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Abstract— We develop an algorithm for the optimal control
of systems governed by unknown, nonlinear dynamics, to
deliver tasks expressed as timed temporal logic constraints. The
algorithm first computes a sequence of points in the operating
environment, along with associated time stamps, so that the
system completes its task if it follows the sequence. For the
algorithm’s second step, we develop a data-driven, on-the-fly
control mechanism that learns how to transition from a point
in the sequence to the next within a pre-specified time horizon.
This algorithm accounts for the unknown dynamics, any unsafe
zones in the environment and additional optimality criteria.
We show that, after a finite period of data gathering, the
resulting controller guarantees that the system indeed follows
the sequence of points, leading to the satisfaction of the task.

I. INTRODUCTION

Autonomous systems are prone to failures and abrupt

changes that might render the underlying dynamics un-

known; the control of such systems necessitates data-driven,

learning-based techniques, which rely on data obtained on

the fly. At the same time, resource limitations require that the

exerted control effort of the underlying system is minimized,

thus also generating an optimal control problem (OCP) [1].

Such a combination of objectives can be a complex task,

which needs to be expressed in a comprehensive manner.

One method of conveying an autonomous system’s objec-

tives is via temporal logic languages, which can describe

tasks more complex than the well-studied point-to-point

navigation [2]. In particular, a special form of temporal logic,

namely timed temporal logic, offers the incorporation of

time constraints in planning objectives, hence providing for

a rich variety of tasks [3]. However, resource limitations and

optimality is often neglected in these objectives.

This paper addresses the OCP of an unknown control-

affine system, which has to deliver tasks expressed as timed

temporal logic constraints. The system is assumed to be

continuous in state and time, and operates in an environment

with unsafe zones. Our contribution lies in the integration of

timed temporal tasks with control optimality, while account-

ing for the unknown, nonlinear system dynamics.
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We develop a two-step algorithm to solve the afore-

mentioned problem. The first step is the computation of a

discrete timed path, i.e., a sequence of points to be visited

at specific time stamps, that yields the execution of the task

if followed by the system. The second step is the design of

a control algorithm that exhibits the following properties:

(i) it achieves the sequential navigation of the system to

the points dictated by the computed path in the given time

stamps; (ii) it minimizes the exerted control effort; and (iii)

it guarantees the avoidance of the unsafe zones. In particular,

we transform the problem to a finite-horizon OCP with safety

constraints, and we use data obtained online from the current

trajectory to accommodate the unknown dynamics. We prove

that, after obtaining a sufficient amount of data, the system

learns to navigate among the predefined points within the

time intervals dictated by the derived path. Additionally, the

control effort is minimized and the unsafe zones are avoided,

hence leading to the successful execution of the task.

There exist numerous related works that consider planning

and control under timed temporal logic specifications [4]–

[15]. Most of the aforementioned works, however, consider

simplistic single integrator models [5], [7], [11], finite-state

systems [15] or neglect entirely the underlying dynamics

[4]. The works [8]–[10], [12]–[14] consider more complex

models that are either fully [10], [12]–[14] or partially [8], [9]

known; [3] assumes unknown dynamics, restricted, however,

to Lagrangian models with positive-definite input matrices.

Another issue with the related works on timed temporal

logic-based planning is the lack of optimality characteristics;

[8], [11], [13] are a few exemptions which, however, fail to

guarantee optimality of the resulting controller, and use the

underlying dynamics. On the other hand, in this paper we do

ensure optimality through the use of a neural-network-based

learning scheme. In particular, we extend previous works on

actor-critic learning [16]–[18] by solving a series of OCPs

over finite time horizons, for the safe timed transitions among

predefined points related to the timed temporal task.

II. PRELIMINARIES

Notation: We denote N0 :“ N Y t0u, where N is the set

of natural numbers. The sets of n-dimensional nonnegative

and positive reals, with n P N, are denoted by Rn
ě0

and Rn
ą0

,

respectively. Z1 b Z2 is the Kronecker product of matrices

Z1 and Z2. The operator vecp¨q denotes the vectorization of a

matrix. Given an infinite sequence s “ s0s1s2 . . . , we denote

its j-suffix by suffps, jq “ sjsj`1 . . . , respectively; Iq P
Rqˆq denotes the identity matrix. The closed ball centered

at ck with radius rk is denoted by B̄pck, rkq.
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Definition 1 ( [19]). A time sequence t1, t2, . . . is a (infinite

unless otherwise stated) sequence of time values tj P Rě0,

for all j P N, satisfying (i) tj ă tj`1, for all j P N and (ii)

for all t1 P Rě0 there exists j ě 1 such that tj ě t1. l

An atomic proposition is a statement over the variables or

parameters of a problem that is either True pJq or False (K).

Assume now that AP is a finite set of such propositions.

Definition 2. Let AP be a finite set of atomic propositions.

A timed word w over AP is an infinite sequence w :“
pw1, t1qpw2, t2q . . . where w1, w2, . . . is an infinite word

over 2AP and t1, t2, . . . is a time sequence. l

Definition 3. A Weighted Transition System (WTS) is a tuple

pΠ,Π0,ÝÑ,AP,L, γq, where Π is a finite set of states,

Π0 Ď Π is a set of initial states, ÝÑĎ Π ˆ Π is a

transition relation, AP is a finite set of atomic propositions,

L : ΠÑ 2AP is a labeling function, and γ :ÝÑÑ Rą0 is a

map that assigns a positive weight to each transition. l

Definition 4. A timed run of a WTS is an infinite sequence

r “ pr1, t1qpr2, t2q . . . , such that r1 P Π0 and rj P Π,

prj , rj`1q PÝÑ, for all j P N. The time stamps tj are

inductively defined with t1 “ 0 and tj`1 “ tj`γprj , rj`1q,
for all j P N. The timed run r generates a timed word

wprq “ w1pr1q, w2pr2q, . . . “ pLpr1q, t1q, pLpr2q, t2q, . . .
over the set 2AP , where Lprjq is the subset of atomic

propositions AP that are true at state rj at time tj , j P N.

l

The syntax of a timed temporal logic formula over AP is

defined by a grammar that has the form

ϕ :“ p | "ϕ | ϕ1^ϕ2 | ©I ϕ | ♦Iϕ | lIϕ | ϕ1UIϕ2, (1)

where ϕ P AP , and ©, ♦, l, and U are the next,

future, always, and until operators, respectively; I is a

nonempty time interval in one of the followings forms:

ri1, i2s, ri1, i2q, pi1, i2s, pi1, i2q, ri1,8q, pi1,8q, with i1, i2
P Q. Several languages are subsets of the form (1), such

as Metric Temporal Logic (MTL), Metric Interval Temporal

Logic (MITL), Bounded MTL, coFlat MTL, or Time Win-

dow Temporal Logic (TWTL) [20], [21]. Here we define

the generalized semantics of (1) over discrete observations

(point-wise semantics) [22]. The next definition considers the

satisfaction of a formula by a timed run.

Definition 5. [22], [23] Given a sequence R “
pπ0, t0qpπ1, t1q . . . and a timed formula ϕ, we define

pR, iq |ù ϕ, i P N0 (R satisfies ϕ at i) as follows:

pR, iq |ùpô p P Lpπiq, pR, iq |ù "ϕô pR, iq ­|ù ϕ,

pR, iq |ùϕ1 ^ ϕ2 ô pR, iq |ù ϕ1 and pR, iq |ù ϕ2,

pR, iq |ù©I ϕô pR, i` 1q |ù ϕ and ti`1 ´ ti P I,

pR, iq |ùϕ1UIϕ2 ô Dk ě i such that pR, kq |ù ϕ2,

tk ´ ti P I and pR,mq |ù ϕ1,@m P ti, . . . , ku.

Also, ♦Iϕ “ JUIϕ and lIϕ “ "♦I"ϕ. Finally, R satisfies

ϕ, denoted by R |ù ϕ, if and only if pR, 0q |ù ϕ. l

III. PROBLEM FORMULATION

Consider, @t ě t0 ě 0, a nonlinear system with dynamics

9xptq “ fpxptqq ` gpxptqqupxptq, tq, xpt0q “ x0, (2)

where x : rt0,8q Ñ Rn denotes the system’s states with

initial condition x0 P R
n at t “ t0, u : Rn ˆ rt0,8q Ñ Rm

is a control input, and f : Rn Ñ Rn, g : Rm Ñ Rnˆm are

unknown, locally Lipschitz functions.

Consider also K P N points of interest in the state space,

denoted by ck P Rn, for k P K :“ t1, . . . ,Ku. Each point

ck, k P K, corresponds to certain properties of interest,

which are expressed as Boolean variables via the finite set

of atomic propositions AP . These properties shared by a

point of interest are naturally inherited to some neighborhood

of that point. Hence, we also define for each k P K the

region of interest πk, corresponding to the point of interest

ck, as the set πk :“ B̄pck, ρkq, with ρk ą 0 chosen such that

πk X πk1 “ H, for all k, k1 P K with k ‰ k1.

Denote Π :“ tπ1, . . . , πKu. Then, the properties satisfied

at each region of interest are provided by the labeling

function L : ΠÑ 2AP . Informally, L assigns to each region

πk, k P K, the subset of the atomic propositions that hold true

in that region. The system is assumed to be in a πk simply

when x P πk. We further need the following assumption.

Assumption 1. It holds that fpckq “ 0 for all k P K. l

Along with Π, we further consider a set of Ko unsafe

pairwise disjoint spherical zones O :“ to1, . . . , oKo
u, with

ok :“ B̄pcok , ρokq, k P Ko :“ t1, . . . ,Kou, satisfying

ok X πk1 “ H, for all pk, k1q P Ko ˆ K, which defines

the free space F :“ RnzO. We are interested in achieving

timed temporal specifications over the atomic propositions

AP while avoiding the unsafe zones. We achieve that by

guaranteeing safe timed transitions between the regions of

interest in Π. We first need the following definition regarding

the behavior of the system.

Definition 6. Consider an agent trajectory x : rt0,8q Ñ Rn

of (2). Then, a timed behavior of x is the infinite sequence

bpt0q :“ pxpt0q, σ0, t0qpxpt1q, σ1, t1q . . . , where t0, t1, . . . is

a time sequence according to Definition 1, xptiq P πji , ji P K
for all i P N0, and σi “ Lpπjiq Ď 2AP , i.e., the subset

of atomic propositions that are true when xptjq P πji , for

i P N0. The timed behavior b satisfies a timed formula ϕ

safely if bσpt0q :“ pσ0, t0qpσ1, t1q . . . |ù ϕ and xptq P F ,

for all t ě t0. It eventually satisfies ϕ safely if there exists

j P N such that suffpbσpt0q, jq “ suffpaσpt0q, jq, for some

aσpt0q |ù ϕ and xptq P F , for all t ě tj . l

We develop a learning-based control strategy such that

the system learns how to safely execute transitions in Π,

resulting in eventual satisfaction of ϕ, while also achieving

optimality with respect to some user-defined cost. Note that

eventual satisfaction implies that ϕ dictates repetitive tasks

and/or tasks over long time horizons that the system is able

to learn to execute. The latter, however, is not a restrictive

assumption, since such tasks encompass the full potential of

timed temporal logic languages.
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Define now, for each point of interest ci, the error ei :“
x´ ci, evolving according to the dynamics

9ei “ Fipeiq `Gipeiqu :“ fpei ` ciq ` gpei ` ciqu, (3)

for all i P K, and the performance criteria:

Jpeipt0q, t0, tf , uq :“

ż tf

t0

rpeipτq, upeipτq, τqqdτ, (4)

with t0 ě 0, tf ą t0. Here, rpe, uq :“ Qpeq ` Spuq is a

metric of performance, with Spuq :“ uJRu, R ą 0, and

Q : Rn Ñ Rě0 being a positive-definite function. This gives

rise to the timed behavior cost of a timed behavior b.

Definition 7. Consider a system closed-loop trajectory x :

rt0,8q Ñ Rn along the control input u and the associated

timed behavior b “ pxpt0q, σ0, t0qpxpt1q, σ1, t1q . . . , with

xptiq P πji , ji P K for all i P N0. The timed behavior

cost J is the infinite sequence of functions J :“ J0J1 ¨ ¨ ¨ ,
where Ji :“ Jpeji`1

ptiq, ti, ti`1, uq, for all i P N0. l

The cost of the timed behavior naturally leads to the ǫ-

optimal timed behavior defined next, where Apta, tbq is the

set of all functions from Rn ˆ rta, tbs to Rm, tb ą ta ě t0:

Definition 8. Consider a system trajectory x : rt0,8q Ñ
Rn. Given ǫ ą 0, its timed behavior bpt0q “
pxpt0q, σ0, t0qpxpt1q, σ1, t1q . . . is said to be ǫ-optimal, if

the associated timed behavior cost J “ J0J1 . . . satis-

fies }Ji ´ J‹
i } ď ǫ, for all i P N, where J‹

i :“
min

αPApti,ti`1q
Jpeji`1

ptiq, ti, ti`1, αq. l

We can now state the problem considered in this work.

Problem 1. Let a system evolve according to the unknown

dynamics (2), and with initial position xpt0q P πj0 , j0 P K.

Given a timed formula ϕ over AP and a labeling function

L, design a control law u : Rn ˆ rt0,8q Ñ Rm that results

in a solution x : rt0,8q Ñ Rn, which achieves an ǫ-optimal

timed behavior that eventually satisfies ϕ safely. l

The next sections describe our two-layered solution to

Problem 1. We first synthesize a high-level timed path over

Π that satisfies ϕ, by neglecting the unknown dynamics (2).

Then, we design a novel learning-based control algorithm

that learns how to execute safe timed transitions over Π

based on data obtained online from the current trajectory,

which leads to the eventual safe satisfaction of ϕ.

IV. HIGH-LEVEL PLAN GENERATION

The first ingredient of the proposed solution is the deriva-

tion of a high-level plan that satisfies the given formula ϕ.

To this end, we abstract the motion of the system as a finite

weighted transition system [2]

T :“ pΠ,Π0,ÝÑ,AP,L, γq, (5)

where Π is the discretized state space, Π0 Ď Π is the initial

region, computed as Π0 :“ πk0
, k0 :“ arg minkPKt}xpt0q´

ck}u, ÝÑĎ ΠˆΠ is a transition relation, AP and L are the

set of atomic propositions and labeling function, respectively,

defined in the previous section, and γ :ÝÑÑ Rą0 is a map

that assigns a positive weight to each transition. For now, we

assume that the system can execute the transitions among the

regions in Π within the time interval dictated by γ; the latter

can be chosen according to several criteria, such as input

capabilities of the system, Euclidean distance among points

of interest, etc1. In the next section we will consider the

control design for the execution of these timed transitions.

Given the transition system T and the formula ϕ, we can

apply standard formal verification methodologies in order

to compute a timed path over Π that satisfies ϕ. The most

common practice to achieve this is the following: Firstly, ϕ

is algorithmically translated to a Timed Büchi Automaton

(TBA) AB , a system consisting of a discrete set of states

associated with AP , whose accepting runs satisfy ϕ [2].

Secondly, we compute the product between the two discrete

systems rT :“ T bAB . Finally, rT is viewed as a graph and

standard graph-based algorithms are used to derive a timed

path that satisfies ϕ. This path has the prefix-suffix form

p“pπk0
, t0q. . .pπkµ´1

, tkµ´1
q

„
pπkµ

, tkµ1
q. . .pπkµ`ν

, tkµ2
q

ω

,

where µ1 :“ µ ` ιν, µ2 :“ µ ` pι ` 1qν, for positive µ,

ν, where the superscript ω denotes infinite repetition and

ι “ 0, 1, . . . denotes the repetition index. The execution of p

produces a trajectory xptq, t ě t0, with timed behavior bpt0q
that satisfies ϕ, i.e., bσpt0q |ù ϕ (see Definition 6). One can

also obtain a timed path p satisfying ϕ using optimization

methodologies. In particular, it has been shown that the

satisfaction of a timed temporal formula can be formulated

as a Mixed Integer Linear Programming (MILP) problem [4],

where binary variables are introduced to represent the several

atomic propositions and the time constraints involved in ϕ.

We assume that the timed path p is feasible. Hence, in

the next section, we design a data-based learning control

protocol that learns over time how to successfully execute

the timed transitions in p, while avoiding the unsafe zones.

This leads to the eventual satisfaction of ϕ, as per Def. 6.

V. OPTIMAL TRANSITION

This section describes the data-based optimal control de-

sign for the optimal timed transition among two regions πk
and πℓ, which is defined as follows.

Definition 9. Assume that xptkq P πk, for tk P Rě0. Then,

the system performs an optimal timed transition to πℓ, ℓ P
Kztku, denoted by πk ÝÑ πℓ, if it applies a time-varying

feedback control law u : Rn ˆ rtk, tℓs Ñ Rm such that, for

some δ P Rą0, the solution of the closed loop system (2)

satisfies the following:

1) xptq P πℓ for all t P rtk ` δ, tℓq,
2) xptq P Fz

Ť
mPKztℓu πm for all t P rtk, tℓs,

3) upxptq, tq “ arg J‹
i , where we define J‹

i “
minαPAptk,tℓq Jpeℓptkq, tk, tℓ, αq.

The timed transition is ǫ-optimal, if 3) is replaced by

}Jpeℓptkq, tk, tℓ, upxptq, tqq ´ J
‹
i } ď ǫ. l

1One can also consider online reconfiguration algorithms that give an
optimal time duration based on exerted control effort [11].
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A. Optimal Control with Soft Constraints

Evidently, it is not necessary that a control law u that

minimizes (4) can always achieve the timed behavior de-

scribed in Problem 1. Hence, the minimization of (4) has

to be subject to some hard constraints imposing the desired

timed behavior, or the desired behavior can be incorporated

as a soft constraint in the cost (4). To achieve the latter, let

us consider two regions of interest πk, πℓ, corresponding

to two subsequent time instances tk and tℓ, with k, ℓ P K.

Then, we redefine the performance criterion (4) into:

Jℓpeℓptkq, tk, uq:“

ż tℓ

tk

´
γrpeℓpτq, upeℓpτq, τqq

` Lk,ℓpeℓpτqq
¯
dτ ` φpeℓptℓqq, (6)

subject to: 9eℓ “ Fℓpeℓq `Gℓpeℓqu, (7)

where we also drop the final time tℓ argument for brevity. In

(6), φ : Rn Ñ Rě0 is a positive-definite term that penalizes

the deviation of the terminal state from the point of interest

cℓ. In addition, Lk,ℓ : Rn Ñ Rě0 is another penalty term

satisfying Lk,ℓp0q “ 0, and designed so that the system

under the controller that minimizes (6) avoids all unsafe

zones O and regions πi, i P Kztℓu. It is strictly positive

in these regions, monotonically decays to and remains equal

to zero after a small distance outside them, and is also

continuously differentiable. Finally, γ ą 0 dictates a trade-off

between: a) ensuring avoidance of the unsafe zones and the

regions πi, i P Kztℓu and satisfaction of the terminal region

specification; b) achieving good performance according to

the metric rp¨, ¨q.
Following [1], it can be shown that an infinitesimal

expression for a continuously differentiable value function

V u
ℓ :“ Jℓp¨, ¨, uq, which is equivalent to (6), is given by

LEpV u
ℓ , uq “ ∇tV

u
ℓ peℓ, tq `∇ℓV

u
ℓ peℓ, tq

TpFℓpeℓq

`Gℓpeℓquq ` γrpeℓ, uq ` Lk,ℓpeℓq “ 0, (8)

which is a partial differential equation. If we let tk “ tℓ,

then owing to (6) the boundary condition of (8) is

V u
ℓ peℓptℓq, tℓq “ φpeptℓqq. (9)

Define the optimal value function as V ‹
ℓ peℓ, tq “

minu Jℓpeℓ, t, uq, for all eℓ P Rn, t P rtk, tℓs. If V ‹
ℓ is

continuously differentiable, by following [1] we can derive

the corresponding minimizing controller u‹
ℓ as:

u‹
ℓpeℓ, tq “ ´

1

2γ
R´1Gℓpeℓq

T∇eℓV
‹
ℓ peℓ, tq. (10)

Combining (10) with LEpV ‹
ℓ , u

‹
ℓq “ 0, we obtain the

Hamilton-Jacobi-Bellman (HJB) equation:

∇tV
‹
ℓ peℓ, tq ` γQpeℓq ` Lk,ℓpeℓq `∇eℓV

‹
ℓ peℓ, tq

T
Fℓpeℓq

´
1

4γ
∇eℓV

‹
ℓ peℓ, tq

T
GℓpeℓqR

´1Gℓpeℓq
T∇eℓV

‹
ℓ peℓ, tq “ 0,

V ‹
ℓ peℓ, tℓq “ φpeℓq. (11)

Equation (11) needs to be solved in order to compute (10).

The following theorem shows that if γ is picked suffi-

ciently small and a controllability condition holds, then the

optimal policy u‹
ℓ can achieve an optimal timed transition.

Theorem 1. Assume that there exists a control law ucℓ :

Rn ˆ rtk, tℓs such that the closed-loop system eℓptq under

u “ ucℓ satisfies: a) eℓptℓq “ 0; b) Lk,ℓpeℓptqq “ 0, for

all t P rtk, tℓs. Then, there exists γ‹ ą 0, such that if

γ ă γ‹, the closed-loop system eℓptq under u “ u‹
ℓ executes

an optimal timed transition, according to Def. 9.

Proof. Denote by ecℓ the trajectories of eℓ under u “ ucℓ, and

by e‹
ℓ the trajectories of eℓ under u “ u‹

ℓ . By definition,

it holds that Lk,ℓpe
c
ℓptqq “ 0 for all t P rtk, tℓs, and

φpecℓptℓqq “ 0. Hence,

Jℓpeℓptkq, tk, u
c
ℓq “

ż tℓ

tk

γrpecℓpτq, u
c
ℓpe

c
ℓpτqqdτ. (12)

By optimality, it follows that

0 ď Jℓpeℓptkq, tk, u
‹
ℓq ď Jℓpeℓptkq, tk, u

c
ℓq. (13)

Due to (12), limγÑ0` Jℓpeℓptkq, tk, u
c
ℓq “ 0. As a result,

it follows from (13) that limγÑ0` Jℓpeℓptkq, tk, u
‹
ℓq “ 0,

hence also limγÑ0` Lk,ℓpe
‹
ℓptqq “ 0 for all t P rtk, tℓs,

and limγÑ0` φpe‹
ℓptℓqq “ 0. Hence, for all ǫ‹ ą 0 there

exists γ‹ ą 0, such that if γ ă γ‹, then Lk,ℓpe
‹
ℓptqq ă ǫ‹

for all t P rtk, tℓs and φpe‹
ℓptℓqq ă ǫ‹. The result follows by

the design properties of Lk,ℓ and φ.

Next, we drop the subscript ℓ for ease of exposition.

B. Policy Iteration

The analytic solution to (11) is hard to obtain, hence we

have to resort to approximate solution methods. To do so, we

will require a few definitions and assumptions. First, for the

cost (6) to be properly defined and for the corresponding

value function to be continuously differentiable, we only

consider control laws that are admissible.

Definition 10. A control law u : Rn ˆ rtk, tℓs Ñ Rm is

admissible with respect to the cost (6), denoted by u P U , if

‚ u is continuous over Rnˆ rtk, tℓs with up0, tq “ 0 for

all t P rtk, tℓs; and

‚ the origin of system (7) is uniformly Lyapunov stable

under u, the trajectories of (7) are bounded for all t P
rtk, tℓs, and the cost (6) is finite for all eℓ, tk. l

Next, let P` denote the set of continuously differentiable

functions Rn ˆ rtk, tℓs Ñ R. For any function V P P`,

assume that V p¨, t̄q is positive-definite for all t̄ P rtk, tℓs.
We now need the following assumption for V ‹ [16], [18].

Assumption 2. The optimal value function V ‹, which solves

the HJB equation (11), belongs to P`, i.e., V ‹ P P`. l

Next, we present the Policy Iteration (PI) algorithm for

solving the finite-horizon, time-varying HJB equation.

Policy Iteration

Let u0 P U . Then, for all i P N, perform the iteration:

1) Evaluate the value function V ui by solving (8):
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∇tV
uipe, tq `∇eV

uipe, tqT pF peq `Gpequiq

` γrpe, uiq ` Lpeq “ 0, @t P rtk, tℓs, (14)

with V uipeptℓq, tℓq “ φpeptℓqq.
2) Choose the next control law ui`1 as

ui`1pe, tq “ ´
1

2γ
R´1GpeqT∇eV

uipe, tq. (15)

The following lemma is needed to prove convergence of PI.

Lemma 1. Consider the sequence of control laws tuiuiPN
and continuously differentiable value functions tV uiuiPN
generated by the PI algorithm through equations (14)-(15).

Let ui be admissible, for some i P N. Then:

1) ui`1 is admissible.

2) V ‹pe, tqďV ui`1pe, tqďV uipe, tq, @pe, tqPRnˆrtk, tℓs.

Proof. We will provide only a sketch of the proof. For the

first part, over the trajectories of (3) under u “ ui`1:

9V ui“∇tV
ui`p∇eV

u
i q

TpF`Guiq`p∇eV
u
i q

TGpui`1´uiq

“ ´γQpeq ´ γSpuiq ´ Lpeq ´ 2γuT
i`1

Rpui`1 ´ uiq

“ ´γQpeq´Lpeq´γSpui`1q ´ γSpui`1 ´ uiq ď 0, (16)

where we used (14) and (15). Hence, exploiting also As-

sumption 2, and using arguments similar to [24], one can

prove the admissibility of ui`1. For item 2q, the integration

of (16) over t P rtk, tℓs yields:

V uipeptℓq, tℓq ´ V
uipek, tkq “ ´

ż tℓ

tk

`
γQpeq

` γSpui`1q ` Lpeq
˘
dτ ´

ż tℓ

tk

γSpui`1 ´ uiqdτ. (17)

Owing to (9), we have V uipeptℓq, tℓq “ V ui`1peptℓq, tℓq “
φpeptℓqq. Therefore, (17) is equivalent to:

V uipek, tkq “ V ui`1pek, tkq `

ż tℓ

tk

γSpui`1 ´ uiqdτ.

Hence, V ui`1pe, tq ď V uipe, tq, @pe, tq P Rnˆrtk, tℓs, while

the inequality V ‹pe, tq ď V uipe, tq holds by optimality.

Theorem 2. Let u0 P U . Then, the PI algorithm described

through equations (14)-(15) guarantees that lim
iÑ8

V ui “ V ‹

and lim
iÑ8

ui “ u‹. The convergence is uniform on any

compact subset of Rn ˆ rtk, tℓs.

Proof. Given the monotonicity results of Lemma 1, the proof

follows similar steps with [24] and is thus omitted.

C. Approximate Solution to the Time-Varying HJB Equation

The PI algorithm requires knowledge of the system’s

dynamics functions F, G. Towards implementing a model-

free version of PI, we rewrite the system error dynamics as

9e “ F peq `Gpequipe, tq `Gpeqvipe, tq, t ě 0, (18)

where vi “ u´ui, i P N, and ui is as defined in (15). Taking

the total time derivative of the value function V ui , i P N,

along the trajectories of (18), and using (14)-(15), we obtain

9V ui“∇tV
ui`p∇eV

uiqT pF peq`Gpequipe, tq`Gpeqvipe, tqq

“´γQpeq ´ γSpuq ´ Lpeq ´ 2γui`1pe, tq
TRvipe, tq. (19)

Integrating (19) over any time interval rt, t`T s Ď rtk, tℓs,
with T ą 0 and for all t P rtk, tl ´ T s, we derive

V uipept` T q, t` T q ´ V uipeptq, tq “ ´

ż t`T

t

´
γQpeq

`Lpeq`γSpuipe, τqq ` 2γui`1pe, τq
TRvipe, τq

¯
dτ, (20)

V uipeptℓq, tℓq “ φpeptℓqq. (21)

Notice that (20)-(21) is a model-free version of (14), as it

is independent of the functions F, G. However, we need

to resort to approximation theory to solve it with respect

to ui`1 and V ui . Particularly, we can use the Weierstrass

approximation theorem [1] and deduce that V ui , ui can be

uniformly approximated on a compact set Ωˆrtk, tℓs “: D,

with Ω Ă Rn. Then, we can express V ui , ui`1, @i P N, as

V uipe, tq “ pwv
i q

Tψvpe, tq ` φpeq ` ǫvi pe, tq, (22a)

ui`1pe, tq “ pw
u
i q

Tψupe, tq ` ǫui pe, tq, (22b)

where wv
i P RNv , wu

i P RNuˆm are weights, ψv : Rn ˆ
rtk, tℓs Ñ RNv , ψu : Rn ˆ rtk, tℓs Ñ RNu are basis

functions and ǫvi : Rn ˆ rtk, tℓs Ñ R, ǫui : Rn ˆ rtk, tℓs Ñ
Rm are the approximation errors. The approximation errors

ǫvi , ǫui converge to zero, uniformly on D, as Nv, Nu Ñ8.

As wv
i and wu

i in (22) are unknown, we construct a critic

and an actor neural network to approximate V ui , ui`1 as

V̂ uipe, tq :“ pŵv
i q

Tψvpe, tq ` φpeq, (23a)

ûi`1pe, tq :“ pŵ
u
i q

Tψupe, tq, (23b)

where ŵv
i P RNv , ŵu

i P RNuˆm are the critic and the actor

weights respectively, and i P N. Notice that a bias term has

been introduced for the approximation of the value function

in (22)-(23). Its purpose is to impose the boundary condition

(21) to hold irrespectively of how the critic weights ŵu
i are

chosen, as long as the basis functions are appropriate.

Corollary 1. Let ψvp0, tq “ 0, @t P rtk, tℓs, and ψvpe, tℓq “
0, @e P Rn. Then, @i P N, it holds that: V̂ uipe, tℓq“φpeq,
@e P Rn, and V̂ uip0, tq “ 0, @t P rtk, tℓs.

Consider now a number of time instances τj , j P
t0, . . . , Nu “: N such that tk “ τ0 ă τ1 ă . . . ă τN “ tℓ.

Using the approximation (23), the left hand side of (20) for

t “ τj and t` T “ τj`1, j P N ztNu, is approximated as:

V̂ uipepτj`1q, τj`1q´V̂
uipepτjq, τjq “φpepτj`1qq ´ φpepτjqq

` pŵv
i q

Tpψvpepτj`1q, τj`1q ´ ψ
vpepτjq, τjqq. (24)

In addition, the term 2γui`1pe, τq
TRvipe, τq at the right hand

side of (20) can be approximated using the actor as:

2γûi`1pe, τq
TRv̂ipe, τq “ 2γψupe, τqTŵu

i Rv̂ipe, τq

“ 2γ
´`
v̂ipe, τq

TR
˘
b ψupe, τqT

¯
vecpŵu

i q,
(25)

where v̂i “ u ´ ûi. Hence, the residual error created by

approximating equation (20) through (24)-(25) is

ej,i:“V̂
uipepτj`1q, τj`1q ´ V̂

uipepτjq, τjq `

ż τj`1

τj

´
γQpeq

754

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 09,2022 at 18:25:05 UTC from IEEE Xplore.  Restrictions apply.



Algorithm 1 Model-Free PI

1: Employ an arbitrary behavioral policy ub to the system

(3), and collect input-state data online.

2: Let u0 P U be admissible, select ǫ ą 0 and set i “ 0.

3: repeat

4: Solve for ŵv
i and ŵu

i from equation (27) and i “ i`1.

5: until
∥

∥ŵv
i ´ ŵ

v
i´1

∥

∥ ă ǫ

6: Switch from ub to the learnt control policy ûi.

`Lpeq`γSpûipe, τqq`2γûi`1pe, τq
TRv̂ipe, τq

¯
dτ,

which can be written as:

ej,i “ Θj,iŴi `Ψj,i, (26)

where Θj,i :“ rΘ
v
j,i Θ

u
j,is, Ŵi :“ rpŵ

v
i q

T vecpŵu
i q

TsT, and

Θv
j,i :“

´
ψvpepτj`1q, τj`1q ´ ψ

vpepτjq, τjq
¯T

,

Θu
j,i :“

ż τj`1

τj

2γ
´`
v̂ipe, τq

TR
˘
b ψupe, τqT

¯
dτ,

Ψj,i :“ φpepτj`1qq ´ φpepτjqq

`

ż τj`1

τj

´
γQpeq ` Lpeq ` γSpûipe, τqq

¯
dτ.

If enough data is obtained along the system’s trajectories, we

can find Ŵi by least squares to minimize the error (26). To

that end, we impose a standard assumption [17], [18].

Assumption 3. There exist δ ą 0 and l0 P N , so that for

all l ě l0 it holds that
řl

j“0
ΘT

j,iΘj,i ą lδINv`mNu
. l

Given Assumption 3, the least squares solution to (26) is:

Ŵi “ ´
´ lÿ

j“0

ΘT
j,iΘj,i

¯´1´ lÿ

j“0

ΘT
j,iΨj,i

¯
. (27)

As a result, we can obtain the model-free version of PI, as

shown in Algorithm 1. Its convergence is shown next.

Theorem 3. Let Assumption 3 hold. Then, for all ǫ ą 0 there

exist constants Nm
v , N

m
u , i

‹ P N, such that if Nv ě Nm
v

and Nu ě Nm
u , then for all pe, tq P D, i ě i‹, it holds that

∥

∥

∥
V̂ uipe, tq ´ V ‹pe, tq

∥

∥

∥
ď ǫ, ‖ûi`1pe, tq ´ u

‹pe, tq‖ ď ǫ.

Proof. We will provide only a sketch of the proof. For i P N,

let Ṽ ui be the value function of ûi, where û0 “ u0, so

that LEpṼ ui , ûiq “ 0, Ṽ uip0, tq “ 0, for all t P rtk, tℓs,
and Ṽ uipe, tℓq “ φpeq, for all e P Ω. Let also ũi`1pe, tq “
´ 1

2γ
R´1GpeqT∇eṼ

uipe, tq, @pe, tq P D. Then:

Ṽ uipepτj`1q, τj`1q ´ Ṽ
uipepτjq, τjq “ ´

ż τj`1

τj

´
γQpeq

`Lpeq`γSpûipe, τqq ` 2γũT
i`1
pe, τqRv̂ipe, τq

¯
dτ (28)

There exist w̃v
i P RNv , w̃u

i P RNuˆm such that

Ṽ uipe, tq “ pw̃v
i q

Tψvpe, tq`φpeq` ǫ̃vi pe, tq and ũi`1pe, tq “
pw̃u

i q
Tψupe, tq`ǫ̃ui pe, tq. The approximation errors ǫ̃vi : Rnˆ

rtk, tℓs Ñ R, ǫ̃ui : Rnˆrtk, tℓs Ñ Rm vanish uniformly on

D as Nv, Nu Ñ 8. Substituting these expressions in (28),

we have:
0 “ Θj,iW̃i `Ψj,i ` Ej,i, @j P N , i P N, (29)

where W̃i“rw̃
vT
i vecpw̃u

i q
TsT and Ej,i“ǫ̃

v
i pepτj`1q, τj`1q´

ǫ̃vi pepτjq, τjq `
şτj`1

τj
2γǫ̃ui pe, τq

TRv̂ipe, τqdτ . Hence, using

the least-squares law (27), (29), Assumption 3 and the

Weierstrass approximation theorem, one can show that for

all ǫ ą 0 there exist N‹
v , N

‹
u ą 0, such that if Nv ě N‹

v ,

Nu ě N‹
u then @pe, tq P D it holds that

|V̂ uipe, tq ´ Ṽ uipe, tq| ď ‖pŵv
i ´ w̃

v
i q‖ ‖ψ

v
i pe, tq‖ (30)

` |ǫ̃vi pe, tq| ď
ǫ

2
`
ǫ

2
“ ǫ,

‖ûi`1pe, tq ´ ũi`1pe, tq‖ ď ‖ŵu
i ´ w̃

u
i ‖ ‖ψ

u
i pe, tq‖ (31)

` ‖ǫ̃ui pe, tq‖ ď
ǫ

2
`
ǫ

2
“ ǫ.

Finally, an induction is used to derive the final result.

1) For i “ 0, we have Ṽ u0 “ V u0 and ũ1 “
u1. Hence, due to the uniform convergence (30)-(31),

it follows that limNv,NuÑ8 V̂ u0pe, tq “ V u0pe, tq and

limNv,NuÑ8 û1pe, tq “ u1pe, tq, uniformly on D.

2) Suppose that limNv,NuÑ8 V̂ ui´1pe, tq “ V ui´1pe, tq
and limNv,NuÑ8 ûipe, tq “ uipe, tq, uniformly on D,

for some i P N`. Then, using these assumptions

along with Assumption 3 and (20)-(21), one can prove

that limNu,NvÑ8 Ṽ uipe, tq “ V uipe, tq. Hence, since

|V uipe, tq´V̂ uipe, tq| ď |V uipe, tq´Ṽ uipe, tq|`|Ṽ uipe, tq´
V̂ uipe, tq|, we can use the inductive assumption to conclude

that, @ǫ ą 0, there exist N‹‹
v , N‹‹

u ą 0 such that if

Nv ě N‹‹
v , Nu ě N‹‹

u then @pe, tq P D, one has |V uipe, tq´
V̂ uipe, tq| ď ǫ, which concludes the induction. The result

follows using the triangular inequality and Theorem 2.

Remark 1. Due to Theorems 1 and 3, if Nv, Nu are large

enough and γ is small, the closed-loop system eventually

guarantees an ǫ-optimal safe timed transition between πk and

πℓ as per Def. 9. Since the aforementioned results apply for

the transition among any pair of regions, we conclude that

the closed-loop system eventually satisfies ϕ safely. l

VI. SIMULATIONS

We consider a two-link manipulator as in [25], with

q “ rq1 q2s
T being the angular positions (in rad) and

9q “ r 9q1 9q2s
T the angular velocities (in rad/s), respectively.

We also consider three regions of interest Π “ tπ1, . . . , π3u
centered at c1 “ r´0.2,´0.5, 0, 0s

T, c2 “ r0.5,´0.4, 0, 0s
T,

c3 “ r0, 0.2, 0, 0sT, and a joint-state obstacle centered at

o4 “ r0.2,´0.46s
T, all with radius 0.05. Further, we consider

AP:“t‘1’, ‘2’, ‘3’u and Lpπiq“t‘i’u, i P t1, . . . , 3u.
We impose a timed temporal logic task dictated by the

formula ϕ “ l♦r0,5s‘i’, i P t1, 2, 3u, implying periodic

visit to regions π1, π2, π3 every 5 seconds; we also require

avoidance of the obstacle, for which we compute L using

o4. By setting γp¨q “ 5 for all transitions in Π ˆ Π in (5),

and following the methodology of Section IV, we obtain the

repetitive timed path p “
“
pπ1, 5k`5qpπ2, 5k`10qpπ3, 5k`

15q
‰ω

for k P t0, 1, . . . , u. We perform Alg. 1 by employing

a sinusoidal behavioral policy ub for 150 seconds, and then
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Fig. 1. Evolution of the Frobenius norms of the actor and the critic
weights, as derived by Alg. 1.
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Fig. 2. Evolution of q after employing the policy given by Alg. 1.

executing the model-free PI by solving Eq. (27) iteratively.

The evolution of the critic-actor weight norms during the

execution of Alg. 1 are illustrated in Fig. 1, showing their

convergence. After the passage of the 150 seconds, the policy

derived by Alg. 1 substitutes the behavioral policy, and the

resulting closed-loop trajectories for t ě 150 [sec] can be

seen in Fig. 2. It can be verified that the closed-loop system

executes successfully the timed path, leading to the eventual

satisfaction of ϕ. For all three repetitive OCPs, we chose

R“0.5I2, φpeq“Qpeq“eT pdiagr20 20 10 10sq e, γ“0.1.

VII. CONCLUSION

We develop a two-layered algorithm for the planning and

control of unknown systems with timed temporal logic tasks.

We design a novel data-driven control protocol that learns

how to execute optimal timed transition between regions of

the state-space, which guarantees the eventual satisfaction of

the task. Future efforts will be devoted towards addressing

continuous-time temporal tasks under the same framework.
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