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Abstract—1In this paper, we develop safe reinforcement-
learning-based controllers for systems tasked with accomplish-
ing complex missions that can be expressed as linear temporal
logic specifications, similar to those required by search-and-
rescue missions. We decompose the original mission into a
sequence of tracking sub-problems under safety constraints.
We impose the safety conditions by utilizing barrier functions
to map the constrained optimal tracking problem in the
physical space to an unconstrained one in the transformed
space. Furthermore, we develop policies that intermittently
update the control signal to solve the tracking sub-problems
with reduced burden in the communication and computation
resources. Subsequently, an actor-critic algorithm is utilized
to solve the underlying Hamilton-Jacobi-Bellman equations.
Finally, we support our proposed framework with stability
proofs and showcase its efficacy via simulation results.

I. INTRODUCTION

Assured autonomy is challenging in problems with
complex dynamics, unknown models and adversarial en-
vironments. For learning-based systems, designing high-
confidence, high-performance, and dynamically-configured
secure policies for avoiding unsafe operating regions is
of paramount importance. Recognizing that reinforcement
learning (RL) [1] is an important component of assured
autonomy, we focus on learning-enabled systems. A large
class of mission objectives can be modeled as a require-
ment to follow multiple reference trajectories and endpoints
sequentially. One such scenario is found in search and
rescue missions in which an autonomous vehicle follows
specific search trajectories, with possible intermediate stops
for recharging, before eventually returning to a specific
location after certain conditions have been met [2]. Temporal
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logic specifications [3] offer a systematic way of describing
the different modes of operation of such systems as well as
the ways that those modes are interconnected through time.
Similarly, to facilitate the use of those methods in high-risk
environments, energy expenditure should be minimized by
developing strategies that alleviate the burden on the com-
munication and computation resources of the system. This
need leads to the introduction of event-triggered mechanisms
[4]; techniques that can create another layer of safety by
minimizing the opportunities of external signals to affect the
system.

The problem of safe learning has been in the forefront
in recent years. The authors in [S] combine control barrier
functions with Lyapunov control functions to construct safe
controllers. In [6], the authors deal with the problem of
safety via a dynamic invariance control framework, while the
authors of [7] investigate Hamilton-Jacobi-based reachability
methods to address the issue. The authors of [8] develop an
approximate online adaptive solution to an optimal control
problem under safety constraints with the use of barrier
functions and sparse learning. The use of temporal logic
specifications for safety has been studied in [9], where
regulation problems have been solved via RL techniques
while temporal logic specifications are guaranteed to be
satisfied. In [10], deep Q-learning was leveraged to guarantee
given specifications in a Markov decision process framework.
The motion-planning problem in a multi-robot system under
temporal logic specifications is investigated in [11] where
the authors use a library of motion primitives to accomplish
the given mission.

The framework of event-triggered control has been ex-
tensively investigated in the literature, e.g., in [12]. While
the authors in [13] expanded the framework to take into
account output feedback, most implementations remained
static. Event-triggered control has been used in tandem
with RL techniques in various scenarios. In [14], we have
brought together intermittent mechanisms to alleviate the
burden of an actor-critic framework. This was later extended
for systems with unknown dynamics under a Q-learning
framework in [15]. The authors of [16] developed a controller
with intermittent communication for a multi-agent system
whose safety constraints were expressed by metric temporal
logic specifications. Finally, event-triggering methods were
employed to the problem of autonomous path planning [17].

Contributions: The contributions of this work are three-
fold. First, we formulate a system tasked with accomplishing
a mission consisting of regulation and tracking sub-problems.

978-1-6654-3659-5/21/$31.00 ©2021 IEEE 1263

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 09,2022 at 18:25:49 UTC from |IEEE Xplore. Restrictions apply.



We decouple the problems through the use of a finite state
automaton (FSA), which also models safety constraints.
Secondly, we apply a barrier function-based transformation
on the system and the required trajectories, thus allowing us
to map the original problem into a series of optimal tracking
sub-problems. Finally, we employ an actor-critic framework
to solve the underlying tracking problems in a data-driven
fashion.

II. PROBLEM STATEMENT

Consider the time-invariant control-affine nonlinear system
&= f(x) +g(x)u, ©(0) = o, ¥t =0, (1)

where v € R", u € R are the states and the control
input, respectively. The system (1) is desired to achieve
certain goals, constrained by temporal logic specifications,
by following one of the trajectories given by the family of
exosystems

Zi = hi(z), 2(0) = zi0, V620, i€, 2)

where z; : R, — R" is the i-th candidate of the desired
trajectories to be tracked, h; : R™ — R™ is a Lipschitz
continuous function with h;(0) = 0, and Z is the set of the
trajectories to be tracked.

A. Linear Temporal Logic Syntax and Semantics

We consider syntactically co-safe linear temporal logic
(co-safe LTL) and syntactically safe linear temporal logic
(safe LTL) formulas [18] for the specifications. Let B =
{True, False} be the Boolean domain. A time set T is R~.
A set AP is a set of atomic predicates, each of which is a
mapping R" x T — B.

The syntax of a co-safe LTL formulas can be recursively
defined as follows

¢p:=Tlpl-plonrdlove| O¢| 00| elUe,

where T stands for the Boolean constant True; p € AP is
an atomic predicate; — (negation), A (conjunction), and v
(disjunction) are standard Boolean connectives; () (next), ¢
(eventually), and U (until) are temporal operators.

The syntax of a safe LTL formulas can be recursively
defined as follows,

p:=Tlp|l-plord|love| O,

where [] (always) is a temporal operator.

We refer the readers to Sec. II-B of [19] for the Boolean
semantics of co-safe and safe LTL formulas. For a co-safe
LTL formula ¢, one can construct an FSA that accepts
precisely the proposition sequences (i.e., words) that satisfy
¢. For a safe LTL formula ¢, one can construct an FSA that
accepts precisely the proposition sequences (i.e., words) that
violate ¢.

For example, a co-safe LTL specification ¢, = Ops A
(—paUpy) can express that “an unmanned aerial vehicle
(UAV) should track a certain trajectory z; (see (2)) before
tracking another trajectory zo”, where p1 = (||z(t) —

z1(t)]] <€), and py = (||z(t) — 22(¢)]| <€), and € € R~y is
a threshold for tracking error.

Problem 1: For the system given in (1) and A > 0, find a
control policy such that the closed-loop system has a stable
equilibrium point, the control input satisfies |ul| < A, and
the trajectory of state = satisfies an LTL specification ¢ =
dc A ¢s, Where ¢, is a co-safe LTL formula and ¢y is a safe
LTL formula. ]

In this paper, for simplicity we consider the safe LTL
formula ¢, to be in the form of ¢, = [Jp, where p is an
atomic predicate.

B. Decomposition of LTL Specifications

Given that ¢ = ¢. A ¢s and ¢ = [Jp, we construct an
FSA that accepts precisely the proposition sequences that
satisfy ¢, and manually divide Problem 1 into a series of
sub-problems based on the states of the constructed FSA.
For example, consider the LTL specification ¢ = ¢, A ¢y,
where ¢ = Opa A (—palpy) and ¢ = [ps, where
p1, po and ps are different atomic predicates. Based on
¢. one can construct an FSA as shown in Figure 1. Let
O(p) denote the set of time-dependent states that satisfy an
atomic predicate p. We assume that O(p1) N O(p2) = I
if p; and py are different atomic predicates. Then, the only
path from the initial FSA state gg to the final state gy is
go — q1 — qy, where the accepting state g, indicates that
¢, is satisfied. There are two resulting two-point boundary-
value problem (TPBVP) sub-problems, when the state of
the FSA transitions from ¢g to ¢1, and transitions from ¢
to gy, respectively. Specifically, when the state of the FSA
transitions from qq to ¢, the two boundary conditions for the
first TPBVP sub-problem are the initial state zo and O(py),
respectively. In this first TPBVP sub-problem, the safety
constraint can be encoded as x € O(—p2) N O(ps), as the
state can not reach O(ps) until it reaches O(p;) according to
¢., and the state must always be in O(p3) according to ¢.
Similarly, when the state of the FSA transitions from ¢; to
gy, the two boundary conditions for the second TPBVP sub-
problem are O(p;) and O(p2), respectively. In this second
TPBVP sub-problem, the safety constraint can be encoded
as « € O(ps) according to ¢s. After ¢ is reached in the
FSA, the state only needs to stay in O(p3) until the end of
time (according to ¢s).

Note that generally for a complex FSA, it may not be
straightforward to select a unique path from an initial FSA
state to a final FSA state. Hence, we can view the FSA as
a directed graph, (approximately) estimate the edge weights
(i.e., distance), and then select a path by solving a shortest
path problem. So far, we have finished decomposing the LTL
specification into a sequence of sub-problems, that as a whole
will eventually satisfy the original LTL specification.

C. Sub-Problem Tracking a Certain Trajectory

In this paper, given that ¢ = ¢. A ¢, we consider the
predicates in the co-safe LTL formula ¢, to be in the form
of p = (||z(t) — zi(t)|]] <€), i € Z. In this way, a certain
trajectory z;, ¢ € Z has to be tracked in each sub-problem
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Fig. 1. Finite state automaton generated by a co-safe LTL formula ¢, =
Op2 A (—p2lUpr).

decomposed from Problem 1. Moreover, as described in Sec.
II-B, the system state x is subject to some safety constraints
in each sub-problem, as « € Q needs to hold in each sub-
problem, where Q = {x € R"|c < Aa +r < C}, A =

[a1 az ... ap]T € R™*", with a; € R", Vie {1,...,m},
r=[r,...,tm]T € R", ¢ = [c1,...,cn]T € R™ and
C = [Cy,...,Cp]" € R™. The TPBVP sub-problem can

thus be summarized as follows.

Problem 2: (sub-problem) For the system (1), find a con-
trol input w constrained to satisfy |u| < A, so that the
system state x tracks a certain trajectory z;,¢ € Z (i.e.,
(||lx(t) — zi(t)|]| < €) for a given threshold tracking error
€) and the state = remains in the set O, given an initial
condition z(0) = . O

To guarantee the safety specifications, we transform (1),
which is constrained by Q, into an unconstrained system.
Thus, we design the following barrier function:

b(qa €o, CO) = log ( )7vp € (COa C()), (3)

where ¢y < 0 < Cy. The barrier b(q, ¢, Cp) is invertible in
the interval (co, Cp), and its inverse is given by

Co co—q
co Co—¢q

_1 @% — @_%
b (y7 €o, CO) = COCO v —u ,v:y € R7 (4)
coe2 — Cpe™ 2

with dynamics

dbil(y, Co, Co) _ C()C% — C()Cg (5)

dy ~ctev —2¢9Co + Cge v’

We now use (3)-(5) to perform the transformation of (1). In
particular, let us define

si = blgi(w),ci, Cy)
gi(z) = b (sici,C) (6)
g(x) = alz+r,Vi=1,...,m.
Through the use of the chain rule, we obtain
dSi 1 T-
E - db*l(si,ci,Ci) ai Z- (7)
dsi
Additionally, from (6), we have that
Az +7=0b""(s,¢c,0), (8)

Combining (7) with (1) yields the unconstrained subsys-

tem dynamics, Vi =1,...,n,

ds;

ditl = ma?(f(x) + g(x)u), t > 0.

ds;

In (10), the constrained state x can be written with respect
to the unconstrained state s = [s1,...,s,]7 as in (9).
Therefore, the subsystems (10) can be described in the
compact form

$=F(s)+ G(s)u, t = 0. (10)

where F': R" - R", G :R" — R".

To achieve optimal tracking while satisfying the required
safety constraints, we shall solve Problem 2 in the trans-
formed s-domain both for the system—employing the dy-
namics given by (10)—as well as the image of the target
trajectory in the s-domain. Thus, let the transformed dynam-
ics of z € z7 be given by

’és(t) = fd(zs(t))’ Zs(o) =20, t =0, (1T)

where z,(t) € R" denotes the bounded desired trajectory in
the s-domain, and fj is a Lipschitz continuous function, with
fa(0) = 0, which yields the dynamics of z;. The function
fa can be derived by following the same procedure that was
used to transform the state x into s.

We may now define a tracking error e (t) = s(t) — z5(t) €
R™ in the s-domain, V¢ > 0, with dynamics given by é,(t) =
F(es(t) + 2z5(t)) — fa(zs(t)). Hence, concatenating e, and
zs into a single state vector gy = [el 21T, we derive the
concatenated dynamics in the s-domain

Saug = Faug(Saug) + Gaug(Saug)u(t), t =0, (12)
where Fhug(Sang) = [F(es(t) +szz(f8); fd(z(t))] and

Gaug(Saug) 1= [G(es(t)0+ zs(1)) -

III. OPTIMAL TRACKING SUB-PROBLEMS

To reduce the communication burden and conserve re-
sources, the system operates under a sampled version of the
transformed state

Saug (7))

§wﬂ”—{swam

The sampling instances constitute a strictly increasing se-
quence {r; };OZO, where 7;, j € N, is the j-th consecutive

sampling instant, with 7o = 0 and lim r; = c0. To decide
j—0

when to trigger an event, we define the triggering error as
the difference between the state sauq(t) at the current time
t and the state §,,4(t) that was sampled most recently:

Vte (rj; 7l
t:Tj.

etrig(t) = §aug(t> — Saug<t)7 YVt e (Tj,Tj+1], ] e N.

Our objective is to find a feedback controller that mini-

where b= 1(s,¢,C) = [b(s1,¢1,C1)s -, b (S, Cmy Co)|T dnizes a cost functional given by

R™, hence we conclude that

x=(ATA)TAT (b (s,¢,C) — 7). )

TouzOrw =3 [

0

e 7 (szquaugsaug + R(u))dT,
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where v € R% is a discount factor, and Qang

Q
O?’LXYL O?’LX?’L . 3
Onxn a square matrix of zeros. Furthermore, to satisfy the

magnitude constraint on w, i.e., |ul| < A\, we chose R(u) to
have following form, adopted from [20],

O"X"] is a user defined matrix where @@ > 0 and

R(u) :f Atanh’l(g)wldv, Vue [-\ A, (13)
0

where tanh ! (-) denotes the inverse of the hyperbolic tangent

function and v; > 0.

Initially, we consider an infinite bandwidth optimal control
problem, assuming that the controller has access to the
augmented transformed state at all times. We define the
optimal value function V : R SR given, Vsaug, as

u

N N
V(Saug(t)):mln§£ e " t)(SZquaugSaug"‘R(u))dT,

and the associated Hamiltonian for the continuously updating
controller as

ov.. oV '
OSaug OSaug

1
+§(Szquaugsaug"‘R(HC)_27V(Saug))a vSaug:uc' (14)

After employing the stationarity condition, for the Hamil-
tonian (14), i.e., %HT() = (, the infinite bandwidth optimal

control can be found to be

H(Sauga Uc,

), Vs (15)

1
U} (Sang) = —Aanh(=——GT F
aug

2/_}/1)\ aug(SaUg)
By substituting the optimal control (15) into (14) one has
the Hamilton-Jacobi-Bellman (HJB) equation given as

. oV

cH
aSamg

Now, to reduce the communication between the plant
and the controller we use an intermittent version of (16)
by introducing a sampled-data component that will enforce
sparse and aperiodic updates for the controller. Thus, the
controller operates with the sampled version of the system
states, rather than the actual ones, and (15) becomes
u* (8aug) = f/\tanh(%%GZug(émg)aiiv), Vaug. (17)

aug

H(saug, u ) =0, Vsaug- (16)

Assumption 1: There exists a positive constant L such that

[uc(sang) — w(Saug) | < Lllewigll, Vsaug: Sang- O

Theorem 1: Consider the constrained system evolving in
the transformed s-space (10), following the trajectory given
by (11). Let the augmented tracking error system be given by
(12), and the intermittent policy by (17). Then, the closed-
loop error system has an asymptotically stable equilibrium
when 7 = 0, and is ultimately uniformly bounded (UUB)
when 7 # 0, under the triggering condition given by

(1/2 - B)A(Q)
Lz)\’}/l

1
2
les|” + T

R(u),
A ()

lewig]* <

(Faug(saug) + Gaug(saug)uc)+ HﬁbcH < ¢emax and

where 3 € (0, %) is a design parameter and A(Q) is the
minimum eigenvalue of (). Furthermore, Zeno behavior is
excluded via a lower bound on the inter-event times, i.e.,
37 > 0 such that, rj 1 —7; > 7, VjeN.

Proof. The proof closely follows [21]. |

IV. LEARNING ALGORITHM

In this section, we employ approximation structures to
solve the optimal tracking problem in a data-driven way,
while guaranteeing safety constraints.

Initially, we employ a critic approximator, that will be able
to estimate the optimal value function that solves the HIB
equation. It is known that the optimal value function can be
expressed as

V*(Saug) = 0:T¢C(3aug) + EC(Saug)a

where 6% € R" are unknown ideal weights which
are bounded as [|0%] < Ocmax. Furthermore, ¢, =
[p1 ¢o -+ ¢n] : R*™ — R" is a bounded C' basis
function, i.e., with bounded first order derivatives, so that
% < @demax, and h is the number

vSauga (18)

of basis. Finally, ¢, : R*" — R is the approximation error.
Based on this, the optimal intermittent policy in can be re-
written, Yt € (1, 7,11], as

U* (Saug) = fAtanh(LGT (Baug) X (19)

271 )\ aug
06(3aug) " o |

s C
03aug

Occ(Saug)

03 aug

We employ another approximating structure, called an
actor, to approximate the intermittent controller (19). This
is expressed, Vt € (rj, rjﬂ], as

u*(éaug) = GZTQSu(éaug) + Eu(éaug)v vgaugﬁ (20)

where 07 € R"2 are the optimal weights, ¢, are the basis
functions defined similarly to the critic approximator, ho is
the number of basis, and ¢,, is the actor approximation error.
Thus, the current estimates of the value function and the
optimal policy are derived based on estimations of the ideal
critic and actor weights, denoted éc and éu, respectively, as

V(Saug(t)) = ég¢0(5aug<t))a VSaug,
a(éaug) = Hz(bu(gaug%vgaug

The learning mechanism comprises tuning laws that will
allow us to obtain optimal estimates to the critic and actor
weights. Towards this, we define the estimation error e, € R
based on the Hamiltonian function as

v ov*

@)—H(saug, u? (Saug)

21
(22)

ec:H(saug>ﬁ(§aug)7 ) F
aug

= éjw + 7,
with w =

'Y(bc, 7 =
H (Saug, u(Saug),

O (s

ﬁsfug (Faug(saug) + Gaug(saug)u(saug)) -
iSZquaugSaug + R(ﬁ’(éau%)) and

WV Gme)) — 0 from (16), where we

asaug
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omit the dependence of ¢. on the augmented s-state.
To drive the error e. to zero one has to pick the critic
weights appropriately. By defining the squared-norm error as
E. = 1/2¢% we can apply the normalized gradient descent
method to obtain the estimate of the critic weights as

i 1 oE. w
c = — U7/ <5 = = & 5 €, 2
a(wTw +1)? 90, a(wTw + 1)26 23)
where o € R™ is a tuning parameter. ~ .
By defining the critic error dynamics as 0. = 0} — 6. and
taking its derivative with respect to time one has
. T
< W w ~ w
0= —a0———5b0. + 0——5 €, 24
¢ (Wlw + 1)2 ¢ YwTw + 1)2He 24)
where ey, = —%S;(F + G1),Vx, 4, is upper bounded by

€Hcmax € R+ as HEHcH < €Hemax-

To state stability results on the derived learning system, we
can consider the critic error dynamics as a sum of nominal
dynamical behavior with a time dependent perturbation due
to the approximation error, denoted respectively as SN and
= Sy + Sp with Sy = — 6. and
Sp = meHC

Theorem 2: Assume that M = (T++1
citing, i.e., SHT MM"dr = bI, ¥t > 0 forsome b, T e RT,
where [ is an identity matrix of appropriate dimensions, and
IM;, € R such that for all ¢ > 0, max { [M], }M‘ } < Mg
Then the nominal system SN is exponentially stable and

K1, KQER

Proof. The proof follows from [22]. ]

SP, where 9~ m

) is persistently ex-

®2t  for some

0) H Ki€e~
and for all ¢t >

To derive the tuning laws for the actor approximator, we
consider the error e, € R given, V5,,,, by

€y =U—1up

c

99(3aug) "

:ézéu(éaug)Jr)\tanh(ﬁqug(Aaug)(

where ug, is the controller based on the critic weights 9
The objective is to select 0., such that the error e, goes
to zero As such, we minimize the quadratic error function
E, = 2 ele,. In keeping with our objective to avoid over-
utilization of the system’s resources, we let the actor learn
in an aperiodic fashion, by updating the weights only at
the triggering instances, and keeping them constant between
them. This gives the system an impulsive nature, whose
behavior is investigated based on results of [23] and [24].
Then, the update laws are given by

6,(t) = 0, vt e RN\ Jr,,

jeN

(25)

and the jump dynamics of 0., ( *) are given, for t = r;, by

é: = éu - aud)u(xaug(t)) (éz(bu(saug(t))

~ T T
+)\tanh<G§ug(Aaug)M 9;) . (26)

03aug

By defining the actor error dynamics as 0, = 0r — 6, and
taking the time derivative using the continuous update (25)
and by using the jump system (26) updated at the trigger
instants one has

0.(t) =0, Yt e RN\| Jr, @7)
jeN
and, for ¢ = ry,
é+ = é - au¢u(5aug<t))¢u(Saug(t))Téu(t) (28)

o€ (éaug) '

O3aug

a¢(§aug)T

03aug

— /\tanh(ﬁG};ug(éaug) ( )9*) ’

(&
respectively. Note that the solution of (27)-(28) is left con-
tinuous; that is, it is continuous everywhere except at the
resetting times

0,(r:) = lim 0,(r; —9), VjeN, and
() = lim 6y(r; —0), ¥j €N, an
07 = 0, — cubu(ang (1) (ézsz»u(saug(t»
o 00(Gang) T\
+)\tanh(TG£ug(saug)W; 0r) , t=r;.

V. SIMULATION RESULTS

To validate the effectiveness of the proposed framework,
we solve a safety-critical task described as a temporal logic
specification, which can be decomposed as a sequence of
event-triggered optimal tracking control problems. Same as
the example in Sec. II-B, we consider the LTL specification
¢ = ¢c A ps, With ¢ = Opa A (—paldp1) and ¢ = [(ps,
where p1, po are to track different target trajectories and ps
is a safe zone to stay in. Given the FSA constructed based
on ¢, as shown in Fig. 1, Problem 1 can be decomposed into
two sub-problems (Problem 2). Due to space limitations, we
only show the results of the first sub-problem (i.e., reaching
p1), and the results for the second sub-problems are omitted
as they can be obtained in a similar manner. The safety
constraint p3 is defined as Q = {z € R"|c < Az +r <
C}, where A = [ (the identity matrix), r = 04x; and
c=-30x 1441,C = —c.

We set the predicate p; = (||z(t) — 21(¢)|| < €), where
the trajectory to be tracked is z = 0.5 x [sin 0.5¢, cos 0.5¢]T,
and € = 0.6. The system dynamics are given as & =
f(x) + g(z)u, where we used the drift and input dynamics
investigated in [25].

For the learning algorithm, the initial actor and critic
weights are picked randomly in [0,1]. The user-defined
parameters are selected as () = 800I. The evolution of the
tracking error is shown in Fig. 2. In Fig. 3 we present the
control input of the system after the exploration noise has
been sufficiently decreased. It is validated that the safety
constrains are satisfied while the tracking error is decreasing
and eventually bounded as proved.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed an intermittent learning frame-
work for a system tasked with a complex mission while
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Evolution of the tracking error
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Fig. 2. The evolution of the tracking error of the states.
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Fig. 3. Intermittent control policy.
guaranteeing safety. We brought together ideas from LTL  [17]
and control-oriented RL to decompose the mission into a
sequence of tracking sub-problems which are constrained by
safety specifications. We convert the system using barrier  [18]
functions, thus, deriving an unconstrained optimal tracking
problem in the transformed state space. The tracking problem g,
was tackled via the construction of intermittent policies and
guarantees of stability and optimality were presented. Finally,
to circumvent the issues arising from the difficulty of solving 5,
the underlying HIB equations, we used an RL algorithm to
obtain estimated versions of the intermittent safe optimal 21]
control policies.
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