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Abstract— This paper presents a multi-agent motion planning
algorithm for human-like navigation in dynamic environments.
A cognitive hierarchy approach is used to model the motion of
autonomous agents. We discuss potential levels of rationality
and introduce a method to predict them in real-time. The
rationality level prediction is achieved by observing the kinody-
namic distance (KD) of other agents. An offline training phase
is required to learn the maximum KD from multiple boundary
value problems. Collision avoidance is ensured by introducing
artificial obstacles in the environment based on the predicted
levels of rationality. The motion planning is then carried out
using RRT-QX. The effectiveness of the bounded rational motion
planning algorithm is illustrated in simulations.

I. INTRODUCTION

Recent developments in artificial intelligence have signif-

icantly advanced the capabilities of mobile robots. However,

navigation remains a key problem for autonomous vehicles,

while obstacle avoidance and safe path planning are consid-

ered necessary for applications of robotics [1]. Safe motion

planning is difficult in dynamic environments, where the

environment changes over time. This is particularly true in

multi-agent environments, where an autonomous robot must

navigate past other agents both with unknown destinations

and path planning frameworks depending on their level of

rationality. To avoid these other agents, it is crucial to quickly

identify other agents in the environment and to classify their

motion planning methodology. The robot must also be able

to adjust these classifications online to account for changes

in other agent’s motions, and must accommodate online path

replanning to utilize these observations to avoid collisions.

Our focus in this work is on exploring how varying levels of

rationality affect the path planning of agents navigating an

environment, as well as identifying these levels of rationality

in autonomous robots with only knowledge of its motion.

Related work: Rapidly-exploring Random Tree (RRT) [2],

is a sampling-based path planning algorithm to navigate

high-dimensional static environments. RRT is probabilisti-

cally complete. It is expanded upon with RRT‹, which is

shown to be asymptotically optimal in static environments

[3]. The main drawback of RRT‹ is the computational

complexity that does not allow for rapid replanning in

dynamic environments. An extension of RRT‹ for dynamic
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environments, referred to as RRTX, is introduced in [4],

[5]. This algorithm provides asymptotically optimal motion

planning and replanning in dynamic environments. However,

this approach requires the dynamics of the system. Following

this, RRT-QX is proposed in [6] as a sampling-based algo-

rithm for navigating an unpredictable dynamic environment

using a model-free Q-learning controller. This approach,

however, does not account for multi-agent environments.

In a multi-agent environment, it is critical to model the

motion of other agents in order to optimize path planning

and ensure safety. This is primarily looked at through the lens

of robots sharing environments with one or several humans,

who are presumed to all have similar planning techniques

[7]. In [8], human motion in an environment is estimated

using an intent-driven model, yet does not consider a denser

environment with additional agents necessitating further path

replanning for some agents present, nor does it consider

agents with differing levels of intelligence. Human motion

in an environment was also modelled in [9] by considering

each human as a player in a non-zero sum game, and learning

from human motion examples. This was then used to guide

an agent in [10]. Similarly, this work does not consider

online motion past additional obstacles, or with agents with

varying levels of intelligence. Robot navigation through an

environment with numerous human agents is considered

in [11], where human motion is modeled with interacting

Gaussian processes. This work considers the influence of

multiple other agents, but all still are assumed to operate

with the same level of intelligence. A model for avoiding

collisions accounting for varying levels of intelligence and

cooperation is proposed in [12], but in this work agents are

capable of communicating to jointly avoid a collision.

The kinodynamic motion problem is introduced in [13].

The kinodynamic distance (KD) of an agent is defined in

[14], [15] as the distance between an agent and its planned

path. Bounded rationality is presented in [16], referring to

agents making decisions with imperfect information of their

environment. Following from bounded rationality, cognitive

hierarchy is a method of describing the relative intelligence

of multiple players in a game [17] which is also extended

for cyber-physical systems [18], but has not been applied to

a multi-agent motion planning problem.

Contributions: The contributions of this is threefold. First,

we consider and propose models of agent motion planning

behavior in a multi-agent environment for several levels of

agent rationality. Second, we implement these models on

agents using a path-planning algorithm for online navigation

through dynamic environments to measure effectiveness in
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obstacle avoidance. Lastly, we employ an algorithm using

each agent’s KD to predict the level of rationality.

II. PROBLEM FORMULATION

Consider an environment containing N agents with dif-

ferent capabilities. Each agent can be described as a linear-

time-invariant system,

9xiptq “ Axiptq ` Buiptq, xip0q “ xi,0, t ě 0

where xiptq P X Ď R
n is the measurable state vector, uiptq P

U Ď R
m is the control input, and A P R

nˆn and B P R
nˆm

are plant and input matrices, respectively, for each agent i “
1, . . . , N . Let us define the difference of an agent’s current

state xiptq and its goal state xi,g as x̄iptq, and define,

9̄xiptq “ Ax̄iptq ` Buiptq, t ě 0. (1)

We seek to guide an agent i in the environment from its

initial state, xi,0, to an individual goal state xi,g. We employ

a finite horizon cost function,

Jpx̄i,0, ui; t0, T q “ φpT q`
1

2

ż T

t0

`

x̄
⊺

i Mx̄i`u
⊺

i Rui

˘

dτ, (2)

where φpT q :“ p1{2qx⊺

i pT qP pT qxipT q is the terminal

cost with a symmetric, positive-definite final Riccati matrix

P pT q P R
nˆn ą 0, and M P R

nˆn ľ 0, R P R
mˆm ą 0 are

user-defined matrices to penalize the state and control input,

respectively. Our goal is to obtain the optimal control u‹
i px̄, tq

such that Jpx̄i,0;u
‹
i ; t0, T q ď Jpx̄i,0;ui; t0, T q is satisfied for

all x̄i. To this end, we formulate the minimization problem

Jpx̄i,0;u
‹
i ; t0, T q “ minui

Jpx̄i,0;ui; t0, T q subject to (1).

Subsequently, the value function gets the form of,

V px̄i; t0, T q “ min
uiPU

#

φpT q `
1

2

ż T

t0

`

x̄
⊺

i Mx̄i `u
⊺

i Rui

˘

dτ

+

.

(3)

Assumption 1. The matrix pair (A, B) is controllable and

the pair (M1{2, A) is detectable. l

In addition, consider an agent’s closed dynamic obstacle

space as Xobs,i Ă X . The free space of the environment

Xfree,i, conversely, is defined as the complement of the

obstacle space Xfree,i “ X zXobs,i. In a dynamic environment,

both the obstacle space and free space evolve in time. Define

∆Xobs,i :“ fpXobs,i; tq as the variation of the obstacle space

in the environment, where fp¨q is unknown.

To minimize its cost, the agent will efficiently search

the environment by randomly constructing a space-filling

tree, and use it to find its global path πipxi,0,k, xi,g,k; tq P
R

2pKˆnq for k “ 1, ...,K where K P N is the number

of boundary value problems (BVPs) in the path. The path

πipxi,0,k, xi,g,kq includes the initial states Xi,0 “ xi,0,k for

all i, where Xi,0 P R
Kˆn Ă Xfree,i, as well as the goal states

Xi,g “ xi,g,k for all i, where Xi,g P R
Kˆn Ă Xfree,i. As the

obstacle space Xobs,i evolves in time, πi adapts using a goal-

to-start replanning, and K changes accordingly. RRTX also

provides an initial graph Gi “ pVi, Eiq, where Vi is the initial

set of nodes, and Ei is the initial set of edges. The global

path πi in the graph is given by Ti “ pVT ,i, ET ,iq Ď Gi.

We shall next connect the game-theoretic formulation to

the motion planning problem. For each BVP provided by

RRTX for an agent i, we seek to drive the system to the

goal state. For the k-th BVP, define the initial distance as

the distance from the initial state xi,0,k and goal state xi,g,k,

D0px̄i,0,kq :“ ||xi,0,k ´ xi,g,k|| “ ||x̄i,0,k||,@xi,0 P R
n, (4)

and the relative distance as,

Dpx̄iq :“ ||xi ´ xi,g,k|| “ ||x̄i||,@xi,0 P R
n.

Since the game-theoretic problem utilizes a

free-final state, xipT q will approximate the desired state xi,g

to reduce the total navigation time [19]. We assume that xi,g

is reached when the agent reaches the close neighborhood

around xi,g. In other words, the agent is considered to

have reached its final state when Dpx̄iq ď ρD0px̄i,0,kq
where ρ P R is a user-defined window to determine the

neighborhood. Upon reaching this goal state neighborhood,

the agent continues to its pk ` 1q-th BVP.

When RRTX calculates a collision-free path πi, it selects

only straight lines as edges in the set Ei. However, the robot’s

true trajectory is subject to both kinodynamic constraints

(1) and the optimal performance constraints (2). The actual

trajectory thus deviates from the chosen path πi, which

may result in collisions when the agent i passes closely

by obstacles. We reduce this risk by adopting an obstacle

augmentation strategy. Let us define the KD as,

Drob,ipx̄iq :“
|x̄i,0,k ˆ x̄i|

Di,0,k

, (5)

to find the difference between the agent’s current location

and the straight path determined by the pair pxi,0,k, xi,g,kq.

We then use this distance to form an augmented obstacle

space X
aug
obs,i based on the maximal KD Dkin

rob,i,

X
aug
obs,i

:“ Xobs,i ‘ Xkin,i (6)

where Xkin,i is the space of a compact set bounded by a circle

centered on the origin with a radius of Rkin
rob,i. As Rkin

rob,i is

updated, the augmented obstacle space X
aug
obs,i is recalculated,

and RRTX will accordingly plan a collision-free path further

from each obstacle with all newly-invalid nodes and their

descendants pruned.

Each agent is operating without knowledge of the other

agents’ planned motions, and instead limited to its own

observations of other agents’ states. Therefore, each agent’s

motion planning is a problem with bounded rationality. Each

agent i’s knowledge of the environment is limited to the

location of obstacles and other agents within a perception

radius r around xiptq and constructs an individual obstacle

space Xobs,iptq using the locations of perceived obstacles

as well as the other perceived agents. To ensure optimal

motion planning and to mitigate the risk of colliding with the

other agents making up its obstacle space, each agent also

forms a predicted obstacle space X̂obs,i which is added to the

obstacle space, considered by the motion planning algorithm,

3598

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 09,2022 at 18:26:42 UTC from IEEE Xplore.  Restrictions apply.



to form X tot
obs,i “ X

aug
obs,i Y X̂obs,i. This is the obstacle space

ultimately used to construct a path using RRTX. To form

this predicted obstacle space, each agent adopts a level-

k rationality cognitive hierarchy approach to anticipate the

motion of the other agents.

Definition 1. Level-k rationality is a cognitive hierarchy

model of strategies where an agent using a level-k strategy

assumes all other agents employ a level-(k ´ 1). l

Our goal is to describe the potential levels of rationality

present in each agent in the environment, and then to develop

an algorithm to reliably estimate the level of each agent in

the environment by observing its motion.

III. MODEL-FREE FORMULATION

The Hamiltonian associated with (1) and (3) is,

Hpx̄i;ui;
BV ‹

Bx

BV ‹

Bt
q :“

1

2
px̄⊺

i Mx̄i ` u
⊺

i Ruiq

`
BV ‹

Bx

⊺

pAx̄i ` Buiq `
BV ‹

Bt
, @x̄i, ui.

Since the system (1) is linear, the optimal value function can

be written in the form of,

V ‹px̄i; tq “ p1{2qx̄⊺

i P ptqx̄i, (7)

where P ptq P R
nˆn ą 0 is the symmetric positive-definite

Riccati matrix calculated by,

´ 9P ptq “ P ptqA`A⊺P ptq `M ´P ptqBR´1B⊺P ptq. (8)

Therefore, the optimal control is computed as,

u‹
i px̄i; tq “ ´R´1B⊺P ptqx̄i, @x̄i, t.

Let us now define the Q-function for an agent i as

Qipx̄i;ui; tq :“ V ‹px̄i; tq `
1

2
px̄⊺

i Mx̄i ` u
⊺

i Ruiq

`x̄
⊺

i P ptqpAx̄i ` Buiq `
1

2
x̄
⊺

i
9P ptqx̄i,

(9)

where Qipx̄i;ui; tq P R is an action-dependent value. We

next define the augmented state Ui :“ rx̄⊺

i u
⊺

i s⊺ P R
pn`mq

to express (9) in compact form as,

Qipx̄i;ui; tq “
1

2
U

⊺

i

„

Qxxptq Qxuptq
Quxptq Quu



Ui “:
1

2
U

⊺

i Q̄iptqUi,

(10)

where Qxxptq “ 9P ptq ` P ptq ` M ` P ptqA ` A⊺P ptq,

Qxuptq “ Quxptq “ P ptqB, and Quu “ R, with Qi :

R
n`m ˆ R

pn`mqˆpn`mq Ñ R. By using the stationar-

ity condition BQipx̄i;ui; tq{Bui “ 0, we find a model-

free expression of the optimal control u‹
i as, u‹

i px̄i; tq “
argminui

Qipx̄i;ui; tq “ ´Q´1
uu Quxptqx̄i.

Lemma 1. The minimization problem Q‹
i px̄i;u

‹
i ; tq :“

minui
Qipx̄i;ui; tq results the same solution to (3)

Q‹
i px̄i;u

‹
i ; tq “ V ‹px̄i; tq from (7), where P ptq ą 0 (8).

Proof. The proof follows from [15].

Each agent shall use an actor/critic structure in order to

approximate its optimal control for each BVP. The structure

used is described in detail in Section IV of [15].

IV. COGNITIVE HIERARCHY AND MOTION PLANNING

FRAMEWORK

A. Levels of rationality

Let us consider the scenario where the agents navigate

in a bounded space X with no perfect rationality. To this

end, we consider the cognitive hierarchy theory of “level-k”

reasoning (Definition 1). Under this framework, each agent

is assigned an individual time-invariant rationality level of

k. An agent operating with level-k reasoning assumes that

every other agent in the environment operates at level-(k´1).

By predicting the strategies resulting from different levels of

rationality and observing the motions of other agents, each

agent i forms a predicted obstacle space at time t, X̂obs,iptq.

This predicted obstacle space is incorporated into the agent’s

total perceived obstacle space used for motion planning. To

determine the levels of rationality, we presume each agent

in the environment seeks to minimize its cost-to-go to its

individual goal state while avoiding collisions.

B. Level-0 Policy

To describe higher levels of rationality, we find the level-

0, or “anchor,” policy. The anchor can be defined as either

a random approach or a naive approach where the agent is

unable to detect any other agents. As random navigation is

often ineffective, we consider the naive approach. A level-

0 agent i will ignore the other agents in the environment,

and construct the obstacle space Xobs,i using solely perceived

non-agent obstacles. In other words, X̂obs,i “ t∅u. Then, the

agent plans its motion to its goal state using RRTX which

seeks the optimal path according to,

π‹
i pxi,0, xi,gq “ min

πpxi,0,xi,gqPXfree,i

dπpxi,0, xi,gq, (11)

constrained by the dynamics (1), where dπ is the length of

the path between xi,0 and xi,g. An example of the predicted

behavior of a level-0 agent i in a multi-agent environment

with no other obstacles is shown in Fig. 1-(a).

C. Level-1 Policy

Similarly to a level-0 agent, a level-1 agent j traversing the

environment seeks to drive to its goal state by constructing its

obstacle space Xobs,j , and conducting online motion planning

to find the optimal path π‹pxi,0, xi,gq using RRTX. Level-

1 agents additionally seek to predict the motion of other

agents in the environment, and use this to construct the

predicted obstacle space X̂obs,jptq to form their total obstacle

space X tot
obs,j . In this case, the agent i anticipates level-0

behavior from all other agents. A level-1 agent is not aware

of the path that a level-0 agent may be following, as the

bounded rationality of the problem dictates that no agent

knows another’s current or future goal states. Thus, the level-

1 agent will instead need to avoid collision by avoiding all

possible collisions with level-0 agents.

Consider the distance between a level-0 agent i and level-1

agent j as Dijpxi, xjq “ ||xi ´xj ||. Let us define a collision

between i and j as occurring at time t if Dijpxiptq, xjptqq ď
dcol, where dcol P R

` is a user-defined distance based
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Fig. 1. Increasing levels of rationality of agents. (a) A level-0 agent i, travelling optimally (directly) to its goal. (b) A level-1 agent j travelling to its
goal while avoiding an agent i. (c) A level-2 agent k travelling to its goal while presuming that another agent j will avoid a possible collision.

on the radii of the agents to represent when the agents

have physically collided. We assume that agent j is familiar

with the kinodynamic constraints of agent i, and with the

kinodynamic constraints present on agent i. Hence, agent j

constructs the potential future state space X̂i, which consists

of all states agent i can reach within a given time-frame ts.

Agent i then generates obstacles over this space, augments

them to account for the maximal KD Dkin
rob,j , incorporates

them into the predicted obstacle space X̂obs,j , and finds the

optimal policy,

π‹
j pxj,0, xj,gq “ min

πpxj,0,xj,gqPpXfree,jzX̂obs,jq
dπpxj,0, xj,gq,

constrained by (1). This space is rapidly updated by j as i

traverses the environment to ensure its accuracy.

Theorem 1. Consider a level-1 agent j that is familiar

with the kinodynamic constraints of a different agent i. In

addition, the level-1 agent j can observe that agent’s i state,

velocity, and trajectory. Then, agent j can plan a motion that

is guaranteed to avoid a collision with i.

Proof. Consider a collision between the agents i and j. A

collision necessitates that at some time t, Dpxiptq, xjptqq ď
dcol. However, because of the predicted obstacle space of

agent j X̂obs,j , the free space of agent j Xfree,j contains

no potential states of j x̂j such that DpX̂i, x̂jq ď dcol, and

therefore j’s motion planning will not enter these points.

Thus, the theorem is true by contradiction.

Following Theorem 1, the level-1 agent plans an asymp-

totically optimal path minimizing its path length through the

environment while ensuring that it safely avoids all other

agents present. An example of this is shown in Fig. 1-(b).

D. Higher Level Policies

A level-2 agent k assumes level-1 behavior from all other

agents, and must choose its predicted obstacle space X̂obs,k

such that it avoids all collisions with these agents. It then

seeks to find the optimal path π‹pxk,0, xk,gq similarly to

agents of a lower level. However, Theorem 1 states that if

all other agents in the environment are level-1 agents, then

their motion planning will avoid collisions regardless of the

actions of agent k. Thus, to find the optimal possible path,

the agent k chooses X̂obs,k “ t∅u in order to maximize

Xfree,k. It then finds the optimal policy,

π‹
kpxk,0, xk,gq “ min

πpxk,0,xk,gqPXfree,k

dπpxk,0, xk,gq.

Theorem 2. Consider a level-0 agent i and level-2 agent k

placed in identical environments with a shared initial state

and goal state x0 and xg, respectively. Then, both agents

have the same optimal path.

Proof. Consider the optimal path of agents i and k, where

π‹
i ‰ π‹

k. This implies that minπpx0,xgqPXfree,i
dπpx0, xgq ‰

minπpx0,xgqPXfree,k
dπpx0, xgq. However, as X

aug
obs,i “ X

aug
obs,k,

then Xfree,i “ Xfree,k. Thus, there exists no optimal path π‹

such that π‹ P Xfree,i, R Xfree,k or vice versa. Therefore, the

theorem is true by contradiction.

An example of level-2 path planning is shown in the third

image of Fig. 1. The level-2 policy being identical to the

level-0 policy also indicates that the level-3 policy is identical

to the level-1 policy. This alternating pattern repeats for all

higher levels of rationality. Therefore, to model all levels

of rationality of each agent, we only need to consider two

levels: level-0 and level-1.

E. Motion Planning Framework

The motion planning structure consists of five stages: i)

dynamic planning with RRTX; ii) Q-learning; iii) terminal

state evaluation; iv) obstacle augmentation; and v) predictive

obstacle avoidance. The four stages (i)–(iv) are similar to

those used in RRT-QX. The key difference in the implemen-

tation is the fifth stage, where the agent, is operating with

an appropriate level of rationality, incorporates the potential

motion of other agents into its obstacle space. This adjusted

implementation is shown in Algorithm 1.

V. LEVEL OF RATIONALITY ESTIMATION

We next propose a framework to estimate the level of

rationality of each agent in an environment. We consider

an environment containing N agents, each driven with the

proposed framework with either level-0 or level-1 rationality.

Note that, all higher levels can be expressed by level-0 and

level-1. In addition, we consider an algorithm observing the

environment that is only familiar with each agent’s state,

velocity, and trajectory at any time t.

In order to identify the level of rationality of each agent,

we consider the tendencies of each level of rationality.

Since level-1 agents react online to the potential motion

of agents to avoid collisions, they need to often rapidly

replan in congested environments. Conversely, level-0 agents

rarely need to replan their trajectory. Considering this, the

algorithm first seeks to estimate the series of BVPs that

each agent i followed through the environment as part of its

path πi. Then, agent i compares the maximum KD during
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Algorithm 1 Bounded Rational RRT-QX

Input: T - finite horizon; ∆t - resolution; M , R - cost weight
matrices; P pT q - fixed Riccati matrix; ρ - admissible window; xgoal

- goal state; xstart - start state; Xobs - obstacle space; Xa - states
of other agents; X - state space; L - level of rationality; ts - agent
range time-frame
Output: û - control

1: αa, αc Ð StabilitypM,Rq
2: X

aug

obs Ð Xobs;

3: Drob, D
kin
rob Ð 0; k Ð 1;

4: while xgoal ‰ x do
5: if L “ 1 then Ź Predictive obstacle avoidance
6: X̂obs Ð PotentialStatespXa, L, tsq;

7: X
tot
obs Ð Xobs ` X̂obs

8: end if
9: while NoCollision do

10: D0 ÐInitialDistance(x0) (4);
11: for t P T do
12: if Drob ą Dkin

rob then Ź Obstacle augmentation
13: Dkin

rob Ð Drob;
14: X

aug

obs Ð Augment(X tot
obs , D

kin
rob) (6);

15: end if
Ź Q-learning

16: Ŵc Ð Critic(M,R,∆t, αc, x̄, û)

17: Q̂i Ð EstimateQ(Ŵc, x̄, û)

18: Ŵa Ð Actor(Q̂i, αa, x̄)

19: û Ð Control(Ŵa, x̄)
20: return û;
21: Drob Ð KinodynamicDist(x0,k, x̄, D0) (5);
22: if D ď ρD0 then Ź Terminal state evaluation
23: x0,k Ð xptq;
24: k Ð k ` 1;
25: break;
26: end if
27: end for
28: end while Ź Dynamic planning
29: G, π Ð RRT

XpX ,X
aug

obs , xstart, xgoalq;
30: end while

each of these BVPs with the expected maximum KD. If

the measured maximum KD of agent j is larger than the

predicted maximum KD, then agent i needs to significantly

adjust its planned path online, which in turn implies that

agent i has level-1 rationality. Conversely, if this never

occurs, it implies that i is level-0.

A. BVP Estimation

As previously mentioned, an agent i in the environment

constructs a global path composed of a series of BVPs

πipxi,0,k, xi,g,k; tq P R
2pKˆnq for k “ 1, ¨ ¨ ¨ ,K. As the

agent traverses the k-th BVP of the path, it moves to the

k ` 1-th BVP after entering the pre-defined neighborhood

of the goal state xi,g,k. As the level estimation algorithm

has no information about each agent’s determined path, we

seek to estimate the start and end location of each BVP to

estimate the path. Moreover, since each BVP is a straight

line, an agent is considered to be travelling on one BVP so

long as its trajectory does not significantly change over time.

In addition, BVP endpoints can be estimated by observing

where the agent’s trajectory changes over a sufficiently short

period of time. To this end, we mark the initial state xi,0

as the first BVP endpoint. We then denote the trajectory of

agent i at time t as v̄iptq P R
n. We observe the agent online,

and note the change of its trajectory over a short time frame

ta, and calculate the angle of change,

θiptq “ cos´1 v̄iptq ¨ v̄ipt ´ taq

||v̄iptq|| ||v̄ipt ´ taq||
. (12)

If the angle of change is found to exceed a user-chosen value

γ, then xiptq is marked as a BVP endpoint. Note that γ must

be sufficiently large to avoid falsely interpreting an agent’s

slight trajectory adjustments due to kinodynamic constraints

as a BVP endpoint. Increasing this threshold also means that

some BVP endpoints will be missed, but the level estimation

algorithm is searching primarily for endpoints resulting from

online replanning to avoid new obstacles, which will result

in significant trajectory changes.

After finding these endpoints, we measure the KD of the

agent over each BVP, and compare it to the expected KD of

the BVP. The expected KD of an agent over a BVP increases

with the length of the BVP, and therefore if the measured KD

exceeds the expected KD, it implies that the estimated BVP

is shorter than it was originally planned to be. This in turn

implies that the agent’s trajectory significantly adjusted from

what was originally expected, and that the agent in question

is avoiding collisions and therefore is a level-1 agent. If this

never occurs, it implies that the path was not significantly

altered, and the agent in question is a level-0 agent.

VI. SIMULATION RESULTS

For our simulation, we consider four agents placed in

an environment with several environmental obstacles. Each

agent is represented by the system (1), with plant and input

matrices identical to those used in the simulation in [6] with

x “ rxi yi 9xi 9yis as the state. The translations of each

agent i are denoted as xi, yi, the velocities as 9xi, 9yi, and

the accelerations as :xi, :yi. The inputs are forces denoted

as f1, f2. We choose the finite horizon T “ 10 s, and the

admissible window ρ “ 0.9. The user-defined matrices for

the cost function are M “ 10I4, and R “ 2I2. For the level

estimation algorithm, we choose the BVP angle threshold

γ “ 180, the angle measurement time frame ta “ 0.2s, and

the KD error threshold d “ 0.05. The critic and actor gains

are set as αc “ 90 and αa “ 1.2.

Two simulations at different time frames are depicted in

Fig. 2 and Fig. 3. We choose one agent to operate at our

proposed level-1 rationality (shown in green), and the rest

agents at level-0 (shown in gold). The generating artificial

obstacles are shown in blacks squares, We then assign to each

agent an initial state and a goal state in the environment,

and allow our level estimation algorithm to determine the

level of rationality of each agent in the environment. We

repeated this experiment with a variety of initial and goal

states for each agent. Over these simulations, we found that

all agents were able to consistently avoid collision with the

other agents. Our level estimation algorithm was also able to

very consistently recognize the level-1 agent regardless of its

starting position, as well as correctly recognize the level-0
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Fig. 2. The navigation of a level-1 agent is illustrated in gray. The traversed
path, indicated by the blue line, is replanned online to avoid both newly-
detected environmental obstacles as well as other agents, shown in gold.
The level-1 agent’s current goal is indicated by the green token.

agents as such despite their nonlinear movement around the

environment’s other obstacles. A video demonstration can be

found at: youtu.be/7nBL1g67RKE.

VII. CONCLUSION

This paper proposes the Bounded Rational RRT-QX, an

approach to model the motion of agents in a multi-agent en-

vironment using cognitive hierarchy, and employ the levels of

rationality to implement collision-free kinodynamic motion

planning. For the kinodynamic motion planning we use a

model-free Q-learning controller and a dynamic path plan-

ning algorithm to navigate in unpredictable dynamic human-

like environments. For the level of rationality prediction we

propose an algorithm that efficiently predicts each agent’s

level by observing all agents in the environment. The results

reveal an efficient multi-agent kinodynamic motion planning

algorithm with no collisions for any agent. The principles

discussed in this paper could also be adapted for use in

a three-dimensional environment, where level-1 agents are

allowed many additional trajectories to avoid collision.

Ongoing work focuses on the design of an adaptive motion

planning algorithm for a robot that responds in real-time to

perceived levels of rationality in other agents.
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