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The  directed  or de novo  formation  of  microvasculature  in  engineered  tissue  constructs  is essential
for  accurately  replicating  physiological  function.  A  limiting  factor  of  a system  relying  on  spontaneous
microvessel  formation  is the  inability  to precisely  quantify  the  development  of  the  microvascular  net-
work  and  control  fluid  moving  through  formed  vessels.  Herein,  we  report  a strategy  to  monitor  the
dynamic  formation  of  microscale  fluid  networks,  which  can be translated  to  the  monitoring  of  microvas-
culature  development  in engineered  tissue  constructs.  The  non-invasive,  non-destructive  monitoring
and  characterization  of the  fluid  network  is achieved  via  in-line  sensing  of  fluid  flow  rate and  correlat-
ing  this  measurement  to the  hydrodynamic  resistance  of  the  fluid  network  to model  the  progression  of
microvessel  formation  and  connectivity.  Computational  fluid  dynamics,  equivalent  circuit,  and  experi-
mental  models  were  compared,  which  simulated  multi-generational  branching  or splitting  microvessel
networks.  The  networks  simulated  vessels  with  varying  cross-sectional  area,  up  to 16 branching  vessels,
and  microvessel  network  volume  ranging  from 2̃0−30  mm3. In  all models,  the  increasing  degree  of net-
work  complexity  and  volume  corresponded  to  a  decrease  in  jumper  flow-rate  measured;  however,  vessel
cross-section  also  impacted  the  measured  jumper  flow  rate, i.e.  at low  vessel  height  (<200  �m)  response

was  dominated  by increased  network  volume  and  at higher  vessel  height  (>200  �m)  the  response  was
dominated  by  resistance  of  narrow  channels.  An approximately  2% error  was  exhibited  between  the
models,  which  was  attributed  to variation  in the  geometry  of  the  fabricated  models  and  illustrates  the
potential  to precisely  and  non-destructively  monitor  microvessel  network  development  and  volumetric
changes.

©  2021  Elsevier  B.V.  All  rights  reserved.
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physiological systems (MPS) integrate 3D engineered
structs onto microfluidic platforms to mimic the physico-

 function of human organs and tissues [1]. MPS  fabricated
ary human cells can bridge the gap between cell cul-
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animal models, while informing clinical testing [2]. MPS
ide a precision platform to investigate specific physio-
enomena. In the past decade, multiple companies have
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with research-grade MPS  for preliminary toxicological
 and pharmacokinetic studies, including liver (C.N. BioIn-
), lung (Emulate, Inc.), intestine (Altis Biosystems), and
speros, Inc.) chip models [3]. As MPS  advance to model
plex organ function for longitudinal developmental and

overy studies [4], there remain many challenges to over-
cerning MPS  longevity in long-term studies and sacrificial

 analyses.
ajor challenge for the advancement of MPS  is the incor-
and real-time characterization of functional vascular

 [5]. Although continuous fluid flow through microchan-

ommon feature of MPS, media most often travels as a wide
t across a semi-permeable barrier or monolayer of cells

e human body, vasculature is oriented as stochastic and
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tworks of various microvessels with varied diameter and
om the miniscule single cell <10 �m diameter capillaries
ge cm-wide aorta and vena cava [7]. This microvascu-
rk supplies oxygen and nutrients to all cells and organ

s well as transports waste and deoxygenate blood away
se organs. Furthermore, these microvessels networks are

 conduits for mass transport, but smart systems, which
ent physiological function by initiation of biochemical

hysical cascades, e.g. vasodilation, vasoconstriction, and
ealing responses. Without the requisite vasculature, engi-
ssue constructs are limited by diffusion or single-source
nnels, and MPS  are relegated to very small tissue con-
ften in 2D orientations, with only nutrients to support one
ll types specific to the organ of interest. Small MPS  with-
networks, similar in size to a single well of a 96-well plate,
ress the need for dynamic, vascularized tissue constructs

istic microanatomies and supporting cell types [8]. Addi-
because the nutrients are only supplied through a single

 outlet, if at all, the throughput of a single small MPS  is
imited in time to endpoint analysis as the cells proliferate
city [9]. Without a vasculature network in the MPS, the

 physiological picture is missing for the organ tissue.
quently, engineered tissue constructs require proper vas-
on to recapitulate true physiological response. Without
ver the fluid dynamics within a system, these phenomena
ccur. There are two strategies for creating blood vessels
irected formation and spontaneous formation. Directed

 creates vessels using predefined scaffold geometries
Although the directed formation strategy allows for pre-
terned vascular networks with total fluid control [17–21],
cult to create small (<100 �m in diameter) vessels due
ysical limitations of biofabrication techniques. Addition-
ted formation vessels requires millions of cells and large
of media to provide enough biological material to line
e and surrounding of the vessel structures. During spon-
formation of vasculature inside MPS, vessels form in a
ia angiogenesis, as cells proliferate and branch off to form
mplex vasculature network [22–26]. The limiting factor

m relying on spontaneous vessel formation is the inability
ly control fluid movement through formed vessels.
l  of the fluid dynamics is critic for proper development

arized microtissues. For example, endothelial cells will
along flow direction in vivo, which occurs due to shear
ing on the cell via moving blood or lymph. These cells will
genetic and molecular changes due to this shear stress, e.g.
tion of various genes and secreting important angiogenic

er function biomarkers [27,28]. Consequently, engineered
structs require proper vascularization to recapitulate true
ical response. Without control over the fluid dynamics

MPS, these phenomena cannot occur.
tunately, MPS  are often one-off creations of a basic func-
it of the organ of interest. Complex MPS  designs limit
ibility and comparability, as fabrication techniques differ
ly across labs or companies. Fortunately, with the help of
d sensors [29] and functional testing [30], we are moving
ore standardized MPS  validation, but often only endpoint
determine the functionality or performance of MPS. In
from the initial construction of the MPS  to the sacrifice
ost are “black boxes” which generate no data on develop-

function. Sacrificing MPS  replicates for quality assurance
 power and increases the cost of each potential study,
ractice can be detrimental to studies aiming to use allo-
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, we describe a new strategy for monitoring, classifying,
tifying the progression and ultimate degree of vascular
ent in engineered microtissues. The non-invasive, non-

ve monitoring and characterization of the microscale fluid
is achieved via in-line sensing of fluid flow rates and
g these measurements to the hydrodynamic resistance.
g a flow sensor as part of the MPS  platform and design-
idic resistance of the inlet and outlet reservoirs provides
to quantify the hydrodynamic resistance of the engi-

ssue, which is directly proportional to the characteristics
ident microvessel network. Computational fluid dynam-
ations guided the device design and the development
matical models that describe the fluid dynamics. Mod-
various aspects of vascular angiogenesis demonstrated
le and quantifiable changes in the fluidic volume of the

 device. Fig. 1 illustrates the concept of the device and the
 to changing fluidic network.

ials and methods

rials

ive photoresist, SU-8 2100, was  obtained from Kayaku
 Materials (Westborough, MA). Silicon wafers, 100 mm
er, were obtained from University Wafer. Polydimethyl-
(PDMS) was obtained from Dow Corning as product
84. Sodium dodecyl sulfate (SDS) was  purchased from

 Science. The SLI-1000 flow sensor was purchased from
 Inc. Tygon® tubing was  obtained from McMaster-Carr.
Apparatus 11 Plus syringe pump was used to drive the
e fluidic networks.

lations

OL® Multiphysics (Burlington, MA)  was used to per-
putational fluid dynamics simulations of the microfluidic

 device. The device reservoir spaces were modeled as rect-
risms with dimensions of 2 mm  width, 3 mm height, and
ngth. The vessels were modeled as cylinders with a diam-
00 �m and a length of 13 mm.  Branched vessels were
as 5 mm long cylinders extending from the middle of the
essels at a 45◦ angle. The pressure jumper was modeled
d cylinder (semi-torus), with a diameter of 1000 �m and

of 31.4 mm (outer diameter of 10 mm).  Device models
OMSOL® simulations are provided in ESI. The fluid den-
viscosity were set at 1000 kg × m−3 and 0.001 Pa · s,
ely. The inlet was  modeled as a standard mass flow rate
L min-1 for all simulations. The outlet was modeled as a
being open to the atmosphere, as it feeds to an off-chip

 equilibrated with ambient environment. A physics con-
esh, on “Finer” setting, was applied to the model. Pressure
ity heat maps were generated, along with cut plots of the
profile along the axes of the jumper and vessels. Simula-
astomosis were carried out using the same parameters as

 above except more vessels were added at varying angles
d to the original vessels without connecting to the reser-
mper.

ce Fabrication

icrofluidic manifold devices were fabricated via replica
of PDMS from patterned master molds. The master mold

cated via photolithography with details of the photomasks
cation provided in the ESI (Fig. S3). Briefly, negative pho-
U-8 2100 was  spin-cast on a cleaned and dehydrated
afer at 500 rpm for 8 s, followed by a high-speed spin
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or devices with SU-8 thickness of 1̃00 �m,  spin speed for
 was used; for devices with 2̃00-�m thickness, spin speed

 rpm. After spin casting, the wafers were soft baked on a
 at 65 ◦C and then at 95 ◦C per manufacturer guidelines.

 baking, wafers were cooled to room temperature before
 exposed on MA6  mask aligner under hard contact with a

 After UV exposure, wafers were left on a level surface for
d were then baked at 65 ◦C, then at 95 ◦C, and then cooled

emperature. The SU-8 was then developed in SU-8 Devel-
ash away the unexposed photoresist for approximately 20
eloped wafers were rinsed with fresh SU-8 Developer and

ol before being dried with nitrogen. Master mold wafers
d baked at 130 ◦C for 60 min  before replica molding. Chan-
ts were measured using a KLA-Tencor P-6 profilometer.
d was measured in at least 9 locations across the channels.
olds (3̃00−400 �m)  were made using a 2-step spinning
g process of thinner (1500 rpm high-speed spin or 1̃50

 layers. Device replicas were cast from the master molds
S at a 10:1 elastomer to curing agent ratio, cured at 60 ◦C

n, then bonded to a glass slide via oxygen plasma. The two
rvoirs were cut through the entire thickness of the first
er. A second piece of PDMS encapsulated the entire device
ched ports for the inlet, outlet, and jumper connections.
tic of the fabricated PDMS devices is provided in the ESI.
pparatus 11 Plus syringe pump accurately supplied fluid
ice, as verified by the weight of the fluid collected from the

Sensirion SLI-1000 flow rate sensor was connected in-line
n® tubing pressure jumper. The thicker molds (3̃00−400
e measured by cutting the device and imaging the cross
ikon TE-2000E microscope).

ce operation

g  for the inlet, outlet, and two pre-sensor tubing segments
rted directly into the PDMS devices. The tubing connected
ge pump drove fluid to the device. Each device was primed

 solution of SDS in DI water to fill the entire channel and
ntinuity of fluid. The mathematical theory of the parallel

 having the same pressure drop only holds true if the fluid
ous. DI water with food coloring was used to verify that

was continuous in the device before testing. Two  tubing
 connected the flow sensor to the PDMS device. The fluid

 was then resumed to establish the flow loop within the
d sensor. The total inlet flow for all devices was  set to

min−1. After allowing the fluid flow to stabilize, flow rate
ents were recorded for a period of 1 min. This ensured

te and averaged flow rate measurement for comparison
evices.

ts and discussion

ce design

esigned a microfluidic manifold device with branching
ow by connecting two large reservoirs with small par-
nels, as demonstrated in Fig. 1a. The volume between

folds encompasses the fluidic network of the device. An
l pressure jumper with an inline flow meter connects the

ifolds. A pump, connected at the inlet or the outlet, main-
 desired total flow rate through the device. By keeping
nsions of the reservoirs significantly larger than the chan-
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essels or additional branches, the hydraulic resistance of
ork would decrease, leading to an observable decrease in
ate through the pressure jumper.

ematical model

 on Poiseuille’s Law, the flow through a rigid cylindrical
s

r4

�L
(1)

s flow rate, �P is the pressure difference across the chan-
e radius of the channel, � is dynamic viscosity, and L is

h of the channel. By substituting the hydraulic resistance,
ow equation becomes analogous to Ohm’s Law:

Rh (2)

 Ohm’s Law equivalent in mind, the proposed device is
 a multimeter in parallel with a resistive network, which

 the voltage across the network. The pressure drop of the
vice can then be described in terms of system hydraulic
e, Rs, and jumper hydraulic resistance, Rj ,:

1
Rj

+ 1
Rs

)−1

(3)

 hydraulic resistance of the fluidic network were to
 through the increase in the radii of the channels, r, the
in length of channels, l, or formation of additional chan-
orresponding decrease in Rs can be detected via a decrease
te across the jumper and correlated to the changes in the
twork. As such, the proposed fluidic network monitoring

 equivalent to making an electrical measurement across a
network, as shown in Fig. 2.

lations

utational fluid dynamics simulations were performed to
ate the operating principles of the manifold device and
the response of the device to changes in the network.

 the device geometry are provided in the ESI. Fig. 3a shows
ts of finite element analysis for the original model, one
ditional branches, and one with 16 additional branches.
ensions of the manifolds compared to the branches cre-
rly identical pressure drop across all of the main branches

ressure jumper. Pressure profile across the top most main
ig. 3b) showed a pressure drop of 9.9 Pa between the two
s for the original device. The pressure drop across the pres-
er was  9.9 Pa for the original device as well (Fig. 3c). The
f 8 more branches to the original device reduced the pres-

 between the two manifolds to 9.5 Pa. As more branches
ed (16 branches) the pressure difference between the two
s decreased to 9.0 Pa. Under the condition of constant flow
q. 3), the observed decrease in the pressure drop is due to

ase in hydraulic resistance of the network with additional
g.

ressure drop for the original device with non-
ected main branches showed a linear pressure drop
e main branches (Fig. 3b). With 8 additional intercon-
anches the pressure drop across the main branch was no
ear due to the new interconnections between branches,
 Fig. 3b for x position 6.5–13 mm.  The number of inter-
ns between the main branches increased further with 16

 and the pressure drop across the main branch was not
oss most of its length. Unlike the branches in the device
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Fig. 1. a) 3D model of the manifold with pressure jumper and inline sensor. b) Schematic representa
prototype manifold device. e) Plot representing the relationship between fluidic volume, scaffold res
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ography process. Additional device models with channel

3.5. Equi

Demo
rate is lim

4

tion of how “a living” network might change over time. c, d) images of a
istance, and jumper flow rate.

without and with the conservation of cross section area
icated (Fig. 4b). Furthermore, a third group of masks was

 to mimic  a pseudo-randomly generated network with
egree of branching and splitting (Fig. 4c). In addition,
ere evaluated with various SU-8 master mold heights to

te the effect of expanding fluidic network.
ices with varying degree of branching, the jumper flow
ased with increasing number of interconnected channels,

to the COMSOL® results. 16-channel model has the largest
f interconnected branches and the lowest jumper flow

imilar SU-8 mold height (Fig. 4a). SU-8 mold height has
ear effect on hydraulic resistance; therefore, comparisons
del effects on jumper flow rate should be compared for a
nge of similar SU-8 mold heights.
s with varying degree of channel splitting showed a
in jumper flow rate, as compared to the original device.
ence between split once and twice models was SU-8 mold
pendent and increased with increasing SU-8 mold height,
st to the difference between branching models (Fig. 4a),
creased with increasing SU-8 mold height.
o-randomly generated fluidic networks maintain the
esign of 8 main branches with the additional branch-

nterconnections and therefore, hydraulic resistance can
ease with increasing branching and interconnections. As
, jumper flow rate decreased in these pseudo-randomly

 networks (Fig. 4c). The difference in the flow rate
the original and pseudo-random models was  significant,
ences between the minor and major network models were
his suggest that the initial development from the starting
hibits the largest observable change, and as the network
ent progresses, the identifiable change in flow rate is
valent circuit model

nstrating the effect of fluidic network geometry on flow
ited by fabricated SU-8 molds due to compounding vari-
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Fig. 3. COMSOL® simulation of the proposed manifold device and one with additional 8 or 16 interconnected branches. a) As more branches are added, the network volume
increases, leading to a decrease in hydraulic resistance, which results in a decrease in the pressure drop across the scaffold and the jumper. Pressure drop across main
branches b) and the pressure jumper c) decreases with increasing network volume.
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 fabrication and the improbability of fabricating every
le variant. Finite element analysis (COMSOL) enables
simulations of fluid dynamics in 3-D manifold device
ut it is computationally expensive. Electrical circuit ana-

sure
netw
and 

anal

l for microfluidics is frequently used to solve a complex
dic models with close agreement to simulations and
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nalog equivalent circuit models of the branching designs
ere calculated and compared to the COMSOL® simula-



V.A. Pozdin, P.D. Erb, M.  Downey et al. Sensors and Actuators A 331 (2021) 112970

Table  1
Comparison of pressure drop across the pressure jumper using COMSOL® and equiv-
alent circuit models.

Model COMSOL®�P (Pa) circuit �P (Pa) error (%)

original 9.9 9.66 − 2.4
8 branches 9.5 9.31 − 2.0
16 branches 9.0 8.79 − 2.3

Fig. 5. a) Jumper flow rate for fluidic network with additional interconnected
branching.  b) The flow rate decreases with increasing branching. Response of jumper
flow rate w
network.

tions. For
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r cylindrical and rectangular vessels. Equations, calcula-
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es in jumper flow rate were also calculated for models
do-randomly generated fluidic network (Fig. 7). There is
ange in jumper flow rate between the original network
r network. Upon further, branching and channel growth
he jumper flow rate decreases more, as the network resis-
reases further. These changes in jumper flow rate were
ombination of various branching and splitting geometries
lear characteristics to resolve the network geometry.

summarizes the investigated effects of geometry on flu-
ork volume and on the jumper flow rate. Generally, the

 decreases with increasing fluidic network volume due to
e resonance between the network and the jumper. Most
he dead-end branches do not contribute to the fluidic vol-
e network until they branch into an established channel
servoir. In addition, channel splitting initially increases
er flow rate. Based on the presented work, it is possible to
anching and splitting events by their characteristic effect
mper flow rate. With additional information on starting

 and a set of constraints on channel growth, we  pro-
 it will be possible to reconstruct the network geometry
eal time monitoring. As is the case, the development of
etworks is governed by well know scaling laws that dic-

eometric progression of blood vessel formation, [36] and
 constraints, the simple quantification of hydrodynamic

e can provide metric of vascular development.
 proposed manifold device, hydraulic resistance of the
jumper and sensitivity of the flow meter are critical
rs to optimize for each network. For guidance in system
e entire system can be reduced to a pressure jumper, Rj ,
l with the network, Rs, and from this the response of the
er, Ij , to the change in network volume can be calculated

QRj

s + Rj)
2

(4)

s the flow rate of the supply pump, which could be set by
d shear force in the MPS. From this equation, one is able
he appropriate jumper resistance, Rj , to be able to detect

changes, dRs, using a flow meter with a specified sensitiv-
pending on the network and the available hardware, the

jumper and flow sensor will be changed as fluidic network

perimental results follow the same trend as the calculated
ut the observed jumper flow rate is lower than calculated.
rence is attributed to the deviation of the fabricated SU-8

om ideal vertical sidewall and exact lateral dimensions.
l source of error are tubing dimensions; nominal inner

s were used for calculations, which is not accurate, espe-
the tubing compression fitted into the PDMS. Both of these

 rate for models with 250 �m mold height. Unconnected branches do
k volume, as demonstrated for branching variants.



V.A. Pozdin, 

sources o
where th

4.  Concl

In sum
namic re
this strat
fluid perf
We devel
simulate 

tems, e.g.
represen
esis and a
to recogn
they corr
engineer

Ultim
form to in
the deve
networks
and fabri
and such
destructi
network 

may also 

any varia
a means t
provides 

rates and
of this pl
lar netwo
engineer
expandin
sues for fu
toxicolog
viding hi

Funding

The 

andAmer
this  work
Analytica
the Nort
RTNN, w
Grant ECC
dinated I
Institutes
by the 20
Award.

Author’s

Vladim
paper. Co
Erb. Meth
tion and
and Krist
Downey,
M. Danie
and Editi
Funding 

the final 

ndix

upple
e on
70.

arati

here 

renc

. Kaar
rgan-
i101

. McG
nablin
rg/10
. Zhan
2017)
.G. Ru

Organ
oxico
1926
. Lee,
rgan-
rs.20

.A. Ha
ancer
1 (20
. Seri
MBO 

. Mar
lterna
ubsta
35–2
. Park
ultip

2019)
.  Zha

rgans
039/c
. Zhen
hrom
0.107
.S. Mil
ngine
x.doi
.A. Ro
anifo

ulture
9631
.S. Zh
097–
.J. He

eratin
ased 

rg/10
.M. Ch
ngiog
one.0
. Wan
nd en
ttp://

.A. Wh
etwo
art C 

370.
. Kim
icrov

oi.org
.R. Z

nduce
ydrog
016.0
P.D. Erb, M.  Downey et al. 

f error will be minimized with real time measurements,
e difference in flow rate over time is of interest.

usion

mary, we presented a strategy to quantify the hydrody-
sistance of a microscale fluid network. We  demonstrated
egy with an instrumented microfluidic device to monitor
usion through models of vascularized tissue constructs.
oped an equivalent circuit model of the system to rapidly
and predict the characteristics of diverse vascularized sys-
 different vessel densities, connectivity, and sizes, that are
tative of distinct organ systems or functions like angiogen-
nastomosis. Future work will aim to develop an algorithm
ize patterns of the hydrodynamic resistance over time as
elated to the development of vascular networks in the

ed tissue constructs.
ately,  we foresee an application of this strategy and plat-

vestigate the properties of MPS  and specifically monitor
lopment and performance of engineered microvascular
. For example, there has been myriad reports on the design
cation of highly vascularized engineered tissues [37–44],

 engineered tissues would benefit from non-invasive, non-
ve means to monitor the evolution of the microvascular
during development. Furthermore, the proposed platform
operate as a performance monitor during use by reporting
tions in the steady-state perfusions conditions, providing
o correct or terminate the operation. The flow rate sensor
a continuous data stream for the feedback control of flow

 shear stress in the MPS; moreover, in the future, the use
atform for the real-time characterization of microvascu-
rk development will enable more reproducible MPS  and

ed tissues. Increased reproducibility is the next step in the
g manufacturing and utility of MPS  and engineered tis-
ndamental biological research, drug discovery/screening,

ical analyses, reducing the use of animal testing, and pro-
gher quality data for preclinical decision-making.
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