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Abstract—In this paper, a switching watermarking-based
detection scheme is proposed to detect replay attacks while
also limiting the adversary’s knowledge about additive water-
marking signals to ensure unpredictability. The unpredictability
is introduced by appropriate switching through a trade-off
between detection performance and information entropy, which
makes it challenging for adversaries to estimate the additive
watermarking signals. In addition, we compare the detection
performance of Neyman-Pearson detector and x> detector.
Simulation results show the efficacy of the proposed approach.

Index Terms— CPS, watermarking signals, replay attacks,
detector, switching.

I. INTRODUCTION

Cyber-physical systems (CPS) are composed of physical
devices with computational and communication components.
The integration and interaction between cyber and phys-
ical components add automation capabilities that improve
physical systems and processes in various critical domains.
However, CPS complexity and heterogeneity lead to their
vulnerability to be exploited by malicious adversaries [1].
A tremendous amount of research have been conducted
to design resilient CPS, i.e., increasing their abilities of
detecting and mitigating malicious attacks [2].

In this work, we focus on replay attacks, which record
sensory output signals for a period of time and then replay
the recorded values at a later time. This makes it difficult for
the system operators to distinguish between nominal output
signals and replayed output signals. Research efforts have
been made to utilize physical watermarking to defend against
replay attacks. The key idea of watermarking-based detection
scheme is to superimpose optimal control input signals with
watermarking signals that serve as an authentication for the
detection of malicious attacks. The additive watermarking
signals into the system deteriorate the control performance,
and thus an optimization problem of maximizing detection
performance with a constraint of certain maximal control
performance loss is formulated to generate optimal water-
marking signals [3], [4].
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Based on the basic physical watermarking signals, several
extensions of the watermarking generation schemes are also
proposed, such as: dynamic watermarking scheme [5], [6],
data-based watermarking scheme [7], [8], and multiplicative
watermarking scheme [9], [10]. The work of [11] devel-
oped a dynamic watermarking approach to detect malicious
sensor attacks for general LTI systems with partial state
observations, and proposed an internal model principle-based
approach to handle persistent disturbances. The work of [12]
incorporated Bernoulli packet drops at the control input in
the design of the watermarking signals and developed a joint
Bernoulli-Gaussian watermarking scheme with a correlation
detector to detect integrity attacks. The authors in [13]
developed a periodic watermarking strategy for detecting
discontinuous replay attacks to reduce the control cost.

In terms of the detector schemes, various statistical tests
are investigated, such as x? detection scheme using innova-
tion data [3], [14], Neyman-Pearson detection scheme using
observation data [7], cumulative sum detection scheme using
both innovation signals and watermarking signals [15]. The
authors of [16]-[18] categorized adversary models as cyber
adversaries (i.e., attacks are able to eavesdrop sensory output
from the system without acquiring system dynamics and to
inject arbitrary signals at the sensors to conduct malicious
actions), non-parametric cyber-physical adversaries (i.e., at-
tacks are able to eavesdrop input and output information
from the system to estimate system dynamics and to inject
malicious signals) and parametric cyber-physical adversaries
(i.e., attacks are able to use the estimated parameters of the
system from input and output data to mislead the controller).

The work of [19] discussed two methods of active de-
tection in CPS namely, physical watermarking and moving
target defense (MTD). Different from physical watermarking
scheme, MTD defense scheme introduces time-varying and
unpredictable properties to keep adversaries unaware of the
full system model. Motivated by this concept, in this work we
incorporate the idea of MTD into the physical watermarking
detection scheme. Instead of switching system dynamics, we
consider switching watermarking generation. In particular,
we extend our previous work [8] to develop a switching
watermarking-based detection scheme that incorporates un-
predictability into the watermarking generation to build a
robust watermarking-detection framework.

Contributions: ~ Compared with the deterministic
multiple-watermarking detection scheme in the literature,
the scheme developed in this work adds unpredictability in
terms of switching, which makes it difficult for intelligent
adversaries to estimate additive watermarking signals. In
addition, we compare the detection performance between
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Neyman-Pearson detector and y? detector against attacks
that are able to estimate system dynamics from input and
output data and to inject malicious input into the system
during the attack period.

Structure: Section II formulates the problem and defines
attack strategy. The designs of Neyman-Pearson detector,
optimal watermarking signals and a switching watermarking-
based detection scheme are shown in Section III. Section IV
presents simulation results and finally Section V concludes
and talks about future work.

II. PROBLEM FORMULATION
A. System Model
Consider the following LTI discrete-time system Yk € Z,

Tpq1 = Axy, + Buy + wy, (D
yr = Cxp + v, 2)

where 2, € R” is the state, ux € R’ is the control input,
yr € R™ is the output, and A € R"*", B € R™*! and
C e R™" are the state matrix, control input matrix, and
output matrix, respectively. In this work, the process noise
wg € R™ is assumed to be a zero-mean Gaussian noise
with covariance ¥, > 0 denoted as wy ~ N (0,%,,), and
the measurement noise v, € R™ is assumed to follow a
zero-mean Gaussian distribution with covariance >, > 0
denoted as v, ~ N (0,%,). In addition, the initial condition
xo is assumed to follow a zero-mean Gaussian distribution
with covariance Xy denoted as xo ~ N (0,%). The signals
wy and v are uncorrelated. The initial condition xz( is
independent of process and measurement noises.

Assumption 1. Since CPS operate for an extended period of
time, we assume they are operating at a steady state. ]

Assumption 2. Assume that the pairs (A, B) and (A, C) are
controllable and observable respectively. O

Define the cost functional as J = E[Y.;7 v (yf Qui +
uf Ru;)], where Q > 0e R™*™ R > 0eR>, 0 <y <
1 is a discount factor, and E denotes expectation operator.
Given (1)-(2), we aim to find a controller that minimizes the
cost functional with the following optimal value Vxy,

0
V* (k) = minELY " (4] Qui + uj Rui)l. ()
i=k
Since information about full states is not always accessible
for feedback, we shall design an observer Vk € Z as,

Tpe1 = AT + Bug + Key, (@)
yr = CZp + e, (5

where ) € R™ denotes the estimated state and K stands
for the steady-state Kalman filter gain while the term e €
R™ is known as the innovation with covariance FE) =
cov(ey) = E(ege)), where E(-) denotes expectation op-
erator. The inovation Ej, is calculated as E, = CSCT +
>.,. The steady-state Kalman gain is computed as K =
ASCT(CSCT +3,)7 1, where S stands for the covariance

of the estimation error €, := x;, — 2. The covariance of the
estimation error cov(ey,) = E(exe} ) is calculated by solving
the algebraic Ricatti equation (ARE) of S = ASAT +
Y, — ASCT (CSC’T + Ev)fl CSAT. We can obtain the
covariance of the estimated state X = cov(@y) = E(2,2})
by solving the following ARE Vk € Z,

Xy = AXp AT + ASC™ (CSCT +%,) 7 CSAT. (6)
The optimal control law Vk € Z is,
u; = Li‘k, V:i‘k, (7)

with the feedback gain L = —(BY*PB + R/v) " 'BTPA,
where P is found by solving the ARE of P = yATPA +
CTQC —~yATPB(BTPB + R/y)"'BTPA.

B. Replay Attack Strategy

Definition 1. Replay attacks considered in this work are
defined as follows.

o Step 1. Adversaries record a sequence of sensory mea-
surements from k1 to k1 +7, where T' € Z* is chosen by
adversaries to be large enough to guarantee the sequence
can be replayed for an extended period of time.

o Step 2. Adversaries replace the current sensory mea-
surements y; with the recorded ones, i.e., y}c = Yk—Ak»
from ks to ko + 7', where y), denotes replayed signals
and Ak := ]{32—]{71. O

III. WATERMARKING-BASED DETECTION SCHEME

In order to actively defend against replay attacks, physical
watermarking signals ¢;, are injected into the control input
to serve as an authentication. Thus, the overall control input
uy of the system is the summation of the optimal control
input and watermarking signals given by uy = uj + ¢y It is
assumed that watermarking signals ¢ follow a zero-mean
Gaussian distribution with covariance U > 0, i.e., ¢p ~
N (0,U). By adding watermarking signals to the system, the
distributions of measurement output without replay attacks
and under replay attacks will be different, and thus a detector
can be designed due to such a statistical difference.

A. Neyman-Pearson Detector

Next, we shall characterize the distributions of the output
data, with and without considering replay attacks. Given the
system dynamics (1) and (2), it can be shown that the output
signals without replay attacks Vk € Z are,

k—1 k—1
yk = Y, CA'Bé 14+ Y, CA'Buj_,_,
t=0

t=0
k—1
+ Z CA w14 +vp + C’Akmo
t=0
k—1 k—1
= Y CA'Béj 14+ Y CA'BLiy 14
t=0 t=0

first term second term
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k—1
+ Z C’Atwk_l_t + v + CAk:CO .

third term

For simplicity, we will split y; into three terms and denote
them respectively Vk € Z as,

k
), = Y CA'Béy ®)
t=0
k
or := ), CA'BLiy, ©)
t=0

k
0y, = Z CA Wy_y + vy + CAF g,
t=0

(10)

Thus, the measurement output Yk € Z is characterized by,

(11)

From (8), we can see that ®;_ is a zero-mean Gaussian
distribution with covariance given by,

Z (CA™B

Similarly, it can be observed from (9) that g1 is a zero-
mean Gaussian distribution with covariance given by,

Y = Q1+ op—1 + Or_1.

U(CA™B)?T. 12)

Z [CA™BL]|X[CA™BL]". (13)
By observing (10) we can see that 01 is a zero-mean Gaus-
sian distribution with covariance given by © := CXCT+3,,
where X stands for the covariance of state xz; for the
dynamical system without control input, i.e., zp+1 = Az +
wi, Y = Cxp + vk, and 3 satisfies & = AXAT + %,

In the case that the system is under replay attacks, the
replayed output is described Yk € Z as,

Yy = Yh—nk = Pro1-ak + Ok—1-ak + Ok—1-ak. (14

From (11) we can conclude that in the nominal (attack-
free) case, given collected data ¢q,¢1,...,¢r—1, and
ug, U1, - .., Ug—1, the measurement output y converges to
a Gaussian distribution with mean ®;_1 + 0x_1 and co-
variance ©, denoted as yr ~ No(®r_1 + 0k_1,0). In the
case that the system is under replay attacks, the parameter
Ak is unknown to the system operator even though it is
deterministic. Therefore, from (14) we can conclude that the
output y;, converges to a zero-mean Gaussian distribution
with covariance Y+I'+0, denoted as y;, ~ N1(0, T+T'+6).

Since y; and y;, follow two different Gaussian distribu-
tions, we can design a detector to distinguish this statistical
difference. We will now consider the following binary hy-
pothesis testing with the null hypothesis given by H, and
the alternative hypothesis given by #;.

e Ho: The measurement output y; follows a Gaussian

distribution NVo(Pr_1 + 0k—1, ).

e Hi: The measurement output y; follows a Gaussian

distribution A7 (0, +T + ©).

Based on Neyman-Pearson lemma [20], the alarm signal of
Neyman-Pearson detector for the hypothesis Hq versus the
hypothesis #; is calculated Vk € Z as,

(Y — Pr—1 — Ok—1)
(15)

gk =(yr — Pr—1 — 0k—1)"O"
— i (T+T +0) 1y

Then the alarm signal g is compared to a predetermined
threshold ¢ which is tuned based on the detection perfor-
mance, such as detection and false alarm rate. Note that,
gr = & implies that the hypothesis 7{; is valid and thus the
system is under replay attacks. Otherwise, the null hypothesis
Ho holds with g, < £ and the system operates normally.

Definition 2. We define intelligent attacks as follows.

o Adversaries record a sequence of sensory measurements
from & to by + T with T € Z™.

o Adversaries replace current sensory measurements Yy
with recorded ones, i.e., y;, = Yr—ak, from ks to ko +T'
with T e Z™T.

o During the interval [ko, ko + T, T € Z*, adversaries
can inject malicious input Bug into the system. O

Remark 1. The attacks defined in Definition 2 are able to
use estimated parameters of the system based on input and
output data to estimate additive watermarking signals.

Theorem 1. Suppose the system (1)-(2) is compromised
by intelligent attacks of Definition 2, then Neyman-Pearson
detector with alarm signals (15) can detect these attacks.

Proof. Suppose attacks start at k. The measurement output
received by the controller is yj given by (14). At the same
time, the attacks inject malicious input Buyj; into the system.
As a result, the system under attacks is described Vk € Z
by 41 = Az + Buy, + Bu§ + wy, which shows that the
injected malicious input Buf influences the state trajectory
from time k + 1 thereafter. Note that Neyman-Pearson
detector utilizes measurement output data to calculate alarm
signals instead of innovation signals (i.e., the difference
between measured and estimated output) used by x? detector,
and that replay attackers replay the previous output data
yr—Ak Which are not influenced by attackers’ ability to inject
malicious input during the active attack period defined by
Step 2 in Definition 1. Thus, the difference of distributions
between case of no attacks Ny and case with attacks N7 still
exists and the alarm signal given by (15) is effective. [ |

Next, Kullback-Liebler (KL) divergence is utilized to
characterize the Neyman-Pearson detector performance [3].
Lemma 1. The expectation of KL-divergence for distribu-
tions Ny and N is given by,

E[ Dk (No, N1)]

N %log{det[lm L (r+T)O 1}, (16)

and its lower bound and upper bound are given by,

%tr[(’f 1+ T)0"!] <E[Dx (Mo, M1)] < (T + T)0 1]
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1
- élog{l + (Y +T)0 1},
where tr(-) denotes the trace operator [8].

B. Optimal Watermarking Signals

Although replay attacks can be detected with the help
of additive watermarking signals, the system performance
is deteriorated by deviating from optimal control law. Next
we quantify the performance loss.

Lemma 2. Given the system (1)-(2) with the optimal control
law (7), the performance loss due to additive watermarking
signals with zero mean and covariance U is given by AJ =

w(UR)/(1 = 7).

Proof. For the measurement signals defined by (11), the
performance cost without considering additive watermarking
signals is given by J* = E[X.7 v (v} Qui + (u})T Ru)).
With the consideration of additive watermarking signals, the
performance changes to,

T =E{ Ay Qui + (uf + 6:)TR(u; + ¢1)]}

i=0
a0
= J" + B[, 7' ((u})"Ro; + ¢f Ruj + 6] Roy)]
i=0
* < i * tI'(UR)
=J +§)7tr(UR)7J e
which completes the proof. [ ]

Remark 2. The control performance loss AJ due to additive
watermarking signals is linearly dependent on covariance U.
But as shown in (16) the detection performance characterized
by the KL-divergence is not linearly dependent on U. O

Next, we aim to find the trade-off between the detection
and control performances. Note that both the upper and lower
bounds of the KL-divergence in (16) contain tr[(Y+T)©~1],
thus we formulate the following optimization problem,

U =argmax u[(Y+T)071]

U

subject to tr(UR) < ¢,

where ¢ € RT is a threshold determining how much control
performance loss can be tolerated. Substituting covariance
expressions (12) and (13) into tr[(T + I')©~1] yields,

0
w[(T + )0~ =ul Y (H,UH] + Q. X,Q)0™']
=0

=tr(UP1) + tr(XkPQ),

with H, = CA™B,Q, = CATBL, P, = 3" HI'O0 'H,,
and Pr = 3" QTe-1Q,.

Note that P; and P, are related to the system dynamics
(4)-(5), and that X}, can be found by solving the Lyapunov
equation (6). These three parameters are not related to the
covariance of watermarking signals U. It is also true that
tr(XxP2) = 0 always holds since X} is positive semi-
definite. Therefore, we can optimize the KL-divergence by

maximizing tr(UP;). As a result, we can solve instead the
following optimization problem to get the covariance of
optimal watermarking signals,

U = argmax tr(UP1)
U (17)
subject to tr(UR) < ¢,

with P; = 3 (CA™B)T@~(CATB).
Theorem 2. The solution to the optimization problem (17) is
given by U = 22T, with z as the eigenvector corresponding

to the largest eigenvalue of the matrix R~'P; and satisfying
2TRz = ( [8].

C. Switching Watermarking Detection Scheme

As stated in [16]-[18], resourceful and powerful attackers
can employ an adaptive least mean square filter to identify
system model with input and output data and thus esti-
mate the watermarking signals added into the system. By
switching the distributions when generating watermarking
signals, defenders can introduce time-varying and unpre-
dictable properties as a moving target to increase attackers’
difficulty in accessing to the additive watermarking signals,
and thus improve the probability of detecting replay attacks.

Generally speaking, the idea of the switching
watermarking-based detection scheme is to generate additive
watermarking signals by periodically switching among N
different Gaussian distribution modes. Specifically, gf),(:)
stands for additive watermarking signals at the time instant
k generated by solving the optimization problem (17) with
control performance loss threshold (; for the i-th Gaussian
distribution mode, where i € Z = {1,2,...,N}. From
Theorem 2, the covariance of the optimal watermarking
signals by solving the optimization problem (17) only
depends on the control performance loss threshold ¢ and
thus various distributions can be generated with different
thresholds. At each switching moment, a distribution mode
i is selected randomly with a switching period 7.

This watermarking generation scheme adds unpredictabil-
ity by switching but the detection performance is degraded
since the distribution with the maximum KL-divergence
standing for the best detection performance is not always
utilized. Thus, a switching law can be developed by finding
the trade-off between detection performance characterized
by KL-divergence (16) and unpredictability characterized by
information entropy, i.e., H(p) = —pT log(p) [21], where
p = {p1,p2,...,pn} is the probability simplex, satisfying
Iplh = Zf\il |pi] = 1 and standing for the selected proba-
bility of each distribution mode at the switching moment.

Lemma 3. Suppose additive watermarking signals are gener-
ated by periodically switching among N different Gaussian
distribution modes and the covariance of the optimal wa-
termarking signals is calculated by solving the optimization
problem (17) with control performance loss threshold (;
for each mode, where i € Z = {1,2,...,N}. Then the
probability simplex is solved by,

mgn(*DKLTP — eH(p))
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such that |p|; = 1,p; = 0,i€ {1,2,...,N}, (18)
and the solution is given by,
(,L) (D
p; = e[D%—l—log(e*1 ZlNzl E%)L (19)

where € denotes the weight on unpredictability, Dky, =
[DI(JL); D1(<1L)5 o Dgl\f)] denotes the KL-divergence of each
distribution calculated by equation (16).

Proof. Define the Lagrangian for (18) as L = —DKLTp —
eH(p) + M1Tp — 1) + fTp = —Dk1."p + epT log(p) +
A1Tp — 1) + BTp. Apply KKT conditions then we get
ApL = —Dxr, +elog(p) +€1+ A1+ 8 = 0and 8Tp* = 0.
Considering the feasibility of log operation and the nontrivial
situation (3 = 0), it follows that A, L = —Dkt, +€log(p)+

€l + A1 = 0. Then for each i € {1,2,..., N}, we get,
b
pi=e ! (20)
Consider constraint |p||; = 1. Solve for A from (20),
i
A = elog(e 12N e7e0). (1)
Substitute (21) in (20) to get the required result. [ |

The pseudocode that describes the proposed switching
watermarking-based detection scheme against replay attacks
is summarized as Algorithm 1.

Algorithm 1 Switching Watermarking-based Detection
Scheme Against Replay Attacks

01: Procedure

02:  Given N different control loss thresholds (;, where
ie{l,2,...,N}.

03: fori={1,2,...,N}

04: Solve the optimization problem (17) to get the
covariance of optimal watermarking signals U* for ;.

05: Compute the KL-divergence ngﬁ using (16).

06: Generate watermarking signals following the Gaus-
sian distribution ¢} ~ N (0,U?).

07:  end for

08:  Solve for the probability simplex p using (19).
09: At k = 0, choose the best distribution mode, i.e.,
o(0) = arg max(p;).

ieT

10: Proplaegate the system according to (1) and (2).

11:  Compute the optimal control input u}, using (7).

12:  Switch to another distribution based on the probability
simplex p at the switching moment with switching period 7.
13:  Compute alarm signals gj using (15).

14:  Raise alarms when g > &, where ¢ is the alarm
threshold.

15: End procedure

IV. SIMULATION
Consider the following system Vk € Z,

1.1 —-0.3 1 .
Tht1 = 1 0 Ty + 0 (Uk + ¢k> + wy,
Yk = [1 —0.8] Tk + Vg,

where u;, is the optimal control given by (7). We choose )
and R in (3) as identity matrices of appropriate dimensions,
and v = 0.8. Assume that the system is subjected to
a zero-mean white noise with covariances »,, = 0.06
and X, = 0.06. The probability simplex solved by (19)
is p = [0.011; 0.647; 0.231; 0.029; 0.082] with ( =
{1.2, 1.6, 1.4, 1.3, 1.5}. This shows the second and third
Gaussian distribution modes have better detection perfor-
mance than other modes. With the running time 400 seconds
and switching period 7' = 8 seconds, a replay attacker
records sensory output during 101-200 seconds and then
replays the recorded data during 201-300 seconds.

Figure 1 shows the evolution of system states, measure-
ment output, optimal control input u; and optimal water-
marking signals ¢j. The alarm signals of the Neyman-
Pearson detector are shown in Figure 2. It can be seen
the alarm signals have a great increase from 201 second to
300 second implying the existence of replay attacks. The
evolution of switching signals is shown in Figure 3. The
probabilities of the second and third distribution modes are
the biggest and thus Figure 3 shows these two modes are
selected more frequently than other modes.

Optimal control and watermarking signals (under replay attacks)
@

: 0 50 100 150 200 250 300 350 400 0 50
P

100 150 200 250 300 350 400
Operation Time Operating Time

Fig. 1. Evolution of system states, measurement output, optimal control
input wj and optimal watermarking signals ¢y. Replay attacks record
sensory output during 101-200 seconds and then replay such recorded data
during 201-300 seconds.

Alarm signals of Neyman-Pearson Detector
140 T T T T T T

—ld

-20

0 50 100 150 200 250 300 350 400
Operating Time

Fig. 2. Evolution of the alarm signals g under replay attacks of Definition
1. Replay attacks record sensory output during 101-200 seconds and then
replay such recorded data during 201-300 seconds.

4204

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 09,2022 at 18:26:15 UTC from |IEEE Xplore. Restrictions apply.



Switching signals

Mode Index

0 50 100 150 200 250 300 350 400
Operating Time

Fig. 3.  Evolution of the switching signals. Switching period is 1" =
8 seconds. The second and third distribution modes are selected more
frequently than other modes.

Next, we consider systems under attacks of Definition 2.
We employ the same simulation setting. Attackers record
the measurement output from 51 second to 100 second,
then replay these recorded data and inject the signals — B¢},
into the system during the interval of 101-150 seconds.
Later the attackers record the measurement output during
the interval 201-250 seconds, then replay these recorded
data and inject the signals —B¢! into the system during
the interval of 251-300 seconds. This attack setting is the
worst-case scenario in practice since attackers can estimate
the additive watermarking signals perfectly and add negative
watermarking signals to cancel out the addtive watermarking
signals. The alarm signals of Neyman-Pearson detector and

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

. . . . . 10
x? detector are shown in Figure 4, which implies that the [10]
Neyman-Pearson detector can detect intelligent attacks of
Definition 2 while the y? detector fails. [11]
Alarm signals of Neyman-Pearson detector and x? detector
100 T T T T T T
:Sf}:lr:i]:i’farson detector “ 2]
< [13]
[14]
B [15]
50 100 150 200 250 300 350 400
Operating Time
[16]
Fig. 4. Evolution of the alarm signals g; under intelligent attacks of
Definition 2. The attackers record the measurement output during 51-100
(resp.201-250) seconds, then replay the recorded data and inject the signals (17]
— B¢y, into the system during 101-150 (resp.251-300) seconds.
V. CONCLUSION AND FUTURE WORK (18]
In this work, we develop a switching watermarking-based
detection scheme, which adds unpredictability in terms of [19]
switching by solving a probability simplex through a trade-
off between detection performance and information entropy.
Additionally, the comparison of the detection performance (201
between Neyman-Pearson detector and 2 detector against [21]
intelligent attacks that are able to estimate system dynamics
and to inject malicious input signals shows the advantage of
Neyman-Pearson detector over x? detector.
4205
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