
Adaptive Participant Selection in Heterogeneous
Federated Learning

Rana Albelaihi∗, Xiang Sun∗, Warren D. Craft∗, Liangkun Yu∗, and Chonggang Wang†
∗University of New Mexico, Albuquerque, NM 87131, USA.
†InterDigital Communications, Conshohocken, PA 19428, USA.

Abstract—Federated learning (FL) is a distributed machine
learning technique to address the data privacy issue. Participant
selection is critical to determine the latency of the training process
in a heterogeneous FL architecture, where users with different
hardware setups and wireless channel conditions communicate
with their base station to participate in the FL training process.
Many solutions have been designed to consider computational
and uploading latency of different users to select suitable
participants such that the straggler problem can be avoided.
However, none of these solutions consider the waiting time of a
participant, which refers to the latency of a participant waiting
for the wireless channel to be available, and the waiting time
could significantly affect the latency of the training process,
especially when a huge number of participants are involved in
the training process and share the wireless channel in the time-
division duplexing manner to upload their local FL models. In
this paper, we consider not only the computational and uploading
latency but also the waiting time (which is estimated based on
an M/G/1 queueing model) of a participant to select suitable
participants. We formulate an optimization problem to maximize
the number of selected participants, who can upload their local
models before the deadline in a global iteration. The Latency
awarE pARticipant selectioN (LEARN) algorithm is proposed to
solve the problem and the performance of LEARN is validated
via simulations.

I. INTRODUCTION

The vast amount of data generated by various devices,
along with the unprecedented evolution of machine learning
(ML), are dramatically changing our lives [1]. Traditional ML
frameworks, which require data uploaded from devices to a
centralized facility for training a related ML model [2], lead
to concerns about data privacy and huge network traffic loads.
In order to address these concerns, it is crucial to develop a
distributed ML framework, where local data sets in different
devices do not have to be transmitted and can be analyzed
locally to derive an ML model. In response, we have seen the
rise of Federated Learning (FL) [3], which has been widely
adopted by many applications to train their ML models, such
as smart home [4] and eHealth [5].

In FL, an FL server in each global iteration selects subsets
of users, which would train their local models based on their
local data sets. The derived local models are uploaded to
the FL server, which derives the global model based on,
for example, the FedAvg algorithm [3]. The global iteration
continues until the derived global model converges. Users

This work is supported by the National Science Foundation under Award
OIA-1757207.

in FL do not share their local data, thereby providing more
privacy [6]. It has been demonstrated that the performance
of FL is comparable to the centralized ML method when
the data sets are independent and identically distributed (IID)
among the users [7], [8]. However, the latency of FL for
training an ML model could be much longer than that of
the centralized ML method [9]. This is because FL typically
trains a model over a heterogeneous network, where users1

have different computing and communications capacities, thus
resulting in the straggler problem that tremendously increases
the latency [10]. Hence, designing an optimal participant
selection method is fundamental to reduce the latency of the
training process for FL. The goal of the participant selection
is to maximize the number of qualified participants in each
global iteration, where a qualified participant refers to a
user that has been selected and can upload its derived local
models before a predefined deadline. Note that it has been
demonstrated that having more qualified participants can speed
up the convergence rate [11], thus accelerating the whole FL
training process.

Consider the scenario in which a number of users are
distributed in a base station (BS)’s coverage area and try
to participate in the FL process. Typically, the latency of a
selected participant in its training process includes 1) compu-
tational latency: the latency of deriving its local model, 2)
waiting time: the latency of waiting for the wireless channel
to be available (if time division duplexing (TDD) is applied),
and 3) uploading latency: the latency of uploading the local
model to the FL server via the BS2. Many participant selection
methods have been designed [12]–[14]; however, none of
them consider the waiting time, thus selecting inappropriate
participants which are unable to finish the training process
before the deadline. Other works apply frequency division
duplexing (FDD) to allocate and reserve bandwidth resources
for the selected participants [15]–[17], i.e., the total amount
of bandwidth allocated to the selected participants should be
no larger than the available bandwidth of the BS, which is
not necessary (since participants may request uploading of
their local models in different time slots and do not compete

1Users, devices, and participants are interchangeable in the paper.
2In the paper, we do not consider the latency of the BS in broadcasting the

global model to the participants and the latency of the FL server in deriving
the global model by aggregating the received local models since both latencies
are the same for different users and do not change by selecting different users.

978-1-7281-8104-2/21/$31.00 ©2021 IEEE

GL
O

BE
CO

M
 2

02
1

- 2
02

1
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

72
81

-8
10

4-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
46

51
0.

20
21

.9
68

50
77

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 09,2022 at 16:51:16 UTC from IEEE Xplore. Restrictions apply.

for the bandwidth resources) and could tremendously reduce
the number of selected participants. In this paper, we design
a novel participant selection method in TDD-based FL to
maximize the number of qualified participants by jointly
considering the computational and uploading latency as well
as the waiting time of a participant. The contributions of the
paper are summarized as follows.

1) We propose to consider the waiting time in calculating the
overall latency of a participant for its training process and
apply the queuing model to estimate the waiting time.

2) We formulate the participant selection problem to max-
imize the number of qualified participants. We design a
latency-aware participant selection (LEARN) algorithm
to efficiently solve the problem.

3) The performance of LEARN is demonstrated via exten-
sive simulations.

The rest of the paper is organized as follows. Section II
briefly reviews related work. Section III introduces the system
models and the participant selection problem. Section IV
provides the solution to the problem. Section V presents the
simulation results, and Section VI concludes the paper.

II. RELATED WORK

The original FL framework randomly selects users to par-
ticipate in the distributed training process [3], which has
been demonstrated to incur a long delay in training an ML
model in heterogeneous settings, where different users have
different computing and uploading capabilities [12]. Many
researchers have sought to improve the performance of par-
ticipant selection in FDD-based FL. For instance, Shi et al.
[16] jointly optimized bandwidth allocation and participant se-
lection to maximize the convergence rate, which is equivalent
to minimizing the overall latency of training a global model.
Xu et al. [17] also jointly optimized bandwidth allocation
and participant selection to maximize the weighted sum of
selected participants. However, they proposed selecting fewer
participants in early FL rounds and more participants in later
FL rounds. The results indicate that the designed participant
selection method can improve the model accuracy, and reduce
the overall energy consumption of the participants. FDD-based
participant selection aims to allocate and reserve bandwidth
for the selected participants, which is not necessary and could
reduce the number of the selected participants.

Other works have explored the participant selection solu-
tions in TDD-based FL. Nishio and Yonetani [12] designed
a new participant selection approach to jointly consider both
computational and uploading latency of participants to maxi-
mize the number of selected participants in each global iter-
ation. Similarly, Yang et al. [18] proposed a joint participant
selection and beamforming approach to maximize the number
of selected participants in each global iteration while satisfying
the mean-squared-error requirement. Amiri et al. [19] designed
a participant selection and resource allocation method to select
participants and assign the wireless channel based on their
channel conditions and the significance of their local model
updates. Zhang et al. [13] proposed a participant selection

method to handle the non-IID data set among participants,
where participants having a lower degree of non-IID data sets
would be more frequently selected to improve the accuracy
of the derived global model. The works mentioned above,
however, do not consider the waiting time for the selected
participants, and generally assumed that participants can im-
mediately upload their local models once the models have
been derived. In this paper, we will consider not only the
computational and uploading latency but also the waiting time
of participants in selecting suitable participants.

III. SYSTEM MODELS AND PROBLEM FORMULATION

Let I be the set of users in the BS’s coverage area. Let xi
be the binary variable to indicate whether user i is selected to
train an FL global model (i.e., xi = 1) or not (i.e., xi = 0).

A. Federated learning background

The goal of the FL is to derive the vector of parameters,
denoted as ω, for a global model in order to minimize the
global loss function F (ω), i.e.,

argmin
ω

F (ω) = argmin
ω

∑
i∈I

|Di|
|D| fi (ω)xi, (1)

where |D| is the size of the overall training data set, |Di| is the
size of the training data set at user i (where D =

⋃
i∈I

(Di ·xi)),

and fi (ω) is the local loss function of user i over Di, i.e.,

fi (ω) =
1

|Di|
∑
n∈Di

f (ω,ai,n, bi,n). (2)

Here, (ai,n, bi,n) is the input-output pair for the nth data
sample in user i’s data set, and f (ω,ai,n, bi,n) captures the
error of the local model (with parameter ω) over (ai,n, bi,n).

FL is used to solve Problem (1) in a distributed manner. In
each global iteration k, there are four steps, i.e.,

1) The BS broadcasts the current global model, denoted as
ω(k), to all the selected participants.

2) Each selected participant i (where xi = 1) performs local
computation on the received model to train its local model
over local data set Di based on the gradient descent
method, i.e., ω

(k+1)
i = ω

(k)
i − δ∇fi

(
ω

(k)
i

)
, where δ

indicates the step size or learning rate.
3) After obtaining the local model ω

(k)
i , participant i up-

loads its local model to the BS.
4) The BS aggregates the local models from the selected

participants to update the global model based on, for
example, FedAvg [3].

The FL keeps updating the global model in each iteration until
the global model does not change anymore.

B. Computational latency

The computational latency for user i to train the model on
its local data samples can be estimated by [20]

tcompi =
Ci|Di|vlog2(1/η)

fi
, (3)

where fi is the computational capacity of user i in Hz, Ci
is the average number of CPU cycles required for computing

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 09,2022 at 16:51:16 UTC from IEEE Xplore. Restrictions apply.

one data sample item, |Di| is the number of data samples at
user i (i.e., the size of data set Di), and vlog2(1/η) gives the
number of required iterations to achieve the desired accuracy
η. Here, v = 2

(2−Lδ)δγ , where δ is the step size, and L and γ
are calculated based on the eigenvalues of the Hessian matrix
for the loss function.

C. Uploading latency

Assume that the BS applies time-division duplexing (TDD)
to receive the local model parameters from different users, and
so the achievable data rate of user i is [21]

ri = Blog2

(
1 +

pih
2
i

N0

)
, (4)

where B is the total available bandwidth for the BS, pi and hi
are the maximum transmission power and the channel response
of user i, respectively, and N0 is the background noise. Thus,
the latency of user i in uploading its local model to the BS is

tuploadi =
s

ri
, (5)

where s is the size of the local model.

D. Time consumption of a global iteration

Let J be the set of selected participants, i.e., J =
{∀i ∈ I |xi = 1}, and we calculate the indices of the par-
ticipant in J based on the increasing order of their compu-
tational latency, i.e., if j1 > j2, then tcompj1

≤ tcompj2
, where

j1, j2 ∈ J . As mentioned before, the latency of a participant
for training its local model in a global iteration, denoted as tj ,
consists of three parts, i.e., computational latency tcompj , wait-
ing time twaitj , and uploading latency tuploadj . For example,
as shown in Fig. 1, the 3rd participant spends tcomp3 amount
of time to obtain its local model. Before the 3rd participant
uploads its local model, it has to wait for twait3 amount of time
until the wireless channel is available (i.e., all the previous
participants, who finished their local model updates before the
3rd participant, have completed their local model uploading).
Once the wireless channel is available, the 3rd participant
spends tupload3 amount of time to upload its local model to
the BS. Note that not all the participants has a waiting time.

Fig. 1: Illustration of scheduling for the selected participants.

From Fig. 1, we can find that the total time consumption t
of a global iteration is equal to the total time consumption of

the last participant in J , who has the longest computational
latency among all the participants. That is,

t = tcomp|J | + twait|J | + tupload|J | , (6)

where |J | is the index of the last participant in J , i.e.,
|J | = argmax

i∈I
{tcompi xi}. Here, tcomp|J | and tupload|J | can be

calculated based on Eq. (3) and Eq. (5), respectively. In order
to estimate twait|J | , we consider the process of different partic-
ipants uploading their local models to the BS via the shared
frequency band as an M/G/1 queueing model. Specifically, an
arrival at the queue indicates a participant just completed its
local model calculation and is requesting the wireless channel
to upload its local model. A departure from the queue indicates
the wireless channel is assigned to a participant for its local
model uploading. In addition, the arrival rate (i.e., the rate
of participants completing their local model calculations) is
assumed to follow a Poisson distribution during the time period[
tcomp1 , tcomp|J |

]
, where the average arrival rate is

λ =

∑
i∈I

xi

tcomp|J | − t
comp
1

. (7)

Moreover, the departure rate (i.e., the rate at which participants
obtain the wireless channel for their local model uploading)
is assumed to follow a general distribution during the time
period

[
tcomp1 , tcomp|J |

]
, where the average service rate is

µ =

∑
i∈I

s
ri
xi∑

i∈I
xi

. (8)

Therefore, the average waiting time of an M/G/1 queue, which
is used to estimate twait|J | , is

twait|J | =
λE
(
µ2
)

2
(
1−λ/µ

)=

∑
i∈I

(
s
ri

)2
xi

2

tcomp|J | − t
comp
1 −

(∑
i∈I

xi

)2

∑
i∈I

s
ri
xi

, (9)

where E
(
µ2
)

=

∑
i∈I

(
s
ri

)2
xi∑

i∈I
xi

is the expected value of µ2.

Based on Eq. (9), we can derive a tradeoff between minimizing
the computational latency tcomp|J | and minimizing the waiting
time twait|J | . That is, if we want to reduce twait|J | , we have to
pick a participant with larger tcomp|J | , and vice versa.

E. Problem formulation

We formulate the participant selection problem as follows.

P0 : max
∑
i∈I

xi, (10)

s.t. tcomp|J | + twait|J | + tupload|J | ≤ τ, (11)

|J | = argmax
i∈I

{tcompi xi} , (12)

∀i ∈ I, xi ∈ {0, 1} . (13)

The objective is to maximize the number of selected partic-
ipants in a global iteration. The first constraint implies the

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 09,2022 at 16:51:16 UTC from IEEE Xplore. Restrictions apply.

total time consumption of a global iteration (which is the
time consumption of the last participant in J) should be
less than the predefined deadline, denoted as τ . That is, all
the selected participants should be qualified participants. The
second constraint defines the last participant in J . The third
constraint implies that xi is a binary variable.

IV. LATENCY AWARE PARTICIPANT SELECTION

We design a heuristic algorithm, Latency awarE pARticipant
selectioN (LEARN), to efficiently solve P0.

Lemma 1. Given the last participant |J | in J , the op-
timal user selection is to iteratively select a user i∗ as a
participant (i.e., xi∗ = 1), where user i∗ is the one that
has the maximum uploading data rate among all the users
whose computation latency is no larger than the last partic-
ipant tcomp|J | , i.e., i∗ = argmax

i

{
ri
∣∣i ∈ I ′

}
, where I ′ ={

i ∈ I
∣∣∣tcompi ≤ tcomp|J | & xi = 0

}
. The participant selection

continues until all the users in I ′ have been selected as
participants (i.e., I ′ = ∅) or Constraint (14) is no longer met.

Proof: Plugging Eq. (9) into Constraint (11), we have∑
i∈I

(
s
ri

)2
xi

2

tcomp|J | − t
comp
1 −

(∑
i∈I

xi

)2

∑
i∈I

s
ri
xi

≤ τ − tcomp|J | − t

upload
|J |

⇒
∑
i∈I

xi ≤
√∑
i∈I

sϕ|J |

ri
xi, (14)

where

ϕ|J |= t
comp
|J | −t

comp
1 −

∑
i∈I

(
s
ri

)2
xi

2
(
τ−tcomp|J | −t

upload
|J |

) . (15)

Here, τ−tcomp|J | −t
upload
|J | > 0. Based on Eq. (14), maximizing∑

i∈I
xi is equal to maximizing

∑
i∈I

sϕ
ri
xi. Thus, P0 can be

converted into

P1 : max
∑
i∈I

sϕ|J |

ri
xi, (16)

s.t. Constraints (12), (13), and (14). (17)

In order to guarantee Constraint (12), all the participants
should be selected from the set I ′, where I ′ includes all the
users whose computation latency is no larger than the last par-
ticipant tcomp|J | , i.e., I ′ =

{
i ∈ I

∣∣∣tcompi ≤ tcomp|J | & xi = 0
}

.
Thus, P1 can be converted into

P2 : max
∑
i∈I′

sϕ|J |

ri
xi, (18)

s.t. Constraints (13) and (14). (19)

The optimal solution of P2 is easy to derive, i.e., to iteratively
select the user (denoted as i∗), which incurs the minimum
value of sϕ|J |

ri
among all the users in I ′, as the participant

(i.e., xi∗ = 1). The iteration terminates when the selected
user i∗ cannot meet Constraint (14). Note that picking the
user with the minimum value of sϕ|J |

ri
is equivalent to

picking the user with the maximum value of ri since the
value of sϕ|J | is the same for all the users. Thus, we have
i∗ = argmax

i

{
ri
∣∣i ∈ I ′

}
.

Give the last participant |J |, Lemma 1 provides the optimal
participant selection. However, selecting a different last partic-
ipant |J | may have a different value of ϕ|J |, thus leading to
a different user selection. Intuitively, picking a last participant
that incurs a smaller value of ϕi would select more users as
the participants while satisfying Constraint (14). Therefore, the
optimal last participant is the user that incurs the smallest ϕi
among all the users that satisfy τ−tcompi −tuploadi > 0, i.e.,

|J | = argmin
i∈I

{
ϕi

∣∣∣τ − tcompi − tuploadi > 0
}
, (20)

where ϕi is calculated based on Eq. (15). It is difficult to derive

the optimal last participant |J | since the value of
∑
i∈I

(
s
ri

)2
xi

in Eq. (15) is unknown until all the participants are selected.
Thus, we design the LEARN algorithm to iteratively choose
a better last participant. Specifically,

1) The last participant |J | is initialized by picking the user
that incurs the largest value of tcompi + tuploadi among all
the users that satisfy τ−tcompi −tuploadi > 0, i.e., |J | =
argmax
i∈I

{
tcompi + tuploadi

∣∣∣τ − tcompi − tuploadi > 0
}

.

2) In each iteration, given the last participant |J |, a new
group of participants is selected based on Lemma 1
(i.e., Steps 8–13 in Algorithm 1). Based on the selected
participants, the last participant |J | is updated according
to Eq. (20). The updated last participant will be used to
determine the group of participants in the next iteration.

3) The iteration continues until the number of participants
(i.e.,

∑
i∈I

xi) does not increase.

The LEARN algorithm is summarized in Algorithm 1.

V. SIMULATION

Assume that there are 200 users in the BS’s coverage area,
and the path loss between a user and the BS is estimated by
128.1 + 37.6 log10 d, where d is the distance between a user
and the BS in kilometers. The available bandwidth at the BS is
B = 5 MHz and TDD is applied at the BS to uploading data
from the users. In addition, we set γ = 2, L = 4, δ = 0.1, and
η = 0.1 to calculate the computational latency of a participant
based on Eq. (3). Other parameters are listed in Table I.

We compared LEARN with two other participant selection
algorithms, i.e., Computational Aware paRticipant selectioN
(CARN) and Frequency division duplex-based deadline Aware
paRticipant selectioN (FARN). The basic idea of CARN is to
iteratively select a user as a participant based on the increasing
order of the computational latency of the users. CARN con-
tinues to select participants until the selected participant in
the current iteration cannot satisfy

(
tcompi + tuploadi

)
xi ≤ τ .

On the other hand, FARN [15]–[17] applies FDD to upload

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 09,2022 at 16:51:16 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: LEARN algorithm

1 Initialize xi = 0, ∀i ∈ I and N=0.
2 Initialize the last participant |J |=

argmax
i∈I

{
tcompi + tuploadi

∣∣∣τ−tcompi −tuploadi >0
}

.

3 while N <
∑
i∈I

xi do

4 Set xi = 0, ∀i ∈ I;
5 x|J | = 1;

6 Obtain I ′ =
{
i ∈ I

∣∣∣tcompi ≤ tcomp|J | & xi = 0
}

;
7 while I ′ 6= ∅ & Constraint (14) is met do
8 Calculate i∗ = argmax

i

{
ri
∣∣i ∈ I ′

}
;

9 xi∗ = 1; I ′ = I ′\i∗;
10 end
11 N=

∑
i∈I

xi.

12 Update the last participant |J | based on Eq. (20);
13 end

participants’ local models to the BS, and so the total amount
of bandwidth allocated to the participants should be no larger
than B, i.e.,

∑
i∈I

bixi ≤ B (where bi is the amount of

bandwidth allocated to user i). Meanwhile, each participant
should satisfy

(
tcompi + tuploadi

)
xi ≤ τ .

TABLE I: Simulation Parameters

Parameter Value

Size of data samples (|Di|) 500 samples
Number of CPU cycles (Ci) U (5, 15)× 104 cycles/sample
Computation capacity (fi) U(1.5, 2) GHz
Transmission power (pi) 10 dBm/MHz
Noise (N0) −104 dBm/10MHz
Size of local model (s) 100 Kbits
Predefined deadline (τ) 1 second

114 118

38

113

56

38

LEARN CARN FARN
0

20

40

60

80

100

120

140
Number of the selected participants

Number of the qualified participants

Fig. 2: Number of the selected and qualified participants.

Fig. 2 shows the results for the three algorithms in a global
iteration, where blue and red bars indicate the number of
selected participants and the number of qualified participants,
respectively. As mentioned in the Introduction section, a
qualified participant refers to a selected participant which
can upload its local model before the deadline τ . From the
figure, we can derive that although CARN selects the largest
number of participants, most of the selected participants cannot
upload their local models to the BS before the deadline
(i.e., the number of qualified participants is less than half of
the number of selected participants). This is because CARN

underestimates the overall latency of a participant as it does not
consider the waiting time. As a result, as shown in Fig. 3(b),
most of the participants suffer from long waiting times, and
are thus unable to upload their models before the deadline.
On the other hand, FARN selects the fewest participants, but
all the selected participants are qualified participants. This
is because FARN applies FDD to reserve enough bandwidth
to the selected participants such that these participants can
upload their local models before the deadline. Thus, as shown
in Fig. 3(c), all the selected participants in FARN have no
waiting time as they can immediately upload their local models
once the models are derived. Yet, the number of selected
participants is limited by the available bandwidth B. LEARN
selects fewer participants than CARN, but nearly all of the
them can upload their local models before the deadline, and
so LEARN has the most qualified participants than the other
algorithms. This is because LEARN can accurately estimate
the overall latency of a participant by considering the waiting
time. As a result, as shown in Fig. 3(a), the waiting time for the
selected participants are relatively low as compared to CARN.

Fig. 4 shows the number of selected and qualified partic-
ipants for different algorithms by varying the data set size
|Di|. Note that varying |Di| changes the computation latency
of all the participants. From Fig. 4(a) and (b), we can see that
LEARN selects slightly fewer participants than CARN, but has
the most qualified participants. However, as |Di| increases,
the performance gap (i.e., the difference of the number of
qualified participants between LEARN and CARN/FARN)
reduces. This is because the computational latency becomes
the key factor to determine the overall latency of a partici-
pant as |Di| increases, and so the performance of LEARN,
whose advantage is to consider the waiting time during the
participant selection, could be similar with CARN/FARN if
the computational latency is much larger than the waiting time
and uploading latency of a participant.

Fig. 5 shows the number of selected and qualified par-
ticipants for different algorithms by varying the amount of
bandwidth B. Note that varying B changes the uploading
latency of all the participants. As shown in Fig. 5(b), LEARN
outperforms CARN and FARN, but the performance gap
reduces as B increases. This is because the uploading latency
and the waiting time of a participant reduce as B increases,
and so the computational latency becomes the key factor to
determine the overall latency of a participant, which, as we
illustrated previously, would reduce the performance gap.

Fig. 6 shows the performance of the three algorithms under
different deadlines τ . As the deadline relaxes, we have more
selected and qualified participants for inclusion, regardless of
the algorithms. However, LEARN always achieves the largest
number of qualified participants as shown in Fig. 6(b).

VI. CONCLUSION

In this paper, we have proposed that the waiting time of a
participant should be considered as it may significantly affect
the overall latency of a global iteration. We have proposed to
use an M/G/1 queueing model to estimate the average waiting

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 09,2022 at 16:51:16 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100 114

Number of the selected participants

0

0.5

1

1.5
T

im
e

(s
)

Computational Latency

Waiting Time

Uploading Latency

 Predefined Threshold

(a) LEARN

0 20 40 56 80 100 118

Number of the selected participants

0

0.5

1

1.5

2

2.5

T
im

e
(s

)

Computational Latency

Waiting Time

Uploading Latency

 Predefined Threshold

(b) CARN

0 10 20 30 38

Number of the selected participants

0

0.5

1

1.5

T
im

e
(s

)

Computational Latency

Uploading Latency

Predefined Threshold

(c) FARN

Fig. 3: The latency of the selected participants in a global iteration.

500 600 700 800 900 1000 1100

20

40

60

80

100

120

N
u
m

b
er

 o
f

th
e

se
le

ct
ed

 p
ar

ti
ci

p
an

ts

LEARN

CARN

FARN

(a)

500 600 700 800 900 1000 1100

20

40

60

80

100

120

N
u
m

b
er

 o
f

th
e

q
u
al

if
ie

d
 p

ar
ti

ci
p
an

ts

LEARN

CARN

FARN

(b)

Fig. 4: The number of selected and qualified
users over |Di|.

5 6 7 8 9 10 11

Bandwidth B (MHz)

40

60

80

100

120

140

160

N
u
m

b
er

 o
f

th
e

se
le

ct
ed

 p
ar

ti
ci

p
an

ts

LEARN

CARN

FARN

(a)

5 6 7 8 9 10 11

Bandwidth B (MHz)

40

60

80

100

120

140

160

N
u
m

b
er

 o
f

th
e

q
u
al

if
ie

d
 p

ar
ti

ci
p
an

ts

LEARN

CARN

FARN

(b)

Fig. 5: The number of selected and qualified
users over B.

0.5 1 1.5 2 2.5 3 3.5 4

 (S)

50

100

150

200

N
u
m

b
er

 o
f

th
e

se
le

ct
ed

 p
ar

ti
ci

p
an

ts

LEARN

CARN

FARN

(a)

0.5 1 1.5 2 2.5 3 3.5 4

 (S)

50

100

150

200

N
u
m

b
er

 o
f

th
e

q
u
al

if
ie

d
 p

ar
ti

ci
p
an

ts

LEARN

CARN

FARN

(b)

Fig. 6: The number of selected and qualified
users over τ .

time of a participant, and then formulated a new participant
selection problem and designed the LEARN algorithm to
efficiently solve the problem.

REFERENCES

[1] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Commun. Mag., vol. 54, no. 12, pp. 22–29, 2016.

[2] Y. Liu, S. Bi, Z. Shi, and L. Hanzo, “When machine learning meets
big data: A wireless communication perspective,” IEEE . Veh. Technol.
Mag., vol. 15, no. 1, pp. 63–72, 2020.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decen-
tralized Data,” in Proceedings of the 20th Intl. Conf. on Artificial
Intelligence and Statistics, AISTATS, vol. 54, 2017, pp. 1273–1282.

[4] T. Yu, T. Li, Y. Sun, S. Nanda, V. Smith, V. Sekar, and S. Seshan,
“Learning context-aware policies from multiple smart homes via fed-
erated multi-task learning,” in 2020 IEEE/ACM Fifth Intl. Conf. on
Internet-of-Things Design and Implementation, 2020, pp. 104–115.

[5] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. Paschalidis, and W. Shi,
“Federated learning of predictive models from federated electronic
health records,” Intl. J. Medical Inform., vol. 112, pp. 59–67, 2018.

[6] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated Multi-
Task Learning,” arXiv e-prints, p. arXiv:1705.10467, May 2017.

[7] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Feder-
ated learning with non-iid data,” arXiv e-prints, p. arXiv:1806.00582,
Jun. 2018.

[8] M. Safa Ozdayi, M. Kantarcioglu, and R. Iyer, “Improving Accu-
racy of Federated Learning in Non-IID Settings,” arXiv e-prints, p.
arXiv:2010.15582, Oct. 2020.

[9] W. Xia, T. Q. S. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu,
“Multi-armed bandit-based client scheduling for federated learning,”
IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7108–7123, 2020.

[10] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, 2020.

[11] S. U. Stich, “Local SGD Converges Fast and Communicates Little,”
arXiv e-prints, p. arXiv:1805.09767, May 2018.

[12] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in ICC 2019 - 2019 IEEE Intl.
Conf. on Commun. (ICC), 2019, pp. 1–7.

[13] W. Zhang, X. Wang, P. Zhou, W. Wu, and X. Zhang, “Client selection for
federated learning with non-iid data in mobile edge computing,” IEEE
Access, vol. 9, pp. 24 462–24 474, 2021.

[14] S. Zhai, X. Jin, L. Wei, H. Luo, and M. Cao, “Dynamic federated
learning for gmec with time-varying wireless link,” IEEE Access, vol. 9,
pp. 10 400–10 412, 2021.

[15] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. Wireless . Commun., vol. 20, no. 1,
pp. 269–283, 2021.

[16] W. Shi, S. Zhou, and Z. Niu, “Device scheduling with fast convergence
for wireless federated learning,” in 2020 IEEE Intl. Conf. Commun.
(ICC), 2020, pp. 1–6.

[17] J. Xu and H. Wang, “Client selection and bandwidth allocation in
wireless federated learning networks: A long-term perspective,” IEEE
Trans. Wireless Commun., vol. 20, no. 2, pp. 1188–1200, 2021.

[18] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp.
2022–2035, 2020.

[19] M. M. Amiria, D. Gündüzb, S. R. Kulkarni, and H. V. Poor, “Conver-
gence of update aware device scheduling for federated learning at the
wireless edge,” IEEE Trans. Wireless Commun., pp. 1–1, 2021.

[20] Z. Yang, M. Chen, W. Saad, C. S. Hong, M. Shikh-Bahaei, H. V. Poor,
and S. Cui, “Delay Minimization for Federated Learning Over Wireless
Communication Networks,” arXiv e-prints, p. arXiv:2007.03462, Jul.
2020.

[21] L. Yu, R. Albelaihi, X. Sun, N. Ansari, and M. Devetsikiotis, “Jointly
optimizing client selection and resource management in wireless feder-
ated learning for internet of things,” IEEE Internet of Things Journal,
2021, early access, doi:10.1109/JIOT.2021.3103715.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 09,2022 at 16:51:16 UTC from IEEE Xplore. Restrictions apply.

