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Abstract— In this paper, we develop safe reinforcement-
learning-based controllers for systems tasked with accomplish-
ing complex missions that can be expressed as linear temporal
logic specifications, similar to those required by search-and-
rescue missions. We decompose the original mission into a
sequence of tracking sub-problems under safety constraints.
We impose the safety conditions by utilizing barrier functions
to map the constrained optimal tracking problem in the
physical space to an unconstrained one in the transformed
space. Furthermore, we develop policies that intermittently
update the control signal to solve the tracking sub-problems
with reduced burden in the communication and computation
resources. Subsequently, an actor-critic algorithm is utilized
to solve the underlying Hamilton-Jacobi-Bellman equations.
Finally, we support our proposed framework with stability
proofs and showcase its efficacy via simulation results.

I. INTRODUCTION

Assured autonomy is challenging in problems with

complex dynamics, unknown models and adversarial en-

vironments. For learning-based systems, designing high-

confidence, high-performance, and dynamically-configured

secure policies for avoiding unsafe operating regions is

of paramount importance. Recognizing that reinforcement

learning (RL) [1] is an important component of assured

autonomy, we focus on learning-enabled systems. A large

class of mission objectives can be modeled as a require-

ment to follow multiple reference trajectories and endpoints

sequentially. One such scenario is found in search and

rescue missions in which an autonomous vehicle follows

specific search trajectories, with possible intermediate stops

for recharging, before eventually returning to a specific

location after certain conditions have been met [2]. Temporal
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logic specifications [3] offer a systematic way of describing

the different modes of operation of such systems as well as

the ways that those modes are interconnected through time.

Similarly, to facilitate the use of those methods in high-risk

environments, energy expenditure should be minimized by

developing strategies that alleviate the burden on the com-

munication and computation resources of the system. This

need leads to the introduction of event-triggered mechanisms

[4]; techniques that can create another layer of safety by

minimizing the opportunities of external signals to affect the

system.

The problem of safe learning has been in the forefront

in recent years. The authors in [5] combine control barrier

functions with Lyapunov control functions to construct safe

controllers. In [6], the authors deal with the problem of

safety via a dynamic invariance control framework, while the

authors of [7] investigate Hamilton-Jacobi-based reachability

methods to address the issue. The authors of [8] develop an

approximate online adaptive solution to an optimal control

problem under safety constraints with the use of barrier

functions and sparse learning. The use of temporal logic

specifications for safety has been studied in [9], where

regulation problems have been solved via RL techniques

while temporal logic specifications are guaranteed to be

satisfied. In [10], deep Q-learning was leveraged to guarantee

given specifications in a Markov decision process framework.

The motion-planning problem in a multi-robot system under

temporal logic specifications is investigated in [11] where

the authors use a library of motion primitives to accomplish

the given mission.

The framework of event-triggered control has been ex-

tensively investigated in the literature, e.g., in [12]. While

the authors in [13] expanded the framework to take into

account output feedback, most implementations remained

static. Event-triggered control has been used in tandem

with RL techniques in various scenarios. In [14], we have

brought together intermittent mechanisms to alleviate the

burden of an actor-critic framework. This was later extended

for systems with unknown dynamics under a Q-learning

framework in [15]. The authors of [16] developed a controller

with intermittent communication for a multi-agent system

whose safety constraints were expressed by metric temporal

logic specifications. Finally, event-triggering methods were

employed to the problem of autonomous path planning [17].

Contributions: The contributions of this work are three-

fold. First, we formulate a system tasked with accomplishing

a mission consisting of regulation and tracking sub-problems.
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We decouple the problems through the use of a finite state

automaton (FSA), which also models safety constraints.

Secondly, we apply a barrier function-based transformation

on the system and the required trajectories, thus allowing us

to map the original problem into a series of optimal tracking

sub-problems. Finally, we employ an actor-critic framework

to solve the underlying tracking problems in a data-driven

fashion.

II. PROBLEM STATEMENT

Consider the time-invariant control-affine nonlinear system

9x “ fpxq ` gpxqu, xp0q “ x0, @t ě 0, (1)

where x P R
n, u P R are the states and the control

input, respectively. The system (1) is desired to achieve

certain goals, constrained by temporal logic specifications,

by following one of the trajectories given by the family of

exosystems

9zi “ hipziq, zip0q “ zi,0, @t ě 0, i P I, (2)

where zi : R` Ñ R
n is the i-th candidate of the desired

trajectories to be tracked, hi : R
n Ñ R

n is a Lipschitz

continuous function with hip0q “ 0, and I is the set of the

trajectories to be tracked.

A. Linear Temporal Logic Syntax and Semantics

We consider syntactically co-safe linear temporal logic

(co-safe LTL) and syntactically safe linear temporal logic

(safe LTL) formulas [18] for the specifications. Let B “
tTrue, Falseu be the Boolean domain. A time set T is Rą0.

A set AP is a set of atomic predicates, each of which is a

mapping R
n ˆ TÑ B.

The syntax of a co-safe LTL formulas can be recursively

defined as follows

φ :“ J | p | "p | φ^ φ | φ_ φ | © φ | ♦φ | φUφ,

where J stands for the Boolean constant True; p P AP is

an atomic predicate; " (negation), ^ (conjunction), and _
(disjunction) are standard Boolean connectives; © (next), ♦

(eventually), and U (until) are temporal operators.

The syntax of a safe LTL formulas can be recursively

defined as follows,

φ :“ J | p | "p | φ^ φ | φ_ φ | © φ | lφ,

where l (always) is a temporal operator.

We refer the readers to Sec. II-B of [19] for the Boolean

semantics of co-safe and safe LTL formulas. For a co-safe

LTL formula φ, one can construct an FSA that accepts

precisely the proposition sequences (i.e., words) that satisfy

φ. For a safe LTL formula φ, one can construct an FSA that

accepts precisely the proposition sequences (i.e., words) that

violate φ.

For example, a co-safe LTL specification φc “ ♦p2 ^
p"p2Up1q can express that “an unmanned aerial vehicle

(UAV) should track a certain trajectory z1 (see (2)) before

tracking another trajectory z2”, where p1 “ p||xptq ´

z1ptq|| ď ǫq, and p2 “ p||xptq ´ z2ptq|| ď ǫq, and ǫ P Rą0 is

a threshold for tracking error.

Problem 1: For the system given in (1) and λ ą 0, find a

control policy such that the closed-loop system has a stable

equilibrium point, the control input satisfies }u} ď λ, and

the trajectory of state x satisfies an LTL specification φ “
φc^ φs, where φc is a co-safe LTL formula and φs is a safe

LTL formula. l

In this paper, for simplicity we consider the safe LTL

formula φs to be in the form of φs “ lp, where p is an

atomic predicate.

B. Decomposition of LTL Specifications

Given that φ “ φc ^ φs and φs “ lp, we construct an

FSA that accepts precisely the proposition sequences that

satisfy φc and manually divide Problem 1 into a series of

sub-problems based on the states of the constructed FSA.

For example, consider the LTL specification φ “ φc ^ φs,

where φc “ ♦p2 ^ p"p2Up1q and φs “ lp3, where

p1, p2 and p3 are different atomic predicates. Based on

φc one can construct an FSA as shown in Figure 1. Let

Oppq denote the set of time-dependent states that satisfy an

atomic predicate p. We assume that Opp1q X Opp2q “ H
if p1 and p2 are different atomic predicates. Then, the only

path from the initial FSA state q0 to the final state qf is

q0 Ñ q1 Ñ qf , where the accepting state qf indicates that

φc is satisfied. There are two resulting two-point boundary-

value problem (TPBVP) sub-problems, when the state of

the FSA transitions from q0 to q1, and transitions from q1
to qf , respectively. Specifically, when the state of the FSA

transitions from q0 to q1, the two boundary conditions for the

first TPBVP sub-problem are the initial state x0 and Opp1q,
respectively. In this first TPBVP sub-problem, the safety

constraint can be encoded as x P Op"p2q X Opp3q, as the

state can not reach Opp2q until it reaches Opp1q according to

φc, and the state must always be in Opp3q according to φs.

Similarly, when the state of the FSA transitions from q1 to

qf , the two boundary conditions for the second TPBVP sub-

problem are Opp1q and Opp2q, respectively. In this second

TPBVP sub-problem, the safety constraint can be encoded

as x P Opp3q according to φs. After qf is reached in the

FSA, the state only needs to stay in Opp3q until the end of

time (according to φs).

Note that generally for a complex FSA, it may not be

straightforward to select a unique path from an initial FSA

state to a final FSA state. Hence, we can view the FSA as

a directed graph, (approximately) estimate the edge weights

(i.e., distance), and then select a path by solving a shortest

path problem. So far, we have finished decomposing the LTL

specification into a sequence of sub-problems, that as a whole

will eventually satisfy the original LTL specification.

C. Sub-Problem Tracking a Certain Trajectory

In this paper, given that φ “ φc ^ φs, we consider the

predicates in the co-safe LTL formula φc to be in the form

of p “ p||xptq ´ ziptq|| ď ǫq, i P I. In this way, a certain

trajectory zi, i P I has to be tracked in each sub-problem
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Fig. 1. Finite state automaton generated by a co-safe LTL formula φc “
♦p2 ^ p p2Up1q.

decomposed from Problem 1. Moreover, as described in Sec.

II-B, the system state x is subject to some safety constraints

in each sub-problem, as x P Q needs to hold in each sub-

problem, where Q “ tx P R
n|c ď Ax ` r ď Cu, A “

ra1 a2 . . . ams
T P R

mˆn, with ai P R
n, @i P t1, . . . ,mu,

r “ rr1, . . . , rms
T P R

m, c “ rc1, . . . , cms
T P R

m and

C “ rC1, . . . , Cms
T P R

m. The TPBVP sub-problem can

thus be summarized as follows.

Problem 2: (sub-problem) For the system (1), find a con-

trol input u constrained to satisfy }u} ď λ, so that the

system state x tracks a certain trajectory zi, i P I (i.e.,

p||xptq ´ ziptq|| ď ǫq for a given threshold tracking error

ǫ) and the state x remains in the set Q, given an initial

condition xp0q “ x0. l

To guarantee the safety specifications, we transform (1),

which is constrained by Q, into an unconstrained system.

Thus, we design the following barrier function:

bpq, c0, C0q “ log

´C0

c0

c0 ´ q

C0 ´ q

¯

,@p P pc0, C0q, (3)

where c0 ă 0 ă C0. The barrier bpq, c0, C0q is invertible in

the interval pc0, C0q, and its inverse is given by

b´1py, c0, C0q “ c0C0

e
y
2 ´ e´ y

2

c0e
y
2 ´ C0e

´ y
2

,@y P R, (4)

with dynamics

db´1py, c0, C0q

dy
“

C0c
2
0 ´ c0C

2
0

c20e
y ´ 2c0C0 ` C2

0e
´y

. (5)

We now use (3)-(5) to perform the transformation of (1). In

particular, let us define

si “ bpqipxq, ci, Ciq

qipxq “ b´1psi, ci, Ciq (6)

qipxq “ aT
i x` ri,@i “ 1, . . . ,m.

Through the use of the chain rule, we obtain

dsi

dt
“

1
db´1psi,ci,Ciq

dsi

aT
i 9x. (7)

Additionally, from (6), we have that

Ax` r “ b´1ps, c, Cq, (8)

where b´1ps, c, Cq “ rb´1ps1, c1, C1q, . . . , b
´1psm, cm, Cmqs

T P
R

m, hence we conclude that

x “ pATAq´1ATpb´1ps, c, Cq ´ rq. (9)

Combining (7) with (1) yields the unconstrained subsys-

tem dynamics, @i “ 1, . . . , n,

dsi

dt
“ 1

db´1psi,ci,Ciq
dsi

aT
i

`

fpxq ` gpxqu
˘

, t ě 0.

In (10), the constrained state x can be written with respect

to the unconstrained state s “ rs1, . . . , sns
T as in (9).

Therefore, the subsystems (10) can be described in the

compact form

9s “ F psq `Gpsqu, t ě 0. (10)

where F : Rn Ñ R
n, G : Rn Ñ R

n.

To achieve optimal tracking while satisfying the required

safety constraints, we shall solve Problem 2 in the trans-

formed s-domain both for the system—employing the dy-

namics given by (10)—as well as the image of the target

trajectory in the s-domain. Thus, let the transformed dynam-

ics of z P zI be given by

9zsptq “ fdpzsptqq, zsp0q “ z0, t ě 0, (11)

where zsptq P R
n denotes the bounded desired trajectory in

the s-domain, and fd is a Lipschitz continuous function, with

fdp0q “ 0, which yields the dynamics of zs. The function

fd can be derived by following the same procedure that was

used to transform the state x into s.

We may now define a tracking error esptq “ sptq´zsptq P
R

n in the s-domain, @t ě 0, with dynamics given by 9esptq “
F pesptq ` zsptqq ´ fdpzsptqq. Hence, concatenating es and

zs into a single state vector saug :“ reT
s zT

s s
T, we derive the

concatenated dynamics in the s-domain

9saug “ Faugpsaugq `Gaugpsaugquptq, t ě 0, (12)

where Faugpsaugq :“

„

F pesptq ` zsptqq ´ fdpzptqq
fdpzsptqq



and

Gaugpsaugq :“

„

Gpesptq ` zsptqq
0



.

III. OPTIMAL TRACKING SUB-PROBLEMS

To reduce the communication burden and conserve re-

sources, the system operates under a sampled version of the

transformed state

ŝaugptq “

"

saugprjq, @t P prj , rj`1s
saugptq, t “ rj .

The sampling instances constitute a strictly increasing se-

quence trju
8
j“0, where rj , j P N, is the j-th consecutive

sampling instant, with r0 “ 0 and lim
jÑ8

rj “ 8. To decide

when to trigger an event, we define the triggering error as

the difference between the state saugptq at the current time

t and the state ŝaugptq that was sampled most recently:

etrigptq “ ŝaugptq ´ saugptq, @t P prj , rj`1s, j P N.

Our objective is to find a feedback controller that mini-

mizes a cost functional given by

Jpsaugp0q;uq “
1

2

ż 8

0

e´γτ
`

sT
augQaugsaug `Rpuq

˘

dτ,
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where γ P R
` is a discount factor, and Qaug “

„

Q 0nˆn

0nˆn 0nˆn



is a user defined matrix where Q ą 0 and

0nˆn a square matrix of zeros. Furthermore, to satisfy the

magnitude constraint on u, i.e., }u} ď λ, we chose Rpuq to

have following form, adopted from [20],

Rpuq “

ż u

0

λtanh´1
´ v

λ

¯

γ1dv, @u P r´λ, λs, (13)

where tanh´1p¨q denotes the inverse of the hyperbolic tangent

function and γ1 ą 0.

Initially, we consider an infinite bandwidth optimal control

problem, assuming that the controller has access to the

augmented transformed state at all times. We define the

optimal value function V : R2n Ñ R given, @saug, as

V psaugptqq“min
u

1

2

ż 8

t

e´γpτ´tq`sT
augQaugsaug`Rpuq

˘

dτ,

and the associated Hamiltonian for the continuously updating

controller as

Hpsaug, uc,
BV

Bsaug
q “

BV

Bsaug

T

pFaugpsaugq `Gaugpsaugqucq`

`
1

2

`

sT
augQaugsaug`Rpucq´2γV psaugq

˘

, @saug, uc. (14)

After employing the stationarity condition, for the Hamil-

tonian (14), i.e.,
BHp¨q

Buc
“ 0, the infinite bandwidth optimal

control can be found to be

u‹
cpsaugq “ ´λtanh

` 1

2γ1λ
GT

augpsaugq
BV

Bsaug

˘

, @saug. (15)

By substituting the optimal control (15) into (14) one has

the Hamilton-Jacobi-Bellman (HJB) equation given as

Hpsaug, u
‹
c ,
BV

Bsaug
q “ 0, @saug. (16)

Now, to reduce the communication between the plant

and the controller we use an intermittent version of (16)

by introducing a sampled-data component that will enforce

sparse and aperiodic updates for the controller. Thus, the

controller operates with the sampled version of the system

states, rather than the actual ones, and (15) becomes

u‹pŝaugq “ ´λtanh
` 1

2γ1λ
GT

augpŝaugq
BV

Bŝaug

˘

, @ŝaug. (17)

Assumption 1: There exists a positive constant L such that

}ucpsaugq ´ upŝaugq} ď L }etrig} , @saug, ŝaug. l

Theorem 1: Consider the constrained system evolving in

the transformed s-space (10), following the trajectory given

by (11). Let the augmented tracking error system be given by

(12), and the intermittent policy by (17). Then, the closed-

loop error system has an asymptotically stable equilibrium

when γ “ 0, and is ultimately uniformly bounded (UUB)

when γ ‰ 0, under the triggering condition given by

}etrig}
2 ď

p1{2´ β2qλ
`

Q
˘

L2λγ1
}es}

2 `
1

L2λγ1
Rpuq,

where β P p0, 1?
2
q is a design parameter and λ

`

Q
˘

is the

minimum eigenvalue of Q. Furthermore, Zeno behavior is

excluded via a lower bound on the inter-event times, i.e.,

Dr̄ ą 0 such that, rj`1 ´ rj ą r̄, @j P N .

Proof. The proof closely follows [21].

IV. LEARNING ALGORITHM

In this section, we employ approximation structures to

solve the optimal tracking problem in a data-driven way,

while guaranteeing safety constraints.

Initially, we employ a critic approximator, that will be able

to estimate the optimal value function that solves the HJB

equation. It is known that the optimal value function can be

expressed as

V ‹psaugq “ θ‹
c

T
φcpsaugq ` ǫcpsaugq, @saug, (18)

where θ‹
c P R

h are unknown ideal weights which

are bounded as }θ‹
c} ď θcmax. Furthermore, φc –

rφ1 φ2 ¨ ¨ ¨ φhs : R
2n Ñ R

h, is a bounded C1 basis

function, i.e., with bounded first order derivatives, so that

}φc} ď φcmax and

›

›

›

Bφc

Bx

›

›

›
ď φdcmax, and h is the number

of basis. Finally, ǫc : R2n Ñ R is the approximation error.

Based on this, the optimal intermittent policy in can be re-

written, @t P prj , rj`1s, as

u‹pŝaugq “ ´λtanh
` 1

2γ1λ
GT

augpŝaugqˆ (19)

ˆ
`Bφpŝaugq

Bŝaug

T

θ‹
c `

Bǫcpŝaugq

Bŝaug

˘˘

.

We employ another approximating structure, called an

actor, to approximate the intermittent controller (19). This

is expressed, @t P prj , rj`1s, as

u‹pŝaugq “ θ‹
u

T
φupŝaugq ` ǫupŝaugq, @ŝaug, (20)

where θ‹
u P R

h2 are the optimal weights, φu are the basis

functions defined similarly to the critic approximator, h2 is

the number of basis, and ǫu is the actor approximation error.

Thus, the current estimates of the value function and the

optimal policy are derived based on estimations of the ideal

critic and actor weights, denoted θ̂c and θ̂u, respectively, as

V̂ psaugptqq “ θ̂T
cφcpsaugptqq,@saug, (21)

ûpŝaugq “ θ̂T
uφupŝaugq,@ŝaug. (22)

The learning mechanism comprises tuning laws that will

allow us to obtain optimal estimates to the critic and actor

weights. Towards this, we define the estimation error ec P R
based on the Hamiltonian function as

ec“Hpsaug, ûpŝaugq,
BV̂

Bsaug
q´Hpsaug, u

‹
cpsaugq,

BV ‹

Bsaug
q

“ θ̂T
cω ` r̂,

with ω “ Bφc

Bsaug
`

Faugpsaugq ` Gaugpsaugqûpŝaugq
˘

´

γφc, r̂ “ 1
2
sT
augQaugsaug ` Rpûpŝaugqq and

Hpsaug, u
‹
cpsaugq,

BV ‹psaugq
Bsaug q “ 0 from (16), where we
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omit the dependence of φc on the augmented s-state.
To drive the error ec to zero one has to pick the critic
weights appropriately. By defining the squared-norm error as
Ec “ 1{2e2c we can apply the normalized gradient descent
method to obtain the estimate of the critic weights as

9̂
θc “ ´α

1

pωTω ` 1q2
BEc

Bθ̂c
“ ´α

ω

pωTω ` 1q2
ec, (23)

where α P R` is a tuning parameter.

By defining the critic error dynamics as θ̃c “ θ‹
c ´ θ̂c and

taking its derivative with respect to time one has

9̃
θc “ ´α

ω ωT

pωTω ` 1q2
θ̃c ` α

ω

pωTω ` 1q2
ǫHc, (24)

where ǫHc “ ´ Bǫc
Bx pF ` Gûq,@x, û, is upper bounded by

ǫHcmax P R
` as }ǫHc} ď ǫHcmax.

To state stability results on the derived learning system, we

can consider the critic error dynamics as a sum of nominal

dynamical behavior with a time dependent perturbation due

to the approximation error, denoted respectively as SN and

SP, where
9̃
θc “ SN ` SP with SN “ ´α ω ωT

pωTω`1q2 θ̃c and

SP “ α ω
pωTω`1q2 ǫHc.

Theorem 2: Assume that M “ ω
pωTω`1q is persistently ex-

citing, i.e.,
şt`T

t
MMTdτ ě bI , @t ě 0 for some b, T P R`,

where I is an identity matrix of appropriate dimensions, and

DMb P R
` such that for all t ě 0, max

#

|M | ,
ˇ

ˇ

ˇ

9M
ˇ

ˇ

ˇ

(

ďMB .

Then, the nominal system SN is exponentially stable and

its trajectories satisfy

›

›

›
θ̃cptq

›

›

›
ď

›

›

›
θ̃cp0q

›

›

›
κ1e

´κ2t, for some

κ1, κ2 P R
` and for all t ě 0.

Proof. The proof follows from [22].

To derive the tuning laws for the actor approximator, we

consider the error eu P R given, @ŝaug, by

eu“û´uθ̂c

“θ̂T
uφupŝaugq`λtanh

` 1

2γ1λ
GT

augpŝaugq
`Bφpŝaugq

Bŝaug

T

θ‹
c

˘

,

where u
θ̂c

is the controller based on the critic weights θ̂c.

The objective is to select θ̂u such that the error eu goes

to zero. As such, we minimize the quadratic error function

Eu “
1
2
eT
ueu. In keeping with our objective to avoid over-

utilization of the system’s resources, we let the actor learn

in an aperiodic fashion, by updating the weights only at

the triggering instances, and keeping them constant between

them. This gives the system an impulsive nature, whose

behavior is investigated based on results of [23] and [24].

Then, the update laws are given by

9̂
θuptq “ 0, @t P R`z

ď

jPN
rj , (25)

and the jump dynamics of θ̂upr
`
j q are given, for t “ rj , by

θ̂`
u “ θ̂u ´ αuφupxaugptqq

ˆ

θ̂T
uφupsaugptqq

` λtanh

ˆ

1

2γ1λ
GT

augpŝaugq
Bφpŝaugq

Bŝaug

T

θ‹
c

˙T

. (26)

By defining the actor error dynamics as θ̃u “ θ‹
u ´ θ̂u and

taking the time derivative using the continuous update (25)

and by using the jump system (26) updated at the trigger

instants one has

9̃
θuptq “ 0, @t P R`z

ď

jPN
rj , (27)

and, for t “ rj ,

θ̃`
u “ θ̃u ´ αuφupsaugptqqφupsaugptqq

Tθ̃uptq (28)

´ λtanh
` 1

2γ1λ
GT

augpŝaugq
`Bφpŝaugq

Bŝaug

T

`
Bǫcpŝaugq

Bŝaug

T
˘

θ‹
c

˘

,

respectively. Note that the solution of (27)-(28) is left con-

tinuous; that is, it is continuous everywhere except at the

resetting times rj

θ̂uprjq “ lim
δÑ0`

θ̂uprj ´ δq, @j P N, and

θ̂`
u “ θ̂u ´ αuφupxaugptqq

ˆ

θ̂T
uφupsaugptqq

` λtanh
` 1

2γ1λ
GT

augpŝaugq
Bφpŝaugq

Bŝaug

T

θ‹
c

˙T

, t “ rj .

V. SIMULATION RESULTS

To validate the effectiveness of the proposed framework,

we solve a safety-critical task described as a temporal logic

specification, which can be decomposed as a sequence of

event-triggered optimal tracking control problems. Same as

the example in Sec. II-B, we consider the LTL specification

φ “ φc ^ φs, with φc “ ♦p2 ^ p"p2Up1q and φs “ lp3,

where p1, p2 are to track different target trajectories and p3
is a safe zone to stay in. Given the FSA constructed based

on φc as shown in Fig. 1, Problem 1 can be decomposed into

two sub-problems (Problem 2). Due to space limitations, we

only show the results of the first sub-problem (i.e., reaching

p1), and the results for the second sub-problems are omitted

as they can be obtained in a similar manner. The safety

constraint p3 is defined as Q “ tx P R
n|c ď Ax ` r ď

Cu, where A “ I (the identity matrix), r “ 04ˆ1 and

c “ ´30ˆ 14ˆ1, C “ ´c.
We set the predicate p1 “ p||xptq ´ z1ptq|| ď ǫq, where

the trajectory to be tracked is z “ 0.5ˆrsin 0.5t, cos 0.5tsT,

and ǫ “ 0.6. The system dynamics are given as 9x “
fpxq ` gpxqu, where we used the drift and input dynamics

investigated in [25].

For the learning algorithm, the initial actor and critic

weights are picked randomly in r0, 1s. The user-defined

parameters are selected as Q “ 800I . The evolution of the

tracking error is shown in Fig. 2. In Fig. 3 we present the

control input of the system after the exploration noise has

been sufficiently decreased. It is validated that the safety

constrains are satisfied while the tracking error is decreasing

and eventually bounded as proved.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed an intermittent learning frame-

work for a system tasked with a complex mission while
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guaranteeing safety. We brought together ideas from LTL

and control-oriented RL to decompose the mission into a

sequence of tracking sub-problems which are constrained by

safety specifications. We convert the system using barrier

functions, thus, deriving an unconstrained optimal tracking

problem in the transformed state space. The tracking problem

was tackled via the construction of intermittent policies and

guarantees of stability and optimality were presented. Finally,

to circumvent the issues arising from the difficulty of solving

the underlying HJB equations, we used an RL algorithm to

obtain estimated versions of the intermittent safe optimal

control policies.
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