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Abstract—This paper introduces a new pattern mining task
that considers aligning or joining a set of time series based
on an arbitrary number of subsequences (i.e., patterns) with
arbitrary lengths. Joining multiple time series along common
patterns can be pivotal in clustering and summarizing large time
series datasets. An exact algorithm to join hundreds of time
series based on multi-length patterns is impractical due to the
high computational costs. This paper proposes a fast algorithm
named MultiPAL to join multiple time series at interactive speed
to summarize large time series datasets. The algorithm exploits
Matrix Profiles of the individual time series to enable a greedy
search over possible joins. The algorithm is orders of magnitude
faster than the exact solution and can utilize hundreds of Matrix
Profiles. We evaluate our algorithm for sequential mining on data
from various real-world domains, including power management
and bioacoustics monitoring.
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I. INTRODUCTION

Time series join is a data mining task that discovers the

highly similar subsequence (i.e., a pattern) between two large

time series. Joins provide useful information about the data

synchrony and can help data analysts better understand the

correlations of sequential phenomena [1]. Surprisingly, the

solutions for this problem are limited to a pair of time series

and a single aligning/joining pattern [1]–[4]. In this work, we

introduce the problem of joining multiple time series based

on an arbitrary number of subsequences with variable lengths.

Joining multiple time series along highly similar subsequences

can be pivotal in clustering and summarizing large time series

datasets on various domains.
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Fig. 1. Four time series with planted sinusoidal patterns. Each sinusoid is of
different length. A multi-way join algorithm groups the smallest sinusoids,
the medium sinusoids and the largest sinusoids together.

To illustrate multi-way join, consider the four time series

shown in Fig. 1. In this example, each time series has three

sinusoidal patterns artificially planted in random noise, each

pattern with a different length. The multi-way join algorithm

seeks to discover the highly similar subsequences among the

series without prior information about the number and the

length of the patterns. In the example, the algorithm correctly

groups the smallest sinusoidal patterns, the medium patterns,

and the largest patterns. It is interesting to note that we can

consider each discovered pattern to join the four time series

uniquely. Hence, in effect, there are three different multi-way

(i.e., four-way) joins, as illustrated in Fig. 2.

Four-way join 1 Four-way join 2 Four-way join 3

Fig. 2. Three individual joins obtained from the multi-length patterns
discovered in Fig. 1.

An exact algorithm to join hundreds of time series based on

multiple patterns is impractical due to the high computational

costs. As explained in this paper, the time complexity of multi-

way join on time series is exponential to the number of time

series. On a dataset with one hundred time series with 100,000

observations in each, a desktop machine would spend about

many years to compute multi-way joins of various number

of time series and lengths. Moreover, the space complexity

of such an algorithm is beyond manageable by any single

computing system. Hence, data mining practitioners would

benefit from a realistic algorithm for joining multiple time

series in a flexible and robust manner.
We develop a fast algorithm to join multiple time series at a

reasonable speed to summarize a large set of time series. Our

algorithm MultiPAL (Multiple Patterns ALignments) exploits

Matrix Profiles [2] of all pairs of time series to enable a

greedy search over possible multi-way joins. The algorithm

is orders of magnitude faster than the exact solution and can

process hundreds (if not thousands) of Matrix Profiles. The

algorithm generates meaningful patterns, which achieve better

clustering performance compared to the patterns generated by

existing algorithms. We apply the algorithm to meaningfully
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summarize real-world datasets to domain experts in the fields

of power engineering and bioacoustics. The remaining sections

of this article provide background definitions, related works,

algorithmic descriptions and experimental results.

II. DEFINITIONS AND NOTATION

In this section, we define the necessary terms and concepts

to describe the algorithm in Section IV.

Definition 1 (time series): A time series T of length m is

an ordered sequence of real numbers ti measured in equally

spaced time, in which T = (t1, t2, . . . , tm).

Definition 2 (multiple time series): A dataset D =
{T1, . . . , Tn} with multiple time series is a collection of

n independent series T (n ≥ 2). Here, each time series

can have a different number of observations m, and can be

asynchronous to other time series.

Definition 3 (subsequence): A subsequence Si,L is a

continuous segment of length L from a time series T starting

from position i. Si,L = (ti, ti+1, . . . , ti+L−1), where 1 ≤ i ≤
m−L+1. For a time series of length m, there can be a total of
m(m+1)

2 subsequences of all possible lengths. For n time series

with the same length m, the total number of subsequences can

be n×m(m+1)
2 . In this paper, the word pattern refers to a group

of highly similar subsequences.

Definition 4 (similarity join): Given two time series Ta and

Tb and a subsequence length L, the similarity join (i.e., two-

way join) identifies the most similar pair of subsequences, one

from Ta and the other from Tb. When time series are recorded

at high-precision (i.e., 32-bit), usually, there is exactly one

closest pair of subsequences. The similarity between the

subsequences can be calculated by the Euclidean distance,

Dynamic Time Warping, Pearson’s Correlation Coefficient,

among many others distance measures. In this paper, we use

Pearson’s Correlation Coefficient, as defined below.

corr(x, y) = 1−
∑L

i=1(Xi − Yi)
2

2L

where Xi = xi−μx

σx
for i = 1, 2, . . . , L, μx is the mean and

σx is the sample standard deviation of a subsequence x.

Definition 5 (multi-way join): A multi-way join (N,L,C)
of a set of time series (n ≥ 2) is a set of N subsequences of

length L, one from each time series, and the subsequences are

similar to each other with a minimum correlation coefficient,

C. For example, in Figure 1, the smallest sinusoids represent

a (4, 25, 0.75) four-way join, and the largest sinusoids show

a (4, 35, 0.63) four-way join.

Definition 6 (non-trivial multi-way join): A multi-way

join (N2, L2, C2) is non-trivial if none of the N2 joining

subsequences overlaps with any of the N1 joining subsequence

in another multi-way join (N1, L1, C1) on the same time series.

Given the above definitions, we are now in position to define

the problem of finding multi-way joins on multiple time series.

GENERAL PROBLEM DEFINITION: Given a collection of n
time series, find k non-trivial multi-way joins (N ≤ n,L,C),
maximizing N , L and C.

Ideally, with infinite resources and time, a data mining prac-

titioner would want to maximize all the variables k,N,L and

C. There is a natural limit on human capacity in processing

outputs generated by mining algorithms, hence, we define k
as a user given input. However, maximizing all of N , L and C
entails searching a mammoth space of multi-way joins. More

specifically, for each value of N , there are
(
n
N

)
combinations

of time series. For each of these combinations, the general

problem requires the largest length L and the largest minimum

correlation C.

In practice, we can reasonably set a priority order among

these variables as C being the most important because dis-

similar (i.e., low C) subsequences do not form any pattern.

N is the next important variable because (N+1)-way join is

non-trivial to find given an N -way join. We consider L as the

least sensitive variable and propose to search over a small set

of pattern lengths depending on the number of joins a user

wants. This leads to a modified problem definition for multi-

way join on multiple time series.

PRACTICAL PROBLEM DEFINITION: Given a collection of
n time series, find at most k non-trivial multi-way joins (N ≤
n,L,C) for k different L, maximizing N and C.

According to our problem definition, there are k = 3
multi-way joins in the example of Figure 1. Those are

(4, 25, 0.75), (4, 30, 0.69) and (4, 35, 0.63), all with variable

lengths. In this paper, we solve the practical problem both

exactly and approximately.

III. RELATED WORK

Unsupervised temporal pattern mining is a very well-studied

area of research. Specific patterns include motifs [5], dis-

cords [2], uShapelets [6], and time series join [1]. However,

most of these patterns are introduced assuming the pattern’s

length is fixed and given as an input to the algorithm. Relaxing

this assumption, methods have been proposed to discover

variable-length motifs [7]–[9]. These methods work on one

long time series and exploit similarity among overlapping sub-

sequences to reduce computational time. In contrast, multidi-

mensional motif discovery [10]–[12] focuses on multiple time

series with synchronous patterns across dimensions. However,

true relaxation is only achieved when the user can discover
patterns of any length from any number of time series. To the

best of our knowledge, this work is the first attempt to solve

this grand pattern mining problem.

Yeh et al. [11] introduced an algorithm (mSTAMP) to find

motifs over multidimensional time series. The main difference

is that the patterns discovered by mSTAMP must be syn-

chronized in time across all the dimensions. mSTAMP only

considers patterns with a fixed length. MultiPAL produces

patterns that are asynchronous, multi-length, and independent

of original dimensionality.

A more related task to ours is two-way time series join [1].

The main goal is to join two long time series based on the

most correlated segment from each one. The time series can

be joined at any location and for arbitrary length. The task’s
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Dataset

An Intuitive Example

Fig. 3. An illustration of the proposed MultiPAL algorithm generating the best multi-way join for a length L = 30.

challenge is the expensive computational cost to compare a

massive number of subsequences. Given series with length

m, a naive algorithm that computes all the possible pairs of

segments of all the lengths requires O(m4) to find the most

similar subsequences between the pair of series [1].

There is a considerable effort to reduce the time complexity

for searching correlated subsequences in a pair of time se-

ries [1]–[4]. The extension of this problem for multiple series

brings new challenges and is still an unexplored task in the

literature. Most existing algorithms that look at aligning and/or

joining multiple time series are based on pattern similarity

above or below a learned threshold, such as U-Shapelets [1].

In contrast, we join or align multiple time series based on a

sequence of nearest neighbors, exploiting the Matrix Profiles.

IV. MULTI-WAY MULTI-LENGTH JOIN

A. Intuitive example

We propose an Apriori-like [13] approach to grow join

candidates while maximizing support and minimum similarity.

We give a toy example in Figure 3 to illustrate how the

proposed MultiPAL algorithm (Algorithm 4) finds the best

multi-way join, maximizing N and C, from a set of three

time series (T1, T2, T3) for a length L = 30. For simplicity,

we consider only 3 subsequences from each time series. In

Figure 3, they are represented as ai, bi, and ci in each Ti.

Ideally, the output should produce (a1, a2, a3) for length 30,

(b1, b3) for length 25, and (c1, c2, c3) for length 15, given its

similarities.

At first, we compute the A-B join between each pair of time

series Ti and Tj (i �= j) for L = 30, i.e., the most similar

subsequence in Tj for each subsequence in Ti, using SCAMP

algorithm [14]. From the table A-B join for T1 in Figure 3, we

see that a2 ∈ T2 and a3 ∈ T3 are the most similar to a1 ∈ T1

with correlations 0.99 and 0.95, respectively. For simplicity,

let us assume a minimum correlation coefficient of C = 0.85
for the A-B joins. In Section IV-E we discuss in detail how

the algorithm automatically set the threshold C.

We start with the set of all subsequences of length L as

candidates joins. In this example, we consider only nine candi-

dates, {cand join1, cand join2, ..., cand join9}, as shown

at Iteration 0 in the Figure 3.
At the first iteration, we take each cand join and expand it

by adding one subsequence in each iteration. We find the most

similar subsequence from U to the last added subsequence

in cand join. Here, U is the set of time series that are not

included in cand join. For example, consider cand join1 in

Figure 3. The last added subsequence in cand join1 is c1 and

U = {T2, T3}. We look into the c1 column of the table A-B

join for T1 and find that the subsequence c2 ∈ T2 is the most

similar to c1 with correlation 0.87 among all time series in U .

Since 0.87 ≥ C, we add c2 in cand join1 at Iteration 1. In

the process, we drop the candidates cand join2, cand join4,

cand join8, and cand join9 at Iteration 1 because their

nearest neighbors have a correlation below the threshold

C. Hence, we stop expanding these joins. At the end of

Iteration 1, we get five candidate multi-way joins, each with

two subsequences in it.
The process of growing the candidate joins continues until

no more subsequences can be added in any of the remaining

joins. In the given example, the algorithm stops at Iteration 2
as each of the remaining candidate multi-way joins have

subsequences from all three time series. The candidate multi-

way joins at the last iteration have the maximum number of

subsequences in them. Thus, N is maximized. The algorithm

outputs the multi-way join which has the largest minimum

correlation between consecutive pairwise subsequences. For

example, for the candidate join (a1, a2, a3), the pairwise

consecutive correlations include correlations between (a1, a2)

and (a2, a3). Each of the three candidate multi-way joins at

Iteration 2 in Figure 3 has 0.95 as the minimum pairwise

consecutive correlation. We choose the first of them as the

output.

B. Exact algorithm
First, we present an exact algorithm (Algorithm 1) that finds

non-trivial joins maximizing N and C for a given set of k
different lengths, L. The algorithm works in two phases, as

follows:
In phase 1 (lines 1-13), the algorithm generates one non-

trivial join, maximizing the number of time series and the

minimum correlation coefficient, for each subsequence length
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L ∈ L. To do so, the algorithm takes each subsequence length

L and sets the minimum correlation coefficient C as the 95th

percentile of the distribution of the highest similarities (i.e.,

nearest neighbor distances) over all possible subsequences

(lines 2-4). The reason for this choice of C is described

in Section IV-E. To compute the nearest neighbors of all

possible subsequences of length L, we exploit the Matrix

Profile algorithm [14].

Algorithm 2 is called for each subsequence Sa,i,L in each

time series Ta ∈ D (lines 6-10). Algorithm 2 finds all non-

trivial multi-way joins containing the given subsequence Sa,i,L

by recursively calling itself. The algorithm stores the generated

joins for the subsequence length L in cand joins (line 8). At

line 12, the algorithm picks the best join from cand joins,

consisting of the maximum number of time series and the

largest minimum correlation coefficient, and appends the best

join to the set single joins. In phase 2 (lines 14-15), all

multi-way joins in single joins are merged to get at most

k multi-way multi-length joins by calling Algorithm 3. The

obtained result, i.e., multi joins is returned as the output at

line 15.

For each unexplored time series Tb, Algorithm 2 finds the

subsequence in Tb that is the most similar to the subsequences

in the Candidate join (i.e., reverse nearest neighbors in lines

5-17). To do so, at first, the correlation coefficient between

each subsequence in Candidate and all subsequences in Tb

is computed using the MASS algorithm [15] (line 8). In the

loop at lines 9-15, for each subsequence Sb,j,L in Tb, if the

correlation coefficients between Sb,j,L and all subsequences

in Candidate maintain the correlation coefficient threshold

C, the minimum among them is stored in min corr array.

The subsequence with the largest minimum correlation (i.e.,

max(min corr)) is added in Candidate, and the algorithm

calls itself with this new candidate (lines 18-21). Finally, if no

subsequence is found to be added after iterating all unexplored

time series, the algorithm appends Candidate to the result set

cand joins (lines 23-26).

Algorithm 3 generates multi-patterns joins by combining the

multi-way joins obtained in phase 1 of the Exact algorithm,

i.e., Algorithm 1. Inside the loop at line 1, the algorithm finds

all l-patterns multi-way joins by choosing all possible l-size

subsets from P(single joins), i.e., the power set of multi-

way joins set, and stores them in Candidates (lines 3-7). If

some l-patterns joins are found, they are sorted by the number

of joined time series (higher number of series first) (line 9). If

multiple joins have the same number of time series, they are

sorted by the average pairwise overlap score (lower score first),

as described in Section IV-F. Next, the best l-patterns join

is saved in multi joins (line 10) and the algorithm returns

multi joins (line 14).

Next, we analyze the time complexity of the Exact algo-

rithm. Assume we have n time series with length m. At first,

we describe the runtime of Algorithm 2 and 3. The MASS

algorithm at line 8 of Algorithm 2 takes O(m logm) time

[15]. Next, the loop in line 4 runs (n − t) times where t
is the number of subsequences in the Candidate join. Thus

Algorithm 1 ExactMultipleJoin(D,m,k,L)
Require: A dataset D with n time series, time series length m, a value k, a set of

subsequence lengths L
Ensure: A set of multi-way joins
1: single joins ← ∅
2: for each subsequence length L ∈ L do
3: mp ← load matrix profiles for all pairs of time series for length L
4: C ← 95th percentile of mp
5: cand joins ← ∅
6: for each time series Ta in D do
7: for each subsequence Sa,i,L in Ta do
8: cand joins ← FindJoins({Sa,i,L},D,m, L,C, cand joins)
9: end for

10: end for
11: cand joins ← sort(cand joins)
12: single joins ← single joins ∪ cand joins{1}
13: end for
14: multi joins ← MergeSingleJoins(D,m, k, single joins)
15: return multi joins

Algorithm 2 FindJoins(Candidate,D,m,L,C,cand joins)
1: candidate size ← size(Candidate)
2: total subseqs ← m − L + 1
3: found ← false
4: for each time series Tb not participating in Candidate do
5: min corr(1 : total subseqs) ← 1.0
6: for j ← 1 to candidate size do
7: Sa,i,L ← Candidate(j)
8: corr(1 : total subseqs) ← MASS(Tb, Sa,i,L)
9: for k ← 1 to total subseqs do

10: if corr(k) ≥ Cmin then
11: min corr(k) ← min(min corr(k), corr(k))
12: else
13: min corr(k) ← −∞
14: end if
15: end for
16: end for
17: (mx, id) ← max(min corr)
18: if mx > 0 then
19: found ← true
20: cand joins ← FindJoins(Candidate ∪

{Sb,id,L},D,m, L,C, cand joins)
21: end if
22: end for
23: if found = false then
24: cand joins ← cand joins ∪ {Candidate}
25: end if
26: return cand joins

the time complexity of lines 4-16 is O((n − t)tm logm). At

line 20, Algorithm 2 calls itself recursively, which runs at

most (n − t) times because the number of subsequences in

Candidate grows by one at each recursive call of Algorithm

2. Hence, the time complexity of Algorithm 2, T (n) =
(n− 1)(T (n− 1) +m logm), which is O(n!m logm).

The loops in line 1 and 3 of Algorithm 3 together take

Algorithm 3 MergeJoins(D,m,k,single joins)
1: for l ← k to 1 do
2: Candidates ← ∅
3: for each subset joins set of size l in P(single joins) do
4: T ids ← set of time series indices ∈ all joins in joins set
5: S ← set of subsequences of T ids in joins set
6: Candidates ← Candidates ∪ {(T ids, S)}
7: end for
8: if Candidates �= ∅ then
9: sort(Candidates)

10: multi joins ← Candidates(1)
11: break
12: end if
13: end for
14: return multi joins
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(
ls
1

)
+

(
ls
2

)
+ ... +

(
ls
k

)
= O(2ls) where ls is the size of the

set single joins, i.e., ls = |L|. Lines 4 to 6 can be done in

O(n) time, which yields a total time complexity of O(n2|L|)
for Algorithm 3. As the cost of computing matrix profile for

a pair of time series is quadratic O(m2) [2], the total cost of

precomputing matrix profiles for all pairs is O((nm)2). Lines

2-13 of Algorithm 1 require O(|L|n!nm2 logm) time because

Algorithm 2 is called for each subsequence. We can see

O(n2|L|) << O((nm)2) << O(|L|n!nm2 logm). Therefore,

the total cost of the Exact algorithm is O(|L|n!nm2 logm),
clearly an exponential algorithm.

C. Greedy algorithm

The time complexity of the Exact algorithm grows expo-

nentially as the number of time series n increases, making

it impractical in real life. To reduce the exponential search

space, we propose a greedy heuristic solution to find multiple

different non-trivial joins.

• First, while adding a new subsequence in a candidate

multi-way join, we only consider the correlation between the

new subsequence and the last added subsequence in the candi-

date. In other words, if a multi-way join has n subsequences,

we guarantee (n − 1) pairs of subsequences are similar to

each other with a minimum correlation coefficient C, instead

of ensuring all
n(n−1)

2 pairs. This choice might decrease the

joins’ quality; however, it enables us to apply the next greedy

optimization.

• Second, we do not need to use the MASS algorithm and

iterate over all the subsequences in a time series to find the

most similar subsequence to be added in the candidate join.

Instead, we take the subsequence which is the most similar to

the last added subsequence in the candidate join by exploiting

the Matrix Profiles of all pairs of time series.

• Third, we use the breadth-first search strategy (BFS)

instead of the depth-first search strategy (DFS) to generate the

candidate joins. In each level of BFS, the algorithm grows each

candidate join by adding a subsequence in it. BFS prevents our

algorithm from running out of stack memory for large n but

presents the challenge of running short of main memory. To

deal it, we consider a fixed number of candidate joins in each

level of BFS, and we call this parameter as memory threshold

Mt.

Algorithm 4 describes our solution, which takes a set of

n time series each with length m, a value k representing the

number of different multi-way joins that need to be produced,

a set of subsequence lengths L, and a memory threshold Mt as

inputs and outputs up to k different multi-way joins. MultiPAL

works in two phases, as follows.

In phase 1 (lines 1-12), the algorithm generates multi-way

joins for each subsequence length L ∈ L and stores them

in the set single joins. At line 3, the precomputed all pairs

of matrix profiles and matrix profiles indices of the current

subsequence length are loaded in mp and mpI , respectively.

Similar to the Exact algorithm, we set the minimum correlation

coefficient C to the 95th percentile of the distribution of

the highest similarities (i.e., nearest neighbor distances) over

all possible subsequences (line 4). Inside the loop at line

5, Algorithm 5 is invoked to find the best multi-way join,

maximizing the number of time series and the minimum

consecutive pairwise correlation, for the current L. If a join

is found, it is appended to single joins and Algorithm 5 is

invoked again to get another multi-way join from the time

series that are not joined yet (lines 6-10). Otherwise, the

algorithm moves on to work with the next subsequence length.

In phase 2 (lines 13-14), MultiPAL follows the same process

as the Exact algorithm, i.e., using Algorithm 3 to generate

multi-patterns joins by combining the multi-way joins obtained

in phase 1. The obtained result, i.e., multi joins is returned

as the output at line 14.

Algorithm 5 is used to find the best multi-way join for

a subsequence length L. At first, the algorithm generates

candidate multi-way joins containing two subsequences using

the precomputed matrix profiles mp and mpI (lines 1-17).

To do so, the algorithm takes each time series Ta (line 3)

from the set of time series U that are not joined yet and each

subsequence Sa,i,L from Ta (line 4). At lines 6-7, for each

time series Tb in {U−Ta}, the algorithm gets the subsequence

Sb,j,L, which is the nearest neighbor of Sa,i,L in Tb, by looking

up the entry mpI(a, b, i). The correlation between Sa,i,L and

Sb,j,L, i.e., mp(a, b, i) is saved in corr at line 8. If any of these

two subsequences contain trivial matches, in other words, if

more than 10% of the subsequence is taken in another join,

this pair of subsequences is not considered as a candidate.

Otherwise, if corr is greater or equal to mx corr (initially

set to the minimum correlation coefficient C at line 5), the

subsequence Sb,j,L is saved in best subseq along with the

correlation corr in mx corr (line 10). After iterating all time

series in {U − Ta}, the subsequence stored in best subseq
is the most similar to Sa,i,L. Hence, these two subsequences

form a candidate multi-way join which is appended to the

candidate joins set Candidates (line 13-15). At line 19, the

algorithm sorts Candidates by the correlation between the

subsequences (higher correlation first). The top Mt candidate

joins are chosen from Candidates to be used in the next level

(line 20).

The algorithm takes each join from the initial set of

candidate multi-way joins and expands it by adding more

subsequences. In order to do so, the algorithm starts a loop

(line 23) which runs at most (n − 2) times as a multi-way

join can contain at most n subsequences, one from each time

series. Inside the loop, the algorithm takes each join candidate
from Candidates (line 25) and the last added subsequence

Sa,i,L from candidate (line 26). At lines 27-34, the algorithm

finds the most similar subsequence of Sa,i,L among all the

time series Tb not participating in candidate, which is stored

in best subseq. A non-empty best subseq is added in the

candidate join and candidate is appended to the set of new

multi-way joins, i.e., newCandidates (lines 35-37). After

iterating all the candidate joins, a non-empty newCandidates
set indicates some multi-way joins are expanded. Hence, the

set Candidates is replaced with newCandidates and the

process of growing the joins is continued (lines 39-41). When
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this process completes, the set Candidates contains the multi-

way joins with the maximum number of time series. The

multi-way join with the largest minimum correlation between

consecutive subsequences is returned (lines 46-47).

Algorithm 4 MultiPAL(D,m,k,L,Mt)
Require: A dataset D with n time series, time series length m, a value k, a set of

subsequence lengths L, memory threshold Mt

Ensure: A set of multi-pattern joins
1: single joins ← ∅
2: for each subsequence length L ∈ L do
3: mp,mpI ← load matrix profiles for all pairs of time series for length L
4: C ← 95th percentile of mp
5: while true do
6: cand join ← SPAL(n,m,L,mp,mpI , C,Mt, A)
7: if cand join = ∅ then
8: break
9: end if

10: single joins ← single joins ∪ cand join
11: end while
12: end for
13: multi joins ← MergeSingleJoins(D,m, k, single joins)
14: return multi joins

Algorithm 5 SPAL(n,m,L,mp,mpI ,C,Mt)
1: U ← set of time series not joined yet
2: Candidates ← ∅
3: for each Ta in U do
4: for each subsequence Sa,i,L in Ta do
5: best subseq,mx corr ← ∅, C
6: for each Tb in {U − Ta} do
7: Sb,j,L ← mpI(a, b, i) // nearest neighbor of Sa,i,L in Tb

8: corr ← mp(a, b, i) // correlation between Sa,i,L and Sb,j,L

9: if Sa,i,L and Sb,j,L do not contain trivial matches and corr >=
mx corr then

10: best subseq,mx corr ← Sb,j,L, corr
11: end if
12: end for
13: if best subseq �= ∅ then
14: Candidates ← Candidates ∪ {{Sa,i,L, best subseq}}
15: end if
16: end for
17: end for
18: if size(Candidates) > Mt then
19: Candidates ← sort(Candidates)
20: Candidates ← Candidates(1 : Mt)
21: end if
22: iteration ← 3
23: while iteration ≤ n do
24: newCandidates ← ∅
25: for each candidate in Candidates do
26: Sa,i,L ← last added subsequence in candidate
27: best subseq,mx corr ← ∅, C
28: for each time series Tb not participating in candidate do
29: Sb,j,L ← mpI(a, b, i) // nearest neighbor of Sa,i,L in Tb

30: corr ← mp(a, b, i) // correlation between Sa,i,L and Sb,j,L

31: if Sb,j,L do not contain trivial matches and corr >= mx corr then
32: best subseq,mx corr ← Sb,j,L, corr
33: end if
34: end for
35: if best subseq �= ∅ then
36: newCandidates ← newCandidates ∪ {candidate ∪

{best subseq}}
37: end if
38: end for
39: if newCandidates �= ∅ then
40: iteration ← iteration + 1
41: Candidates ← newCandidates
42: else
43: break
44: end if
45: end while
46: Candidates ← sort(Candidates)
47: return Candidates(1)

D. Complexity analysis

In Algorithm 5, lines 3 and 4 consider each subsequence of

each time series in U , and line 6 takes each time series from

{U − Ta}. Since the total number of subsequences in a time

series is m− L+ 1 where L is the subsequence length, lines

3-6 need O(n2m) time. The check for trivial matches can be

done in constant time by precomputing and caching results in

memory. So, the lines 3-17 take O(n2m) time to finish. Sorting

the Candidates at line 19 takes O(nm log(nm)) since each

subsequence can form at most one multi-way join. The loop

at line 23 runs O(n) times. Since at most Mt number of

candidate joins can be generated in each level, lines 25-38

require O(nMt log(Mt)) time. The cost of computing lines

23-46 is O(n2Mt log(Mt)). Therefore, the overall worst case

time complexity of Algorithm 5 is O(n2m + nm log(nm) +
n2Mt log(Mt)), i.e., O(n2Mt log(Mt)).

The cost of precomputing matrix profiles for all pairs of

time series is O((nm)2). For each L ∈ L, Algorithm 4

(MultiPAL) iteratively calls Algorithm 5 to find the best multi-

way joins from the unused time series. Since a multi-way

join for a length L can have one subsequence from each time

series and the number of time series is maximized in a join,

Algorithm 5 is called a constant number of times in the loop

at line 6. Hence, lines 1-12 run in O((nm)2+n2Mt log(Mt))
considering the size of L is small. Algorithm 3 is called at line

13. As we described in Section IV-B, the cost of Algorithm

3 is O(n2ls), where ls is the size of single joins, i.e., the

number of multi-way joins found in total. The value of ls
depends on the number of times Algorithm 5 is called, which

is constant. In other words, ls is roughly 2|L| ∼ 3|L|. We can

see O(n2ls) << O((nm)2 + n2Mt log(Mt)). Therefore, the

total cost of MultiPAL is O((nm)2 + n2Mt log(Mt)).

E. Relationship between length and correlation coefficient

Most existing works consider a linear relationship between

length and correlation coefficient. The concept of length-

normalized correlation is often used in the literature to com-

pare matches of different lengths [6], [16], [17]. However, we

argue that this assumption is detrimental for multi-length joins.

To demonstrate our argument, we calculate the distribu-

tion of the correlation coefficients obtained by Matrix Pro-

files of various lengths L considering the Power dataset

(see Sect. VI-A). The correlations distribution given L =
(672, 192, 96, 20) are shown in Figure 4(left). Figure 4(right)

shows the min, median, mean, max and 95thpercentile
of each distribution. Note that any of these correlations can

be in our algorithm’s final multiple joins. We observe that

the relationship is not linear. Moreover, the commonly used

maximum correlation (i.e., motifs) shows discontinuity. It is

worth mentioning that this observation also holds on other

data.

Based on this observation, we propose to empirically choose

the minimum correlation coefficient for a given length. Identify

the 95thpercentile point from the Matrix Profiles distribution

for each length and use it as the minimum correlation coeffi-

cient.
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Fig. 4. (left) MP distance distributions for various lengths. (right) Percentile
points for various lengths.

The number of subsequence lengths considered by the

algorithm must be greater or equal to the number of different

multi-way joins k, that the user wants. However, the algorithm

can produce less than k multi-way joins if the algorithm uses

exactly k lengths. Hence, a strategy has to be developed

regarding which lengths to consider. We propose to use k
lengths equal spaced sampled between 10% to 30% of the

length (m) of the time series at an equally spaced sample.

If we fail to discover k valid joins (e.g., trivial matches), we

extend the range from 5% to 35% and sample more within this

range until we reach k different joins or exhaust all options.

F. Trivial matches in the multi-length case

A well-known concept in pattern discovery for a single

time series is trivial matches [18]. A trivial match occurs

when a subsequence that begins at time t best matches with

adjacent subsequences starting at time t+1 or t−1. Since the

subsequences share most of the values, these matches need to

be avoided.

In our case, the pattern discovery is performed over multiple

time series, and the patterns have multiple lengths. A trivial

match occurs when a smaller pattern with length p is discov-

ered into a larger pattern with length q, where p << q. To

avoid trivial joins, before adding a subsequence in a join, we

ensure that the subsequence has less than 10% overlap between

any subsequences in other joins. To find the best k multi-way

joins, we define the overlap score between two subsequences

as O = 2s
p+q , where p and q are the lengths of the subsequences

and s is the size of their shared region. Note that the overlap

score between two subsequences from different time series is

0. Among all the k multi-way joins found by our algorithm,

we choose the one which has the minimum average pairwise

overlap score.

V. EXPERIMENTAL EVALUATION

To ensure the reproducibility of our solution, we created a

website [19] where we made available all the codes, results,

and data.

A. Rival methods and data

In the experimental evaluation, we compare the patterns

found by MultiPAL with those discovered by the Exact

algorithm previously discussed in Section IV-B and by the

algorithm of unsupervised shapelet discovery (SUSh) [20]

and multivariate motif discovery (mSTAMP) [11]. Since we

propose a novel sequential pattern mining task, the methods

from the literature are not exactly multiple join algorithms.

Thus, we adapt the available options to work for multiple joins.

As SUSh and mSTAMP do not deal with patterns of different

lengths, we consider the union of all results of multiple runs

by varying the length parameter. For instance, we run the

algorithms with lengths 35, 30, and 20 observations for the

sinusoidal patterns dataset. To be fair with the competing

methods, after extracting patterns for a length, we replace

the patterns with white noise to discover new patterns of

new lengths. Note that MultiPAL automatically selects these

lengths to discover joins. Hence, it does not need this favor.

We consider six datasets: two datasets previously evaluated

by SUSh (PAMAP and Trace), Horses [21], two datasets

from our case studies (Power and Birds), which we will

introduce in Section VI, and the synthetic dataset of sinusoidal

patterns, previously introduced in Figure 2. Table I describes

the datasets with the number of series, classes, and length.

TABLE I
DATASETS DESCRIPTION.

#Time series Length #Classes
Sinusoidal 4 300 3
Power 85 35,040 not available
Birds 5 600 3
Horses 5 2,000 4
Trace 50 1,100 4
PAMAP 20 3,000 6

B. Sanity check

First, we present a sanity check to illustrate that MultiPAL

discovery similar patterns to the expensive Exact algorithm

and that the current solutions from literature cannot discover

multiple meaningful joins on multiple time series, leading

to the need for a novel approach. For this, we consider the

synthetic data previously shown in Figure 1 with the three

sine patterns planted in random series.

Figure 5 shows the patterns discovered. mSTAMP, as a

multivariate motif discovery method, identifies motifs that

repeat over time. Thus, the algorithm identifies three motifs

of three lengths, where all of them are synchronized in time.

The algorithm missed at least four sinusoidal patterns and

extracted white noises as motifs because the patterns are not

synchronous in time. In contrast, SUSh, as an unsupervised

shapelet discovery method, discovers only half of the sinu-

soidal patterns. SUSh clusters the time series based on the

discovered shapelets. Since each time series contains multiple

sinusoids of different lengths, clustering the time series using

the same length shapelets hurts the performance of SUSh. A

side-by-side comparison shows that repeated execution of the

SUSh (unsupervised shapelet) algorithm is not equivalent to

ground-up multiple joins (MultiPAL). Moreover, SUSh is a

non-deterministic algorithm producing different results from

different execution, while MultiPAL is deterministic.

MultiPAL, a multiple join method, identifies all twelve

sinusoidal patterns of different lengths, repeating across all

four time series. A small portion of noise is also captured for

most patterns due to the similarities between these short noise

segments. As we can note, all the patterns are equivalent to
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Fig. 5. Multi-length patterns discovered over multiple time series by MultiPAL and algorithms from literature.

those discovered by the Exact method. However, MultiPAL is

about five times faster.

C. Quantitative evaluation

To analyze the quality of the patterns discovered by the

methods, we quantitatively compare them using Adjusted

Rand Index (ARI) [22] for datasets with ground truth labels.

ARI is an external quality metric that essentially indicates what

fraction of data was clustered correctly.

The ARI results and the number of patterns discovered

by each algorithm are presented in Table II. This evaluation

considers MultiPAL using two different correlation measures

to compute the similarity between patterns: Pearson’s Cor-

relation Coefficient measured from Euclidean distance (ED)

and Dynamic Time Warping (DTW) distance based correlation

measured by DTW distance
2×(path length) . We note MultiPAL with ED has

shown the best results for all datasets, comparable to the Exact.

Specifically, for Sinusoidal and Birds, we obtain a perfect

clustering with MultiPAL (ED). For Trace and PAMAP, the

Exact algorithm can not run due to memory constraints and

impractical time caused by the larger number of time series

and length. MultiPAL with DTW also shows an expensive

execution time for these datasets. For Trace, MultiPAL (ED)

discovers 200 patterns, while mSTAMP and SUSh discover

400 and 189, respectively. For PAMAP, MultiPAL (ED) dis-

covers 120 patterns, while mSTAMP and SUSh discover 240

and 105 patterns, respectively. The results demonstrate that our

method outperforms the rivals discovering a higher number of

patterns than SUSh and fewer patterns with better ARI than

mSTAMP for all datasets evaluated.

TABLE II
QUANTITATIVE COMPARISON USING ADJUSTED RAND INDEX AND THE

NUMBER OF PATTERNS DISCOVERED.

MultiPAL (ED) MultiPAL (DTW) Exact mSTAMP SUSh
Sinusoidal 1.0 (12) 0.78 (9) 1.0 (12) 0.64 (24) 0.73 (6)
Birds 1.0 (15) 0.72 (15) 1.0 (15) 0.61 (30) 0.79 (8)
Horses 0.82 (16) 0.80 (20) 0.82 (16) 0.60 (32) 0.62 (11)
Trace 0.89 (200) – – 0.63 (400) 0.68 (189)
PAMAP 0.88 (120) – – 0.73 (240) 0.81 (105)

Table III shows the runtime of the methods. MultiPAL

with DTW is the most expensive method, followed by SUSh

and Exact. However, it must be noted that the high cost of

MultiPAL (DTW) is mainly associated with the quadratic time

complexity of DTW. Since the best ARI results of Multi-

PAL are observed using Euclidean distance, the employment

of strategies to accelerate the DTW computation for multi-

length pattern discovery is subject to future works. Although

mSTAMP is the most efficient algorithm, the patterns discov-

ered are not meaningful for multi-way time series join.
TABLE III

RUNTIME (IN SECONDS) COMPARISON.

MultiPAL (ED) MultiPAL (DTW) Exact mSTAMP SUSh
Sinusoidal 0.60 14.92 2.99 0.19 22.93
Birds 1.52 260.14 29.48 0.55 71.35
Horses 1.64 14400.29 229.17 2.57 309.22
Trace 142.70 – – 4.49 166.57
PAMAP 71.50 – – 23.85 1226.99

D. Scalability
Although our complexity analysis demonstrates that Mul-

tiPAL is orders of magnitude faster than the Exact solution,

we compare the methods’ execution times to show our results

empirically using real-world data. The results are shown in

Figure 6, where we can note the efficiency of MultiPAL. Since

the Exact algorithm’s memory requirement grows exponen-

tially with the number of time series, the algorithm can not

run for more than six time series.
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Fig. 6. Execution time varying the number of time series.

E. Parameter sensitivity
There are two parameters to MultiPAL: i) the number of

multi-way joins the user wants (k) and ii) the size of the

memory to hold candidate joins (Mt). The former is a user

choice, and the latter depends on the computing system’s

available memory. To test sensitivity, we manually pick two

30-days subsets of power consumption data (Section VI-A)

considering the occurrence/absence of periodic patterns, to

known: periodic and aperiodic.
We run MultiPAL on both of these datasets by varying

k and show the number of subsequence lengths we need to

investigate. The results are shown in Figure 7(left). We observe

that the number of lengths closely follows k and increases

drastically if the data does not have k valid joins. In periodic

data, the algorithm continues to find more joins until the whole

dataset is explored.
We run MultiPAL for various memory sizes with a very

large k. The results are shown in Figure 7(right). The number

of joins discovered shows discrete upward changes as we add

more memory. The algorithm needs more memory in aperiodic

data to identify each additional join.
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VI. CASE STUDIES

A. Household power consumption

We have collected electric power consumption data from the

Los Alamos Public Utility Department in New Mexico, USA.

The dataset contains consumption data from 1,667 households,

one sample every fifteen minutes. The dataset spans four years

in duration.

0 0.5 1 1.5 2 2.5 3 3.5 4
104

(a) Power consumption of four customers over a year

0 672 0 192 0 20

(4, 672, 0.74) (4, 192, 0.89) (4, 20, 0.99)

(b) Multi-length patterns discovered by MultiPAL

Fig. 8. Analysis of power consumption.

Fig. 9. Dendrogram for the Hierarchical clustering of 25 time series.

Figure 8(b) shows the three multi-way joins of three unique

lengths. Each join is spanning 31 users in our dataset. We

show four of these time series in Figure 8(a). The joins are

all showing a sharp increase or decrease in consumption.

However, the 1-week join illustrates daily periodicity due to

solar panels installed on the houses. The 2-days join identifies

similar periodic patterns containing houses with solar panels.

The 5-hours join identifies zero-power consumption patterns.

Two of them are confirmed as outages, and the other two are

periods when solar panels are sufficient to reduce consumption

from the grid to zero. Note the progression from regular usage

pattern to anomalous usage pattern as we decrease the join

length, demonstrating the utility of multiple joins. All these

results have been validated using satellite images on Google

Maps to identify customers’ houses with solar panels and

querying the LADPU Twitter1, where the company reports

outages with date, time, and location.
a) Clustering Utility: Patterns obtained by MultiPAL are

useful to cluster time series. We cluster 25 power consumption

time series. The first thirteen time series are from the houses

with solar panels and the remaining twelve do not have solar

panels. We use the hierarchical clustering algorithm with the

average linkage method. To compute the distance between

two time series, we use the patterns obtained by MultiPAL

from those time series as reference objects. We project each

time series on a one dimensional plane by taking the average

correlation over the ten nearest neighbors of each of the Mul-

tiPAL patterns in that time series. We then compute distances

between any two time series as the absolute difference between

their average correlations with MultiPAL patterns.
Figure 9 shows that the algorithm clusters the time series

into two groups. The blue cluster contains 12 out of 13 time

series from the solar panels group and one time series from

the non-solar panels, yielding an Adjusted Rand Index (ARI)

of 0.85. Such projection based on discovered patterns is very

common in the literature [6] [20], making MultiPAL patterns
useful in higher level data mining task.
B. Bioacoustic monitoring

An important task in biodiversity analysis is wildlife mon-

itoring by acoustic sensors [23]. In general, these sensors

generate a large volume of data in which manual analysis is

tedious and time-consuming. Solutions such as MultiPAL can

be an essential tool for analyzing bioacoustic data and finding

behavioral patterns.
We built a dataset with audio records2 containing bird calls

of three species: i) Crex-crex, ii) Emberiza calandra, and iii)
Aegolius funereus. We generated five 1-minute signals that

contain calls of 20 seconds for each bird species in a shuffled

order. Each call is generated by a different bird, even for those

from the same species.
The original audio is high-dimensional (48kHz) with weak

representational power. To reduce the dimensionality and ob-

tain a strong representation, we converted it to Mel-frequency

cepstrum coefficients (MFCC) space using a sliding window

compressing 0.2 seconds, 50% of overlap, and keeping only

the 2nd coefficient [24]. Thus, we extracted 10 MFCC per

second. In Figure 10, we illustrate the representational change

for an Emberiza calandra call.
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Fig. 10. Representational change of a bird call signal from time domain
(left) to MFCC space (right).

In Figure 11(a), we show the signals and highlight the multi-

length patterns discovered by MultiPAL. For the first signal,

1https://twitter.com/ladpu
2http://xeno-canto.org/
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we also indicate the class label for each 20-second segment

according to the bird species. Our algorithm discovered 15

patterns distributed in groups of 8 seconds, 5.5 seconds, and

1.5 seconds duration. Given that MultiPAL discovered patterns

with the same lengths for the same species and discovered

a pattern for all the species, it scored an Adjusted Rand

Index of 1 to separate data, which means a perfect clustering.

To better visualize the quality of the patterns discovered,

in Figure 11(b), we show the patterns separated by length

and the multi-way joins (N,L,C) provided by MultiPAL.

These patterns among the calls with slight differences in

vocalizations could be essential features to identify activities,

such as when the birds are establishing the breeding territory,

attracting females, or challenging intruding males.

0 100 200 300 400 500 600

Crex-crex Emberiza
calandra Aegolius funereus

Timeline

(a) Bird calls in MFCC space

0 80 0 55 0 158 sec. 5.5 sec. 1.5 sec.

(5, 80, 0.91) (5, 55, 0.93) (5, 15, 0.97)

(b) Multi-length patterns

Fig. 11. Multi-length patterns discovered by MultiPAL for Birds dataset.

The results of the rival methods are shown in Figure 12.

mSTAMP identified 30 patterns distributed in three different

lengths. All the patterns are synchronized over time, but

dissimilar among them, leading to the worst ARI result (0.61).

On the other hand, SUSh discovered eight similar patterns

generating an ARI of 0.79. However, the method missed one

Emberiza calandra pattern in the fourth signal and did not

found any Aegolius funereus related pattern. We omitted the

fifth signal since the SUSh did not discover any pattern for

this time series.

0 100 200 300 400 500 600

(a) mSTAMP

0 100 200 300 400 500 600

(b) SUSh
Fig. 12. Multi-length joins obtained by the rival methods SUSh and mSTAMP
for Birds dataset.

VII. CONCLUSION

This paper defines multiple joins for time series and de-

scribes a heuristic search algorithm for this novel task. The

algorithm produces non-trivial results in comparison to itera-

tive applications of known algorithms. Empirical case studies

demonstrate the algorithm’s usefulness in identifying charac-

teristics patterns in real-world domains, including bioacoustics

and electric power consumption monitoring.
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