 103 19:00 19:19 15 

𝑟2 rider 161 80 19:00 19:15 13 

𝑟3  rider 80 129 19:07 19:16 9 

𝑟4  rider 95 52 19:12 19:30 13 

𝑟5  rider 97 56 19:16 19:36 16 

𝑟6 rider 97 121 19:23 19:55 30 

𝑟7  rider 33 60 19:25 19:39 8 

𝑟8  rider 50 35 19:28 19:53 20 

𝑟9 rider 56 50 19:30 19:56 17 

𝑟10  rider 98 97 19:34 19:41 6 

𝑟11  rider 124 76 19:36 19:45 7 

𝑟12  rider 26 71 19:38 19:50 9 

𝑟13  rider 57 131 19:42 19:52 7 

𝑟14  rider 78 161 19:47 20:02 11 
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𝑟15  rider 124 156 19:50 19:54 3 

𝑟16  rider 98 130 19:52 20:05 8 

𝑟17  rider 49 124 19:53 20:03 10 

𝑟18  rider 58 159 19:56 20:06 8 

𝑟19  rider 128 100 19:58 20:10 9 

𝑟20  rider 125 128 19:59 20:15 13 

𝑑1 driver 98 NA 18:50 NA NA 

𝑑2 driver 57 NA 19:00 NA NA 

𝑑3 driver 31 NA 18:50 NA NA 

𝑑4 driver 78 NA 19:00 NA NA 

Appendix C 

 

Table 9: Shortest path travel time for illustrative example (I) 

Origin 
Station 

Destination Station 

26 31 33 35 49 50 52 56 57 58 60 71 76 78 80 95 

26 0 25 16 29 7 11 20 29 33 38 37 9 13 19 23 13 

31 10 0 11 18 11 9 6 16 21 26 36 19 10 7 11 20 

33 14 4 0 9 15 13 10 7 12 17 8 23 14 11 10 24 

35 18 8 4 0 19 17 14 5 5 10 21 27 18 15 14 28 

49 7 21 28 31 0 4 14 26 30 35 46 9 10 16 20 10 

50 6 17 26 20 12 0 10 23 27 32 43 11 7 13 17 11 

52 11 7 18 25 11 9 0 18 23 28 28 20 10 9 13 20 

56 18 8 4 7 19 17 12 0 5 10 3 27 18 33 39 28 

57 21 11 7 3 22 20 15 3 0 5 16 30 21 16 12 31 

58 24 14 10 6 25 23 18 6 3 0 11 33 24 19 15 34 

60 34 24 20 16 35 33 28 16 13 10 0 43 34 29 25 43 

71 13 24 24 35 10 14 19 28 32 37 38 0 12 18 22 12 

76 17 12 19 23 13 11 7 16 20 25 36 22 0 6 10 10 

78 16 6 13 17 17 15 7 10 14 19 30 25 11 0 4 21 

80 22 12 9 13 23 21 13 6 10 15 26 31 22 13 0 32 

95 15 18 15 29 11 9 13 22 26 31 18 20 6 12 16 0 

97 22 12 19 23 22 20 11 16 20 25 36 31 11 6 10 12 

98 19 9 16 20 20 18 10 13 17 22 33 28 14 3 7 18 

100 26 16 12 15 27 25 17 8 12 17 28 35 26 17 4 29 

103 32 22 18 14 33 31 26 14 11 10 18 41 32 25 18 32 

121 16 27 34 38 13 17 22 31 35 40 47 7 15 21 25 12 

124 17 22 29 33 14 13 17 26 30 35 45 16 7 16 20 4 

125 18 21 28 32 14 12 16 25 29 34 42 21 9 15 19 3 

128 22 12 19 23 23 21 13 16 20 25 31 31 17 6 10 21 
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129 28 16 9 23 25 22 18 18 21 21 26 27 15 9 9 17 

130 31 21 17 20 32 30 22 13 17 21 26 40 27 16 9 27 

131 28 18 14 17 29 27 22 10 14 18 23 37 28 21 12 30 

156 22 25 32 36 18 16 20 29 33 38 40 15 13 19 23 7 

159 28 18 25 29 26 24 19 22 26 31 36 30 21 12 16 15 

161 29 19 21 24 30 28 20 17 21 26 30 38 24 13 13 24 

162 32 22 12 23 33 31 23 16 20 24 26 38 27 16 12 23 

 

Table 10: Shortest path travel time for illustrative example (II) 

Origin 
Station 

Destination Station 

97 98 100 103 121 124 125 128 129 130 131 156 159 161 162 

26 21 22 26 36 13 11 14 25 28 28 31 16 23 30 30 

31 16 10 14 24 23 21 21 13 16 16 19 26 19 18 20 

33 20 14 13 23 27 25 25 17 19 15 18 30 23 22 19 

35 24 18 17 16 31 29 29 21 23 19 22 34 27 26 23 

49 18 19 23 33 13 11 14 22 25 25 28 16 23 27 29 

50 15 16 20 30 15 13 16 19 22 22 25 18 21 24 26 

52 13 12 16 26 24 22 21 15 13 18 21 17 21 20 22 

56 22 16 12 16 31 18 29 19 18 14 17 14 25 38 18 

57 25 19 15 11 34 32 32 22 21 17 7 37 28 13 20 

58 28 22 18 6 37 35 35 25 21 18 15 38 27 18 15 

60 4 32 28 15 47 15 40 30 26 23 20 43 32 23 20 

71 20 21 25 35 4 10 13 24 27 27 30 12 20 26 25 

76 8 9 13 23 26 16 11 16 15 15 18 18 14 17 19 

78 9 3 7 17 29 27 22 6 9 9 12 27 12 11 13 

80 22 16 3 13 35 33 29 15 9 5 8 32 21 12 9 

95 18 21 19 29 21 6 5 14 17 19 22 11 13 19 21 

97 0 3 13 23 30 18 13 6 9 11 14 20 12 31 14 

98 6 0 10 20 32 24 19 3 6 8 11 24 9 8 11 

100 21 15 0 10 39 31 26 12 6 2 5 29 18 9 6 

103 28 22 15 0 44 34 29 19 15 12 9 11 21 12 9 

121 20 23 28 36 0 8 11 21 24 24 27 8 16 22 21 

124 12 15 23 33 15 0 3 16 19 21 24 3 12 19 19 

125 11 14 22 31 20 5 0 13 16 18 21 9 9 16 16 

128 9 3 9 18 33 23 18 0 3 5 8 21 6 5 8 

129 9 6 6 15 24 19 16 3 0 4 9 17 9 3 6 

130 19 13 5 13 39 29 24 10 4 0 3 27 16 7 4 

131 14 18 9 10 41 32 27 15 9 5 0 30 19 10 7 

156 15 17 22 29 12 6 4 14 17 17 20 0 8 15 14 
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159 15 9 15 24 27 17 12 6 9 11 14 15 0 7 10 

161 16 10 9 18 36 26 21 7 3 5 8 24 9 0 4 

162 19 13 8 15 35 25 20 10 6 3 6 23 12 16 0 

Appendix D 

Table 11: The costs between trips and tours for the illustrative example 

Rider 
Preliminary Cost Secondary Cost 

tour 𝑘1 tour 𝑘2 tour 𝑘1 tour 𝑘2 

𝑟1 M M 21 28 

𝑟2 M 0   

𝑟3 0 M   

𝑟4 M M 21 28 

𝑟5 M M 19 23 

𝑟6 M M 26 20 

𝑟7 0 M   

𝑟8 M M 31 28 

𝑟9 M M 32 30 

𝑟10 M 0   

𝑟11 M M 20 16 

𝑟12 M M 21 37 

𝑟13 M M 23 21 

𝑟14 M 0   

𝑟15 0 M   

𝑟16 M M 10 13 

𝑟17 M M 30 11 

𝑟18 M M 25 30 

𝑟19 M M 14 9 

𝑟20 M M 17 19 
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