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Abstract— In this paper, a switching watermarking-based
detection scheme is proposed to detect replay attacks while
also limiting the adversary’s knowledge about additive water-
marking signals to ensure unpredictability. The unpredictability
is introduced by appropriate switching through a trade-off
between detection performance and information entropy, which
makes it challenging for adversaries to estimate the additive
watermarking signals. In addition, we compare the detection
performance of Neyman-Pearson detector and χ

2 detector.
Simulation results show the efficacy of the proposed approach.

Index Terms— CPS, watermarking signals, replay attacks,
detector, switching.

I. INTRODUCTION

Cyber-physical systems (CPS) are composed of physical

devices with computational and communication components.

The integration and interaction between cyber and phys-

ical components add automation capabilities that improve

physical systems and processes in various critical domains.

However, CPS complexity and heterogeneity lead to their

vulnerability to be exploited by malicious adversaries [1].

A tremendous amount of research have been conducted

to design resilient CPS, i.e., increasing their abilities of

detecting and mitigating malicious attacks [2].

In this work, we focus on replay attacks, which record

sensory output signals for a period of time and then replay

the recorded values at a later time. This makes it difficult for

the system operators to distinguish between nominal output

signals and replayed output signals. Research efforts have

been made to utilize physical watermarking to defend against

replay attacks. The key idea of watermarking-based detection

scheme is to superimpose optimal control input signals with

watermarking signals that serve as an authentication for the

detection of malicious attacks. The additive watermarking

signals into the system deteriorate the control performance,

and thus an optimization problem of maximizing detection

performance with a constraint of certain maximal control

performance loss is formulated to generate optimal water-

marking signals [3], [4].
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Based on the basic physical watermarking signals, several

extensions of the watermarking generation schemes are also

proposed, such as: dynamic watermarking scheme [5], [6],

data-based watermarking scheme [7], [8], and multiplicative

watermarking scheme [9], [10]. The work of [11] devel-

oped a dynamic watermarking approach to detect malicious

sensor attacks for general LTI systems with partial state

observations, and proposed an internal model principle-based

approach to handle persistent disturbances. The work of [12]

incorporated Bernoulli packet drops at the control input in

the design of the watermarking signals and developed a joint

Bernoulli-Gaussian watermarking scheme with a correlation

detector to detect integrity attacks. The authors in [13]

developed a periodic watermarking strategy for detecting

discontinuous replay attacks to reduce the control cost.

In terms of the detector schemes, various statistical tests

are investigated, such as χ2 detection scheme using innova-

tion data [3], [14], Neyman-Pearson detection scheme using

observation data [7], cumulative sum detection scheme using

both innovation signals and watermarking signals [15]. The

authors of [16]–[18] categorized adversary models as cyber

adversaries (i.e., attacks are able to eavesdrop sensory output

from the system without acquiring system dynamics and to

inject arbitrary signals at the sensors to conduct malicious

actions), non-parametric cyber-physical adversaries (i.e., at-

tacks are able to eavesdrop input and output information

from the system to estimate system dynamics and to inject

malicious signals) and parametric cyber-physical adversaries

(i.e., attacks are able to use the estimated parameters of the

system from input and output data to mislead the controller).

The work of [19] discussed two methods of active de-

tection in CPS namely, physical watermarking and moving

target defense (MTD). Different from physical watermarking

scheme, MTD defense scheme introduces time-varying and

unpredictable properties to keep adversaries unaware of the

full system model. Motivated by this concept, in this work we

incorporate the idea of MTD into the physical watermarking

detection scheme. Instead of switching system dynamics, we

consider switching watermarking generation. In particular,

we extend our previous work [8] to develop a switching

watermarking-based detection scheme that incorporates un-

predictability into the watermarking generation to build a

robust watermarking-detection framework.

Contributions: Compared with the deterministic

multiple-watermarking detection scheme in the literature,

the scheme developed in this work adds unpredictability in

terms of switching, which makes it difficult for intelligent

adversaries to estimate additive watermarking signals. In

addition, we compare the detection performance between
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Neyman-Pearson detector and χ2 detector against attacks

that are able to estimate system dynamics from input and

output data and to inject malicious input into the system

during the attack period.

Structure: Section II formulates the problem and defines

attack strategy. The designs of Neyman-Pearson detector,

optimal watermarking signals and a switching watermarking-

based detection scheme are shown in Section III. Section IV

presents simulation results and finally Section V concludes

and talks about future work.

II. PROBLEM FORMULATION

A. System Model

Consider the following LTI discrete-time system @k P Z,

xk`1 “ Axk ` Buk ` wk, (1)

yk “ Cxk ` vk, (2)

where xk P R
n is the state, uk P R

l is the control input,

yk P R
m is the output, and A P R

nˆn, B P R
nˆl, and

C P R
mˆn are the state matrix, control input matrix, and

output matrix, respectively. In this work, the process noise

wk P R
n is assumed to be a zero-mean Gaussian noise

with covariance Σw ą 0 denoted as wk „ N p0,Σwq, and

the measurement noise vk P R
m is assumed to follow a

zero-mean Gaussian distribution with covariance Σv ą 0

denoted as vk „ N p0,Σvq. In addition, the initial condition

x0 is assumed to follow a zero-mean Gaussian distribution

with covariance Σ0 denoted as x0 „ N p0,Σ0q. The signals

wk and vk are uncorrelated. The initial condition x0 is

independent of process and measurement noises.

Assumption 1. Since CPS operate for an extended period of

time, we assume they are operating at a steady state. l

Assumption 2. Assume that the pairs pA,Bq and pA,Cq are

controllable and observable respectively. l

Define the cost functional as J “ Er
ř8

i“0 γ
ipyT

i
Qyi `

uT
i
Ruiqs, where Q ľ 0 P R

mˆm, R ą 0 P R
lˆl, 0 ă γ ă

1 is a discount factor, and E denotes expectation operator.

Given (1)-(2), we aim to find a controller that minimizes the

cost functional with the following optimal value @xk,

V ‹ pxkq “ min
uk

Er
8
ÿ

i“k

γi´kpyTi Qyi ` uT
iRuiqs. (3)

Since information about full states is not always accessible

for feedback, we shall design an observer @k P Z as,

x̂k`1 “ Ax̂k ` Buk ` Kek, (4)

yk “ Cx̂k ` ek, (5)

where x̂k P R
n denotes the estimated state and K stands

for the steady-state Kalman filter gain while the term ek P
R

m is known as the innovation with covariance Ek “
covpekq “ Epeke

T
k

q, where Ep¨q denotes expectation op-

erator. The inovation Ek is calculated as Ek “ CSCT `
Σv . The steady-state Kalman gain is computed as K “
ASCTpCSCT ` Σvq´1, where S stands for the covariance

of the estimation error εk :“ xk ´ x̂k. The covariance of the

estimation error covpεkq “ Epεkε
T
k

q is calculated by solving

the algebraic Ricatti equation (ARE) of S “ ASAT `

Σw ´ ASCT
`

CSCT ` Σv

˘´1
CSAT. We can obtain the

covariance of the estimated state Xk “ covpx̂kq “ Epx̂kx̂
T
k

q
by solving the following ARE @k P Z,

Xk “ AXkA
T ` ASCT

`

CSCT ` Σv

˘´1
CSAT. (6)

The optimal control law @k P Z is,

u‹
k “ Lx̂k, @x̂k, (7)

with the feedback gain L “ ´pBTPB ` R{γq´1BTPA,

where P is found by solving the ARE of P “ γATPA `
CTQC ´ γATPBpBTPB ` R{γq´1BTPA.

B. Replay Attack Strategy

Definition 1. Replay attacks considered in this work are

defined as follows.

‚ Step 1. Adversaries record a sequence of sensory mea-

surements from k1 to k1`T , where T P Z
` is chosen by

adversaries to be large enough to guarantee the sequence

can be replayed for an extended period of time.

‚ Step 2. Adversaries replace the current sensory mea-

surements yk with the recorded ones, i.e., y1
k

“ yk´∆k,

from k2 to k2 ` T , where y1
k

denotes replayed signals

and ∆k :“ k2 ´ k1. l

III. WATERMARKING-BASED DETECTION SCHEME

In order to actively defend against replay attacks, physical

watermarking signals φk are injected into the control input

to serve as an authentication. Thus, the overall control input

uk of the system is the summation of the optimal control

input and watermarking signals given by uk “ u‹
k

`φk. It is

assumed that watermarking signals φk follow a zero-mean

Gaussian distribution with covariance U ą 0, i.e., φk „
N p0, Uq. By adding watermarking signals to the system, the

distributions of measurement output without replay attacks

and under replay attacks will be different, and thus a detector

can be designed due to such a statistical difference.

A. Neyman-Pearson Detector

Next, we shall characterize the distributions of the output

data, with and without considering replay attacks. Given the

system dynamics (1) and (2), it can be shown that the output

signals without replay attacks @k P Z are,

yk “
k´1
ÿ

t“0

CAtBφk´1´t `
k´1
ÿ

t“0

CAtBu‹
k´1´t

`
k´1
ÿ

t“0

CAtwk´1´t ` vk ` CAkx0

“
k´1
ÿ

t“0

CAtBφk´1´t

looooooooomooooooooon

first term

`
k´1
ÿ

t“0

CAtBLx̂k´1´t

loooooooooomoooooooooon

second term
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`
k´1
ÿ

t“0

CAtwk´1´t ` vk ` CAkx0

looooooooooooooooooomooooooooooooooooooon

third term

.

For simplicity, we will split yk into three terms and denote

them respectively @k P Z as,

Φk :“
k

ÿ

t“0

CAtBφk´t, (8)

̺k :“
k

ÿ

t“0

CAtBLx̂k´t, (9)

θk :“
k

ÿ

t“0

CAtwk´t ` vk`1 ` CAk`1x0. (10)

Thus, the measurement output @k P Z is characterized by,

yk “ Φk´1 ` ̺k´1 ` θk´1. (11)

From (8), we can see that Φk´1 is a zero-mean Gaussian

distribution with covariance given by,

Υ :“
8
ÿ

τ“0

pCAτBqUpCAτBqT. (12)

Similarly, it can be observed from (9) that ̺k´1 is a zero-

mean Gaussian distribution with covariance given by,

Γ :“
8
ÿ

τ“0

rCAτBLsXkrCAτBLsT. (13)

By observing (10) we can see that θk´1 is a zero-mean Gaus-

sian distribution with covariance given by Θ :“ CΣCT`Σv ,

where Σ stands for the covariance of state xk for the

dynamical system without control input, i.e., xk`1 “ Axk `
wk, yk “ Cxk ` vk, and Σ satisfies Σ “ AΣAT ` Σw.

In the case that the system is under replay attacks, the

replayed output is described @k P Z as,

y1
k “ yk´∆k “ Φk´1´∆k ` ̺k´1´∆k ` θk´1´∆k. (14)

From (11) we can conclude that in the nominal (attack-

free) case, given collected data φ0, φ1, . . . , φk´1, and

u0, u1, . . . , uk´1, the measurement output yk converges to

a Gaussian distribution with mean Φk´1 ` ̺k´1 and co-

variance Θ, denoted as yk „ N0pΦk´1 ` ̺k´1,Θq. In the

case that the system is under replay attacks, the parameter

∆k is unknown to the system operator even though it is

deterministic. Therefore, from (14) we can conclude that the

output y1
k

converges to a zero-mean Gaussian distribution

with covariance Υ`Γ`Θ, denoted as y1
k

„ N1p0,Υ`Γ`Θq.

Since yk and y1
k

follow two different Gaussian distribu-

tions, we can design a detector to distinguish this statistical

difference. We will now consider the following binary hy-

pothesis testing with the null hypothesis given by H0 and

the alternative hypothesis given by H1.

‚ H0: The measurement output yk follows a Gaussian

distribution N0pΦk´1 ` ̺k´1,Θq.

‚ H1: The measurement output y1
k

follows a Gaussian

distribution N1p0,Υ ` Γ ` Θq.

Based on Neyman-Pearson lemma [20], the alarm signal of

Neyman-Pearson detector for the hypothesis H0 versus the

hypothesis H1 is calculated @k P Z as,

gk “pyk ´ Φk´1 ´ ̺k´1qTΘ´1pyk ´ Φk´1 ´ ̺k´1q

´ yTk pΥ ` Γ ` Θq´1yk. (15)

Then the alarm signal gk is compared to a predetermined

threshold ξ which is tuned based on the detection perfor-

mance, such as detection and false alarm rate. Note that,

gk ě ξ implies that the hypothesis H1 is valid and thus the

system is under replay attacks. Otherwise, the null hypothesis

H0 holds with gk ă ξ and the system operates normally.

Definition 2. We define intelligent attacks as follows.

‚ Adversaries record a sequence of sensory measurements

from k1 to k1 ` T with T P Z
`.

‚ Adversaries replace current sensory measurements yk
with recorded ones, i.e., y1

k
“ yk´∆k, from k2 to k2`T

with T P Z
`.

‚ During the interval rk2, k2 ` T s, T P Z
`, adversaries

can inject malicious input Bua

k
into the system. l

Remark 1. The attacks defined in Definition 2 are able to

use estimated parameters of the system based on input and

output data to estimate additive watermarking signals.

Theorem 1. Suppose the system (1)-(2) is compromised

by intelligent attacks of Definition 2, then Neyman-Pearson

detector with alarm signals (15) can detect these attacks.

Proof. Suppose attacks start at k. The measurement output

received by the controller is y1
k

given by (14). At the same

time, the attacks inject malicious input Bua

k
into the system.

As a result, the system under attacks is described @k P Z

by xk`1 “ Axk ` Buk ` Bua

k
` wk, which shows that the

injected malicious input Bua

k
influences the state trajectory

from time k ` 1 thereafter. Note that Neyman-Pearson

detector utilizes measurement output data to calculate alarm

signals instead of innovation signals (i.e., the difference

between measured and estimated output) used by χ2 detector,

and that replay attackers replay the previous output data

yk´∆k which are not influenced by attackers’ ability to inject

malicious input during the active attack period defined by

Step 2 in Definition 1. Thus, the difference of distributions

between case of no attacks N0 and case with attacks N1 still

exists and the alarm signal given by (15) is effective.

Next, Kullback-Liebler (KL) divergence is utilized to

characterize the Neyman-Pearson detector performance [3].

Lemma 1. The expectation of KL-divergence for distribu-

tions N0 and N1 is given by,

ErDKLpN0,N1qs

“trrpΥ ` ΓqΘ´1s ´
1

2
logtdetrIm ` pΥ ` ΓqΘ´1su, (16)

and its lower bound and upper bound are given by,

1

2
trrpΥ ` ΓqΘ´1s ďErDKLpN0,N1qs ď trrpΥ ` ΓqΘ´1s
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´
1

2
logt1 ` trrpΥ ` ΓqΘ´1su,

where trp¨q denotes the trace operator [8].

B. Optimal Watermarking Signals

Although replay attacks can be detected with the help

of additive watermarking signals, the system performance

is deteriorated by deviating from optimal control law. Next

we quantify the performance loss.

Lemma 2. Given the system (1)-(2) with the optimal control

law (7), the performance loss due to additive watermarking

signals with zero mean and covariance U is given by ∆J “
trpURq{p1 ´ γq.

Proof. For the measurement signals defined by (11), the

performance cost without considering additive watermarking

signals is given by J‹ “ Er
ř8

i“0 γ
ipyT

i
Qyi ` pu‹

i
qTRu‹

i
qs.

With the consideration of additive watermarking signals, the

performance changes to,

J “ Et
8
ÿ

i“0

γiryTi Qyi ` pu‹
i ` φiq

TRpu‹
i ` φiqsu

“ J‹ ` Er
8
ÿ

i“0

γippu‹
i qTRφi ` φT

i Ru‹
i ` φT

i Rφiqs

“ J‹ `
8
ÿ

i“0

γitrpURq “ J‹ `
trpURq

1 ´ γ
,

which completes the proof.

Remark 2. The control performance loss ∆J due to additive

watermarking signals is linearly dependent on covariance U .

But as shown in (16) the detection performance characterized

by the KL-divergence is not linearly dependent on U . l

Next, we aim to find the trade-off between the detection

and control performances. Note that both the upper and lower

bounds of the KL-divergence in (16) contain trrpΥ`ΓqΘ´1s,
thus we formulate the following optimization problem,

U “ argmax
U

trrpΥ ` ΓqΘ´1s

subject to trpURq ď ζ,

where ζ P R
` is a threshold determining how much control

performance loss can be tolerated. Substituting covariance

expressions (12) and (13) into trrpΥ ` ΓqΘ´1s yields,

trrpΥ ` ΓqΘ´1s “trr
8
ÿ

τ“0

pHτUHT
τ ` ΩτXkΩ

T
τ qΘ´1s

“trpUP1q ` trpXkP2q,

with Hτ fi CAτB, Ωτ fi CAτBL, P1 fi
ř8

τ“0 H
T
τ Θ

´1Hτ ,

and P2 fi
ř8

τ“0 Ω
T
τ Θ

´1Ωτ .

Note that P1 and P2 are related to the system dynamics

(4)-(5), and that Xk can be found by solving the Lyapunov

equation (6). These three parameters are not related to the

covariance of watermarking signals U . It is also true that

trpXkP2q ě 0 always holds since Xk is positive semi-

definite. Therefore, we can optimize the KL-divergence by

maximizing trpUP1q. As a result, we can solve instead the

following optimization problem to get the covariance of

optimal watermarking signals,

U “ argmax
U

trpUP1q

subject to trpURq ď ζ,
(17)

with P1 “
ř8

τ“0pCAτBqTΘ´1pCAτBq.

Theorem 2. The solution to the optimization problem (17) is

given by U “ zzT, with z as the eigenvector corresponding

to the largest eigenvalue of the matrix R´1P1 and satisfying

zTRz “ ζ [8].

C. Switching Watermarking Detection Scheme

As stated in [16]–[18], resourceful and powerful attackers

can employ an adaptive least mean square filter to identify

system model with input and output data and thus esti-

mate the watermarking signals added into the system. By

switching the distributions when generating watermarking

signals, defenders can introduce time-varying and unpre-

dictable properties as a moving target to increase attackers’

difficulty in accessing to the additive watermarking signals,

and thus improve the probability of detecting replay attacks.

Generally speaking, the idea of the switching

watermarking-based detection scheme is to generate additive

watermarking signals by periodically switching among N

different Gaussian distribution modes. Specifically, φ
piq
k

stands for additive watermarking signals at the time instant

k generated by solving the optimization problem (17) with

control performance loss threshold ζi for the i-th Gaussian

distribution mode, where i P I “ t1, 2, . . . , Nu. From

Theorem 2, the covariance of the optimal watermarking

signals by solving the optimization problem (17) only

depends on the control performance loss threshold ζ and

thus various distributions can be generated with different

thresholds. At each switching moment, a distribution mode

i is selected randomly with a switching period T .

This watermarking generation scheme adds unpredictabil-

ity by switching but the detection performance is degraded

since the distribution with the maximum KL-divergence

standing for the best detection performance is not always

utilized. Thus, a switching law can be developed by finding

the trade-off between detection performance characterized

by KL-divergence (16) and unpredictability characterized by

information entropy, i.e., Hppq “ ´pT logppq [21], where

p “ tp1, p2, . . . , pNu is the probability simplex, satisfying

}p}1 “
řN

i“1 |pi| “ 1 and standing for the selected proba-

bility of each distribution mode at the switching moment.

Lemma 3. Suppose additive watermarking signals are gener-

ated by periodically switching among N different Gaussian

distribution modes and the covariance of the optimal wa-

termarking signals is calculated by solving the optimization

problem (17) with control performance loss threshold ζi
for each mode, where i P I “ t1, 2, . . . , Nu. Then the

probability simplex is solved by,

min
p

p´DKL
Tp ´ ǫHppqq
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such that }p}1 “ 1, pi ě 0, i P t1, 2, . . . , Nu, (18)

and the solution is given by,

pi “ er
D

piq
KL
ǫ

´1´logpe´1
ř

N

i“1
e

D
piq
KL
ǫ qs, (19)

where ǫ denotes the weight on unpredictability, DKL “

rD
p1q
KL ; D

p1q
KL ; . . . ; D

pNq
KL s denotes the KL-divergence of each

distribution calculated by equation (16).

Proof. Define the Lagrangian for (18) as L “ ´DKL
Tp ´

ǫHppq ` λp1Tp ´ 1q ` βTp “ ´DKL
Tp ` ǫpT logppq `

λp1Tp ´ 1q ` βTp. Apply KKT conditions then we get

∆pL “ ´DKL `ǫ logppq`ǫ1`λ1`β “ 0 and βTp‹ “ 0.

Considering the feasibility of log operation and the nontrivial

situation (β “ 0), it follows that ∆pL “ ´DKL`ǫ logppq`
ǫ1 ` λ1 “ 0. Then for each i P t1, 2, . . . , Nu, we get,

pi “ e
D

piq
KL
ǫ

´ λ

ǫ
´1. (20)

Consider constraint }p}1 “ 1. Solve for λ from (20),

λ “ ǫ logpe´1ΣN

i“1e
D

piq
KL
ǫ q. (21)

Substitute (21) in (20) to get the required result.

The pseudocode that describes the proposed switching

watermarking-based detection scheme against replay attacks

is summarized as Algorithm 1.

Algorithm 1 Switching Watermarking-based Detection

Scheme Against Replay Attacks

01: Procedure

02: Given N different control loss thresholds ζi, where

i P t1, 2, . . . , Nu.

03: for i “ t1, 2, . . . , Nu

04: Solve the optimization problem (17) to get the

covariance of optimal watermarking signals U i for ζi.

05: Compute the KL-divergence D
piq
KL using (16).

06: Generate watermarking signals following the Gaus-

sian distribution φi

k
„ N

`

0, U i
˘

.

07: end for

08: Solve for the probability simplex p using (19).

09: At k “ 0, choose the best distribution mode, i.e.,

σp0q “ arg max
iPI

ppiq.

10: Propagate the system according to (1) and (2).

11: Compute the optimal control input u‹
k

using (7).

12: Switch to another distribution based on the probability

simplex p at the switching moment with switching period T .

13: Compute alarm signals gk using (15).

14: Raise alarms when gk ě ξ, where ξ is the alarm

threshold.

15: End procedure

IV. SIMULATION

Consider the following system @k P Z,

xk`1 “

„

1.1 ´0.3

1 0



xk `

„

1

0



pu‹
k ` φkq ` wk,

yk “
“

1 ´0.8
‰

xk ` vk,

where u‹
k

is the optimal control given by (7). We choose Q

and R in (3) as identity matrices of appropriate dimensions,

and γ “ 0.8. Assume that the system is subjected to

a zero-mean white noise with covariances Σw “ 0.06

and Σv “ 0.06. The probability simplex solved by (19)

is p “ r0.011; 0.647; 0.231; 0.029; 0.082s with ζ “
t1.2, 1.6, 1.4, 1.3, 1.5u. This shows the second and third

Gaussian distribution modes have better detection perfor-

mance than other modes. With the running time 400 seconds

and switching period T “ 8 seconds, a replay attacker

records sensory output during 101-200 seconds and then

replays the recorded data during 201-300 seconds.

Figure 1 shows the evolution of system states, measure-

ment output, optimal control input u‹
k

and optimal water-

marking signals φk. The alarm signals of the Neyman-

Pearson detector are shown in Figure 2. It can be seen

the alarm signals have a great increase from 201 second to

300 second implying the existence of replay attacks. The

evolution of switching signals is shown in Figure 3. The

probabilities of the second and third distribution modes are

the biggest and thus Figure 3 shows these two modes are

selected more frequently than other modes.
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Fig. 1. Evolution of system states, measurement output, optimal control
input u‹

k
and optimal watermarking signals φk . Replay attacks record

sensory output during 101-200 seconds and then replay such recorded data
during 201-300 seconds.
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Fig. 2. Evolution of the alarm signals gk under replay attacks of Definition
1. Replay attacks record sensory output during 101-200 seconds and then
replay such recorded data during 201-300 seconds.
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Fig. 3. Evolution of the switching signals. Switching period is T “

8 seconds. The second and third distribution modes are selected more
frequently than other modes.

Next, we consider systems under attacks of Definition 2.

We employ the same simulation setting. Attackers record

the measurement output from 51 second to 100 second,

then replay these recorded data and inject the signals ´Bφi

k

into the system during the interval of 101-150 seconds.

Later the attackers record the measurement output during

the interval 201-250 seconds, then replay these recorded

data and inject the signals ´Bφi

k
into the system during

the interval of 251-300 seconds. This attack setting is the

worst-case scenario in practice since attackers can estimate

the additive watermarking signals perfectly and add negative

watermarking signals to cancel out the addtive watermarking

signals. The alarm signals of Neyman-Pearson detector and

χ2 detector are shown in Figure 4, which implies that the

Neyman-Pearson detector can detect intelligent attacks of

Definition 2 while the χ2 detector fails.
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Fig. 4. Evolution of the alarm signals gk under intelligent attacks of
Definition 2. The attackers record the measurement output during 51-100
(resp.201-250) seconds, then replay the recorded data and inject the signals
´Bφk into the system during 101-150 (resp.251-300) seconds.

V. CONCLUSION AND FUTURE WORK

In this work, we develop a switching watermarking-based

detection scheme, which adds unpredictability in terms of

switching by solving a probability simplex through a trade-

off between detection performance and information entropy.

Additionally, the comparison of the detection performance

between Neyman-Pearson detector and χ2 detector against

intelligent attacks that are able to estimate system dynamics
and to inject malicious input signals shows the advantage of

Neyman-Pearson detector over χ2 detector.
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