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Abstract Understanding streamflow generation and its dependence on catchment characteristics 

requires large spatial data sets and is often limited by convoluted effects of multiple variables. Here we 

address this knowledge gap using data‐informed, physics‐based hydrologic modeling in two catchments 

with similar vegetation and climate but different lithology (Shale Hills [SH], shale, 0.08 km2, and Garner 

Run [GR], sandstone, 1.34 km2), which influences catchment topography and soil properties. The sandstone 

catchment, GR, is characterized by lower drainage density, extensive valley fill, and bouldery soils. We tested 

the hypothesis that the influence of topographic characteristics is more significant than that of soil properties 

and catchment size. Transferring calibration coefficients from the previously calibrated SH model to GR 

cannot reproduce monthly discharge until after incorporating measured boulder distribution at GR. 

Model calibration underscored the importance of soil properties (porosity, van Genuchten parameters, and 

boulder characteristics) in reproducing daily discharge. Virtual experiments were used to swap topography, 

soil properties, and catchment size one at a time to disentangle their influence. They showed that clayey 

SH soils led to high nonlinearity and threshold behavior. With the same soil and topography, changing from 

SH to GR size consistently increased dynamic water storage (Sd) from ~0.12 to ~0.17 m. All analyses 

accentuated the predominant control of soil properties, therefore rejecting the hypothesis. The results 

illustrate the use of physics‐based modeling for illuminating mechanisms and underscore the importance of 

subsurface characterization as we move toward hydrological prediction in ungauged basins. 
 

 

1. Introduction 

Forecasting streamflow and extreme hydrological events (e.g., flooding and droughts) is essential for our 

society as the pace of climate change accelerates (Hrachowitz et al., 2013; Montanari et al., 2013; 

Sivapalan, 2003; Vorosmarty et al., 2010). Although forecasting capability has progressed significantly in 

the recent decades with rapid data accumulation and model development, hydrological prediction in 

ungauged basins (PUB) remains a grand challenge (Hrachowitz et al., 2013). Model Transferability tests 

directly from gauged to ungauged watersheds have yielded mixed results (Fenicia et al., 2016; Heuvelmans 

et al., 2004; Li et al., 2012; Smith, Hayes, et al., 2016; van der Linden & Woo, 2003), underscoring challenges 

in understanding how and how much catchment characteristics (e.g., lithology, land cover, topography, and 

size) influence streamflow generation. 

Studies on streamflow generation have revolved around the dynamics of connectivity, storage (S) and 

discharge (Q) relationships, and threshold behaviors that emerge at the catchment scale. Storage ‐discharge 

relationships have been explored since the 1930s (Horton, 1936) and are generally recognized as highly 

nonlinear, often taking a power law form (Wittenberg, 1999). Water storage is often conceptualized as 

partitioning between distinct reservoirs: a small, active reservoir that rapidly responds to hydroclimatic 

forcing (dynamic storage Sd) and a passive reservoir that is characterized by longer residence times 

before water reemerges in streams and rivers (Dunn et al., 2010; Kobierska et al., 2015; McNamara 

et al., 2011; van der Velde et al., 2015). Transit time estimates using water isotopes or tracers have shown 

that Sd can be more than an order of magnitude smaller than the total storage (St) inferred from soil 
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porosity and depth (Birkel et al., 2011; Bishop et al., 2011; McNamara et al., 2011). Such dramatic 

reduction in Sd has been attributed to limited hydrologic connectivity between hillslopes and streams 

(Bracken et al., 2013; Jencso et al., 2010; McGlynn & McDonnell, 2003; Wlostowski et al., 2016), large 

water storage, and the existence of thresholds that must be surpassed to initiate hydrological response 

(Ali et al., 2015; James & Roulet, 2007; Lehmann et al., 2007; Seibert et al., 2011; Tromp‐van Meerveld 

& McDonnell, 2006). 

Streamflow generation is often influenced by a multitude of competing factors including external forcings 

(e.g., climate) and internal structure characteristics (vegetation, land use, topography, and lithology). 

Among these, the role of lithology and topographic characteristics has been extensively studied. Brantley 

et al. (2017) argued that weathering affects subsurface permeability, water infiltration, and flow partitioning 

between shallow and deep subsurface. Kuentz et al. (2017) concluded that the base flow index correlates 

more strongly with lithology whereas topography primarily controls streamflow flashiness. Hale and 

McDonnell (2016) observed that catchments derived from permeable sandstone bedrock have longer mean 

transit times than those with tight volcanic bedrock (Hale & McDonnell, 2016). Pfister et al. (2017) showed 

that catchment storage decreases whereas streamflow flashiness increases as the percentage of impermeable 

bedrock increases (Pfister et al., 2017). On the other hand, topographic characteristics, including relief and 

riparian versus hillslope areas, have long been demonstrated as governing streamflow. Catchment topogra- 

phy and topology have been observed to correlate to hillslope‐stream connectivity and runoff source area, 

therefore exerting a first‐order control on streamflow (Jencso et al., 2009). Mean residence time has been 

shown to correlate strongly with topographic characteristics that determine flow path distance and gradients 

(McGuire et al., 2005). 

In addition to lithologic and topographic properties, soil properties generally regulate water holding and sto- 

rage capacity (Van Genuchten, 1980), base flow indexes (Zimmer & Gannon, 2018), and streamflow 

dynamics (Zimmer & McGlynn, 2017). Shi et al. (2015) showed that soil moisture is controlled primarily 

by soil properties and secondarily by topography and depth to bedrock. Fenicia et al. (2016) found that mod- 

els with geology‐based hydrological response units (HRUs) are more robust in reproducing spatial variations 

in streamflow compared to those using topography‐based HRUs. This observation supports the idea that 

geology and soil properties exert a stronger control than topography. Topography and soil properties can also 

drive runoff generation differently under different conditions. In the Tenderfoot watershed in Montana, run- 

off is topographically driven with lateral redistribution of water and hydrologic connectivity under wet con- 

ditions (Jencso et al., 2009); under dry conditions, the influence of geologic controls is more pronounced 

(Payn et al., 2009). 

Streamflow generation also varies with catchment size (Pilgrim et al., 1982). For example, in wet catchments 

at Maimai, New Zealand, with relatively similar geology, topography, and soil depths, riparian zone ground- 

water levels and runoff correlate strongly in small headwater catchments but not in large catchments 

(McGlynn et al., 2004). In nested headwater catchments in New York, USA, estimated event‐water contribu- 

tion during intensive storms inversely correlate to catchment size (Brown et al., 1999). Those authors argued 

that shallow subsurface flow contributes to summer stormflow substantially in small catchments but not in 

large catchments. A geomorphology‐based model of runoff routing was used to argue that small catchment 

response is governed primarily by hillslope processes whereas large catchment response is governed by the 

structure of the stream network (Robinson et al., 1995). 

The above‐mentioned examples highlight the challenges of disentangling the effects of interdependent 

controlling variables. While general relationships may exist, their relative influence on streamflow gen- 

eration remains equivocal. Often, catchments are carefully chosen to highlight the role of one variable 

(e.g., topography, soil properties, and size) while keeping others relatively similar. Nonetheless, large dif- 

ferences in natural catchments inevitably exist. An additional challenge is that streamflow generation is a 

catchment‐scale emergent behavior and investigating its mechanisms often requires intensive spatial mea- 

surements of soil moisture and groundwater levels. Previous field studies on connectivity involve >147 

storm analyses (Tromp‐van Meerveld & McDonnell, 2006), 13 spatial distributions of soil moisture each 

with >500 measurements (Western et al., 1999), water table analyses in 84 recording wells distributed 

across 24 transects (Jencso et al., 2009), and ~30 soil moisture monitoring sites (Lin et al., 2006). One 

way to reduce and circumvent these challenges is to compare catchments of distinctive characteristics 
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Figure 1. A simplified geological map of Shavers Creek watershed (the Susquehanna Shale Hills Critical Zone Observatory), showing the location, dominant lithol- 

ogy, and topography (elevation contours) for Shale Hills (SH) and Garner Run (GR) catchments. The catchments experience similar land use, climate, and 

tectonic histories but differ in lithology. These lithological differences have resulted in large differences in terms of relief, catchment size, drainage density, riparian/ 

hillslope ratios, and so on. Both today's climate and past periglacial conditions have influenced the underlying aquifer and surficial soil properties. 

 
 
 

in controlled virtual experiments while changing only one variable at a time. In that way, the role of 

structural variables can be distinguished at the same time that general, emergent patterns can be 

highlighted. Such an approach could be more effective than focusing on the “idiosyncrasies of yet 

another experimental catchment” (McDonnell, 2003). 

Here we combined data and model approaches to understand the relative influence of soil properties, topo- 

graphy, and catchment size on streamflow generation in two first‐order, monolithological catchments in 

central Pennsylvania experiencing the same climate (temperate) and land use (forestland). One is the 

shale‐underlain Shale Hills (SH, 0.08 km2); the other is the sandstone‐based Garner Run (GR, 1.34 km2). 

The two catchments derive from different parent materials and differ in topography (relief, size of riparian 

zones, and slope), soil and macropore properties, and catchment size, all of which emerge from landscape 

evolution and ultimately depend on lithology (Reinhardt & Ellis, 2015). Streamflow monitoring data show 

that GR discharge is less flashy than SH (Hoagland et al., 2017; Shi et al., 2013). Given that GR has more 

permeable, bouldery sandy soils that often lead to flashy discharge, we hypothesize that streamflow response 

and storage‐discharge relationships are more affected by topography than by soil properties and catchment 

size. In other words, we hypothesize that the influence of topographic characteristics (a flatter slope, longer 

slope length, larger riparian zone) is more significant than that of soil properties and catchment size, leading 

to a dampened streamflow response and a linear S‐Q relationship at GR compared to SH. 

This hypothesis was tested using three analyses. The first was a model transferability test, treating GR as if it 

was a new, ungauged catchment to which we transferred model calibration information from the previously 

modeled SH using the physically based, spatially distributed land surface hydrologic model Flux‐Penn State 

Integrated Hydrologic Model (PIHM; Shi et al., 2013). The data used in GR were restricted to those that 

would be typically available for ungauged catchments. In this way, we explored the idea of transferring cali- 

brated model parameters from one measured catchment to a nearby, ungauged one. If the hypothesis is true, 

the model calibration from SH should be directly transferable and should produce satisfactory discharge 

because topography is explicitly represented in Flux‐PIHM. The second analysis included model calibration 

and sensitivity analysis that identified key process parameters. If the hypothesis is true, the soil property 

parameters should have relatively small influence on reproducing discharge and soil moisture data. Third, 



Water Resources Research 10.1029/2018WR023736 

XIAO ET AL. 9237 

 

 

 
 

Table 1 

Physiographic and Hydrologic Characteristics of the Catchments 

Characteristics  Shale Hills Garner Run Data sources 

Area km2 0.08 1.34 NHD 

Elevation m 250–300 450–650 NED 3 m 

Average slope N‐facing (°) 21 12  

 S‐facing (°) 14 17  

Max slope length N‐facing (m) 115 357  

 S‐facing (m) 126 670  

Riparian zonea % of catchment area 10.6 34.7  

Precipitation Mean annual (mm) 1,000 1,000 NLDAS‐2 

Lithology  Rose Hill gray shale Tuscarora sandstone Brantley et al. (2016) 

Bedrock depth m 0.25–1.87b 0.58–2.42c Lin et al. (2006) and Brantley et al. (2016) 

Soil Sand (%) 29 48 SSURGO and Jin et al. (2010) 
 Silt (%) 32 34  

 Clay (%) 39 18  

Land cover Deciduous forest (%) 87 87 NLCD 
 Others (%) 13 13  

 Max LAI in 2015 6.4 5.4 MODIS 

Note. LAI = leaf area index; NED = National Elevation Dataset; NHD = National Hydrography Dataset; NLCD = National Land Cover Database; 
NLDAS‐2 = North American Land Data Assimilation Systems phase 2. 
aRiparian zone was defined as those with simulated saturated water storage higher than the threshold indicator value (TIV) in August 2015, the driest month of 
the year. bFor SH, the hand‐augerable soil depth is smaller than the water table depth in the valley. As a result, an additional 1.2 m were added in the model to 
represent the top layer of weathered bedrock that interacts with the stream. (Shi et al., 2013), This results in soil depths from 1.45 to 3.07 m in the SH simulation 
with an area‐weighted average of 1.7 m. cFor GR, soil depth is based on ground‐penetrating radar (GPR) measurements. 

 

 
 

swap experiments were carried out where catchment characteristics were swapped one at a time, to tease 

apart the relative influence of topography, soil properties, and size. These virtual experiments assessed the 

influence of topography compared to soil properties and catchment size. The hypothesis suggests that the 

largest differences are expected for virtual catchments with different topography. The mechanistic 

understanding gleaned from these virtual experiments can facilitate the development of parsimonious 

models, reproduce streamflow dynamics, and advance our forecasting capabilities in PUB (Sivapalan 

et al., 2003). 

 

2. Study Sites and Data 

2.1. Study Sites 

SH and GR are first‐order catchments that are nested within the Susquehanna Shale Hills Critical Zone 

Observatory (SSHCZO). The CZO consists of the entire Shavers Creek watershed, a hydrologic unit code 

10 watershed (Figure 1 and Table 1). The streams in SH and GR are intermittent and perennial, respectively. 

SH is steeper (mean hillslope angle = 14–21°) than GR (mean hillslope angle = 12–17°), and GR has a much 

larger riparian zone with an extensive valley fill up to 300 m wide (~30% of the catchment width), compared 

to about 25 m (10% of catchment width) at SH. Both catchments are temperate forests dominated by decid- 

uous broadleaf species with a small component of evergreen conifers and understory shrubs (Brubaker et al., 

2018; Smith, Eissenstat, et al., 2016). SH generally has denser vegetation cover (60% more biomass and 19% 

larger maximum leaf area index [LAI]) than GR. Aspect plays a very different role between the catchments. 

While there is an overall similar pattern across slope position, both sites have higher biomass values at the 

valley floor compared to the ridge top position (Brubaker et al., 2018). Colocated measurements have shown 

that soil moisture covaries with leaf production and LAI, suggesting that trees influence soil moisture across 

space and time (Naithani et al., 2013). Detailed, high‐resolution measurements of temporal LAI data how- 

ever are not available such that we assume uniform LAI in the simulations. 

SH is nearly 100% situated on the Rose Hill Shale Formation (Brantley et al., 2016). The Weikert soil dom- 

inates hillslopes while the Berks, Blairton, Rushtown, and Ernest soils prevail in swales and valley floor (Lin 

et al., 2006). Given that these soils are formed on the same rock in the same climate and with the same vege- 

tation, the difference in soil types is largely a function of landscape position (soils in valley are wetter because 
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water drains downhill and organic matter accumulates in the valley) and aspect (one side is sunnier than the 

other). GR overlies the Tuscarora Formation (Flueckinger, 1969), which consists of almost pure quarzitic 

sandstone with minor interbedded shales (Hettinger, 2001). The Natural Resources Conservation Service 

Soil Survey Geographic Database (SSURGO; http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/sur- 

vey/) and CZO observations (Brantley et al., 2016; Del Vecchio et al., 2018; Hoagland et al., 2017) show that 

GR bouldery soil has higher sand content and less silt and clay content compared to SH, which is consistent 

with higher hydraulic conductivity, larger pore size and porosity in GR. The residence times of the soils at 

the two sites differ because of differing erodibility and reactivity of the parent rock (Brantley et al., 2018; 

Del Vecchio et al., 2018; Li et al., 2018). Jin et al. (2010) reported that the SH soil has 38 wt.% (ridge top) 

to 64 wt.% (valley floor) clay (summation of illite, chlorite, and kaolinite; Table 2 in Jin et al., 2010). In con- 

trast, the clay content in GR soils varies from 8% to 32%. 

2.2. Data 

The SH catchment was established in the 1970s (Lynch, 1976) and expanded as the SSHCZO (Anderson 

et al., 2008; Brantley et al., 2007; Qu & Duffy, 2007). It has been extensively measured for soil properties, dis - 

charge, soil moisture, water table depth, tree population, and stream chemistry, among other attributes (Jin 

et al., 2010; Kuntz et al., 2011; Lin & Zhou, 2008; Ma et al., 2015; Zhu et al., 2010). The GR site has been estab - 

lished relatively recent as part of the SSHCZO (Brantley et al., 2016). 

Given that we wanted to treat GR as if it was a new, ungauged catchment to which we transfer model para- 

meters and knowledge from the well‐studied SH, the model setup was mostly based on satellite and national 

data that were available even for ungauged river basins, allowing a test of transferability. These included 

data from the U.S. Geological Survey (USGS), National Elevation Dataset (NED, elevation map, https:// 

lta.cr.usgs.gov/NED), the National Land Cover Database (NLCD, vegetation map, https://www.mrlc.gov/ 

nlcd2011.php), the National Hydrography Dataset (hydrographic data, https://www.usgs.gov/core‐ science‐

systems/ngp/national‐hydrography/national‐hydrography‐dataset), the North American Land Data 

Assimilation Systems Phase 2 (hourly meteorological forcing, https://ldas.gsfc.nasa.gov/nldas/ 

NLDAS2forcing.php), and the Moderate Resolution Imaging Spectroradiometer (MODIS, LAI every 8 days, 

https://modis.gsfc.nasa.gov/data/dataprod/mod15.php). For precipitation, although we had local measure- 

ments at SH, we did not have those measurements at GR. To compare the response of SH and GR to the same 

precipitation forcing, we used the same North American Land Data Assimilation Systems Phase 2 precipita- 

tion forcing data for the two catchments. The discharge was measured using stream stage (HOBO Pressure 

Transducer, Onset Computing) and a Parshall. The averaged surface soil moisture was measured using the 

cosmic‐ray soil moisture observing system (COSMOS) that counts neutron intensities at the vicinity of the 

ground surface. Discharge and COSMOS data in 2015 were used as model constraints. The averaged model 

output of the topsoil moisture (<10 cm) within the effective footprint radius of ~300 m were compared to the 

COSMOS data. The COSMOS measurements are affected by water content in soil organic matter (e.g., O hor- 

izons) and vegetation. The top 10 cm was chosen to be consistent with the calculation that ~86% of the fast 

neutron counts was found to within the top 10 cm of the soil (Zreda et al., 2008). 

At GR, boulders cover a fraction of the hillslopes; in contrast, at SH, rock fragments are observed to emerge 

only near trees or tree throws. The spatial distributions of boulders at GR were mapped at a resolution of 5 m 

and were grouped into four categories of volume fractions (<0.10, 0.10–0.67, >0.67 with trees, and >0.67 

without trees; Del Vecchio et al., 2018). At GR, depth to refusal with respect to hand augering (midslope 

and ridge) or depth to inferred bedrock (excavated with a jack hammer in the valley floor pit) ranges from 

0.58 to 2.42 m with an average of 1.8 m 

 

3. The Hydrology Model Flux‐PIHM 

3.1. Model Processes 

Flux‐PIHM is a physically based, spatially distributed model (Shi et al., 2013) that couples a land surface 

scheme adapted from the Noah Land Surface Model with the PIHM (Qu & Duffy, 2007). In addition, there 

is a family of PIHM‐related codes with different simulation capabilities (Duffy et al., 2014), including land- 

scape evolution (Zhang et al., 2016), ecosystem biogeochemistry (Shi et al., 2018), and catchment‐scale reac- 

tive transport (Bao et al., 2017; Li, 2019; Zhi et al., 2019). The code discretizes the land surface into triangular  

elements and rivers into rectangular segments that are projected vertically down to the bedrock to generate 

http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.mrlc.gov/nlcd2011.php
https://www.mrlc.gov/nlcd2011.php
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/national-hydrography-dataset
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/national-hydrography-dataset
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/national-hydrography-dataset
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/national-hydrography-dataset
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/national-hydrography-dataset
https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php
https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php
https://modis.gsfc.nasa.gov/data/dataprod/mod15.php
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prismatic volumes. Simulated hydrological processes include precipitation, canopy interception, evapotran- 

spiration, channel flow, overland flow, infiltration, recharge from the unsaturated to saturated zone, lateral 

flow connecting hillslope to the stream, and snow melt. The model outputs include spatial and temporal dis- 

tribution of water content, from which water fluxes and budgets can be calculated. 

Flux‐PIHM assumes a no‐flow boundary corresponding to the soil‐weathered rock interface (Qu & Duffy, 

2007; Shi et al., 2013). It therefore does not take into account recharge vertically from soil into regional 

groundwater in deep aquifers (Brantley et al., 2013). Such vertical flow is typically small given the sharp, 

often orders of magnitude, permeability contrast at the soil‐weathered rock interface (Kuntz et al., 2011; 

Welch & Allen, 2014) and is typically ignored when solving water balance for a catchment (Kirchner, 

2009). At GR, the valley is filled with high‐permeability colluvial materials up to 9 m thick such that 

water can be lost to the deeper aquifer (Schaller & Fan, 2009). Water is also lost in the subsurface of 

SH, but this may be smaller in SH, as it does not have such high‐permeability fluvial materials. Given that 

Flux‐PIHM does not include this potential water loss into the deep aquifer, the code essentially lumps this 

water loss into evapotranspiration (ET) to conserve water balance when stream discharge and soil moist- 

ure are used for calibration. Here we note the calculated ET as ET*, which includes potential recharge 

into the deep aquifer. 

3.2. Model Setup 

Catchment characteristics include topography (e.g., surface elevation), vegetation properties (e.g., land cover 

type, rooting depth, LAI, and stomatal conductance), and soil properties. All vegetation parameters were 

from previous work (Shi et al., 2013). The LAI values from MODIS at a frequency of 8 days were used as 

external forcing. A uniform LAI value was used for the whole watershed at the spatial resolution of 

MODIS (1 km2). Soil properties include matrix properties such as depth, hydraulic conductivity, porosity, 

and van Genuchten parameters (α, n, θs, and θr) and macropore properties such as depth and conductivities 

(horizontal and vertical) that reflect boulder characteristics. The code read elevation maps from the USGS 

NED and land cover maps from the NLCD. These data set up the domain of virtual catchments such that 

they represented the topography and land cover of the real catchments. Initial and boundary 

conditions included subsurface characteristics (e.g., soil depth), initial water distribution, water table, snow 

cover, canopy storage, and watershed boundary fluxes. Soil matrix properties were from the SSURGO data 

initially, and macropore properties were based on soil survey data, as will be discussed later. 

3.3. Calibration 

Like any spatially explicit model, Flux‐PIHM is parameter intensive. There are 8 soil types in GR from the 

SSURGO database and 13 distributed parameters for each soil type, including 3 macropore parameters. If 

each parameter was calibrated independently in Flux‐PIHM, a total of 104 soil parameters is needed. This 

overparameterization was circumvented by using parameter regularization that utilized spatially distributed 

a priori soil parameters and a single global calibration coefficient (GCC) for each parameter, a common prac- 

tice in physically based hydrologic modeling (Smith et al., 2004). 

 
4. Measures of Emergent Dynamics at the Catchment Scale 

4.1. Storage‐Discharge (S‐Q) Relationship 

Streamflow generation is known to depend largely on S‐Q relationships. Based on the rainfall‐runoff equa- 

tion, Kirchner (2009) developed the following linking streamflow to storage: 

 
(

S−Smin

)1=ð2−bÞ 

 
 

Under the condition b < 2, Qref is a reference discharge based on the best fit to the S‐Q relationship; S is the 

water storage calculated from model output averaged across the whole catchment; Sd (or originally k1 in 

Kirchner, 2009) represents a scaling constant that has the dimension of storage; Smin (or originally S0 in 

Kirchner, 2009) is the storage when discharge drops to zero; and b is the exponential term in dQ ¼ −aQb 

(Brutsaert & Nieber, 1977), representing the S‐Q nonlinearity. Water storage is often considered as 

S

d 

Q ¼ Qref : (1) 
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composed of “dynamic” storage that responds rapidly to hydrological events and “passive” storage that is 

often deeper and takes longer time for water parcels to route through (Hrachowitz et al., 2016). 

Summation of the two is the total storage. In this work, we consider Sd in equation (1) as the dynamic sto- 

rage. It was calculated as the difference in the modeled water storage at the maximum and minimum dis- 

charges, as will be shown later in the S‐Q figures in section 6. The total storage St was calculated as the 

total pore volume per land surface area (soil porosity × depth/land surface area). By fixing Smin and Sd, 

values of Qref and b were obtained by fitting the calculated Q and S relationship from the calibrated Flux‐ 

PIHM with equation (1) using the trust‐region algorithm and “Curve Fitting” tool in MATLAB 2016a. 

4.2. Connectivity 

Hydrologic connectivity at the catchment scale is transient and depends on the spatial distribution of water 

content. Here we calculated hydrologic connectivity based on the model output of saturated water storage 

and flow connecting the uphill to the stream. A MATLAB code was developed based on approaches in litera- 

ture (Allard, 1994; Western et al., 2001). The connectivity function τ(h) is defined as the probability (P) of two 

grid blocks being connected at a separation distance of h (in Euclidean distance): 

τðhÞ ¼ Pðx↔x þ hjx∈A; x þ h∈GÞ; (2) 

where x and x + h  represent the locations of two grid blocks; G is the set of grid blocks in the domain; A is the 

subset of G with saturated water storage higher than a threshold indicator value (TIV), defined as the 75th 

percentile of saturated storage over the whole year and the whole catchment (James & Roulet, 2007; Western 

et al., 2001); and the “↔” sign indicates two grid blocks (at x in set A and at x + h in set G) are connected if 

there is a continuous path of neighboring grid blocks between them with indicator values larger than the 

TIV. 

The approach involves three main steps: (1) Identify grid blocks with saturated water storage higher than 

TIV; (2) use a recursive algorithm to identify and label continuous paths that consist of grid blocks with satu- 

rated water storage higher than TIV and are connected to the stream; and (3) calculate the integral connec- 

tivity scale (Ics) by looping through all grid blocks as follows: 

 
Ics ¼ ∫0 τðhÞdh: (3) 

The Ics has the units of length and can be interpreted as the average length of flow paths from the uphill satu- 

rated zone to the stream. The relative connectivity Ics/W, where W is the average width of the catchment in 

the direction perpendicular to the stream, quantifies the proportional flow path length connected to 

the stream. 

 

5. Data Model Analysis 

Three lines of analysis were carried out and are described in subsequent sections. The first was the direct 

parameter transferability test from the calibrated modeled SH to GR. This assessed the degree to which dis- 

charge and soil moisture data can be reproduced in GR directly using the SH calibration information. The 

second was the calibration and sensitivity analysis that identified key parameters to reproduce data at GR. 

The third was the swap experiments that swapped characteristics (soil properties, topography, and size) of 

SH and GR one at a time, in an effort to quantify the relative significance of catchment characteristics on 

water storage, connectivity, and S‐Q relationships. 

5.1. Parameter Transferability Test 

Flux‐PIHM has a large number of parameters and therefore requires time‐ and labor‐intensive model calibra- 

tion. Here we transferred model calibration coefficients from the calibrated SH model to GR without any cali- 

bration. We considered two soil data sets for SH: the data from the SSURGO database and the data from the 

soil survey in the field (Lin et al., 2006). The requisite parameters for the GR soil matrix (e.g., van Genuchten 

parameters) were only available from the SSURGO soil database. To take into account the differences in the 

soil data, three transferability tests were carried out to assess different approaches of parameter transfer. In 

the “SSURGO” case, both catchments were parameterized using the SSURGO soil database. The GCC values 

for SH, calibrated using SSURGO soil parameters and discharge data (Shi et al., 2015), were directly 
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Figure 2. (a) Soil map from the Soil Survey Geographic Database (SSURGO) for Garner Run and (b) field‐surveyed 

boulder map showing the fraction of the land surface mantled by boulders (Del Vecchio et al., 2018). The macropore 

fraction in Flux‐PIHM was set based on the boulder fraction: 0.10, 0.40, 0.80 (with trees), and 0.80 (without trees) from 

blue to orange in the figure. 

 

 

 

transferred to the GR model that used SSURGO soil parameters. In the “Scaled” case, the SH model 

parameters were calibrated by discharge and COSMOS data using the a priori field soil survey. For GR, we 
rescaled the SH GCC values to reconcile the average parameter differences between the soil survey and 

SSURGO soil parameters by using the scaling equation χGR scaled ¼ 
  

χ SH;   survey  

 

×χGR SSURGO , where 

χ SH;  survey is the factor that scales a priori SSURGO soil parameters to corresponding soil survey 

parameters. Here χSH, survey and χSH, SSURGO are the area‐weighted average parameters from the soil 

survey and from SSURGO, respectively. The assumption was that the scaling factor between SSURGO 

and field survey data was the same for the two catchments. However, we did observe a high land 

surface area covered by boulders at GR. Therefore, a third “Scaled + Boulder Map” case was set up 

utilizing the GCC values in the Scaled case but additionally included the surveyed boulder map for GR 

(Del Vecchio et al., 2018). The SSURGO and boulder maps (Figure 2) shared similar characteristics and 

distribution patterns. The boulder map however was more detailed with higher resolution. The boulders 

included clasts with large grain size that were characterized by cracks between rock and soil and 

macropores. In Flux‐PIHM, the boulder content was represented by setting a distribution of macropore 

volume fraction and depth based on the measured boulder map. The boulder survey was attained from 

intensive field work and was thus an unusual data set that would generally not be available without 

intensive mapping. 

 
5.2. Uncertainty‐Based Calibration 

Unsaturated water dynamics were described by the van Genuchten equation: θ h    θr     θs −θr     , where 
½1þðαjhjÞ  1 

θ(h) is the water content ([L3 L−3]); |h| is the water pressure (L or water head); θs and θr are saturated and re- 

sidual water content ([L3 L−3]), respectively, with θs the same as porosity; and α and n are van Genuchten 

parameters describing the shape of the water retention curve. Previous studies in SH (Shi et al., 2014; Yu 

et al., 2013; Yu et al., 2014) identified six parameters that were most sensitive: porosity, van Genuchten 

parameters (α and n), macropore depth (Dmac, [L]), and conductivities (horizontal KmacH and vertical 

KmacV, [L T−1]). Here we calibrated these parameters using stream discharge and COSMOS data. The model 

was calibrated under two scenarios: one based directly on the SSURGO soil map (GR‐without boulder) and 

the other based on SSURGO combined with the measured boulder map (GR‐with boulder). The comparison 

of the two cases assesses the importance of including the boulder map in calibration. 
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Table 2 

Averaged Soil Parameters at SH and GR After Calibration 

 Porosity (m3/m3) α (m−1) n (−) Dmac (m) KmacH (m/s) KmacV (×10−4 m/s) 

SH 0.29 11.43 1.29 1.12 0.07 1.79 

GR‐without boulder 0.34 (±0.05) 5.40 (±2.16) 1.59 (±0.13) 0.84 (±0.54) 0.04 (±0.08) 2.29 (±2.66) 

GR‐with boulder 0.35 (±0.04) 4.98 (±2.36) 1.63 (±0.15) 0.47 (±0.32) 0.06 (±0.09) 1.75 (±2.54) 

GR‐average 0.35 5.19 1.61 0.65 0.05 2.02 

Note. Area‐averaged soil depths are 1.7 and 1.8 m for SH and GR, respectively. The soil parameters are porosity, van Genuchten parameters (α and n), which 
describe the shape of the water retention curve, Macropore parameters: include macropore depth (Dmac), and conductivities (horizontal KmacH and vertical 
KmacV). 

 

 
 

The Hornberger‐Spear‐Young approach (Hornberger & Spear, 1981) was used to calibrate the model. GCC 

values were sampled using the Latin hypercube sampling method (McKay et al., 1979) for 500 simulations 

for the two scenarios (GR‐with boulder and GR‐without boulder) for a total of 1,000 simulations. The daily 

Nash‐Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970), percent bias (PBIAS; Gupta et al., 1999), and RMSE‐ 

observations standard deviation ratio (RSR; Singh et al., 2005) were used for model performance evaluation 

using the satisfactory range of NSE > 0.5, RSR ≤ 0.7, and |PBIAS| < 25 % (Moriasi et al., 2007). The mean and 

uncertainty of each parameter were calculated using cases within “acceptable” statistical criteria and were 

normalized for comparison using ¼
  χ −χmin  , where χ represents the value of each parameter and χmax and 

χmin are the maximum and minimum values of model parameters. 
 

5.3. Swap Experiments 

The model used the digital elevation data from the USGS NED to define the size and topography. The same 

homogeneous vegetation type (deciduous) and LAI values (time dependent from MODIS) were used for SH 

and GR to eliminate the influence of vegetation. The soil property and land cover parameters were then 

distributed for each grid. In this way, the code built digital catchments that represented the spatial structure 

of real catchments. 

SH and GR differ in three variables: soil properties, topography, and size. Although vegetation types, total 

biomass, and LAI also differ in these two catchments (Brubaker et al., 2018), the magnitude of these differ- 

ences are generally smaller compared to the three variables (Table 1). As discussed earlier, their interdepen- 

dent effects present a major barrier for quantifying the relative importance of individual variables. Although 

parameter sensitivity analysis is often used to assess soil property parameters, it cannot evaluate effects of 

topography and catchment size as they are typically held constant. The swap experiments here aim to cir- 

cumvent such limitations. For each swap experiment (Table 2), we first picked the topography of one catch- 

ments to set up the simulation domain. The size can be reduced or expanded by scaling the elevation and 

area of each grid proportionally so that topography features such as slope gradients, proportional slope 

length, and area of riparian zone were preserved. The averaged soil property parameters, including porosity, 

van Genutchen parameters, and macropore parameters, were then assigned uniformly to each grid block 

based on calibrated parameter sets from the base case. 

As an example, in setting up the simulation labeled SoilSHTpGRSizeSH, we took the GR digital elevation 

map (TpGR) but reduced the elevation and length of each grid proportionally to the size of SH to maintain 

the GR topography. The averaged soil properties of SH were then assigned uniformly across the domain 

(SoilSH). Similarly, SoilGRTpGRSizeSH had the topography of GR and the size of SH but averaged GR soil 

properties across the domain. The comparison between these two cases quantified the effects of soil 

properties because this was the only catchment variable that differed between the two cases. Similarly, 

the difference between SoilSHTpGRSizeSH and SoilSHTpSHSizeSH quantified the topography influence. 

Note that the SoilSHTpSHSizeSH case used averaged, uniformly assigned soil properties and therefore dif- 

fered from the calibrated SH real case (SH) where soil properties (and therefore parameters) were spatially 

heterogeneous across the catchment. It also differed from the hypothetical GR‐SizeSH that preserved the 

heterogeneous soil distribution and topography of the real GR case (the calibrated model) but reduced 

to the size of SH. 
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Figure 3. Comparison of Garner Run observations in 2015 (blue circles) and model output from direct transferability tests (gray lines) and after calibration (blue 

lines and shades). Comparison is for daily discharge (a and c) and areal averaged topsoil moisture from COSMOS within ~10 cm depth (b and d). The inserts 

compare corresponding monthly discharge (e) and areal averaged topsoil moisture from COSMOS (f). Without any calibration, the “Scaled + Boulder Map” case 

can reproduce the monthly dynamics (i.e., within the standard of NSE > 0.5 and R2 > 0.5) but not daily dynamics. The other two cases (SSURGO and Scaled) 

without boulder information cannot reproduce monthly and daily water dynamics adequately, indicating the importance of measured boulder distribution. After 

calibration, acceptable runs without the boulder data (GR‐without boulder) and with boulder data (GR‐with boulder) similarly reproduce the daily and monthly 

dynamics. 

 
 

6. Results 

6.1. Transferability Test and the Calibrated Model 

Figures 3a and 3b compare the modeled and measured discharge and COSMOS soil moisture in the transfer- 

ability tests (gray) and from the model after calibration (blue) at GR. GCC values calibrated using discharge 

data (Shi et al., 2015) were directly transferred from SH to GR for the SSURGO case (where SSURGO soil 

parameters were used). The model reproduced the temporal trend of monthly average topsoil moisture 

but only marginally reflected discharge peaks responding to large rainfall events. The model generally over- 

estimated discharge peaks and topsoil moisture and underestimated low flow. The “Scaled” case underesti- 

mated discharge and shallow soil moisture to an even larger extent, especially under dry conditions. In the 

“Scaled + Boulder Map” case where the macropore fraction was spatially distributed based on the boulder 

map, the model output came closer to measured soil moisture and daily discharge, especially under dry con- 

ditions. Model prediction of monthly discharge an NSE value of 0.78 (>0.5); the topsoil moisture prediction 

also came closer to COSMOS measurements compared to the cases without boulders. That is, when we 

incorporated the measured boulder map, the model can capture monthly dynamics although not daily 

dynamics. Comparison of model output between the “Scaled” and “Scaled + Boulder Map” cases showed 

that the addition of boulder map increased infiltration rates and lateral flow by about 6% of precipitation 

(data not shown). However did not change much of the already‐negligible surface runoff (<1%) at GR. 

The model with the boulder map produced more flashy peaks under wet conditions. 

Figure 3 also compares observations and calibrated output for acceptable runs that satisfied all three perfor- 

mance criteria with and without boulder information. At GR, frequent large rainfalls in July and August led 

to large discharge peaks and high soil moisture conditions. After August, the catchment became increasingly 
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Figure 4. (a) Calibrated (average and normalized) soil parameter values (not global calibration coefficient values): poros- 

ity (θs), van Genuchten α and n, macropore depth (Dmac), and horizontal and vertical macropore conductivities 

(KmacH and KmacV) for both sites. Error bars for Garner Run (GR) parameters indicate one standard deviation in all 

acceptable runs. Shale Hills (SH) parameters are from the one calibration from Shi et al. (2013) and were normalized by 

the range of corresponding GR parameters so that the relative magnitude of parameters in the two sites could be com- 

pared. The θs and n values are the most sensitive parameters with the smallest range. (b) Water retention curves with 

averaged soil parameters (Table 2). The curved dashed lines demonstrate the effects at GR of increasing n from 1.6 to 2.0 

and decreasing α from 5.0 to 3.0 m−1. The range of water content (θs–θr) is a measure of the potentially mobile water 

storage capacity per unit soil depth. 

 
drier with infrequent rainfall. The model output reproduced monthly and daily response to rainfall events, 

overcoming the systematic underestimation of discharge and soil moisture observed in the transferability 

test. A total of 23 (without boulder map) and 10 (with boulder map) acceptable runs out of 500 runs 

reproduced the data, manifesting model equifinality (Beven & Freer, 2001). The variation in parameters 

across different runs was used to estimate the uncertainty range. 

 

6.2. Comparing SH and GR 

6.2.1. Differences in Soil Parameters 

Table 2 and Figure 4a compared the calibrated soil parameters between SH (red) and GR (blue). Each 

parameter for GR was an area‐weighted average of different soil types across acceptable runs. The most 

notable difference was the higher porosity, smaller α, larger n, and lower Dmac at GR. Small α values 

arose from large pore sizes and large n values described more drainable soils with lower water retention. 

The parameters (Figure 4a) also showed different standard deviations (error bars), where smaller deviation 

indicates higher sensitivity. Porosity (θs) and n were the most sensitive with the smallest acceptable range, 

indicating these two parameters had to be in a narrow range in order to reproduce daily discharge and soil 

moisture. Water retention curves depended on α, n, θr (residual water content), and θs (saturated water con- 

tent or porosity). The value of α controlled the position whereas n determined the steepness of the water 

retention curve (Figure 4b). Flatter curves (larger n) represented highly drainable and sandy soils, and stee- 

per curves represented clayey soils where water does not drain as easily. The macropore depth in SH almost 

doubled the average of GR, and macropore hydraulic conductivities were surprisingly similar, indicating 

potentially different causes of macropores. We hypothesize that at SH, vegetation roots, which could go 

deep, might generate macropores whereas at GR, boulders distributed on the ground surface and at shallow 

soils might be the predominant contributor to macropore generation. Including the boulder map narrowed 

the range of macropore parameters and therefore reduced uncertainty but did not change the average 

soil parameters. Comparing the cases with and without boulders, the explicit expression of the greater 

macropore fraction in the with boulder case led to a lower Dmac. In any case, the no boulder cases reproduced 

very similar discharge and soil moisture data as the with boulder case, indicating its model parameters 

effectively represented both soil matrix and macropore characteristics without explicitly including 

boulder information. 
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Figure 5. (a) Spatial distribution of saturated zone storage under wet (April) and dry (August) conditions; (b) modeled 

temporal patterns of different flows in year 2015: stream discharge Q, surface runoff QS, and subsurface lateral flow 

QL; (c) temporal pattern of Ics/W (width‐normalized integral connectivity scale). The GR has higher Ics/W and 

fluctuate less. 

 

 
6.2.2. Spatial and Temporal Patterns of Water Storage and Fluxes 

Figure 5 shows spatial patterns of saturated water storage at different times. GR has a relatively large ripar- 

ian zone and shows a persistent water presence under both dry and wet conditions (34.7% of total area). SH 

has a narrow riparian zone (10.6% of total area), mostly consisting of swales with convergent flow. Under dry 

conditions, only the riparian area was connected to the stream, whereas under wet conditions some uphill 

area was also connected to the stream. The riparian zone therefore set the baseline connectivity such that 

GR rarely fell below 0.2 unless under very dry conditions. Under dry conditions, although the riparian zone 

at GR had relatively higher water content, these waters were not sufficient to form flow connecting to the 

stream. This may explain similar minimum connectivities at GR and SH. The riparian zone retained 48% 

of total water storage at GR annually, compared to 20% at SH. During rainfall events, surface runoff occurred 

as short‐lived pulses followed by subsurface lateral flows that dominated and sustained for longer periods 

(Figure 5b). The discharge at SH fluctuated more than GR, consistent with lower porosity as indicated by 
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the water retention curve (Figure 5b). In both catchments, surface runoff QS was small but higher in SH than 

in GR (8.9% vs. 1.2%). This was expected as SH soils are clay rich, and water cannot infiltrate as easily as in 

the sandstone‐derived GR with macropores. Figure 5c showed significantly different connectivities, that is, 

flashy connectivity in SH compared to GR. GR had a larger normalized Ics/W because of the larger soil water 

storage capacity and larger riparian zone. 

In the models, the precipitation (P) is partitioned into evapotranspiration (ET*) and discharge (Q), and Q is 

further split into surface runoff (QS) and subsurface lateral flow (QL) that lumps shallow soil water and some 

groundwater that contributes to the stream. Further partitioning of ET* (from model output) into E (eva- 

poration) and T (transpiration) indicated that T dominated the ET* term in both catchments at ~75% of 

the ET*. Water balance calculations from model output after 3‐year spin‐up indicated relatively similar 

ET*/P (~65%) in GR and SH. This is somewhat surprising as GR is characterized by a lower LAI and vegeta- 

tion density. The LAI values from MODIS (~1‐km spatial resolution and 8‐day temporal resolution) in 2015 

indicated that the SH LAI on average is ~5.4% larger than the GR LAI, although the MODIS resolution was 

low and may not accurately represent the LAI differences at the two sites. As noted earlier, ET* represents 

the total water outflow other than discharge (P = Q + ET*), which can include water loss into the regional 

aquifer that was not counted in the model. 

 

6.3. Swap Experiments: Comparing the Effects of Soil Property, Topography, and Size 

6.3.1. Soil Saturation and Runoff Ratio 

With the same topography and size (paired comparison of Figures 6a and 6b, and 6c and 6d), SH soil held 

more water in the hillslope, and the water content was higher across a wider area compared to the GR soil. 

Changing from SH soil to GR soil, the runoff ratio (Q/P) increased, again because of the lower water holding 

capacity of the GR soil. With the same soil properties, changing from SH to GR topography and size 

decreased Q/P and increased ET*/P. These trends were generally true for all cases in Table 3. This high- 

lighted that the SH clay‐rich soil held more water, reducing Q/P, whereas the steep SH topography and small 

size increased discharge and Q/P. These two compensating effects (soil vs. topography and size) led to very 

similar Q/P values between the two real cases SH and GR and between the two hypothetical cases 

SoilSHTPSHSizeSH and SoilGRTPGRSizeGR, therefore masking the effects of individual variables. 

6.3.2. Storage‐Discharge Relationship 

The S‐Q relationship (equation (1)) and parameters (Table 3) quantified the response of discharge to chan- 

ging water storage (Kirby et al., 1991; Kirchner, 2009). Figure 7 shows the model output of discharge versus 

averaged storage for hypothetical catchments. The catchments generally did not produce discharge until a 

minimum water storage (Smin) was reached. Beyond that, the discharge increased exponentially with storage, 

until reaching a maximum water storage (Smax). The difference between these storage values quantified the 

dynamic storage Sd. The Sd in SH varied from about 0.20 to 0.31 m, corresponding to discharge varying by 

more than 2 orders of magnitude (~10−5 − 8.2 × 10−3 m/day). At GR, water storage changed from 0.23 to 

0.39 m corresponding to Q from 1.7 × 10−4 to 4.4 × 10−3 m/day. These corresponded to 0.11 and 0.16 m of 

streamflow‐generating Sd at SH and GR, respectively. These dynamic storages were much smaller than the 

St value of 0.49 m in SH and 0.63 m at GR. Note that Smax values in all cases never reached St of 0.49 m at 

SH and 0.63 m at GR, indicating the catchments never reached the total storage capacity and never were fully 

saturated. Comparing across different cases, catchment size had significant effects on Sd. The Sd in the real 

SH case had the lowest value of about 0.11 m. Despite the differences in topography and soil properties, all  

cases with SH size had about 0.11 to 0.13 m, whereas all cases with GR size had Sd at about 0.16 to 0.17 m. 

The results suggested that as catchment size increased, Sd also increased due to the expanded area that 

was connected to the stream (larger Ics), even though the relative Ics/W decreased with catchment 

size (Figure 8). 

The sensitivity of discharge to storage was prescribed by the b values, or the nonlinearity of the S‐Q curve. 

The red cases with SH soil in Figure 7a had b values at 1.73–1.86 (Table 3), compared to values of 1.34– 

1.59 in blue cases with GR soil. Catchment size had some impacts on b values but was not as influential 

as soil properties. Increasing catchment size from SH to GR without changing soil properties and topography 

decreased b values slightly from 1.79 to 1.73 for SH (from SH to SH‐SizeGR), and from 1.50 to 1.34 for GR 

(from GR to GR‐SizeSH). Combining all cases, the soil properties had a predominant control on the nonli- 

nearity of S‐Q relationships. 
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Figure 6. Water balance (Q/P) and saturated storage (S) distribution in four hypothetical cases where soil properties, 

topography, and vegetation are uniformly assigned with area‐weighted averages. The “SoilSH” and “SoilGR” refer to cases 

using SH and GR soil properties, respectively; “TpSH” and “TpGR” refer to cases using SH and GR topography, 

respectively; and “SizeSH” and “SizeGR” refer to cases using their respective sizes. With everything else being the same, the 

GR soil generates more runoff (Q/P) than SH. The GR topography and size lead to lower runoff due to its large riparian 

zone and water storage capacity. 

 

 

 
 

Table 3 
Water Balance, Parameters for Storage‐Discharge Relationships, and Connectivity 
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Q/P (%) 
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Qmin 

 
 
 
(10−3 m/day) 

Qmax 
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Qref 

 
¼ Q  

 
S−Smin

 1=ð2−bÞ 

ref Sd 

Water storage b(m) 
 

Smin Sd
c
 

 
 
 
 
 

b 

 
 
 
 

R2 

 
 

Connectivity 

 
Mean 

Ics (m) 

 

Mean 
Ics/W (± std ) 

Ics =W 

 
Sc

d (Ics/Wc) 

SH 33.8 0.01 8.19 4.35 0.20 0.11 1.79 0.89 53 0.23 (±109%) 0.28 (0.27) 

SH‐SizeGR 33.3 0.02 10.50 7.80 0.22 0.16 1.73 0.77 92 0.10 (±172%) 0.32 (0.19) 

SoilSHTpSHSizeSH 35.5 0.01 8.11 5.43 0.19 0.13 1.77 0.91 69 0.30 (±117%) 0.27 (0.19) 

SoilSHTpSHSizeGR 24.5 0.01 6.68 5.73 0.19 0.17 1.77 0.84 165 0.18 (±121%) 0.29 (0.24) 

SoilSHTpGRSizeGR 22.5 0.01 8.67 2.59 0.20 0.17 1.86 0.80 209 0.22 (±100%) 0.28 (0.24) 

GR 33.5 0.17 4.35 1.87 0.23 0.16 1.34 0.70 276 0.29 (±52%) 0.31 (0.28) 

GR‐SizeSH 37.0 0.10 5.18 3.86 0.23 0.13 1.50 0.84 98 0.42 (±29%) — 

SoilGRTpSHSizeSH 52.1 0.01 4.12 2.73 0.17 0.13 1.59 0.85 70 0.30 (±83%) 0.28 (0.50) 

SoilGRTpGRSizeSH 38.8 0.10 3.12 2.70 0.22 0.12 1.49 0.89 102 0.44 (±25%) — 
SoilGRTpGRSizeGR 34.2 0.24 1.75 1.56 0.21 0.17 1.34 0.93 380 0.40 (±35%) 0.29 (0.37) 

Note. GR = Garner Run; SH, Shale Hills. The bold rows are for the real SH and GR cases 
aSH and GR are the calibrated cases using measurements. All other cases are hypothetical. SH‐SizeGR and GR‐SizeSH are based on the real SH and GR with 
heterogeneous distribution of soil but shrunk or expanded to the size of the other catchment. All other cases have uniformly assigned vegetation cover and 
soil properties based on area‐averaged values. bThe total water storage St was estimated as soil depth × porosity θs. With the area‐averaged soil depths of 
1.7 and 1.8 m for SH and GR, respectively, the St for GR = 1.8 m × 0.35 = 0.63 m, and 1.7 m × 0.29 = 0.49 m for SH. Note that this differs from the potentially 
mobile soil water storage directly from the soil depth and mobile porosity (θs–θr), which should be 1.8 m × (0.35–0.04) = 0.56 m for GR, and 1.7 m × (0.29– 
0.05) = 0.39 m for SH. cThe dynamic water storage Sd = Smax − Smin is the same as k1 in (Kirchner, 2009), corresponding to differences in storage values that 
produce Qmax and Qmin. maximum and minimum discharge. The Qref represents a reference Q between minimum and maximum Q values. dSc is the critical 
storage value at their corresponding critical connectivity values (Ics/Wc in the parenthesis) beyond which discharge increases significantly. For some hypothe- 
tical catchments, the critical connectivity cannot be easily observed so there are no values. (Figure 9) 
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Figure 7. Storage‐discharge (S‐Q) relationship with Kirchner (2009) fitting curves (equation (1)) on (a and c) linear and 

(b and d) logarithmic scales. Soil properties have the first order control on the nonlinearity of the S‐Q relationship. 

 
6.3.3. Connectivity 

Figures 9a and 9b showed significantly contrasting connectivity‐storage relationships. SH soil, the connec- 

tivity exhibited a pronounced threshold behavior: The connectivity remained low at low water storage until 

reaching a “critical” storage (Sc) beyond which it increased suddenly and dramatically. All cases with SH soil 

had Sc values between 0.27 and 0.32 m and at corresponding connectivity values between 0.19 and 0.27 (last 

column in Table 3). Cases with GR soil also showed critical storage values; however, the connectivity tended 

to “jump” from values at low storage (S < Sc) to values at S > Sc, but the 

connectivity values increased linearly with small variations instead of 

exponentially (lower σIcs =W in Table 3). In some cases, no critical storage 

and connectivity values could be derived. For cases that did exhibit thresh- 

old behavior, the Sc values were surprisingly similar to those with SH soil 

cases. However, the corresponding critical connectivity was much higher. 

Table 3 also indicated that connectivity remained similar or increased 

when comparing heterogeneously distributed soils to uniform soils with 

area‐averaged parameters. Figures 9c and 9d showed that discharge had 

a strong dependence on connectivity at low connectivity but tended to 

scatter at high connectivity beyond critical connectivity values. 

 
 
 
 

 
Figure 8. The dynamic water storage (Sd) versus the mean of integrated 

connectivity (Ics). The logarithmic fitting result has the highest R2 com- 

pared to linear and exponential relationships. Increasing the catchment size 

without changing other factors provides the larger Sd values, which indicate 

that Sd increases with catchment size. 

7. Discussion 

Topography and soil properties emerge as a result of the lithological start- 

ing material and the climate and tectonic forcings (Jenny, 1941). Results 

from three analyses underscore the predominant control of soil properties, 

instead of topography, in regulating the nonlinearity of the S‐Q relation- 

ship. This result contrasts with the original hypothesis that topography 

plays a more important role. The transferability test cannot reproduce 
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Figure 9. Relationship of normalized integral connectivity scale (Ics/W) with water storage (S) (a and b) and discharge‐ 

connectivity relationship (c and d) for swap experiment cases. All cases with Shale Hills soil have a pronounced 

threshold behavior where connectivity does not change much until water storage reaches a critical value, beyond which 

the connectivity increase significantly. The cases with Garner Run soil generally have much more gradual increase in 

connectivity and do not exhibit threshold behavior, except the case with Shale Hills topography and size. 

 
daily or monthly discharge until the boulder distribution is incorporated in the model. The calibration and 

sensitivity analysis underscore the importance of the parameters describing soil properties. These 

parameters reflect both soil matrix and macropore/boulder characteristics (Figure 4). The swap 

experiments further revealed two pronounced observations (Figure 10 and Table 3). First, differences in 

soil matrix and macropore properties arising from lithology (shale vs. sandstone) exert a predominant 

control: GR bouldery soils and large macropores consistently have lower b values, higher Q/P, and higher 

connectivity, as illustrated in the larger differences in symbol size in cases with different soil properties 

(vertical direction) (Figures 10a to 10c). Second, catchment size strongly influences Sd, changing 

catchment size from SH to GR size increases Sd from ~0.12 to ~0.17 m, illustrated with solid‐line and 

dashed‐line circles in Figure 10d. The Q/P ratios are higher in all GR soil cases compared to their 

corresponding SH soil cases, indicating that although SH soils generate high flow in large storms (higher 

flooding tendency), they generate less discharge in the long term (at the annual time scale) because of a 

larger water holding capacity. 

 
7.1. Soil Properties and S‐Q Relationship 

Clayey and sandy soils release water very differently: Sandy soils with large pores and low clay content 

release water rapidly, whereas clayey soils with small pores tend to hold water. Soils derived from different 

lithologies differ not only in clay content, soil aggregation, and spatial arrangement (Du et al., 2016) but also 
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Figure 10. Comparing (a) S‐Q nonlinearity b, (b) relative connectivity Ics/W, calculated as averaged normalized connec- 

tivity, (c) runoff ratio Q/P, and (d) dynamic water storage Sd (or k1) for the 10 simulated cases. The symbols size 

indicates the magnitude of each quantity. The warm and cold colors represent cases with SH and GR soils, respectively, the 

same as in previous figures. The dashed line circles filled with lined texture represent cases where only catchment size is 

changed whereas soil and topography characteristics are the same as the solid line circles with same colors. Symbols 

size comparison between horizontal cases shows the effects of topography; comparison between vertical cases indicates 

effects of soil properties (boulder fraction and van Genuchten parameter n). Larger symbol size differences mean more 

pronounced effects. The figure indicates that steep hills with small riparian zones and clayey soils of high water retention 

capability (i.e., SH) tend to have small dynamic water storage (Sd and smaller and more variable connectivity (b) with 

higher nonlinearity of S‐Q relationships (a). The catchment size influences Sd but not as much on b values and relative 

connectivity. 

 
 

in the amount of colluvial materials and boulders that generate macropores (Del Vecchio et al., 2018). In 

both catchments, surface runoff is negligible. The SH soil has been shown to form preferential flow paths 

at the interfaces of soil horizons and soil‐rock contrasts (Jin et al., 2011). These distinctive characteristics 

possibly lead to different flow generation mechanisms. In GR, abundant colluvial materials and bouldery 

soil lead to more infiltration and fast flow activation via macropores. In SH, the strong water holding 

capacity may prevent the formation of preferential flow until after reaching threshold values, beyond 

which fast flow triggers highly nonlinear, threshold behavior. This finding agrees with threshold 

behaviors observed when dry‐soil barriers are breached (McNamara et al., 2005), when subsurface 

saturated areas are connected to the trench (Tromp‐van Meerveld & McDonnell, 2006), and when 

threshold soil moisture values are reached (Seeger & Weiler, 2014). Rapid flow activation beyond 

thresholds has been observed with intensive soil moisture measurements at SH (Lin et al., 2006). These 

observations related to soil properties have strong implications on how to represent the first‐order control 

of stream flow generation in parsimonious models (Fenicia et al., 2014). 

The importance of soil properties emphasized here corroborates findings of related work. Spatial analysis of 

nested watersheds comparing topography and soil property indicates that transit time characteristics 
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correlate better with soil maps than with topographic indices in northern, wet catchments with wetland 

riparian areas (Geris, Tetzlaff, McDonnell, et al., 2015; Soulsby et al., 2006; Tetzlaff et al., 2009). In another 

study of 24 mesoscale catchments in Switzerland, only weak correlations were observed between transit time 

measures and topographic indices (Seeger & Weiler, 2014). The catchment storage derived from mean transit 

times and mean discharge did not show a clear relation to any catchment properties. Zimmer and Gannon 

(2018) examined 20 years of daily runoff from 73 regional watershed scale USGS stream gaging sites across 

North Carolina, United States. Their work suggests that differences in soil and bedrock properties outweigh 

topographic and climatic differences, because soil‐bedrock interfaces and low‐hydraulic conductivity layers 

strongly influence the partitioning of infiltrated water. 

Based on an analysis of streamflow generation, Kirchner (2009) proposed that the steepness of the S‐Q 

slope (dQ/dS) or the sensitivity of the S‐Q relationship (g(Q)) positively relate to catchment slope (m, 

topography descriptor) and soil hydraulic conductivity (κ, soil property indicator) and negatively relate 

to soil porosity (θ, soil property indicator) in the form of gðQÞ mκ (Kirchner, 2009). From this equation 

one might infer that soil permeability is the predominant control on streamflow generation because the 

permeability of sandy soil is typically orders of magnitude higher than for clayey soil, whereas m and θ 

have a narrow range and do not change as much. In contrast, our results indicate that the van 

Genutchen parameters (α, n, θr, and θs) and macropore properties may be better measures of water 

release and flow generation. In addition, θ here may be replaced by the hydrologically responsive Sd, 

instead of total porosity, which includes both dynamic and passive storage. In other words, the correlation 

equation may need to be modified to take into account of soil and macropore properties topographic fea- 

tures such as the size of the riparian zones. 

 
7.2. Dynamic Water Storage, Connectivity, and Catchment Size 

Dynamic storage is defined as the portion of storage “that is hydrologically active and directly contributes to 

streamflow” (Hrachowitz et al., 2016; McNamara et al., 2011) or controls streamflow dynamics (Buttle, 

2016). In this work, values of Sd (0.11–0.17 m) are much smaller than St calculated from soil depth and por- 

osity (0.49 m for SH and 0.63 m for GR). This indicates that small changes in soil structure and porosity can 

have dramatic impacts on Sd. The difference of 0.05 m (5 cm) in Sd may appear small. It is however 42% and 

30% of Sd in SH and GR, respectively. The largest storms in Pennsylvania occur at the rate of ~5–10 mm/hr. A 

5 cm difference in Sd can well make the difference between flooding or not. 

Water storage estimation remains one of the largest uncertainties in predicting streamflow generation. 

Dynamic storage calculated from different approaches often yields estimates that differ by up to an order 

of magnitude (Staudinger et al., 2017). Buttle (2016) used the Kirchner (2009) framework to calculate Sd 

for five drainage basins (~11 to 270 km2). the thick sand and gravel deposits of the Oak Ridges Moraine in 

southern Ontario, Canada. They did not observe a clear correlation between Sd and catchment size but found 

that Sd inversely correlated to the ratio of stream water deuterium variability relative to that of precipitation, 

suggesting larger Sd associated with shorter water mean transit time (Buttle, 2016). Birkel et al. (2011) esti- 

mated Sd based on water isotope data and modeling for two nested Scottish catchments (3.6 and 30.4 km2). 

They estimated smaller Sd (40 mm out of 500‐mm total storage) for the larger catchment and larger Sd 

(55 mm out of 900‐mm total storage) for the smaller catchment, respectively. Although carefully chosen 

for their similarities, the catchments in these studies still vary in soil properties, topography, and land cover, 

any of which could mask effects of catchment size. 

Our results indicate that Sd correlates with hydrological connectivity and increases with catchment size 

(Figure 8). This correlation is hardly surprising: Streamflow is generated when stored water in different parts 

of catchments connects and forms flow. In fact, hydrologic connectivity between upland and stream has long 

been considered essential for transmitting water to streams (Bracken et al., 2013; Spence, 2010). The internal 

catchment structure, that is, the spatial arrangement and size of hillslope and riparian zones, and their con- 

nectivity have been shown to exert a first‐order control on the activation of fast flow paths and release of old 

water (Stockinger et al., 2014) and the magnitude and timing of water and solute release (Jencso et al., 2009; 

Jencso et al., 2010; Nippgen et al., 2015). In the swap experiments where catchment size changes whereas the 

topography and soil properties remain constant, the runoff generating area that connects to the stream inevi- 

tably changes. Larger catchments offer a larger zone of source water that dynamically connects to the 
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stream, as indicated by the increasing Ics in Figure 8 and Table 3 when the modeled catchments increase in 

size from that of SH to GR. 

 

7.3. Lack of Model Transferability Suggests Challenges in a PUB Framework 

Model transferability from SH to GR did not work well even though the two catchments are both first order 

and lie within a few kilometers of one another. In fact, the models required detailed information about the 

boulder distribution to reproduce monthly discharge because the boulder significantly affects macropore 

distribution. The importance of soil properties has also been emphasized in other parameter sensitivity stu- 

dies using the Observing System Simulation Experiments (Shi et al., 2014). Other published transferability 

studies have shown that availability of a soil map can guide a priori parameterization and improve model 

performance (Smith et al., 2004). They also showed that parameter transfer between neighboring catch- 

ments is the most unsatisfactory for catchments with differing lithology; transfers between nonneighboring 

catchments with analogous soils and with different vegetation were observed to be more successful 

(Heuvelmans et al., 2004). Hydrologic models using geology‐based HRUs have been found to capture the 

spatial variability of streamflow time series better than those using topography‐based HRUs (Fenicia 

et al., 2016). Together, these studies suggest potentially higher parameter transferability between catchments 

with relatively similar soil properties. 

Insights gained from these studies suggest that measurements of soil properties are crucial for successful 

model transfer. Among the many variables that govern streamflow generation, information on climate, topo- 

graphy (relief, riparian zone, and hillslopes), and land cover (organisms) has become increasingly available 

from satellites and other observation instruments even in remote areas (McCabe et al., 2017). Below ground 

characteristics such as soil depth, boulder spatial distribution, and water retention properties, however, can- 

not be observed directly using similar large instruments. In situ conductivities and their spatial variation are 

challenging to obtain and often need to be inferred from tracer tests (Jackson et al., 2016; Kuntz et al., 2011; 

Li et al., 2010). Their measurements are often local, at scales much smaller than the relevant scale for stream- 

flow prediction. The boulder information in this work is an idiosyncrasy of the site and is available for this 

work only because of another study. Such information however is not available for most watersheds. Current 

practices in assigning soil property parameters typically use pedotransfer functions in combination with soil 

properties obtained from databases such as SSURGO (Shi et al., 2013). In fact, generating the boulder map 

involves intensive field mapping and thus is about the furthest from the ungauged basin that one could pos- 

sibly envision. It suggests that unless we have a good grasp of the subsurface properties, we may have little 

chance in making reasonable predictions in ungauged basins. 

Our work therefore highlights a general need to understand lithology and parent materials in determining 

soil properties. It is impossible to measure soil properties everywhere. We need methods to predict subsur- 

face properties based on a small number of measurements that are easy to assess. In fact, it may be possible 

that soil formation models developed from simulating weathering processes can eventually allow meaning- 

ful prediction of soil properties that can be used for predicting streamflow dynamics (Heidari et al., 2017; 

Lebedeva et al., 2010). With such efforts, the need to measure soil properties everywhere might be avoided. 

 

7.4. Model Limitations and Strengths 

McDonnell (2003) argued that it may be more fruitful to examine the common characteristic forms of non- 

linearity and feedbacks than characterizing the peculiarity of specific catchments. Generally speaking, how- 

ever, field studies of catchment‐scale emergent dynamics and catchment classification are challenging 

because of the confounding nature of multiple factors, and the large data sets required for parameterization. 

This is one reason for the popularity of experiments that incorporate paired catchments where some vari- 

ables are held the same. Physically based models and carefully thought virtual experiments may help cir- 

cumvent such limitations. Spatially explicit hydrology models typically require a large parameter set with 

large uncertainty, leading to issues with respect to equifinality (Beven & Freer, 2001). A good example of this 

is the many cases that can reproduce data shown in this work. Despite these limitations, spatially explicit,  

process‐based models have the advantage of generating “digital” catchments in an era with exponentially 

growing Earth surface data and investigating the convoluted mechanisms of multiple processes using 

numerical experiments. The thought (swap) experiments here, by systematically controlling variables via a 

hypothesis testing approach (Clark et al., 2011), offer mechanistic insights and quantify the relative effects 
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of interdependent variables. In particular, the swap experiments enable the assessment of topography and 

catchment size—two variables that are often held constant in typical sensitivity analyses. 

Given spatially and temporally sparse field measurements, these models can also guide when and where 

critical measurements are needed. Data‐informed numerical experiments could provide an alternate, 

cost‐effective approach to test hypotheses against field data (Fatichi et al., 2016; Li et al., 2017; Weiler & 

McDonnell, 2004), especially where field data are collected systematically for catchments chosen on the 

basis of important variables such as climate, biota, relief, and parent material. They can also be used to “dis- 

cover” general principles across space and time, therefore complementing a growing body of literature using 

statistical approaches and cross‐site synthesis (Jasechko et al., 2016; Jasechko et al., 2017; Kuentz et al., 2017; 

Wagener et al., 2010). This will ultimately facilitate catchment classification that will lead to better hydrolo- 

gic theory for PUB (Hrachowitz et al., 2013; McDonnell & Woods, 2004; Wagener et al., 2007). 

 

 
8. Conclusions 

This study examined the emergent dynamics of streamflow generation including the nonlinearity of S‐Q 

relationships, connectivity, and dynamic water storage in two first‐order monolithological catchments: the 

shale‐underlain SH (0.08 km2) and the sandstone‐underlain GR (1.34 km2). Both catchments are located 

in the temperate climate in central Pennsylvania, USA. SH has steeper slopes and a narrow riparian zone 

(~10% of catchment area) whereas GR is not as steep and has a relatively large riparian zone (~34%). We 

tested the hypothesis that the influence of topographic characteristics (a flatter slope, longer slope length, 

larger riparian zone) is more significant than that of soil properties and catchment size, leading to a dam- 

pened streamflow response and a more linear S‐Q relationship at GR compared to SH. The hypothesis 

was tested combining streamflow, soil moisture data, and a spatially explicit, process‐based model Flux‐ 

PIHM. Three lines of analyses, including model transferability tests, calibration and parameter sensitivity 

analyses, and swap experiments, all led to the rejection of the original hypothesis. These results underscore 

the predominant role of soil properties. 

The transferability test showed that direct transfer of calibration information from SH to GR in models 

with catchment topography (digital elevation) data reproduced the monthly trend but overestimated daily 

discharge peaks and underestimated monthly discharge and topsoil moisture. Only when the boulder map 

from the field survey was incorporated did the SH calibration information used for GR predict monthly 

discharge at GR because the boulders enhanced infiltration and accelerated water release to the stream 

(Figure 3). Thus, the role of topography was small compared to that of soil properties. If the topography 

was the primary control, the model calibration information would have been directly transferable from 

SH to GR because topography was explicitly represented in each of the model domains. Model calibration 

and sensitivity analysis for GR (500 simulation runs) identified important soil parameters including soil 

matrix and macropore properties that reflected boulder characteristics (Figure 4). The analysis indicated 

that the GR soil has higher porosity, lower water retention (van Genuchten n), higher water storage 

capacity (θs), and shallower macropore depths compared to the SH soil. Comparison between the two 

catchments indicated more flashy streamflow response and hydrological connectivity variation in SH than 

GR (Figure 5). 

Swap experiments comparing cases disentangling the effects of interdependent variables (topography, soil 

properties, and size) accentuated the significance of clayey soils in holding water (Figures 6 and 7). In addi- 

tion, they revealed two overarching observations (Figure 10 and Table 3). First, soil properties exerted a pre- 

dominant control: cases with GR bouldery soil consistently had lower b values, higher Q/P, and higher 

connectivity. Second, dynamic water storage Sd increased with catchment size. For example, an increase 

in size from that of SH to GR resulted in an increase in Sd from about ~0.12 to ~0.17 m, largely because of 

the higher connectivity related to a larger area connected to the stream in the larger catchments 

(Figure 8). Cases with GR soil had more linear S‐Q relationships without pronounced threshold behavior: 

in some cases, critical connectivity could not be identified (Figure 9). The Q/P ratios were higher in all 

GR soil cases compared to their corresponding SH soil cases, indicating that although SH soil tended to have 

high flow in large storms (more flooding tendency), it generated less discharge in the longer term (i.e., years) 

due to its large water holding capacity. 
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These results underscore the importance of soil properties as compared to topography. This predominant 

role of soil properties presents a grand challenge for PUB, as soil properties are more challenging to measure 

and are not as readily available as earth surface characteristics such as topography and land cover. This work 

also illustrates that controlled virtual experiments (comparisons between model outputs for different catch- 

ment characteristics) can systematically disentangle convoluted effects of interdependent variables and can 

offer mechanistic understanding of catchment‐scale emergent dynamics. 
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