2021 IEEE International Conference on Data Mining (ICDM) | 978-1-6654-2398-4/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICDM51629.2021.00054

2021 IEEE International Conference on Data Mining (ICDM)

Multi-way Time Series Join on
Multi-length Patterns

Md Parvez Mollah*, Vinicius M. A. Souza*!, and Abdullah Mueen*
*Department of Computer Science, University of New Mexico, Albuquerque, USA
TGraduate Program in Informatics, Pontificia Universidade Catdlica do Parand, Curitiba, Brazil
Email: *{parvez, vinicius, mueen}@unm.edu, Tvinicius@ppgia.pucpr.br

Abstract—This paper introduces a new pattern mining task
that considers aligning or joining a set of time series based
on an arbitrary number of subsequences (i.e., patterns) with
arbitrary lengths. Joining multiple time series along common
patterns can be pivotal in clustering and summarizing large time
series datasets. An exact algorithm to join hundreds of time
series based on multi-length patterns is impractical due to the
high computational costs. This paper proposes a fast algorithm
named MultiPAL to join multiple time series at interactive speed
to summarize large time series datasets. The algorithm exploits
Matrix Profiles of the individual time series to enable a greedy
search over possible joins. The algorithm is orders of magnitude
faster than the exact solution and can utilize hundreds of Matrix
Profiles. We evaluate our algorithm for sequential mining on data
from various real-world domains, including power management
and bioacoustics monitoring.

To illustrate multi-way join, consider the four time series
shown in Fig. 1. In this example, each time series has three
sinusoidal patterns artificially planted in random noise, each
pattern with a different length. The multi-way join algorithm
seeks to discover the highly similar subsequences among the
series without prior information about the number and the
length of the patterns. In the example, the algorithm correctly
groups the smallest sinusoidal patterns, the patterns,
and the largest patterns. It is interesting to note that we can
consider each discovered pattern to join the four time series
uniquely. Hence, in effect, there are three different multi-way
(i.e., four-way) joins, as illustrated in Fig. 2.
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highly similar subsequence (i.e., a pattern) between two large
time series. Joins provide useful information about the data
synchrony and can help data analysts better understand the
correlations of sequential phenomena [1]. Surprisingly, the
solutions for this problem are limited to a pair of time series
and a single aligning/joining pattern [1]-[4]. In this work, we
introduce the problem of joining multiple time series based
on an arbitrary number of subsequences with variable lengths.
Joining multiple time series along highly similar subsequences
can be pivotal in clustering and summarizing large time series
datasets on various domains.
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Fig. 1. Four time series with planted sinusoidal patterns. Each sinusoid is of
different length. A multi-way join algorithm groups the smallest sinusoids,
the sinusoids and the largest sinusoids together.

Fig. 2. Three individual joins obtained from the multi-length patterns
discovered in Fig. 1.

An exact algorithm to join hundreds of time series based on
multiple patterns is impractical due to the high computational
costs. As explained in this paper, the time complexity of multi-
way join on time series is exponential to the number of time
series. On a dataset with one hundred time series with 100,000
observations in each, a desktop machine would spend about
many years to compute multi-way joins of various number
of time series and lengths. Moreover, the space complexity
of such an algorithm is beyond manageable by any single
computing system. Hence, data mining practitioners would
benefit from a realistic algorithm for joining multiple time
series in a flexible and robust manner.

We develop a fast algorithm to join multiple time series at a
reasonable speed to summarize a large set of time series. Our
algorithm MultiPAL (Multiple Patterns ALignments) exploits
Matrix Profiles [2] of all pairs of time series to enable a
greedy search over possible multi-way joins. The algorithm
is orders of magnitude faster than the exact solution and can
process hundreds (if not thousands) of Matrix Profiles. The
algorithm generates meaningful patterns, which achieve better
clustering performance compared to the patterns generated by
existing algorithms. We apply the algorithm to meaningfully

978-1-6654-2398-4/21/$31.00 ©2021 IEEE 429
DOI 10.1109/ICDM51629.2021.00054

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 09,2022 at 16:36:31 UTC from IEEE Xplore. Restrictions apply.



summarize real-world datasets to domain experts in the fields
of power engineering and bioacoustics. The remaining sections
of this article provide background definitions, related works,
algorithmic descriptions and experimental results.

II. DEFINITIONS AND NOTATION

In this section, we define the necessary terms and concepts
to describe the algorithm in Section IV.

Definition 1 (time series): A time series 7' of length m is
an ordered sequence of real numbers ¢; measured in equally
spaced time, in which T = (t1,ta, ..., tm).

Definition 2 (multiple time series): A dataset D =
{T1,...,T,} with multiple time series is a collection of
n independent series 7' (n > 2). Here, each time series
can have a different number of observations m, and can be
asynchronous to other time series.

Definition 3 (subsequence): A subsequence S; is a
continuous segment of length L from a time series 7" starting
from position i. S; 1, = (i, tiy1,...,tiyr—1), where 1 < i <
m— L+1. For a time series of length m, there can be a total of
% subsequences of all possible lengths. For n time series
with the same length m, the total number of subsequences can
be n x % In this paper, the word pattern refers to a group
of highly similar subsequences.

Definition 4 (similarity join): Given two time series 7}, and
Ty and a subsequence length L, the similarity join (i.e., two-
way join) identifies the most similar pair of subsequences, one
from T, and the other from 7;. When time series are recorded
at high-precision (i.e., 32-bit), usually, there is exactly one
closest pair of subsequences. The similarity between the
subsequences can be calculated by the Euclidean distance,
Dynamic Time Warping, Pearson’s Correlation Coefficient,
among many others distance measures. In this paper, we use
Pearson’s Correlation Coefficient, as defined below.

SEL (X - V)2

—1-
corr(x,y) 5T

where X; = % for i = 1,2,...,L, g, is the mean and
o, is the sample standard deviation of a subsequence x.

Definition 5 (multi-way join): A multi-way join (N, L, C)
of a set of time series (n > 2) is a set of N subsequences of
length L, one from each time series, and the subsequences are
similar to each other with a minimum correlation coefficient,
C. For example, in Figure 1, the smallest sinusoids represent
a (4,25,0.75) four-way join, and the largest sinusoids show
a (4,35,0.63) four-way join.

Definition 6 (non-trivial multi-way join): A multi-way
join (Na, Ly, C5) is non-trivial if none of the N5 joining
subsequences overlaps with any of the N; joining subsequence
in another multi-way join (/N1, L1, C1) on the same time series.

Given the above definitions, we are now in position to define
the problem of finding multi-way joins on multiple time series.

GENERAL PROBLEM DEFINITION: Given a collection of n
time series, find k non-trivial multi-way joins (N < n, L,C),
maximizing N, L and C.

Ideally, with infinite resources and time, a data mining prac-
titioner would want to maximize all the variables k, N, L and
C. There is a natural limit on human capacity in processing
outputs generated by mining algorithms, hence, we define k
as a user given input. However, maximizing all of N, L and C'
entails searching a mammoth space of multi-way joins. More
specifically, for each value of N, there are (]’\L,) combinations
of time series. For each of these combinations, the general
problem requires the largest length L and the largest minimum
correlation C'.

In practice, we can reasonably set a priority order among
these variables as C' being the most important because dis-
similar (i.e., low C) subsequences do not form any pattern.
N is the next important variable because (N+1)-way join is
non-trivial to find given an N-way join. We consider L as the
least sensitive variable and propose to search over a small set
of pattern lengths depending on the number of joins a user
wants. This leads to a modified problem definition for multi-
way join on multiple time series.

PRACTICAL PROBLEM DEFINITION: Given a collection of
n time series, find at most k non-trivial multi-way joins (N <
n, L, C) for k different L, maximizing N and C.

According to our problem definition, there are k = 3
multi-way joins in the example of Figure 1. Those are
(4,25,0.75), (4,30,0.69) and (4, 35,0.63), all with variable
lengths. In this paper, we solve the practical problem both
exactly and approximately.

III. RELATED WORK

Unsupervised temporal pattern mining is a very well-studied
area of research. Specific patterns include motifs [5], dis-
cords [2], uShapelets [6], and time series join [1]. However,
most of these patterns are introduced assuming the pattern’s
length is fixed and given as an input to the algorithm. Relaxing
this assumption, methods have been proposed to discover
variable-length motifs [7]-[9]. These methods work on one
long time series and exploit similarity among overlapping sub-
sequences to reduce computational time. In contrast, multidi-
mensional motif discovery [10]-[12] focuses on multiple time
series with synchronous patterns across dimensions. However,
true relaxation is only achieved when the user can discover
patterns of any length from any number of time series. To the
best of our knowledge, this work is the first attempt to solve
this grand pattern mining problem.

Yeh et al. [11] introduced an algorithm (mSTAMP) to find
motifs over multidimensional time series. The main difference
is that the patterns discovered by mSTAMP must be syn-
chronized in time across all the dimensions. mSTAMP only
considers patterns with a fixed length. MultiPAL produces
patterns that are asynchronous, multi-length, and independent
of original dimensionality.

A more related task to ours is two-way time series join [1].
The main goal is to join two long time series based on the
most correlated segment from each one. The time series can
be joined at any location and for arbitrary length. The task’s

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 09,2022 at 16:36:31 UTC from IEEE Xplore. Restrictions apply.



An Intuitive Example

Matrix Profiles (L.=30) Algorithm: SPAL (for L=30, C=0.85)
A-B Join for T, i ’ )
Dataset c b, a, lteration 0 lteration 1 Iteration 2
ag bs C3 Ty |c,0.87 | c5,0.83 | @,,0.99 cand_join1| ¢1 (¢1,¢2),0.87 (@1,82,23),0.95
r ] r v or ] Output
T, ——— H T5[25,0.82|b5,0.79 25,095 | | |cand_join2| br (@1,2,0.99 | —| (2,81,89,0.95 | s | (ar,20,a9,0.95
b, fcz ,//»az bA-B Join forT, ‘ ar | = | (c2,c1),0.87 (B3,a1,32),0.95
7 ™ | |
e~ 2 G % b (82,a1),0.99
T e A Y T, |b1,0.02 | c4,0.87 |a1,0.99
? ¢ b, a Ts[50.18 | 25,0.8 |25,0.95 c (82,2:,0.95
r 1T 1 r 1 az
T ' ‘ N~ A-B Join for T, -
_ R T . . , a by Cs °
0 2 O e P 100 2017, [21,0.95 [61,0.79 [0:,0.76 bs
T, |@2,0.95 | c,0.52 | c,,0.46 cand_join9| c3

Fig. 3.

challenge is the expensive computational cost to compare a
massive number of subsequences. Given series with length
m, a naive algorithm that computes all the possible pairs of
segments of all the lengths requires O(m?*) to find the most
similar subsequences between the pair of series [1].

There is a considerable effort to reduce the time complexity
for searching correlated subsequences in a pair of time se-
ries [1]-[4]. The extension of this problem for multiple series
brings new challenges and is still an unexplored task in the
literature. Most existing algorithms that look at aligning and/or
joining multiple time series are based on pattern similarity
above or below a learned threshold, such as U-Shapelets [1].
In contrast, we join or align multiple time series based on a
sequence of nearest neighbors, exploiting the Matrix Profiles.

IV. MULTI-WAY MULTI-LENGTH JOIN
A. Intuitive example

We propose an Apriori-like [13] approach to grow join
candidates while maximizing support and minimum similarity.
We give a toy example in Figure 3 to illustrate how the
proposed MultiPAL algorithm (Algorithm 4) finds the best
multi-way join, maximizing N and C, from a set of three
time series (11, 15, T3) for a length L = 30. For simplicity,
we consider only 3 subsequences from each time series. In
Figure 3, they are represented as a;, b;, and ¢; in each T;.
Ideally, the output should produce (a;,as,as) for length 30,
(b1, bs) for length 25, and (cy, c2, c3) for length 15, given its
similarities.

At first, we compute the A-B join between each pair of time
series T; and T; (i # j) for L = 30, i.e., the most similar
subsequence in T} for each subsequence in T}, using SCAMP
algorithm [14]. From the table A-B join for 7} in Figure 3, we
see that as € Ty and a3 € T3 are the most similar to a; € T}
with correlations 0.99 and 0.95, respectively. For simplicity,
let us assume a minimum correlation coefficient of C' = 0.85
for the A-B joins. In Section IV-E we discuss in detail how
the algorithm automatically set the threshold C.

We start with the set of all subsequences of length L as
candidates joins. In this example, we consider only nine candi-
dates, {cand_joinl, cand_join2, ...,cand_join9}, as shown

An illustration of the proposed MultiPAL algorithm generating the best multi-way join for a length L = 30.

at Iteration 0 in the Figure 3.

At the first iteration, we take each cand_join and expand it
by adding one subsequence in each iteration. We find the most
similar subsequence from U to the last added subsequence
in cand_join. Here, U is the set of time series that are not
included in cand_join. For example, consider cand_joinl in
Figure 3. The last added subsequence in cand_joinl is ¢; and
U = {T5,T3}. We look into the ¢; column of the table A-B
join for 7 and find that the subsequence co € 1% is the most
similar to ¢; with correlation 0.87 among all time series in U.
Since 0.87 > C, we add ¢y in cand_joinl at Iteration 1. In
the process, we drop the candidates cand_join2, cand_join4,
cand_join8, and cand_join9 at Iteration 1 because their
nearest neighbors have a correlation below the threshold
C. Hence, we stop expanding these joins. At the end of
Iteration 1, we get five candidate multi-way joins, each with
two subsequences in it.

The process of growing the candidate joins continues until
no more subsequences can be added in any of the remaining
joins. In the given example, the algorithm stops at Iteration 2
as each of the remaining candidate multi-way joins have
subsequences from all three time series. The candidate multi-
way joins at the last iteration have the maximum number of
subsequences in them. Thus, N is maximized. The algorithm
outputs the multi-way join which has the largest minimum
correlation between consecutive pairwise subsequences. For
example, for the candidate join (a1, a9, as), the pairwise
consecutive correlations include correlations between (a1, as)
and (ag,as). Each of the three candidate multi-way joins at
Iteration 2 in Figure 3 has 0.95 as the minimum pairwise
consecutive correlation. We choose the first of them as the
output.

B. Exact algorithm

First, we present an exact algorithm (Algorithm 1) that finds
non-trivial joins maximizing N and C for a given set of k
different lengths, £. The algorithm works in two phases, as
follows:

In phase 1 (lines 1-13), the algorithm generates one non-
trivial join, maximizing the number of time series and the
minimum correlation coefficient, for each subsequence length
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L € L. To do so, the algorithm takes each subsequence length
L and sets the minimum correlation coefficient C' as the 95"
percentile of the distribution of the highest similarities (i.e.,
nearest neighbor distances) over all possible subsequences
(lines 2-4). The reason for this choice of C' is described
in Section IV-E. To compute the nearest neighbors of all
possible subsequences of length L, we exploit the Matrix
Profile algorithm [14].

Algorithm 2 is called for each subsequence S, ; ;, in each
time series 7, € D (lines 6-10). Algorithm 2 finds all non-
trivial multi-way joins containing the given subsequence S, ; 1,
by recursively calling itself. The algorithm stores the generated
joins for the subsequence length L in cand_joins (line 8). At
line 12, the algorithm picks the best join from cand_joins,
consisting of the maximum number of time series and the
largest minimum correlation coefficient, and appends the best
join to the set single_joins. In phase 2 (lines 14-15), all
multi-way joins in single_joins are merged to get at most
k multi-way multi-length joins by calling Algorithm 3. The
obtained result, i.e., multi_joins is returned as the output at
line 15.

For each unexplored time series 73, Algorithm 2 finds the
subsequence in T}, that is the most similar to the subsequences
in the Candidate join (i.e., reverse nearest neighbors in lines
5-17). To do so, at first, the correlation coefficient between
each subsequence in C'andidate and all subsequences in 75
is computed using the MASS algorithm [15] (line 8). In the
loop at lines 9-15, for each subsequence S ; 1, in Ty, if the
correlation coefficients between S ;1 and all subsequences
in Clandidate maintain the correlation coefficient threshold
C, the minimum among them is stored in min_corr array.
The subsequence with the largest minimum correlation (i.e.,
mazx(min_corr)) is added in Candidate, and the algorithm
calls itself with this new candidate (lines 18-21). Finally, if no
subsequence is found to be added after iterating all unexplored
time series, the algorithm appends C'andidate to the result set
cand_joins (lines 23-26).

Algorithm 3 generates multi-patterns joins by combining the
multi-way joins obtained in phase 1 of the Exact algorithm,
i.e., Algorithm 1. Inside the loop at line 1, the algorithm finds
all [-patterns multi-way joins by choosing all possible [-size
subsets from P(single_joins), i.e., the power set of multi-
way joins set, and stores them in Candidates (lines 3-7). If
some [-patterns joins are found, they are sorted by the number
of joined time series (higher number of series first) (line 9). If
multiple joins have the same number of time series, they are
sorted by the average pairwise overlap score (lower score first),
as described in Section IV-F. Next, the best [-patterns join
is saved in multi_joins (line 10) and the algorithm returns
multi_joins (line 14).

Next, we analyze the time complexity of the Exact algo-
rithm. Assume we have n time series with length m. At first,
we describe the runtime of Algorithm 2 and 3. The MASS
algorithm at line 8 of Algorithm 2 takes O(mlogm) time
[15]. Next, the loop in line 4 runs (n — t) times where ¢
is the number of subsequences in the Candidate join. Thus

Algorithm 1 ExactMultipleJoin(D,m,k,L)

Require: A dataset D with n time series, time series length m, a value k, a set of
subsequence lengths £
Ensure: A set of multi-way joins
1: single_joins < 0
2: for each subsequence length L € L do
: mp < load matrix profiles for all pairs of time series for length L

3

4 C + 95" percentile of mp

5: cand_joins + ()

6: for each time series T, in D do

7. for each subsequence S, i, in T, do

8 cand_joins < FindJoins({Sa,i,L}, D, m, L, C, cand_joins)
9

: end for
10: end for
11: cand_joins < sort(cand_joins)
12: single_joins <+ single_joins U cand_joins{1}
13: end for

14: multi_joins < MergeSingleJoins(D, m, k, single_joins)
15: return multi_joins

Algorithm 2 FindJoins(Candidate,D,m,L,C,cand_joins)

1: candidate_size  size(Candidate)

2: total_subseqs <+ m — L + 1

3: found < false

4: for each time series 73 not participating in Candidate do

5: min_corr(1 : total_subseqs) < 1.0

6: for j < 1 to candidate_size do

7: Sa,i, < Candidate(j)

8: corr(1l : total_subseqs) < MASS(Ty, Sa,i,L)
9: for k < 1 to total_subseqs do

10: if corr(k) > Cinin then

11: min_corr(k) < min(min_corr(k), corr(k))
12: else

13: min_corr(k) < —oo

14: end if

15: end for

16: end for

17: (maz, id) < max(min_corr)

18: if ma > 0 then

19: found <+ true

20: cand_joins — FindJoins(Candidate u
{Sb,ida,.}, D, m, L,C, cand_joins)

21: end if

22: end for

23: if found = false then

24: cand_joins < cand_joins U {Candidate}
25: end if

26: return cand_joins

the time complexity of lines 4-16 is O((n — t)tmlogm). At
line 20, Algorithm 2 calls itself recursively, which runs at
most (n — t) times because the number of subsequences in
Candidate grows by one at each recursive call of Algorithm
2. Hence, the time complexity of Algorithm 2, T'(n) =
(n—=1)(T(n — 1) + mlogm), which is O(nlmlogm).

The loops in line 1 and 3 of Algorithm 3 together take

Algorithm 3 Mergeloins(D,m,k,single_joins)

1: for | < kto 1 do

2: Candidates + 0

3: for each subset joins_set of size I in P(single_joins) do
4: T_ids < set of time series indices € all joins in joins_set
S: S < set of subsequences of T'_ids in joins_set

6: Candidates < Candidates U {(T_ids, S)}

7: end for

8: if Candidates # () then

9: sort(Candidates)

10: multi_joins < Candidates(1)

11: break

12: end if

13: end for

14: return multi_joins
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(lf) + ([2‘) + ..+ (l,;) = O(2') where I, is the size of the
set single_joins, i.e., l; = |L|. Lines 4 to 6 can be done in
O(n) time, which yields a total time complexity of O(n2!%!)
for Algorithm 3. As the cost of computing matrix profile for
a pair of time series is quadratic O(m?) [2], the total cost of
precomputing matrix profiles for all pairs is O((nm)?). Lines
2-13 of Algorithm 1 require O(|£|n!nm? logm) time because
Algorithm 2 is called for each subsequence. We can see
O(n2f) << O((nm)?) << O(|£|n!nm? log m). Therefore,
the total cost of the Exact algorithm is O(|£|n!nm?logm),
clearly an exponential algorithm.

C. Greedy algorithm

The time complexity of the Exact algorithm grows expo-
nentially as the number of time series n increases, making
it impractical in real life. To reduce the exponential search
space, we propose a greedy heuristic solution to find multiple
different non-trivial joins.

e First, while adding a new subsequence in a candidate
multi-way join, we only consider the correlation between the
new subsequence and the last added subsequence in the candi-
date. In other words, if a multi-way join has n subsequences,
we guarantee (n — 1) pairs of subsequences are similar to
each other with a minimum correlation coefficient C, instead
of ensuring all @ pairs. This choice might decrease the
joins’ quality; however, it enables us to apply the next greedy
optimization.

e Second, we do not need to use the MASS algorithm and
iterate over all the subsequences in a time series to find the
most similar subsequence to be added in the candidate join.
Instead, we take the subsequence which is the most similar to
the last added subsequence in the candidate join by exploiting
the Matrix Profiles of all pairs of time series.

e Third, we use the breadth-first search strategy (BFS)
instead of the depth-first search strategy (DFS) to generate the
candidate joins. In each level of BFS, the algorithm grows each
candidate join by adding a subsequence in it. BFS prevents our
algorithm from running out of stack memory for large n but
presents the challenge of running short of main memory. To
deal it, we consider a fixed number of candidate joins in each
level of BFS, and we call this parameter as memory threshold
Mt-

Algorithm 4 describes our solution, which takes a set of
n time series each with length m, a value k representing the
number of different multi-way joins that need to be produced,
a set of subsequence lengths £, and a memory threshold M as
inputs and outputs up to k different multi-way joins. MultiPAL
works in two phases, as follows.

In phase 1 (lines 1-12), the algorithm generates multi-way
joins for each subsequence length L € L and stores them
in the set single_joins. At line 3, the precomputed all pairs
of matrix profiles and matrix profiles indices of the current
subsequence length are loaded in mp and mpj, respectively.
Similar to the Exact algorithm, we set the minimum correlation
coefficient C' to the 95" percentile of the distribution of
the highest similarities (i.e., nearest neighbor distances) over
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all possible subsequences (line 4). Inside the loop at line
5, Algorithm 5 is invoked to find the best multi-way join,
maximizing the number of time series and the minimum
consecutive pairwise correlation, for the current L. If a join
is found, it is appended to single_joins and Algorithm 5 is
invoked again to get another multi-way join from the time
series that are not joined yet (lines 6-10). Otherwise, the
algorithm moves on to work with the next subsequence length.

In phase 2 (lines 13-14), MultiPAL follows the same process
as the Exact algorithm, i.e., using Algorithm 3 to generate
multi-patterns joins by combining the multi-way joins obtained
in phase 1. The obtained result, i.e., multi_joins is returned
as the output at line 14.

Algorithm 5 is used to find the best multi-way join for
a subsequence length L. At first, the algorithm generates
candidate multi-way joins containing two subsequences using
the precomputed matrix profiles mp and mp; (lines 1-17).
To do so, the algorithm takes each time series 7, (line 3)
from the set of time series U that are not joined yet and each
subsequence S, ; 1 from T, (line 4). At lines 6-7, for each
time series T}, in {U —T, }, the algorithm gets the subsequence
Sh. 5,1, wWhich is the nearest neighbor of S, ; 1, in T}, by looking
up the entry mpy(a,b, ). The correlation between S, ; 1, and
Sb,j,L» 1.e., mp(a, b, 1) is saved in corr at line 8. If any of these
two subsequences contain trivial matches, in other words, if
more than 10% of the subsequence is taken in another join,
this pair of subsequences is not considered as a candidate.
Otherwise, if corr is greater or equal to mxz_corr (initially
set to the minimum correlation coefficient C at line 5), the
subsequence Sy ; 1, is saved in best_subseq along with the
correlation corr in ma_corr (line 10). After iterating all time
series in {U — T,}, the subsequence stored in best_subseq
is the most similar to S, ; .. Hence, these two subsequences
form a candidate multi-way join which is appended to the
candidate joins set Candidates (line 13-15). At line 19, the
algorithm sorts C'andidates by the correlation between the
subsequences (higher correlation first). The top M, candidate
joins are chosen from C'andidates to be used in the next level
(line 20).

The algorithm takes each join from the initial set of
candidate multi-way joins and expands it by adding more
subsequences. In order to do so, the algorithm starts a loop
(line 23) which runs at most (n — 2) times as a multi-way
join can contain at most n subsequences, one from each time
series. Inside the loop, the algorithm takes each join candidate
from Candidates (line 25) and the last added subsequence
Sai,1, from candidate (line 26). At lines 27-34, the algorithm
finds the most similar subsequence of S, ;; among all the
time series 7} not participating in candidate, which is stored
in best_subseq. A non-empty best_subseq is added in the
candidate join and candidate is appended to the set of new
multi-way joins, i.e., newCandidates (lines 35-37). After
iterating all the candidate joins, a non-empty newCandidates
set indicates some multi-way joins are expanded. Hence, the
set Candidates is replaced with newCandidates and the
process of growing the joins is continued (lines 39-41). When
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this process completes, the set Candidates contains the multi-
way joins with the maximum number of time series. The
multi-way join with the largest minimum correlation between
consecutive subsequences is returned (lines 46-47).

Algorithm 4 MultiPAL(D,m,k,L,M;)

Require: A dataset D with n time series, time series length m, a value k, a set of
subsequence lengths £, memory threshold M
Ensure: A set of multi-pattern joins
1: single_joins + 0
2: for each subsequence length L € £ do

3: mp, mpy <— load matrix profiles for all pairs of time series for length L
4. C « 95" percentile of mp

5: while true do

6: cand_join < SPAL(n,m, L, mp, mpr,C, M, A)

7: if cand_join = ( then

8: break

9: end if

10: single_joins < single_joins U cand_join

11: end while

12: end for

13: multi_joins < MergeSingleJoins(D, m, k, single_joins)
14: return multi_joins

Algorithm 5 SPAL(n,m,L,mp,mp;,C,M;)

1: U < set of time series not joined yet
2: Candidates <+ ()
3: for each T, in U do

4: for each subsequence S, i,z in T, do

5: best_subseq, mxz_corr + (0, C

6: for each T}, in {U — T}, } do

7: Sp,j,L < mpr(a,b, i) // nearest neighbor of S, i, in Ty

8: corr < mp(a, b, 1) // correlation between Sa,i,L and Sy j 1

9: if S, i,r and Sy ;1 do not contain trivial matches and corr >=
max_corr then

10: best_subseq, mx_corr < Sy j 1, corr

11: end if

12: end for

13: if best_subseq # () then

14: Candidates < Candidates U {{Sa,i,1, best_subseq}}

15: end if

16: end for

17: end for

18: if size(Candidates) > M, then

19: Candidates < sort(Candidates)

20: Candidates < Candidates(1 : My)

21: end if

22: iteration < 3

23: while iteration < n do

24:  newCandidates < ()

25: for each candidate in Candidates do

26: Sa,i, < last added subsequence in candidate

27: best_subseq, mx_corr + (), C

28: for each time series T} not participating in candidate do

29: Sy,j,L < mpr(a,b,1) // nearest neighbor of S ; 1 in Ty

30: corr <— mp(a, b, i) // correlation between S, ;1 and Sy ;1

31: if Sy, j, 1 do not contain trivial matches and corr >= max_corr then

32: best_subseq, mx_corr < Sy j L, corr

33: end if

34: end for

35: if best_subseq # 0 then

36: newCandidates <« newCandidates U {candidate U
{best_subseq}}

37: end if

38: end for

39: if newCandidates # () then

40: iteration < iteration + 1

41: Candidates < newCandidates

42: else

43: break

44: end if

45: end while
46: Candidates < sort(Candidates)
47: return Candidates(1)
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D. Complexity analysis

In Algorithm 5, lines 3 and 4 consider each subsequence of
each time series in U, and line 6 takes each time series from
{U — T,}. Since the total number of subsequences in a time
series is m — L + 1 where L is the subsequence length, lines
3-6 need O(n?m) time. The check for trivial matches can be
done in constant time by precomputing and caching results in
memory. So, the lines 3-17 take O(n2m) time to finish. Sorting
the Candidates at line 19 takes O(nmlog(nm)) since each
subsequence can form at most one multi-way join. The loop
at line 23 runs O(n) times. Since at most M; number of
candidate joins can be generated in each level, lines 25-38
require O(nM;log(M;)) time. The cost of computing lines
23-46 is O(n? M, log(My)). Therefore, the overall worst case
time complexity of Algorithm 5 is O(n?m + nmlog(nm) +
n?M; log(My)), i.e., O(n%M;log(My;)).

The cost of precomputing matrix profiles for all pairs of
time series is O((nm)2). For each L € L, Algorithm 4
(MultiPAL) iteratively calls Algorithm 5 to find the best multi-
way joins from the unused time series. Since a multi-way
join for a length L can have one subsequence from each time
series and the number of time series is maximized in a join,
Algorithm 5 is called a constant number of times in the loop
at line 6. Hence, lines 1-12 run in O((nm)? +n2M, log(M,))
considering the size of £ is small. Algorithm 3 is called at line
13. As we described in Section IV-B, the cost of Algorithm
3is O(n2l5), where [, is the size of single_joins, i.e., the
number of multi-way joins found in total. The value of [
depends on the number of times Algorithm 5 is called, which
is constant. In other words, [, is roughly 2|L| ~ 3|L|. We can
see O(n2!) << O((nm)? + n?M;log(M,)). Therefore, the
total cost of MultiPAL is O((nm)? + n2M; log(My)).

E. Relationship between length and correlation coefficient

Most existing works consider a linear relationship between
length and correlation coefficient. The concept of length-
normalized correlation is often used in the literature to com-
pare matches of different lengths [6], [16], [17]. However, we
argue that this assumption is detrimental for multi-length joins.

To demonstrate our argument, we calculate the distribu-
tion of the correlation coefficients obtained by Matrix Pro-
files of various lengths L considering the Power dataset
(see Sect. VI-A). The correlations distribution given L =
(672,192, 96, 20) are shown in Figure 4(left). Figure 4(right)
shows the min, median, mean, maz and 95"percentile
of each distribution. Note that any of these correlations can
be in our algorithm’s final multiple joins. We observe that
the relationship is not linear. Moreover, the commonly used
maximum correlation (i.e., motifs) shows discontinuity. It is
worth mentioning that this observation also holds on other
data.

Based on this observation, we propose to empirically choose
the minimum correlation coefficient for a given length. Identify
the 95" percentile point from the Matrix Profiles distribution
for each length and use it as the minimum correlation coeffi-
cient.
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The number of subsequence lengths considered by the
algorithm must be greater or equal to the number of different
multi-way joins k, that the user wants. However, the algorithm
can produce less than k£ multi-way joins if the algorithm uses
exactly k lengths. Hence, a strategy has to be developed
regarding which lengths to consider. We propose to use k
lengths equal spaced sampled between 10% to 30% of the
length (m) of the time series at an equally spaced sample.
If we fail to discover k valid joins (e.g., trivial matches), we
extend the range from 5% to 35% and sample more within this
range until we reach k different joins or exhaust all options.

FE. Trivial matches in the multi-length case

A well-known concept in pattern discovery for a single
time series is trivial matches [18]. A trivial match occurs
when a subsequence that begins at time ¢ best matches with
adjacent subsequences starting at time t+ 1 or ¢ — 1. Since the
subsequences share most of the values, these matches need to
be avoided.

In our case, the pattern discovery is performed over multiple
time series, and the patterns have multiple lengths. A trivial
match occurs when a smaller pattern with length p is discov-
ered into a larger pattern with length ¢, where p << ¢q. To
avoid trivial joins, before adding a subsequence in a join, we
ensure that the subsequence has less than 10% overlap between
any subsequences in other joins. To find the best & multi-way
joins, we define the overlap score between two subsequences
as O = pQqu , where p and q are the lengths of the subsequences
and s is the size of their shared region. Note that the overlap
score between two subsequences from different time series is
0. Among all the £ multi-way joins found by our algorithm,
we choose the one which has the minimum average pairwise
overlap score.

V. EXPERIMENTAL EVALUATION

To ensure the reproducibility of our solution, we created a
website [19] where we made available all the codes, results,
and data.

A. Rival methods and data

In the experimental evaluation, we compare the patterns
found by MultiPAL with those discovered by the Exact
algorithm previously discussed in Section IV-B and by the
algorithm of unsupervised shapelet discovery (SUSh) [20]
and multivariate motif discovery (mSTAMP) [11]. Since we
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propose a novel sequential pattern mining task, the methods
from the literature are not exactly multiple join algorithms.
Thus, we adapt the available options to work for multiple joins.
As SUSh and mSTAMP do not deal with patterns of different
lengths, we consider the union of all results of multiple runs
by varying the length parameter. For instance, we run the
algorithms with lengths 35, 30, and 20 observations for the
sinusoidal patterns dataset. To be fair with the competing
methods, after extracting patterns for a length, we replace
the patterns with white noise to discover new patterns of
new lengths. Note that MultiPAL automatically selects these
lengths to discover joins. Hence, it does not need this favor.
We consider six datasets: two datasets previously evaluated
by SUSh (PAMAP and Trace), Horses [21], two datasets
from our case studies (Power and Birds), which we will
introduce in Section VI, and the synthetic dataset of sinusoidal
patterns, previously introduced in Figure 2. Table I describes
the datasets with the number of series, classes, and length.

TABLE 1

DATASETS DESCRIPTION.

#Time series  Length #Classes
Sinusoidal 4 300 3
Power 85 35,040  not available
Birds 5 600 3
Horses 5 2,000 4
Trace 50 1,100 4
PAMAP 20 3,000 6

B. Sanity check

First, we present a sanity check to illustrate that MultiPAL
discovery similar patterns to the expensive Exact algorithm
and that the current solutions from literature cannot discover
multiple meaningful joins on multiple time series, leading
to the need for a novel approach. For this, we consider the
synthetic data previously shown in Figure 1 with the three
sine patterns planted in random series.

Figure 5 shows the patterns discovered. mSTAMP, as a
multivariate motif discovery method, identifies motifs that
repeat over time. Thus, the algorithm identifies three motifs
of three lengths, where all of them are synchronized in time.
The algorithm missed at least four sinusoidal patterns and
extracted white noises as motifs because the patterns are not
synchronous in time. In contrast, SUSh, as an unsupervised
shapelet discovery method, discovers only half of the sinu-
soidal patterns. SUSh clusters the time series based on the
discovered shapelets. Since each time series contains multiple
sinusoids of different lengths, clustering the time series using
the same length shapelets hurts the performance of SUSh. A
side-by-side comparison shows that repeated execution of the
SUSh (unsupervised shapelet) algorithm is not equivalent to
ground-up multiple joins (MultiPAL). Moreover, SUSh is a
non-deterministic algorithm producing different results from
different execution, while MultiPAL is deterministic.

MultiPAL, a multiple join method, identifies all twelve
sinusoidal patterns of different lengths, repeating across all
four time series. A small portion of noise is also captured for
most patterns due to the similarities between these short noise
segments. As we can note, all the patterns are equivalent to
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Fig. 5.

those discovered by the Exact method. However, MultiPAL is
about five times faster.

C. Quantitative evaluation

To analyze the quality of the patterns discovered by the
methods, we quantitatively compare them using Adjusted
Rand Index (ARI) [22] for datasets with ground truth labels.
ARI is an external quality metric that essentially indicates what
fraction of data was clustered correctly.

The ARI results and the number of patterns discovered
by each algorithm are presented in Table II. This evaluation
considers MultiPAL using two different correlation measures
to compute the similarity between patterns: Pearson’s Cor-
relation Coefficient measured from Euclidean distance (ED)
and Dynamic Time Warping (DTW) distance based correlation
measured by %. We note MultiPAL with ED has
shown the best results for all datasets, comparable to the Exact.
Specifically, for Sinusoidal and Birds, we obtain a perfect
clustering with MultiPAL (ED). For Trace and PAMAP, the
Exact algorithm can not run due to memory constraints and
impractical time caused by the larger number of time series
and length. MultiPAL with DTW also shows an expensive
execution time for these datasets. For Trace, MultiPAL (ED)
discovers 200 patterns, while mSTAMP and SUSh discover
400 and 189, respectively. For PAMAP, MultiPAL (ED) dis-
covers 120 patterns, while mSTAMP and SUSh discover 240
and 105 patterns, respectively. The results demonstrate that our
method outperforms the rivals discovering a higher number of
patterns than SUSh and fewer patterns with better ARI than
mSTAMP for all datasets evaluated.

TABLE II
QUANTITATIVE COMPARISON USING ADJUSTED RAND INDEX AND THE
NUMBER OF PATTERNS DISCOVERED.

MultiPAL (ED) MultiPAL (DTW) Exact mSTAMP SUSh
Sinusoidal 1.0 (12) 0.78 (9) 1.0 (12) 0.64 (24) 0.73 (6)
Birds 1.0 (15) 0.72 (15) 1.0 (15) 0.61 (30)  0.79 (8)
Horses 0.82 (16) 0.80 (20) 0.82 (16) 0.60 (32) 0.62 (11)
Trace 0.89 (200) - — 0.63 (400) 0.68 (189)
PAMAP 0.88 (120) - — 0.73 (240) 0.81 (105)

Table III shows the runtime of the methods. MultiPAL
with DTW is the most expensive method, followed by SUSh
and Exact. However, it must be noted that the high cost of
MultiPAL (DTW) is mainly associated with the quadratic time
complexity of DTW. Since the best ARI results of Multi-
PAL are observed using Euclidean distance, the employment
of strategies to accelerate the DTW computation for multi-
length pattern discovery is subject to future works. Although
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Multi-length patterns discovered over multiple time series by MultiPAL and algorithms from literature.

mSTAMP is the most efficient algorithm, the patterns discov-
ered are not meaningful for multi-way time series join.

TABLE III
RUNTIME (IN SECONDS) COMPARISON.

MultiPAL (ED) MultiPAL (DTW) Exact mSTAMP _ SUSh
Sinusoidal 0.60 1492 299 0.9 2293
Birds 1.52 260.14  29.48 055 7135
Horses 1.64 14400.29 229.17 257 309.22
Trace 142.70 - - 449 166.57
PAMAP 71.50 - - 23.85 1226.99

D. Scalability

Although our complexity analysis demonstrates that Mul-
tiPAL is orders of magnitude faster than the Exact solution,
we compare the methods’ execution times to show our results
empirically using real-world data. The results are shown in
Figure 6, where we can note the efficiency of MultiPAL. Since
the Exact algorithm’s memory requirement grows exponen-
tially with the number of time series, the algorithm can not
run for more than six time series.

—— MultiPAL
= = - Exact

—— MultiPAL

%

=

Runtime (seconds)
Runtime (seconds)

)
Y

<
on

5 10 20 30 40 50 60 70 80 90

Number of time series

3 4
Number of time series

Fig. 6. Execution time varying the number of time series.
E. Parameter sensitivity

There are two parameters to MultiPAL: ) the number of
multi-way joins the user wants (k) and i) the size of the
memory to hold candidate joins (M;). The former is a user
choice, and the latter depends on the computing system’s
available memory. To test sensitivity, we manually pick two
30-days subsets of power consumption data (Section VI-A)
considering the occurrence/absence of periodic patterns, to
known: periodic and aperiodic.

We run MultiPAL on both of these datasets by varying
k and show the number of subsequence lengths we need to
investigate. The results are shown in Figure 7(left). We observe
that the number of lengths closely follows k and increases
drastically if the data does not have k valid joins. In periodic
data, the algorithm continues to find more joins until the whole
dataset is explored.

We run MultiPAL for various memory sizes with a very
large k. The results are shown in Figure 7(right). The number
of joins discovered shows discrete upward changes as we add
more memory. The algorithm needs more memory in aperiodic
data to identify each additional join.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 09,2022 at 16:36:31 UTC from IEEE Xplore. Restrictions apply.



@
S

o o

©

=
3 2
@ o 8
S
20 E —6— periodic (total pattems=9)
5 —6— periodic % 7 —=— aperiodic (total pattems=7)
k<l —&— aperiodic 3 .
B0 :
£ gs
=z o
0 5.
2
0 5 10 15 20 25 30 0 500 1000 1500 2000 2500
Number of joins (k) Memory threshold, M,
Fig. 7. Parameter sensitivity for periodic and aperiodic time series.

VI. CASE STUDIES
A. Household power consumption
We have collected electric power consumption data from the
Los Alamos Public Utility Department in New Mexico, USA.
The dataset contains consumption data from 1,667 households,

one sample every fifteen minutes. The dataset spans four years
in duration.
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Fig. 9. Dendrogram for the Hierarchical clustering of 25 time series.

Figure 8(b) shows the three multi-way joins of three unique
lengths. Each join is spanning 31 users in our dataset. We
show four of these time series in Figure 8(a). The joins are
all showing a sharp increase or decrease in consumption.
However, the 1-week join illustrates daily periodicity due to
solar panels installed on the houses. The join identifies
similar periodic patterns containing houses with solar panels.
The 5-hours join identifies zero-power consumption patterns.
Two of them are confirmed as outages, and the other two are
periods when solar panels are sufficient to reduce consumption
from the grid to zero. Note the progression from regular usage
pattern to anomalous usage pattern as we decrease the join
length, demonstrating the utility of multiple joins. All these
results have been validated using satellite images on Google
Maps to identify customers’ houses with solar panels and

querying the LADPU Twitter!, where the company reports
outages with date, time, and location.

a) Clustering Utility: Patterns obtained by MultiPAL are
useful to cluster time series. We cluster 25 power consumption
time series. The first thirteen time series are from the houses
with solar panels and the remaining twelve do not have solar
panels. We use the hierarchical clustering algorithm with the
average linkage method. To compute the distance between
two time series, we use the patterns obtained by MultiPAL
from those time series as reference objects. We project each
time series on a one dimensional plane by taking the average
correlation over the ten nearest neighbors of each of the Mul-
tiPAL patterns in that time series. We then compute distances
between any two time series as the absolute difference between
their average correlations with MultiPAL patterns.

Figure 9 shows that the algorithm clusters the time series
into two groups. The blue cluster contains 12 out of 13 time
series from the solar panels group and one time series from
the non-solar panels, yielding an Adjusted Rand Index (ARI)
of 0.85. Such projection based on discovered patterns is very
common in the literature [6] [20], making MultiPAL patterns
useful in higher level data mining task.

B. Bioacoustic monitoring

An important task in biodiversity analysis is wildlife mon-
itoring by acoustic sensors [23]. In general, these sensors
generate a large volume of data in which manual analysis is
tedious and time-consuming. Solutions such as MultiPAL can
be an essential tool for analyzing bioacoustic data and finding
behavioral patterns.

We built a dataset with audio records? containing bird calls
of three species: ¢) Crex-crex, 7i) Emberiza calandra, and 7:7)
Aegolius funereus. We generated five 1-minute signals that
contain calls of 20 seconds for each bird species in a shuffled
order. Each call is generated by a different bird, even for those
from the same species.

The original audio is high-dimensional (48kHz) with weak
representational power. To reduce the dimensionality and ob-
tain a strong representation, we converted it to Mel-frequency
cepstrum coefficients (MFCC) space using a sliding window
compressing 0.2 seconds, 50% of overlap, and keeping only
the 274 coefficient [24]. Thus, we extracted 10 MFCC per
second. In Figure 10, we illustrate the representational change
for an Emberiza calandra call.

1. 0.2sec. 509 overlap
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Fig. 10. Representational change of a bird call signal from time domain
(left) to MFCC space (right).

In Figure 11(a), we show the signals and highlight the multi-
length patterns discovered by MultiPAL. For the first signal,

Thttps://twitter.com/ladpu
Zhttp://xeno-
p://xeno-canto.org/
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we also indicate the class label for each 20-second segment
according to the bird species. Our algorithm discovered 15
patterns distributed in groups of 8 seconds, 5.5 seconds, and
1.5 seconds duration. Given that MultiPAL discovered patterns
with the same lengths for the same species and discovered
a pattern for all the species, it scored an Adjusted Rand
Index of 1 to separate data, which means a perfect clustering.
To better visualize the quality of the patterns discovered,
in Figure 11(b), we show the patterns separated by length
and the multi-way joins (N, L,C) provided by MultiPAL.
These patterns among the calls with slight differences in
vocalizations could be essential features to identify activities,
such as when the birds are establishing the breeding territory,
attracting females, or challenging intruding males.
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Fig. 11. Multi-length patterns discovered by MultiPAL for Birds dataset.

The results of the rival methods are shown in Figure 12.
mSTAMP identified 30 patterns distributed in three different
lengths. All the patterns are synchronized over time, but
dissimilar among them, leading to the worst ARI result (0.61).
On the other hand, SUSh discovered eight similar patterns
generating an ARI of 0.79. However, the method missed one
Emberiza calandra pattern in the fourth signal and did not
found any Aegolius funereus related pattern. We omitted the
fifth signal since the SUSh did not discover any pattern for
this time series.
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Fig. 12. Multi-length joins obtained by the rival methods SUSh and mSTAMP
for Birds dataset.
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VII. CONCLUSION

This paper defines multiple joins for time series and de-
scribes a heuristic search algorithm for this novel task. The
algorithm produces non-trivial results in comparison to itera-
tive applications of known algorithms. Empirical case studies
demonstrate the algorithm’s usefulness in identifying charac-
teristics patterns in real-world domains, including bioacoustics
and electric power consumption monitoring.
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