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Abstract— We develop an algorithm for the optimal control
of systems governed by unknown, nonlinear dynamics, to
deliver tasks expressed as timed temporal logic constraints. The
algorithm first computes a sequence of points in the operating
environment, along with associated time stamps, so that the
system completes its task if it follows the sequence. For the
algorithm’s second step, we develop a data-driven, on-the-fly
control mechanism that learns how to transition from a point
in the sequence to the next within a pre-specified time horizon.
This algorithm accounts for the unknown dynamics, any unsafe
zones in the environment and additional optimality criteria.
We show that, after a finite period of data gathering, the
resulting controller guarantees that the system indeed follows
the sequence of points, leading to the satisfaction of the task.

I. INTRODUCTION

Autonomous systems are prone to failures and abrupt
changes that might render the underlying dynamics un-
known; the control of such systems necessitates data-driven,
learning-based techniques, which rely on data obtained on
the fly. At the same time, resource limitations require that the
exerted control effort of the underlying system is minimized,
thus also generating an optimal control problem (OCP) [1].
Such a combination of objectives can be a complex task,
which needs to be expressed in a comprehensive manner.

One method of conveying an autonomous system’s objec-
tives is via temporal logic languages, which can describe
tasks more complex than the well-studied point-to-point
navigation [2]. In particular, a special form of temporal logic,
namely timed temporal logic, offers the incorporation of
time constraints in planning objectives, hence providing for
a rich variety of tasks [3]. However, resource limitations and
optimality is often neglected in these objectives.

This paper addresses the OCP of an unknown control-
affine system, which has to deliver tasks expressed as timed
temporal logic constraints. The system is assumed to be
continuous in state and time, and operates in an environment
with unsafe zones. Our contribution lies in the integration of
timed temporal tasks with control optimality, while account-
ing for the unknown, nonlinear system dynamics.

IF. Fotiadis and K. G. Vamvoudakis are with the Georgia In-
stitute of Technology, Atlanta, GA, USA. Email: {f fotiadis,
kyriakos}@gatech.edu. 2C. K. Verginis and U. Topcu are
with the University of Texas at Austin, Austin, TX, USA. Email:
{cverginis,utopcu}@utexas.edu. This work was supported
in part, by ARO under grant No. W911NF-19 — 1 — 0270, by ONR
Minerva under grant No. N00014 — 18 — 1 — 2160, and by NSF under
grant Nos. CAREER CPS-1851588, SATC-1801611, and 1646522, by
NASA ULI under grant number 8ONSSC20M0161, by ARL ACC-APG-
RTP W911NF1920333, by AFOSR FA9550-19-1-0005, and by the Onassis
Foundation-Scholarship ID: F ZQ 064 — 1/2020 — 2021.

978-1-6654-3659-5/21/$31.00 ©2021 IEEE

We develop a two-step algorithm to solve the afore-
mentioned problem. The first step is the computation of a
discrete timed path, i.e., a sequence of points to be visited
at specific time stamps, that yields the execution of the task
if followed by the system. The second step is the design of
a control algorithm that exhibits the following properties:
(1) it achieves the sequential navigation of the system to
the points dictated by the computed path in the given time
stamps; (ii) it minimizes the exerted control effort; and (iii)
it guarantees the avoidance of the unsafe zones. In particular,
we transform the problem to a finite-horizon OCP with safety
constraints, and we use data obtained online from the current
trajectory to accommodate the unknown dynamics. We prove
that, after obtaining a sufficient amount of data, the system
learns to navigate among the predefined points within the
time intervals dictated by the derived path. Additionally, the
control effort is minimized and the unsafe zones are avoided,
hence leading to the successful execution of the task.

There exist numerous related works that consider planning
and control under timed temporal logic specifications [4]-
[15]. Most of the aforementioned works, however, consider
simplistic single integrator models [5], [7], [11], finite-state
systems [15] or neglect entirely the underlying dynamics
[4]. The works [8]-[10], [12]-[14] consider more complex
models that are either fully [10], [12]-[14] or partially [8], [9]
known; [3] assumes unknown dynamics, restricted, however,
to Lagrangian models with positive-definite input matrices.

Another issue with the related works on timed temporal
logic-based planning is the lack of optimality characteristics;
[8], [11], [13] are a few exemptions which, however, fail to
guarantee optimality of the resulting controller, and use the
underlying dynamics. On the other hand, in this paper we do
ensure optimality through the use of a neural-network-based
learning scheme. In particular, we extend previous works on
actor-critic learning [16]-[18] by solving a series of OCPs
over finite time horizons, for the safe timed transitions among
predefined points related to the timed temporal task.

II. PRELIMINARIES

Notation: We denote Ny := N U {0}, where N is the set
of natural numbers. The sets of n-dimensional nonnegative
and positive reals, with n € N, are denoted by R and RZ,
respectively. Z1 ® Zy is the Kronecker product of matrices
7y and Z5. The operator vec(-) denotes the vectorization of a
matrix. Given an infinite sequence s = syS1S2 . . ., we denote
its j-suffix by suff(s,j) = s;js;41..., respectively; I, €
R?%% denotes the identity matrix. The closed ball centered
at ¢ with radius 7, is denoted by B(cy, ).
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Definition 1 ( [19]). A time sequence t1, 12, ... is a (infinite
unless otherwise stated) sequence of time values t; € R>q,
for all j € N, satisfying (i) t; < t;41, for all j € N and (ii)
for all ¢’ € Ry there exists j > 1 such that t; > t'. O

An atomic proposition is a statement over the variables or
parameters of a problem that is either True (T) or False (.L).
Assume now that AP is a finite set of such propositions.

Definition 2. Let AP be a finite set of atomic propositions.
A timed word w over AP is an infinite sequence w =
(w1, t1)(wa,ta)... where wy,ws,... is an infinite word
over 2% and t,,t,,... is a time sequence. ]

Definition 3. A Weighted Transition System (WTS) is a tuple
(I1, Iy, —, AP, L,~), where II is a finite set of states,
IIp, < II is a set of initial states, —< II x II is a
transition relation, AP is a finite set of atomic propositions,
L : I — 247 is a labeling function, and v :—— R is a
map that assigns a positive weight to each transition. O

Definition 4. A timed run of a WTS is an infinite sequence
r = (Thtl)(’l"g,tg)..., such that T € HO and r; € H,
(rj,rj41) €—, for all j € N. The time stamps ¢; are
inductively defined with ¢, = 0 and ¢4 = t; +~(r;,7j41),
for all 7 € N. The timed run r generates a timed word
w(r) wy(r1),wa(rs),... = (L(r1),t1), (L(ra),t2),...
over the set 2%, where L(r;) is the subset of atomic
propositions AP that are true at state r; at time ¢;, j € N.

O

The syntax of a timed temporal logic formula over AP is
defined by a grammar that has the form

p=pl-p|lprrps| Orel Ore | Oy | erlres, (1)

where ¢ € AP, and (O, ¢, [], and U are the next,
future, always, and until operators, respectively; I is a
nonempty time interval in one of the followings forms:
[il, iQ], [’il, ig), (il, ig], (il, ’ig), [il, OO), (il, OO), with il, ig
€ Q. Several languages are subsets of the form (1), such
as Metric Temporal Logic (MTL), Metric Interval Temporal
Logic (MITL), Bounded MTL, coFlat MTL, or Time Win-
dow Temporal Logic (TWTL) [20], [21]. Here we define
the generalized semantics of (1) over discrete observations
(point-wise semantics) [22]. The next definition considers the
satisfaction of a formula by a timed run.

Definition 5. [22], [23] Given a sequence R
(mo,to)(m1,t1)... and a timed formula ¢, we define
R,%) = ¢, i € Ny (R satisfies ¢ at i) as follows:

R’i) |=p<:>p€£(7ri), (RaZ) ': P = (sz) |:SD,
R,i) 1 A 2 = (R0) = 1 and (R,4) = 2,

R,Z) '=Oj(p(i) (R,Z+ 1) )=(p and ti+1 —tz EI,

R,i) Ep1Urps < Ik > i such that (R, k) = ¢o,

tp —tie I and (R,m) = ¢1,Yme {i,... k}.

(
(
(
(
(

Also, 079 = TUrp and (I = —O;—p. Finally, R satisfies
, denoted by R k= ¢, if and only if (R,0) = . ]
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III. PROBLEM FORMULATION
Consider, Vt >ty > 0, a nonlinear system with dynamics

@(t) = f(z@)) + g(x(t))u(z(t),1), z(to) =z, (2)

where = : [tp,0) — R™ denotes the system’s states with
initial condition zo € R™ at t = g, u : R™ x [tg, 0) — R™
is a control input, and f : R* — R™, g : R™ — R™ " are
unknown, locally Lipschitz functions.

Consider also K € N points of interest in the state space,
denoted by ¢;, € R™, for k € K := {1,..., K}. Each point
¢k, k € K, corresponds to certain properties of interest,
which are expressed as Boolean variables via the finite set
of atomic propositions AP. These properties shared by a
point of interest are naturally inherited to some neighborhood
of that point. Hence, we also define for each k € K the
region of interest 7y, corresponding to the point of interest
ck, as the set my == B(cg, pr), with pp > 0 chosen such that
T N T = &, for all k, k' € I with k # k.

Denote II := {ry,..., 7k }. Then, the properties satisfied
at each region of interest are provided by the labeling
function £ : IT — 247 Informally, £ assigns to each region
g, k € IC, the subset of the atomic propositions that hold true
in that region. The system is assumed to be in a 7 simply
when z € 7. We further need the following assumption.

Assumption 1. It holds that f(c;) = 0 for all k£ € K.

O

Along with II, we further consider a set of K, unsafe
pairwise disjoint spherical zones O = {o1,...,0k,}, with
Ok Blcoy,poy)s k € Ko == {1,...,K,}, satisfying
op N T = &, for all (k,k') € K, x K, which defines
the free space F := R™\(O. We are interested in achieving
timed temporal specifications over the atomic propositions
AP while avoiding the unsafe zones. We achieve that by
guaranteeing safe timed transitions between the regions of
interest in II. We first need the following definition regarding
the behavior of the system.

Definition 6. Consider an agent trajectory x : [tg,0) — R”
of (2). Then, a timed behavior of x is the infinite sequence
b(to) = (m(to),do,to)(l‘(h), Ul,tl) ..., where tg,t1,... is
a time sequence according to Definition 1, z(t;) € 7j,, j; € K
for all i € Ny, and o; = L(m;,) < 247, ie., the subset
of atomic propositions that are true when z(t;) € m;,, for
i € Ny. The timed behavior b satisfies a timed formula ¢
safely if b, (to) == (00,t0)(01,t1)... = ¢ and z(t) € F,
for all t > ty. It eventually satisfies  safely if there exists
j € N such that suff(b,(to),7) = suff(a,(to), ), for some
as(to) = ¢ and x(t) € F, for all t > ¢;. ]

We develop a learning-based control strategy such that
the system learns how to safely execute transitions in II,
resulting in eventual satisfaction of ¢, while also achieving
optimality with respect to some user-defined cost. Note that
eventual satisfaction implies that ¢ dictates repetitive tasks
and/or tasks over long time horizons that the system is able
to learn to execute. The latter, however, is not a restrictive
assumption, since such tasks encompass the full potential of
timed temporal logic languages.
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Define now, for each point of interest c;, the error e; =
T — ¢;, evolving according to the dynamics

éi = Fi(e;) + Gi(ei)u = fle; +¢;) +gle; +ci)u, (3)
for all 4 € I, and the performance criteria:
ty
J(ei(to), to ty,u) == J r(e;(1),ule;(r),7))dr, (4)
to

with tg > 0, t; > to. Here, r(e,u) = Q(e) + S(u) is a
metric of performance, with S(u) = u'Ru, R > 0, and
Q@ : R™ — R being a positive-definite function. This gives
rise to the timed behavior cost of a timed behavior b.

Definition 7. Consider a system closed-loop trajectory x :
[to,0) — R™ along the control input u and the associated
timed behavior b = (.”L’(t()), 00, to)(ﬂ?(t1>7 o1, t1> ..., with
x(t;) € mj,, ji € K for all i € Ng. The timed behavior
cost J is the infinite sequence of functions J := JyJi-- -,
where Jl = J(ejiﬂ (tl), ti, ti+17 U), for all 7 € No. [l

The cost of the timed behavior naturally leads to the e-
optimal timed behavior defined next, where A(t,,tp) is the
set of all functions from R™ x [t,,tp] to R™, t, > t, = to:

Definition 8. Consider a system trajectory x : [tp,0) —
R™ Given ¢ > 0, its timed behavior b(tp)
(z(to),00,t0)(x(t1),01,t1) ... is said to be e-optimal, if
the associated timed behavior cost J JoJ1 ... satis-
fies |J; — J| < e for all i € N, where J;

i J(e . (t;), ti, tiv1, o).
aeAI(Igil,IgiH) (eJ’L“(Z) oo 04)

[
We can now state the problem considered in this work.

Problem 1. Let a system evolve according to the unknown
dynamics (2), and with initial position z(ty) € 7j,, jo € K.
Given a timed formula ¢ over AP and a labeling function
L, design a control law u : R™ x [tg,0) — R™ that results
in a solution x : [tg,00) — R", which achieves an e-optimal
timed behavior that eventually satisfies ¢ safely. O

The next sections describe our two-layered solution to
Problem 1. We first synthesize a high-level timed path over
II that satisfies ¢, by neglecting the unknown dynamics (2).
Then, we design a novel learning-based control algorithm
that learns how to execute safe timed transitions over II
based on data obtained online from the current trajectory,
which leads to the eventual safe satisfaction of ¢.

IV. HIGH-LEVEL PLAN GENERATION

The first ingredient of the proposed solution is the deriva-
tion of a high-level plan that satisfies the given formula ¢.
To this end, we abstract the motion of the system as a finite
weighted transition system [2]

T:: (H7HO>_)7AP7£77)a (5)

where II is the discretized state space, Iy < II is the initial
region, computed as Iy := 7y, ko := arg mingc{[z(tg) —
¢k|}, —< I x I is a transition relation, AP and L are the
set of atomic propositions and labeling function, respectively,
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defined in the previous section, and v :—— R~ is a map
that assigns a positive weight to each transition. For now, we
assume that the system can execute the transitions among the
regions in II within the time interval dictated by ~; the latter
can be chosen according to several criteria, such as input
capabilities of the system, Euclidean distance among points
of interest, etc!. In the next section we will consider the
control design for the execution of these timed transitions.
Given the transition system 7 and the formula ¢, we can
apply standard formal verification methodologies in order
to compute a timed path over II that satisfies . The most
common practice to achieve this is the following: Firstly, ¢
is algorithmically translated to a Timed Biichi Automaton
(TBA) Ap, a system consisting of a discrete set of states
associated with AP, whose accepting runs satisfy ¢ [2].
Secondly, we compute the product between the two discrete
systems T := T ® Ap. Finally, T is viewed as a graph and
standard graph-based algorithms are used to derive a timed
path that satisfies (. This path has the prefix-suffix form

w

)

P:(ﬂ'kmto)~ . '(ﬂkuutk‘ul)[(wkwtkul ) . -(ﬂ'kwwtkw)

where py == p+ w, po = p+ (¢ + 1)v, for positive pu,
v, where the superscript w denotes infinite repetition and
¢t =0,1,... denotes the repetition index. The execution of p
produces a trajectory x(t), t = t(, with timed behavior b(¢y)
that satisfies ¢, i.e., b, (tg) = ¢ (see Definition 6). One can
also obtain a timed path p satisfying ¢ using optimization
methodologies. In particular, it has been shown that the
satisfaction of a timed temporal formula can be formulated
as a Mixed Integer Linear Programming (MILP) problem [4],
where binary variables are introduced to represent the several
atomic propositions and the time constraints involved in ¢.
We assume that the timed path p is feasible. Hence, in
the next section, we design a data-based learning control
protocol that learns over time how to successfully execute
the timed transitions in p, while avoiding the unsafe zones.
This leads to the eventual satisfaction of ¢, as per Def. 6.

V. OPTIMAL TRANSITION

This section describes the data-based optimal control de-
sign for the optimal timed transition among two regions 7y
and 7, which is defined as follows.

Definition 9. Assume that x(t) € 7, for ¢t € R>o. Then,
the system performs an optimal timed transition to 7y, £ €
K\{k}, denoted by m; — my, if it applies a time-varying
feedback control law u : R™ x [tx,ts] — R™ such that, for
some § € R-, the solution of the closed loop system (2)
satisfies the following:

1) z(t) € mp for all ¢ € [ty + 0, 1¢),
2) x(t) e F\ Ume;c\{e} T for all ¢ € [ty o],
3) u(z(t),t) = argJr, where we define J; =

MiNge A, t,) J(€e(tr); trs Lo, ).
The timed transition is e-optimal, if 3) is replaced by
I (ee(tr), ths te, u(x(t), 1) — JF| <e. O

'One can also consider online reconfiguration algorithms that give an
optimal time duration based on exerted control effort [11].

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 09,2022 at 18:25:05 UTC from |IEEE Xplore. Restrictions apply.



A. Optimal Control with Soft Constraints

Evidently, it is not necessary that a control law w that
minimizes (4) can always achieve the timed behavior de-
scribed in Problem 1. Hence, the minimization of (4) has
to be subject to some hard constraints imposing the desired
timed behavior, or the desired behavior can be incorporated
as a soft constraint in the cost (4). To achieve the latter, let
us consider two regions of interest 7, my, corresponding
to two subsequent time instances t; and ¢y, with k, £ € K.
Then, we redefine the performance criterion (4) into:

ty

Jf(ef(tk),tk,u)::j

tr

(vr(ea(r), uee(r), 7))

+ Lialen(r)) )dr + gles(te)). (6)
e = Fi(ee) + Geleo)u, (7)

where we also drop the final time ¢, argument for brevity. In
6), ¢ : R™ — Ry is a positive-definite term that penalizes
the deviation of the terminal state from the point of interest
c¢¢. In addition, Ly, : R® — Ry is another penalty term
satisfying Ly ¢(0) = 0, and designed so that the system
under the controller that minimizes (6) avoids all unsafe
zones O and regions m;, i € K\{¢}. It is strictly positive
in these regions, monotonically decays to and remains equal
to zero after a small distance outside them, and is also
continuously differentiable. Finally, v > 0 dictates a trade-off
between: a) ensuring avoidance of the unsafe zones and the
regions 7;, ¢ € KC\{¢} and satisfaction of the terminal region
specification; b) achieving good performance according to
the metric 7(-, -).

Following [1], it can be shown that an infinitesimal
expression for a continuously differentiable value function
Vi := Jy(-,-,u), which is equivalent to (6), is given by

subject to:

LE(V;",u) = ViV (ee, t) + VeV (ea, t)" (Fu(er)

+ Gg(eg)u) + ’yr(eg7u) + Lk’g(eg) =0, (8

which is a partial differential equation. If we let ¢, = t,,
then owing to (6) the boundary condition of (8) is

Vit (ee(te)ste) = d(e(te)). ©)

Define the optimal value function as V' (eg,?)
min,, Je(eg,t,u), for all e, € R™, ¢ € [tg, te]. If V is
continuously differentiable, by following [1] we can derive
the corresponding minimizing controller u; as:

* 1 —_ *
uy(ep,t) = —ZR YGu(er)™V., Vi (eg, ). (10)

Combining (10) with LE(V,*,u;) = 0, we obtain the
Hamilton-Jacobi-Bellman (HJB) equation:

ViV (er,t) +7Q(ee) + Li(e) + Ve, Vi (ee,t) Fy(er)
1
- @Veeve*(@z»t)TGz(ee)Rfle(ez)TVezV[(ee»t) =0,
Vi (ee,te) = pler). (11)

Equation (11) needs to be solved in order to compute (10).
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The following theorem shows that if v is picked suffi-
ciently small and a controllability condition holds, then the
optimal policy u; can achieve an optimal timed transition.

Theorem 1. Assume that there exists a control law uj :
R™ x [tg, te¢] such that the closed-loop system e(t) under
u = uj satisfies: a) eo(ty) = 0; b) Ly e(ee(t)) = 0, for
all t € [tg, t¢]- Then, there exists v* > 0, such that if
¥ < 7%, the closed-loop system ey(t) under u = uj executes
an optimal timed transition, according to Def. 9.

Proof. Denote by e the trajectories of e, under © = ug, and
by e; the trajectories of e, under u = wuj;. By definition,
it holds that Ly ¢(e5(¢t)) = 0 for all t € [tg, t¢], and
o(ef(tr)) = 0. Hence,

te
Tenlta).tu) = [ (e, uitei(r)dr. 12
tr
By optimality, it follows that
0 < Julee(tr), te,ug) < Je(ee(tr), tesug).  (13)

Due to (12), lim,_,o+ Je(ee(tr), tr,uj) = 0. As a result,
it follows from (13) that lim._,q+ Je(e(tx), tr,u;) = 0,
hence also lim._,o+ Ly ¢(ej(t)) = 0 for all t € [tg, t(],
and lim._,o+ ¢(ej(t¢)) = 0. Hence, for all ¢* > 0 there
exists v* > 0, such that if v < ~*, then Ly, ¢(ej(t)) < €*
for all t € [tx, t¢] and ¢(e}(t¢)) < €*. The result follows by
the design properties of Ly ¢ and ¢. [

Next, we drop the subscript ¢ for ease of exposition.

B. Policy Iteration

The analytic solution to (11) is hard to obtain, hence we
have to resort to approximate solution methods. To do so, we
will require a few definitions and assumptions. First, for the
cost (6) to be properly defined and for the corresponding
value function to be continuously differentiable, we only
consider control laws that are admissible.

Definition 10. A control law u : R™ x [tx, t;] — R™ is

admissible with respect to the cost (6), denoted by u € U, if

o u is continuous over R™ x [y, t¢] with u(0,¢) = 0 for
all t € [t, t¢]; and

o the origin of system (7) is uniformly Lyapunov stable

under u, the trajectories of (7) are bounded for all ¢

[tr, t¢], and the cost (6) is finite for all ey, ty. O

Next, let P, denote the set of continuously differentiable
functions R™ x [tx, t;] — R. For any function V € P,
assume that V'(-,t) is positive-definite for all ¢ € [tg, ]
We now need the following assumption for V* [16], [18].

Assumption 2. The optimal value function V*, which solves
the HIB equation (11), belongs to P, i.e., V* € P,. O

Next, we present the Policy Iteration (PI) algorithm for
solving the finite-horizon, time-varying HIB equation.

Policy Iteration

Let ug € U. Then, for all i € N, perform the iteration:

1) Evaluate the value function V" by solving (8):

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 09,2022 at 18:25:05 UTC from |IEEE Xplore. Restrictions apply.



FUVHest) 9V (R0 + )
+yr(e,u;) + L(e) = 0, Vt € [ti, te,

with V¥ (e(t,), te) = p(e(te)).
2) Choose the next control law u; 1 as

(14)

1
uir1(e,t) = —ER*G(@)TV@VW (e,t).  (15)

The following lemma is needed to prove convergence of PI.

Lemma 1. Consider the sequence of control laws {u;}ien
and continuously differentiable value functions {V*%i}cn
generated by the PI algorithm through equations (14)-(15).
Let u; be admissible, for some i € N. Then:

1) wu;y1 is admissible.

2) V*(e, t)<Vuiti(e, t)<V"¥i(e,t), V(e, t)ER™ x [tr, t¢].

Proof. We will provide only a sketch of the proof. For the
first part, over the trajectories of (3) under u = u;1:
V=V, V%4 (V V) (F+Gus) +(V V) TG (wi —us)
= —Q(e) —vS(ui) — L(e) — QVUZTHR(WH —u;)
—Q(e)—L(e) =S (uit1) = ¥S(uiv1 —us) <0, (16)
where we used (14) and (15). Hence, exploiting also As-
sumption 2, and using arguments similar to [24], one can

prove the admissibility of u;;1. For item 2), the integration
of (16) over t € [tx, t¢] yields:

V¥i(e(te), te) — V" (ex, tx) = *J

tr

17

(7Q(e)

17}
+ S (uip1) + L(e))dT — J ¥S (i1 — uy)dr.
tk

Owing to (9), we have V¥i(e(ty),te) = V¥ iti(e(ts), ty) =
o(e(te)). Therefore, (17) is equivalent to:

a7)

te
V¥(eg,ty) = Vit (eg, t) + f vS (uip1 — w;)dr.
123
Hence, V¥itt (e, t) < V¥ (e,t), V(e,t) € R"x [ty, t¢], while

the inequality V*(e, t) < V"i(e, t) holds by optimality.  m

Theorem 2. Let ug € U. Then, the PI algorithm described
through equations (14)-(15) guarantees that lim V% = V*

1—00
The convergence is uniform on any

*

and lim u; = u”.
compZ;c?Osubset of R™ x [tk, te]-

Proof. Given the monotonicity results of Lemma 1, the proof
follows similar steps with [24] and is thus omitted. ]
C. Approximate Solution to the Time-Varying HIB Equation

The PI algorithm requires knowledge of the system’s
dynamics functions F, G. Towards implementing a model-
free version of PI, we rewrite the system error dynamics as

é=F(e) + Gle)u;(e, t) + G(e)vi(e,t), t =0, (18)

where v; = u—u,, ¢ € N, and u; is as defined in (15). Taking
the total time derivative of the value function V%, ¢ € N,
along the trajectories of (18), and using (14)-(15), we obtain

VU=V, +H(V V)T (F(e)+G(e)us(e, t)+G(e)vi(e, 1))

=—7Q(e) — yS(u) — L(e) — 2yuis1(e, t) Rui(e,t). (19)

Integrating (19) over any time interval [t, ¢t + T < [tx, t¢].
with T > 0 and for all ¢ € [y, t; — T, we derive

t+T
—Jt (’yQ(e)
FL(e) 7S (usle, ) + 2'yui+1(e,T)TRvi(e,T)>dT, (20)

V¥ (e(te), te) = ¢(e(te))- (21)

Notice that (20)-(21) is a model-free version of (14), as it
is independent of the functions F, G. However, we need
to resort to approximation theory to solve it with respect
to u;4+1 and V" Particularly, we can use the Weierstrass
approximation theorem [1] and deduce that V"¢  w; can be
uniformly approximated on a compact set 2 x [t, t¢] =: D,
with €2 < R”™. Then, we can express V", u; 41, Vi € N, as

V¥(e,t) = (w)) v (e, t) + ple) + €/ (e, t),  (22a)
uivi(e,t) = (wf) Ty (e,t) + €(e,t), (22b)

where w? € RNv, w¥ € RMeX™ are weights, ¢ : R" x
[tr, te] — RNv, % : R™ x [t, t;] — RN« are basis
functions and €/ : R™ x [tg, t¢] = R, € : R™ X [tg, to] —
R™ are the approximation errors. The approximation errors
€7, € converge to zero, uniformly on D, as N,, N,, — oo.
As w; and w} in (22) are unknown, we construct a critic
and an actor neural network to approximate V", u;,1 as

Vii(e,t) = (@) Ty (e, t) + ¢(e), (23a)
div1(et) = (@f) 9" (e, ), (23b)

where ¢ € RVv, % € RN«*™ are the critic and the actor
weights respectively, and ¢ € N. Notice that a bias term has
been introduced for the approximation of the value function
in (22)-(23). Its purpose is to impose the boundary condition
(21) to hold irrespectively of how the critic weights ;' are
chosen, as long as the basis functions are appropriate.

Corollary 1. Let ¢*(0,t) = 0, Vt € [ty, t], and ¥° (e, ts) =
0, Ve € R™. Then, Vi € N, it holds that: V" (e,t¢)=¢(e),
Ve e R", and V% (0,t) = 0, Vt € [tg, te].

V%(e(t+T),t+T)—V"(e(t),t) =

Consider now a number of time instances 7;, j €
{0,...,N} =N suchthat t, =10 <71 < ... <7y = tg.
Using the approximation (23), the left hand side of (20) for
t=rjand t + T = 741, j € N\{IN}, is approximated as:

VU (e(7j11), 1) =V (e(7)), 75) =(e(Tj11)) — d(e(r)))

+ (@) T (W (e(Tj41) Ti1) — 00 (e(7y) 1)) (24)
In addition, the term 2yu; 1 (e, 7)T Rv; (e, 7) at the right hand
side of (20) can be approximated using the actor as:

2vili 1 (e, ) Ry (e, 7) = 2v¢¥(e, T) "0 Ry (e, T)
= 29((@1(e.7)"R) @ (e, )" vec(i),
where U; = u — 4,. Hence, the residual error created by

approximating equation (20) through (24)-(25) is

€=V (el )s 1) — VO (e(ry), 1) + f

i

(25)

Ti+1

(vQ(e)
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Algorithm 1 Model-Free PI

1: Employ an arbitrary behavioral policy u; to the system
(3), and collect input-state data online.
Let ug € U be admissible, select ¢ > 0 and set 7 = 0.
repeat

Solve for w; and w;" from equation (27) and 7 = ¢+ 1.
until ||@7 — @7, || <€
Switch from w; to the learnt control policy ;.

A

+L(e)+yS(t;(e, 7)) +2vii1 1 (e, )T Ry (e, T))dT,
which can be written as:
= @j,iWi + 95,

Wi = [(@?)T vec(

(26)

€jii

where ©;; = [0}, ©},], wi)"]", and

05 = (W(@(Tjﬂ)ﬁjﬂ) - wv(e(Tj)ﬁj))T,
o, = L ij“ 2 ((i1(e, 7)"R) ® 4" (e, )" ) dr,
W= 0le(ryn)) — e(r)

" (4Q() + Le) + S (is(e. ) )dr.

+ f
Tj

If enough data is obtained along the system’s trajectories, we
can find W; by least squares to minimize the error (26). To
that end, we impose a standard assumption [17], [18].

Assumption 3. There exist 6 > 0 and [y € N, so that for
all [ > Iy it holds that 3., ©T.0,; > I6Ix, 4my,. [

Given Assumption 3, the least squares solution to (26) is:

! o
- (JZE) @},i(af,z‘) 1 <]Z‘6 @}1\1/71>

As a result, we can obtain the model-free version of PI, as
shown in Algorithm 1. Its convergence is shown next.

27)

Theorem 3. Let Assumption 3 hold. Then, for all € > (O there
exist constants N, N[, i* € N, such that if N, > N"
and N, = N]", then for all (e,t) € D, i = i*, it holds that

HV“l (e, t) = V*(e,t) H [l 1(e,t) —u*(e,t)]| <e.

Proof. We will provide only a sketch of the proof. For i € N,
let V% be the value function of u;, where 19 = wug, SO
that LE(V“’ ;) = 0, V¥i(0,t) = 0, for all t € [tg, t],
o(e), for all e € Q. Let also u;41(e,t) =
V¥i(e,t), Y(e,t) € D. Then:

e - [ (e

+L(e)+yS(ui(e, 7)) + 2711}“ (e, 7) R (e, T)) dr  (28)

V¥i(e(rj41), Tj+1) —

There exist wy € RN, @y e RN«*™ such that
V(e t) = (w )Tw“(e, t)+¢(e)+€¥ (e, t) and ;41 (e, t) =
(W) Ty (e t) €% (e, t). The approximation errors €} : R™ x
[tk, te] = R, €% : R™ X [t, tg] — R™ vanish uniformly on
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D as N,, N, — oo. Substituting these expressions in (28),
we have: B

0:6jiW'+\I/ji+Ej7i7 VjEN,iEN, (29)
where 1¥;= [ YT vee(@}) T and By =& (e(ry 1), 41) -
€ (e(ry), 1) + S 7+t 2ye (e, 7)TRD; (e, 7)dT. Hence, using
the least-squares Naw (27) (29), Assumption 3 and the
Weierstrass approximation theorem, one can show that for
all € > 0 there exist N, N; > 0, such that if N, > N,
N, = N} then Y(e,t) € D it holds that

(V2 (est) = Ve, )] < [l (@} = a7 (e )| B30)
€ €
el <S+5 -
Jiie(e,t) = s (e < o = @t otle )] GD
lE el < 5+ 5 =

Finally, an induction is used to derive the final result.

1) For i 0, we have Y uo V¥ and w4
u1. Hence, due to the uniform convergence (30)-(31),
it follows that limy, n, o0 V" (e,t) VU (e,t) and
limpy, N, o U1(e,t) = uy(e, t), uniformly on D.

2) Suppose that limpy, n, o V%1 (e,t) = V¥%1(e,t)
and limpy, N, oo @i(e,t) = w;(e,t), uniformly on D,
for some ¢ € N,. Then, using these assumptions
along with Assumption 3 and (20)-(21), one can prove
that limpy, n, o0 V% (e,t) V¥i(e,t). Hence, since
[V (e, )~V (e, )] < [V (e, ) = V7% (e, )|+ [T (e, ) —
Vi (e, t)|, we can use the inductive assumption to conclude
that, Ve > 0, there exist N;*, N;* > 0 such that if
N, = N}*, N, = N}* thenV(e, t) € D, one has |[V¥i (e, t)—
Vti(e,t)| < e which concludes the induction. The result
follows using the triangular inequality and Theorem 2. [ ]

Remark 1. Due to Theorems 1 and 3, if N,, N, are large
enough and ~ is small, the closed-loop system eventually
guarantees an e-optimal safe timed transition between 7y, and
mp as per Def. 9. Since the aforementioned results apply for
the transition among any pair of regions, we conclude that
the closed-loop system eventually satisfies o safely. O

VI. SIMULATIONS

We consider a two-link manipulator as in [25], with
q [¢1 q2]" being the angular positions (in rad) and
d = [¢1 ¢2]7 the angular velocities (in rad/s), respectively.
We also consider three regions of interest II = {7y, ..., 73}
centered at ¢; = [—0.2,—0.5,0,0]", co = [0.5,—0.4,0,0]T,
c3 = [0,0.2,0,0]7, and a joint-state obstacle centered at
04 = [0.2,—0.46]", all with radius 0.05. Further, we consider

P={1",2",°3’} and L(m;)={1"}, 1€ {1,...,3}.

We impose a timed temporal logic task dictated by the
formula ¢ = [O[051", @ € {1,2,3}, implying periodic
visit to regions 7y, ma, T3 every 5 seconds; we also require
avoidance of the obstacle, for which we compute L using
04. By setting v(-) = 5 for all transitions in IT x II in (5),
and following the methodology of Section IV, we obtain the
repetitive timed path p = [ (1, 5k +5) (2, 5k + 10) (73, 5k +
15)]w for k € {0,1,...,}. We perform Alg. 1 by employing
a sinusoidal behavioral policy u; for 150 seconds, and then
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Fig. 1. Evolution of the Frobenius norms of the actor and the critic

weights, as derived by Alg. 1.

I t = 5k+15 [sec]
(R

0.2

q1

Fig. 2. Evolution of ¢ after employing the policy given by Alg. 1.

executing the model-free PI by solving Eq. (27) iteratively.
The evolution of the critic-actor weight norms during the
execution of Alg. 1 are illustrated in Fig. 1, showing their
convergence. After the passage of the 150 seconds, the policy
derived by Alg. 1 substitutes the behavioral policy, and the
resulting closed-loop trajectories for ¢ > 150 [sec] can be
seen in Fig. 2. It can be verified that the closed-loop system
executes successfully the timed path, leading to the eventual
satisfaction of . For all three repetitive OCPs, we chose
R=0.5I, ¢(e)=Q(e)=eT (diag[20 20 10 10]) e, y=0.1.

VII. CONCLUSION

We develop a two-layered algorithm for the planning and
control of unknown systems with timed temporal logic tasks.
We design a novel data-driven control protocol that learns
how to execute optimal timed transition between regions of
the state-space, which guarantees the eventual satisfaction of
the task. Future efforts will be devoted towards addressing
continuous-time temporal tasks under the same framework.
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