
1.  Introduction
Relativistic electron fluxes in the Earths radiation belts are largely controlled by resonant interactions of 
such electrons with intense whistler-mode waves (whistlers; Kanekal & Miyoshi, 2021; Millan & Baker, 2012; 
Millan & Thorne, 2007; Shprits et al., 2008; Thorne, 2010). When field-aligned, such waves are quite effec-
tive in accelerating electrons up to relativistic energies (Allison & Shprits, 2020; Y. Chen et al., 2007; De-
mekhov et al., 2006; Thorne et al., 2013). The most intense of these whistlers are lower-band chorus waves 
(Tsurutani & Smith, 1974). On the night-side, they are most frequently observed around the geomagnetic 
equator (Agapitov et al., 2013, 2015; Meredith et al., 2001, 2003) where they resonate with and accelerate 
near-equatorially mirroring (high pitch angle) electrons. On the dayside, however, these waves are often ob-
served at middle geomagnetic latitudes (off the equator; Agapitov et al., 2013; Meredith et al., 2012), where 
they can resonate with and scatter more field-aligned (small equatorial pitch angle) relativistic electrons 
toward the loss cone (Agapitov et al., 2018; Li et al., 2015; Wang & Shprits, 2019).

Resonant latitudes for field-aligned electrons rapidly increase with electron energy (Miyoshi et al., 2015; 
Shprits et al., 2006; Summers & Ni, 2008; Thorne et al., 2005). Therefore, scattering of relativistic electrons 
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into the loss cone by field-aligned whistlers requires significant wave intensities above | |  30  in geomag-
netic latitude (Miyoshi et al., 2020; Summers et al., 2007; Thorne et al., 2005). Generated by plasma sheet 
electrons around the equator, and having an initially near field-aligned propagation (e.g., Fu et al., 2014), 
whistler-mode lower band chorus waves travel away from the equator where their propagation direction 
diverges from the local magnetic field direction due to the plasma and field inhomogeneity (Breuillard 
et al., 2012; Kimura, 1985; Lu et al., 2019; Shklyar et al., 2004; Yamaguchi et al., 2013). Becoming oblique, 
they are damped due to Landau resonance with suprathermal electrons (Bortnik et  al.,  2006; L. Chen 
et al., 2013; Maxworth & Golkowski, 2017; Watt et al., 2013). Both the wave divergence and the damping 
imply low wave intensity at middle latitudes. Dayside chorus waves may reach | |  30  due to the weaker 
dayside magnetic field inhomogeneity and the associated lower ray divergence and reduced wave damp-
ing (Tao et  al.,  2014), but their intensity still decreases and their obliquity increases with | |  (Agapitov 
et al., 2013, 2018; Santolík et al., 2014). Thus, although dayside waves can occasionally (during geomag-
netically active times) attain wave-normal angles near the resonance cone and scatter  1E  MeV electrons 
toward the loss cone (Agapitov et al., 2018; Artemyev et al., 2015, 2016; Mourenas, Artemyev, Agapitov, 
& Krasnoselskikh, 2014), the predominant low-intensity and mildly oblique character of dayside chorus 
renders it, on average, ineffective in relativistic electron scattering. Thus, up to now relativistic electron 
loss is typically attributed to two other mechanisms: magnetopause shadowing (Gao et al., 2015; Sorathia 
et al., 2017; Turner et al., 2012) or cyclotron resonance with electromagnetic ion cyclotron waves (Blum 
et al., 2015; Grach & Demekhov, 2020; Ma et al., 2015; Mourenas et al., 2016; Shprits et al., 2016; Thorne & 
Kennel, 1971; Usanova et al., 2014; Zhang et al., 2021).

However, in the presence of density ducts (in particular, density enhancements) which may develop due 
to plasmaspheric plumes, plasmapause density striations, ionospheric outflows, or drift shell splitting and 
are confined within distinct flux tubes, chorus waves can be guided by diffraction and propagate to middle 
and high magnetospheric latitudes (far from the equator) while retaining their quasi-parallel propagation, 
and hence evade damping (Helliwell, 1965; Laird & Nunn, 1975). Indeed such ducting has been observed 
previously near strong plasma density gradients around the plasmapause (R. Chen, Gao, Lu, Tsurutani, & 
Wang, 2021; Inan & Bell, 1977; Woodroffe & Streltsov, 2013) and within large-scale plasmasphere plumes 
(Demekhov et al., 2017, 2020; Li et al., 2019; Woodroffe et al., 2017), but also near smaller scale structures 
(R. Chen, Gao, Lu, Chen, et al.,  2021; Hanzelka & Santolík, 2019; Hosseini et al.,  2021; Ke et al.,  2021; 
Streltsov & Bengtson, 2020) which can be formed by compressional ultra-low-frequency (ULF) waves or 
localized ionospheric outflows (Artemyev et al., 2020). Ducted chorus waves surviving with large ampli-
tude and low obliquity at middle latitudes (off the equator), can potentially provide effective scattering of 
relativistic electrons as evidenced by modeling (L. Chen et al., 2020; Miyoshi et al., 2020, 2021). To prove 
that this type of relativistic electron scattering and precipitation by whistlers actually occurs, it is not suf-
ficient to observe the waves and relativistic electrons at the equator: it also requires confirmation that the 
waves are ducted, as evidenced by ground-based wave receivers (Manninen et al., 2013; Martinez-Calderon 
et al., 2015; Shiokawa et al., 2017), and that the relativistic electrons are precipitating, as measured at the 
ionosphere above the ground station. Both ground receivers and ionospheric measurements of precipitation 
need to be in good magnetic conjunction with the near-equatorial wave and electron measurements. On 
the one hand, if a good correlation between ground-observed whistlers with those at the equator is found 
(Demekhov et al., 2020; Martinez-Calderon et al., 2020, 2016; Titova et al., 2017, 2015) this can prove ducted 
propagation, as this is the only way that equatorial whistlers can survive damping and appear on the ground. 
On the other hand, if we can employ simultaneous low-altitude (ionospheric) measurements of electron 
precipitation, which is well correlated with equatorial whistler-mode waves (Li, Mourenas, et al., 2014; Li 
et al., 2013; Ni et al., 2014), then the energy range of that precipitation can be used to determine whether 
scattering by ducted whistler is occurring. If precipitation of relativistic electrons is well-correlated with 
both ground and equatorial whistlers, this would confirm that ducting occurs and relativistic electron pre-
cipitation by ducted whistlers also takes place. If precipitation of only nonrelativistic electrons is occurring 
in good correlation with equatorial whistlers but in the absence of whistlers on the ground (no ducting) this 
would also confirm the converse: that in the absence of wave ducting relativistic scattering (expected only 
by ducted whistlers) does not occur, but sub-relativistic scattering (due to equatorial whistlers) does occur, 
as expected from prior studies (S. Kasahara, Miyoshi, et al., 2018; Li, Mourenas, et al., 2014; Li et al., 2013; 
Ni et al., 2014; Nishimura et al., 2010).



Journal of Geophysical Research: Space Physics

ARTEMYEV ET AL.

10.1029/2021JA029851

3 of 24

In this article, we set out to examine this hypothesis. We combine the following data sets: (a) near-equa-
torial measurements of whistlers and of fluxes of relativistic electrons using Time History of Events and 
Macroscale Interactions during Substorms (THEMIS; Angelopoulos, 2008) and Exploration of energization 
and Radiation in Geospace (ERG; Miyoshi, Shinohara, Takashima, et al., 2018) spacecraft; (b) ground meas-
urements of very low frequency (VLF) waves revealing presence or absence of whistlers (bespeaking of 
ducted wave propagation to high latitudes, or of damping, respectively) using stations Lovozero (Fedoren-
ko et al., 2014) and Kannuslehto (Manninen et al., 2013); and (c) low-altitude (E  400 km) measurements 
of energetic electron precipitation spectra, revealing relativistic or sub-relativistic precipitation (implying 
electron scattering at middle latitudes or low-latitudes, respectively) by ELFIN (Angelopoulos et al., 2020).

We first describe the data sets and instruments used (Section 2). We then present the four selected con-
junction events (Sections 3.1–3.3). We discuss our findings in Section 4. Of the four events, the first two 
shows ducted whistlers concurrent with relativistic electron precipitation, whereas the other two show the 
absence of both ducting and precipitation. The first event (Section 3.1) includes equatorial THEMIS obser-
vations of whistlers modulated by compressional ULF oscillations extending from the vicinity of the flank 
magnetopause to the plasmapause. Ground VLF receivers, in conjunction with these space observations, 
showed VLF emissions demonstrating ducted propagation of whistler waves in the magnetosphere, demon-
strating their ducted propagation. Simultaneous ELFIN observations confirm precipitation of 700  keV 
electrons. The second event (Section 3.2) shows similar evidence of relativistic electron precipitation and 
ducting as the first event, except that the near-equatorial whistlers are measured by ERG. The last two 
events comprise measurements from similar ground and space conjunctions as the second event, but show 
an absence of both ground whistlers and relativistic electron precipitation, demonstrating that the lack 
of ducting correlates with a lack of relativistic electron scattering (see Section 3.3). These events do show 
sub-relativistic precipitation, consistent with pitch angle scattering of 150  keV by equatorial whistlers. 
Accordingly, we hereafter use 150 keV as the threshold energy separating two events with relativistic elec-

Figure 1.  Overview of THEMIS A observations during the first event: electron cyclotron and plasma frequencies, and spacecraft E L -shell calculated using the 
T96 model (Tsyganenko, 1995) (a), square root of intensity of wave magnetic and electric fields in the frequency range 250 750E  Hz, after spin-period (3 s) 
time-averaging (b), electron phase space density omni-directional energy-spectrogram (c), flux anisotropy of 20 keV electron population (d), compressional 
magnetic field fluctuations with frequencies 0 1.  Hz (red) and 0 01.  Hz (black) (e).
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tron precipitation (up to 700  keV) and nonrelativistic (below 150  keV) electron precipitation. Note that 
although ground-based measurements of whistler waves are not rare, available ground-based conjugations 
with equatorial whistler measurements are limited to several good examples (Demekhov et al., 2020; Mar-
tinez-Calderon et al., 2020, 2016; Titova et al., 2017, 2015). The additional requirement of a conjugation of 
ground-based and equatorial observations with ELFIN low-altitude measurements of precipitations further 
reduces significantly the number of events. As a consequence, the results of the present study are based 
on only four events and should be considered (in addition to the results of recent simulations, see L. Chen 
et al., 2020, 2021; Namekawa et al., 2021) as an observational indication of the possibly important role of 
whistler-mode wave ducting for relativistic electron precipitations.

2.  Data Sets
In the first event, the near-equatorial measurements are provided by THEMIS D and A (Angelopou-
los, 2008). We use spin resolution (3 s) measurements of the background magnetic field by the fluxgate 
magnetometer (Auster et al., 2008), fluxes and anisotropies for 25 keV electrons by the electrostatic analyz-
er (McFadden et al., 2008), and fluxes for 50 500E  keV electrons by the solid state telescope (Angelopoulos 
et al., 2008). Wave magnetic measurements of 10 4000E  Hz Nyquist by the search-coil magnetometer (Le 
Contel et al., 2008) are also shown. During the first event, there are no Fast Survey mode wave captures 
onboard THEMIS A, the closest to the ground-based VLF receivers, so wave observations are limited to 
spin-resolution spectra at six broad frequency bands (Cully, Ergun, et al., 2008).

In the other three events, the near-equatorial measurements are provided by ERG/Arase (Miyoshi, Shi-
nohara, Takashima, et  al.,  2018). We use measurements of the magnetic field investigation (Matsuoka, 
Teramoto, Nomura, et  al.,  2018) at 8  s resolution, high-energy electron fluxes from the Medium-energy 

Figure 2.  Overview of THEMIS D observations during the first event: electron cyclotron and plasma frequencies, and spacecraft E L -shell calculated using the 
T96 model (Tsyganenko, 1995) (a), high-resolution magnetic field spectrogram (available only after 14:50 UT) (b), electron phase space density omni-directional 
energy-spectrogram (c), flux anisotropy of 20 keV electron population (d), compressional magnetic field variations with frequencies 0 1.  Hz (red) and 0 01.  
Hz (black) (e).
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particle experiments-electron analyzer (S. Kasahara, Yokota, Mitani, et al., 2018) ( 7 100E  keV) and from the 
high-energy electron experiments (Mitani, Takashima, et al., 2018) ( 70 1000E  keV), both at 16 s resolution. 
We also used 1s resolution electric and magnetic field wave spectra collected by the onboard frequency ana-
lyzer (Matsuda et al., 2018) of the plasma wave instrument (Y. Kasahara, Kasaba, et al., 2018).

For ground magnetic measurements of waves in the 0.2 16E  kHz range, corresponding to equatorial whis-
tlers, we used receivers at Kannuslehto (KAN) in northern Finland ( 67.74E  N, 26.27E  E;  5.51IGRFE L  ; see 
Manninen et al., 2013, 2014), and at Lovozero (LOZ) in northern Russia ( 67.98E  N, 35.08E  E;  5.54IGRFE L  ; see 
Demekhov et al., 2020; Fedorenko et al., 2014).

Our energetic electron precipitation measurements were collected by the ELFIN CubeSats, at 440 km 
altitude (Angelopoulos et al., 2020). Their energetic electron detector measures electrons between 50 keV 
and 5 MeV energy with energy resolution E E/  40  %. The entire 180E  range of pitch angles can be covered 
twice every 3 s, the ELFIN spin period. In this study, we use full time and energy resolution spectra of flux-
es, pitch angle averaged either within the local loss cone lossE j  or outside it and its supplement (trapped or 
quasi-trapped), trapE j  .

Figure 3.  Projections of THEMIS A, THEMIS D, METOP 1, NOAA 19, and two ELFIN A orbits to the North 
Hemisphere for the time interval of the first event. Colors in the projections of the low-altitude spacecraft (all but 
THEMIS) denote the ratio of precipitating to trapped electron fluxes (for scaling convenience we show the square root 
of the flux ratio instead). Ground stations LOZ and KAN, equipped with receivers able to detect whistlers waves, are 
shown by blue dots. Dotted red lines show E L -shells calculated using the T96 model (Tsyganenko, 1995).
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Figure 4.  Electron fluxes within the loss cone and ratio of precipitating to trapped fluxes from the E  30 keV integral 
channels of NOAA 19 and METOP 1 low-altitude spacecraft. E L -shells of spacecraft projections to the equatorial plane 
with the T96 (Tsyganenko, 1995) model are shown in gray.

Figure 5.  Trapped and precipitating electron fluxes measured during the first ELFIN A orbit (13:23–13:27 UT) of the first event. The E L -shell computed using 
the T96 model (Tsyganenko, 1995) is also shown in black.
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For all events in our study, we also used measurements from NOAA spacecraft on polar, low-altitude orbits 
from the same MLT and E L -shell region as ELFIN. We use j jloss trap/  from the 30 keV energy channel of 
NOAA spacecraft as a proxy of equatorial whistler-mode wave activity (see Li et al., 2013; Ni et al., 2014).

3.  Analysis of Observations
3.1.  Event #1

Figure 1 shows an overview of THEMIS A observations during an inbound section of its orbit (from high to 
low E L -shells) on September 29, 2019. A localized density enhancement (inferred from the spacecraft poten-
tial measurements and presented in units of plasma frequency in panel (a) is seen at 14:30–15:20 UT). It is 
evidence of transient crossing of the plasmasphere or a narrow plasma plume. Prior to it (between 12:00 and 
14:30 UT) and right after it (15:20–17:00 UT) THEMIS A was in the lower plasma density outer radiation 
belt. During these two-time intervals, THEMIS A detected sporadic whistler emissions (panel (b)): peaks 
of magnetic (black) and electric (red) wave intensity between  250 750  Hz (i.e., at 0 1. f

ce
 to 0.6 ceE f  ; ceE f  is 

depicted in panel (a)). As THEMIS A was in Slow Survey mode at the time, only the E fbk data set of wave 
spectra is available (Cully, Ergun, et al., 2008). This E fbk data set is mostly used for the determination of wave 
presence. However, Cully, Bonnell, and Ergun (2008) have shown that wave amplitudes provided by E fbk , 
which are averaged over a long  3 4 second interval, can underestimate whistler-mode chorus wave-pack-
et amplitudes by a factor of  20 30  . A comparison of wave amplitudes from E fbk and E fff  measurements on 
THEMIS D during this period indeed shows that wave amplitudes from E fff  are a factor of 30 higher than 
4 s time-averaged amplitudes from E fbk (see Figure S1 in Supporting Information S1; the same figure further 
shows that the cB E/  wave ratio from the E fff  data set is close to the expected magnitude of the whistler-mode 
refractive index for the observed plasma frequency and cyclotron frequency). Accordingly, the real peak am-
plitudes of wave-packets during this event are probably higher by a similar factor 30 than time-averaged 
values from E fbk , corresponding to  100 200  pT. Such wave amplitudes are sufficiently high to provide a 

Figure 6.  Trapped and precipitating electron fluxes measured during the second ELFIN A orbit (14:55–15:00 UT) of the first event. The E L -shell computed using 
the T96 model (Tsyganenko, 1995) is also shown in black.
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strong (potentially nonlinear) scattering of 50 300E  keV electrons at  6E L  (Artemyev et al., 2016; Tao & 
Bortnik, 2010; Zhang, Mourenas, et al., 2019), leading to a significant electron precipitation.

The phase space density of energetic ( 50 500E  keV) electrons, seen in panel (c), increases toward lower 
E L -shells (higher ceE f  ). The phase space density of thermal electrons (tens of eV to 25 keV), also in panel (c), 

shows a quasi-periodic variations in the interval prior to the transient plasmasphere/plume encounter. The 
subset of thermal electrons between 6 and 20 keV shows distinct and persistent transverse anisotropy that 
is the free energy source (Kennel & Petschek, 1966; Trakhtengerts, 1963) for the observed whistlers (panel 
(d)). As THEMIS A was in Slow Survey mode at the time, the available time resolution of the anisotropy 
product, 5  min, is too slow to allow examination of the correlation of the anisotropy with the wave power. 
The parallel component of the background magnetic field shows compressional ULF waves (panel (e)) that 
are likely responsible for the modulation of the thermal electron fluxes. Such modulation of flux and flux 
anisotropy by compressional ULF waves has been previously linked to whistler wave power modulation 

Figure 7.  Minimum resonant energy (in keV) for field-aligned electrons as a function of resonant latitude and equatorial whistler-mode wave frequency. The 
three panels depict three different f fpe ce/  equatorial values, around the most probable value f fpe ce/  6 (based on THEMIS equatorial measurements) during 
the ELFIN A observations of 700 keV electron precipitation. Top panels show estimates for a constant plasma density independent of magnetic latitude E  , and 
bottom panels show estimates for a plasma density variation  

cos ( )
5   based on the model from Denton et al. (2006).
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(e.g., Zhang, Chen, et al., 2019) and it is the likely explanation of the whistler wave power modulation in 
this event too.

While THEMIS A captured the above measurements near the dusk terminator, THEMIS D moved from low 
to high E L -shells near noon, crossing the plasmapause at around 13:15 UT (Figure 2a). At 17:30 UT THEMIS 
D crossed the magnetopause and left the magnetosphere (not shown). The plasmapause was encountered at 
E L   3.5, consistent with the expected plasmapause location  3.6 0.6ppE L  from a statistical model (O'Brien 

& Moldwin, 2003) for max( ) 4.7pE K  during the preceding 36 h. Search-coil measurements of the whistler 
spectrum at high spectral and temporal resolution and electron anisotropy measurements are available 
during the second half of this interval, at  6E L  , when the data collections were operated in Fast Survey 
mode. During that time, THEMIS D observations (Figure 2) are similar to those at THEMIS A in the same 

E L -shell range. Specifically, the intense compressional ULF waves (panel (e)) likely responsible for the ob-
served modulation of the thermal electron fluxes (panel (c)) and of the  400 1000  Hz ( E f  0.2–0.5 ceE f  ) 
whistlers (panel (b)) are all observed. The intense transverse anisotropy of 20 keV electrons is also present 
on THEMIS D, as it was on THEMIS A. The similarity of the measurements at THEMIS A and D shows that 
ULF-modulated whistlers cover a wide range of MLTs (from 11 to 18) and E L -shells (from 4 to 11) outside 
the plasmasphere during this time.

During this interval, THEMIS A's foot point was north of Scandinavia (Figure 3), whereas THEMIS D's 
was in the south of Greenland. ELFIN A's projections and those of two NOAA spacecraft were also in 
the vicinity. Given the aforementioned, concurrent THEMIS A and D detection of whistlers over a broad 
MLT and E L -shell range, the MLT sector between Greenland and Scandinavia is expected to be replete with 

Figure 8.  One hour (top panel) of VLF wave spectrogram measured at LOZ. The two bottom panels show spectrogram expanded views, each of 10 min in 
duration, together with compressional magnetic field variations measured at THEMIS A (black curves).
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electron precipitation driven by ULF-modulated equatorial whistlers. To examine this hypothesis, low-al-
titude spacecraft projections have been colored according to the square root of the ratio of precipitating to 
trapped electron fluxes (for 50 keV or >30 keV electrons on ELFIN or NOAA spacecraft, respectively). 
The displayed orbits of NOAA spacecraft MetOp 1 and NOAA 19 are within the time interval of THEMIS 
A observations of whistlers; the high level of electron precipitation observed by MetOp 1 at  6E L  bespeaks 
intense equatorial whistler activity. Indeed, Figure 4 shows moderate 30 keV electron precipitations with 
j jloss trap/  reaching 0 1.  at higher E L -shells at MetOp 1. NOAA 19 observations correspond to lower E L -shells, 
and NOAA 19 detected several peaks of precipitations with j jloss trap/ . 0 1 only when it reached  7 8E L  
(see Figure 4). These precipitations at  6E L  have a transient nature that could be due to the temporal or spa-
tial quasi-periodicity of the whistlers. The ULF-modulated electron anisotropy is expected to generate equa-
torial whistlers with some periodicity in both time and space (see Motoba et al., 2013; Zhang et al., 2020). 
This hypothesis is consistent with ELFIN A, METOP 1, and NOAA 19 observations of tens of keV electron 
precipitation from a broad MLT and E L -shell region (see Figure 3).

Figure 5 shows spectra of trapped and precipitating electrons measured by ELFIN A between 13:23 and 
13:27 UT. Precipitating fluxes reach relativistic energies of 700 keV. Over the entire energy range, precip-
itating fluxes show successive enhancements and decreases. The transient nature of precipitation may be 
due to the spatio-temporal localization of whistlers as they are modulated by ULF waves, consistent with 
equatorial observations at THEMIS A and D. The losses of such high energy electrons by quasi-parallel 
whistlers would require electron cyclotron resonant scattering at middle latitudes. Figure 7 shows the typ-
ical latitudes of cyclotron resonance between quasi-parallel whistler-mode waves and low equatorial pitch 

Figure 9.  One hour (top panel) of spectrograms of VLF measured at KAN. Two bottom panels show spectrogram expanded views, each of 10 min duration, 
together with compressional magnetic field variations measured at THEMIS A (black curves).



Journal of Geophysical Research: Space Physics

ARTEMYEV ET AL.

10.1029/2021JA029851

11 of 24

angle electrons for different electron energies. Equatorial THEMIS D measurements at 13:25–14:15 UT 
(see Figure 2a) on the same E L  shells as ELFIN A imply that f fpe ce/  6  during ELFIN A observations of 
relativistic electron precipitation near 13:25 UT. Taking into account that whistlers measured by THEMIS D 
at 14:50–15:30 UT have relatively stable normalized frequencies f f

ce
/ . . 0 2 0 3 , the latitude of cyclotron 

resonance with the observed 700 keV precipitating electrons can be estimated as  30  . These are quite high 
latitudes for whistlers, whose wave intensity should be significantly decreased by wave divergence and Lan-
dau damping in the absence of ducting (Agapitov et al., 2013; Breuillard et al., 2012; L. Chen et al., 2013; 
Watt et al., 2013). Therefore, we expect that the whistlers providing scattering of these relativistic electrons 
are likely ducted during this event. Note that for f fpe ce/  6 , cyclotron resonance with typical electromag-
netic ion cyclotron waves only occurs for electron energies much higher than 1 MeV (Kersten et al., 2014; 
Summers & Thorne, 2003), implying that the observed precipitations of 700 keV electrons are most prob-
ably related to electron scattering by whistlers.

The next ELFIN A orbit (at 14:55–15:00 UT) is closer to THEMIS D (see Figure 3) and covers lower E L -shells 
in comparison with the first orbit. Figure  6 shows the corresponding ELFIN measurements of trapped 

Figure 10.  Overview of ERG observations during the second event: electron number flux in two different energy ranges (a, b), wave electric and magnetic field 
spectra in the whistler-mode frequency range (c, d), spacecraft E L -shell calculated using the T96 model (Tsyganenko, 1995) (e). White curves on panels (c, d) 
show 12/  and 110/  of the local electron gyrofrequency ceE f  .
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and precipitating electron fluxes. There is a quite clear boundary to the domain of high electron flux near 
 4E L  , which agrees well with both the plasmapause position observed by THEMIS D and the plasmapause 

location predicted by statistical models (O'Brien & Moldwin, 2003). At higher E L -shells, ELFIN A measured 
precipitating fluxes of relativistic electrons up to 700  keV, in agreement with measurements performed 
during the previous orbit (compare Figures 5 and 6).

Ground measurements confirm our expectation that whistlers propagate to high geomagnetic latitudes 
(lower altitudes) and down to the ground due to ducting during this event. Figures 8 and 9 show one hour of 
measurements at LOZ and KAN between 13 UT and 14 UT (bottom two panels in each figure are expanded 
views of two 10 min intervals). Both stations are at  6.2E L  , near the THEMIS A and NOAA19 foot points. 
Quasi-periodic emissions are evident over the entire frequency range, [500,2000]E  Hz. The periods of these 
wave amplitude modulations vary from 30 seconds at the beginning of the hour to 3 min at the end of the 
hour. Comparison of the wave power spectral density in the expanded-view spectrograms with the superim-
posed  E B  ULF variations from THEMIS A confirm that the two quantities have a similar periodicity (which 
is also similar to the periodicity seen by THEMIS D as discussed above). We also compare the spectrum of 
ULF  E B  and the spectrum of frequency averaged ( 1 1.75E  kHz) ground-based wave power: both spectra 
show a strong peak around a 2 min periodicity (see Figure S2 in Supporting Information S1). Therefore, 
the ULF-wave modulated whistlers observed near the equator at THEMIS A and D over a wide (E L , MLT) 
range are probably ducted so as to propagate to the ground during this event. Such ducted wave propagation 

Figure 11.  Projections of ERG, METOP 1,2, NOAA 19, 18, and 15, and ELFIN A orbits to the North Hemisphere for the 
time interval of the second event. Colors in the projections of the low-altitude spacecraft (all but ERG) denote the ratio 
of precipitating to trapped electron fluxes (for scaling convenience we show the square root of the flux ratio instead). 
Locations of LOZ and KAN ground-based stations measuring VLF waves are depicted as blue dots.
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Figure 12.  Electron fluxes within the loss cone and ratio of precipitating to trapped fluxes from the 30  keV integral 
channel of NOAA 19 and METOP 1 spacecraft. E L -shells obtained by using the T96 model (Tsyganenko, 1995) are shown 
in gray.

Figure 13.  Trapped and precipitating electron fluxes measured by ELFIN A during the second event. E L -shell of spacecraft projection to the equatorial plane 
with the T96 model (Tsyganenko, 1995) is shown in black.
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would allow resonant electron scattering at middle latitudes, explaining ELFIN A's measurements of in-
tense precipitation of relativistic electrons at MLTs between those of the THEMIS A and D foot points.

3.2.  Event #2

Near-equatorial observations during the second event, which occurred on the day after the first, were ob-
tained by ERG (Figure 10). As ERG was moving toward lower E L -shells, around 04:30 UT (when E L was below 
6 and | |  20  ) it started observing whistler waves with frequencies 1 kHz ( ( . . )0 1 0 2 f

ce
 ). Based on sta-

tistical plasmapause models parameterized by E Kp (O'Brien & Moldwin, 2003), the plasmapause was likely 
at  3.5 4ppE L  at the time, much closer to Earth than ERG's location. The observed whistler-mode waves 
are grouped into bursts of  10 30 s duration each. The temporal increase of observed wave frequencies is 
likely a spatial effect, that is, higher-frequency waves were probably present at  5E L  even before 05:00 UT, 
and were only observed by ERG when it reached this lower E L -shell range. During the decrease of E L along 
ERG orbit, electron 50  keV fluxes decreased, but relativistic (500  keV) electron flux increased. ERG's foot 
point in the North Hemisphere was near ground stations measuring whistler-mode waves (see Figure 11). 
During ERG's observations of whistlers, several passes of NOAA and METOP low-altitude spacecraft took 
place. The precipitating to trapped flux ratio for 30 keV electrons on these spacecrafts bespeaks of the 
presence of intense whistlers at the equator that are able to scatter electrons of this energy (see colors on 
Figure 11). Figure 12 shows 30 keV electron precipitating fluxes and precipitating-to-trapped flux ratios 
from NOAA-19 and METOP-1. Strong precipitation and high precipitating to trapped flux ratio for E L -shells 

Figure 14.  One hour (top panel) of chorus wave intensity measurements at LOZ. Two bottom panels show expanded views of 10 min duration.
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above four was seen at both satellites. Similarly, large precipitating to trapped flux ratios are observed on 
ELFIN A, although its orbit is projected at a fairly large MLT distance from ERG.

Figure 13 shows spectra of precipitating and trapped electrons measured by ELFIN A (note there are sev-
eral blank intervals without measurements). The strong bursts of precipitation around  6E L  and  7E L  are 
consistent with NOAA-19 and METOP 1 measurements at high E L -shells (see Figure 12). The precipitation 
of relativistic 500 keV electrons is significant down to  5E L  , and the precipitating flux is comparable to the 
trapped flux. During this event, whistlers had normalized frequencies f f

ce
/ . . 0 1 0 2 and f fpe ce/  was like-

ly  5 10 based on both a statistical plasma trough density model (Sheeley et al., 2001) and measurements 
obtained by THEMIS A and D at the same E L -shells on the previous day (see Figures 1 and 2). Thus, the 
strong precipitation observed is likely due to ducted whistlers propagating to middle latitudes (see Figure 7). 
Electron resonant scattering by typical electromagnetic ion cyclotron waves (Kersten et al., 2014) can be 
excluded from consideration, because for f fpe ce/  5 10 the energies of cyclotron resonant electrons then 
well exceed 1 MeV (Kersten et al., 2014; Summers & Thorne, 2003).

Indeed, ground observations at LOZ between 4:00 and 5:00 UT (Figure 14) show intense, bursty waves at 
 1 2 kHz, of a nature and frequency similar to that of the waves observed at ERG after 4:45 UT (2 kHz, 
Figure  10). Low-frequency 1 kHz waves observed by ERG are also seen at LOZ, but they are partially 
blurred by noise. Therefore, Figures 10, 13, and 14 show a consistent picture of whistlers generated around 

Figure 15.  Projections of ERG, NOAA 15 and 18, and ELFIN A orbits to the North Hemisphere for the time interval 
of the third event. Colors in the projections of the low altitude spacecraft (all but ERG) denote the ratio of precipitating 
to trapped electron fluxes (for scaling convenience we show the square root of the flux ratio instead). Locations of LOZ 
and KAN ground-based stations measuring VLF waves are depicted as blue dots.
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the equator, then ducted and propagating down to the ground, after having scattered relativistic electrons at 
middle latitudes. However, this event is less clear than the first one, due to the larger MLT separation of the 
equatorial ERG and low-altitude ELFIN A spacecraft, and due to several gaps in ELFIN A measurements 
at low E L .

3.3.  Events #3&4

These two events are characterized by ERG-ELFIN-LOZ conjunctions, but without relativistic electron pre-
cipitation on ELFIN A and without ground-based measurements of whistler-mode waves. Therefore, we 
consider these events as additional confirmation of the importance of whistler ducting for relativistic elec-
tron scattering.

Figures 15 and 16 show projections of ERG, ELFIN A, and NOAA spacecraft orbits to the North Hemi-
sphere, with colors denoting the precipitating to trapped flux ratio of 30 keV electrons (except for ELFIN 
A for which 50 keV electron fluxes are used). These flux ratios are known to be positively correlated with 
the level of whistler wave activity near the equator (Li, Mourenas, et al., 2014; Li et al., 2013; Ni et al., 2014). 
The conjugate, equatorial ERG measurements for these two events show much lower intensity waves than 
for events #1, 2. During event #3, ERG was around the equator (  15  ) and observed whistlers at 1 
kHz, but with very weak magnetic field intensity and a strong electric field intensity (indicating they were 

Figure 16.  Projections of ERG, NOAA 15 and 19, and ELFIN A orbits to the North Hemisphere for the time interval of 
the fourth event. Colors in the projections of the low altitude spacecraft (all but ERG) denote the ratio of precipitating 
to trapped electron fluxes (for scaling convenience we show the square root of the flux ratio instead). Locations of LOZ 
and KAN ground-based stations measuring VLF waves are depicted as blue dots.
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very oblique, see Artemyev et al., 2016). Such oblique waves usually experience strong Landau damping 
and, thus, often cannot reach middle latitudes to scatter energetic electrons (Bortnik et al., 2007; L. Chen 
et al., 2013), although a small population of these waves can sometimes be observed up to   45E  on the 
dayside when  5E Kp  (Agapitov et al., 2018). During event #4, ERG was quite far from the equator (  25  ) 
and did not measure any wave power in the whistler frequency range, but only hiss-like emissions, below 
1 kHz. During both events the ground-based receiver at LOZ, conjunct to the above space measurements, 
also did not show any significant VLF wave power, confirming ERG's observations of the absence of intense 
quasi-parallel waves that may propagate far from the equator without being strongly damped (see ERG and 
ground-based observations in the Supporting Information S1).

ELFIN A measurements of trapped and precipitating electron fluxes during events #3, 4 are shown in 
Figures 17 and 18. For both events, trapped fluxes remain quite high up to 500 keV (especially at higher 

E L -shells), whereas precipitating fluxes reach a measurable level only below 150  keV. Electrons of such 
low energies can be efficiently scattered around the equatorial plane (see Figure 7 for resonant latitudes), 
and the absence of precipitation of 300  keV electrons suggests the absence of whistler waves at middle 
latitudes. Therefore, ELFIN A measurements confirm that in the absence of chorus wave propagation to 
middle latitudes, there is often no loss of relativistic electrons.

4.  Discussion and Conclusions
In this study, we show that observations of relativistic electron precipitation at the low-altitude ELFIN 
CubeSat are associated with observations of ducted whistlers propagating from their equatorial source re-
gion down to ground-based stations. Such ducted waves are, in fact, often observed on the ground (see 
statistics in Martinez-Calderon et al., 2015; Spasojevic, 2014) and have been analyzed in detail for several 
good conjunctions with equatorial spacecraft (Demekhov et al., 2020; Martinez-Calderon et al., 2016; Titova 

Figure 17.  Trapped and precipitating electron fluxes measured by ELFIN A during the third event. E L -shell of spacecraft projection to the equatorial plane with 
the T96 model (Tsyganenko, 1995) is shown in black.
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et al., 2017). However, there is presently no statistical analysis of the occurrence rate of this ducted wave 
population, that is, there is no well-justified approach on how to separate ducted from non-ducted waves 
captured by near-equatorial spacecraft for including the distinct ducted wave population and its important, 
relativistic scattering effects into radiation belt models. Empirical chorus wave-models typically provide 
time-averaged wave statistics (Agapitov et al., 2018; Meredith et al., 2012; Wang et al., 2019) that include a 
mixture of ducted and non-ducted waves at middle latitudes ( 25  ) (Agapitov et al., 2015, 2018)—or only 
consider low-latitude ( 20  ) waves (Wang et al., 2019).

However, it is worth noting that the comprehensive lower-band chorus wave-model developed by Agapitov 
et al. (2018), using combined Van Allen Probes and Cluster data, does include separate contributions from 
quasi-parallel and very oblique waves. It shows that most of the magnetic wave power measured at latitudes 
    25 40E  indeed corresponds to quasi-parallel waves (see Figure 10 from Agapitov et al., 2018), which 
are likely ducted waves (Artemyev et al., 2016; Ke et al., 2021), since they have not been diffracted as sig-
nificantly as expected in an inhomogeneous magnetic field in the absence of ducts. The largely dominant 
ducted chorus wave power can be obtained as a function of latitude, E L , MLT, and E Kp , by multiplying the 
total wave power 2

wE B  from Equation 2 in Agapitov et al. (2018) by the fraction of field-aligned wave power 
derived from their Equation (4). This presumably ducted chorus wave power is larger in the 4 20E  MLT 
sector and when  1 5E Kp  (Agapitov et al., 2018), consistent with events #1 and #2.

There are two possible approaches for a more direct quantification of the ducted wave population. The 
first consists of a statistical comparison of ground-based and near-equatorial wave measurements. Modern 
networks of ground-based stations for whistlers include tens of stations (Fedorenko et al., 2014; Ghaffari 
et al., 2020; Manninen et al., 2013; Shiokawa et al., 2014, 2017) with good MLT coverage. Studies of con-
junctions between these stations and near-equatorial spacecraft Van Allen Probes (Demekhov et al., 2020) 
and ERG (Martinez-Calderon et al., 2020) missions have had good success in demonstrating that wave ray 
propagation to the ground indeed occurs. Therefore, time-, activity-, and MLT- or E L -shell-weighted statistics 

Figure 18.  Trapped and precipitating electron fluxes measured by ELFIN A during the fourth event. E L -shell of spacecraft projection to the equatorial plane 
with the T96 model (Tsyganenko, 1995) is shown in black.



Journal of Geophysical Research: Space Physics

ARTEMYEV ET AL.

10.1029/2021JA029851

19 of 24

of whistlers measured simultaneously on the ground and at spacecraft in conjunction with the ground sta-
tions could potentially determine the wave ducting occurrence rate as a function of geomagnetic activity, 
MLT and E L -shell. The second approach consists of statistical investigations of the conditions favorable for 
wave ducting. Various ray-tracing simulations have determined the magnitude of plasma density fluctua-
tions necessary for ducting of whistler-mode waves (R. Chen, Gao, Lu, Chen, et al., 2021; Hanzelka & San-
tolík, 2019; Hosseini et al., 2021; Ke et al., 2021; Streltsov & Bengtson, 2020). Moreover, the plasma density 
distribution and dynamics in the inner magnetosphere has been recently parameterized in great detail via 
machine-learning models (Chu et al., 2017; Zhelavskaya et al., 2017). A combination of such detailed plas-
ma density models and massive ray-tracing simulations may permit the determination of the ducted wave 
occurrence rate. The obtained occurrence rates could finally be compared with the statistical distributions 
of chorus wave-normal angles obtained from Cluster observations at middle to high latitudes (Agapitov 
et al., 2015, 2018).

Whistler-mode chorus waves in the Earth's radiation belts may accelerate electrons to relativistic (Deme-
khov et al., 2006; Li, Thorne, et al., 2014; Miyoshi et al., 2003; Mourenas, Artemyev, Agapitov, Krasnosel-
skikh, et al., 2014) and even ultra-relativistic (Allison & Shprits, 2020; Thorne et al., 2013) energies, but 
the same waves may be responsible for electron losses due to scattering into the loss cone. As we show in 
this study, scattering of relativistic electrons would be much more effective for ducted whistlers, whereas 
such ducting is generally associated with local plasma density enhancements (Karpman & Kaufman, 1982; 
Pasmanik & Trakhtengerts, 2005). Interestingly, the most effective electron acceleration by whistlers is as-
sociated with plasma density depletions (Agapitov et al., 2019; Allison et al., 2021; Summers et al., 1998; 
Thorne et al., 2013). Therefore, the regime of electron interaction with whistlers may be controlled also 
by the spatial distribution of plasma density, and this significantly increases the importance of developing 
more realistic plasma density models (Chu et al., 2017; Goldstein et al., 2019; Zhelavskaya et al., 2017).

To conclude, we have considered four events with conjugate observations of equatorial whistler-mode 
waves, ground-based chorus waves, and precipitating electrons on the low-altitude ELFIN A CubeSat. The 
main results are as follows:

1.	 �During the first event on September 29, 2019 at 12:00–15:00 UT, near-equatorial THEMIS A and D space-
craft observed intense ULF compressional waves with typical timescales of  E B  fluctuations of about 

0.5 3E  min. The transverse anisotropy of 5 keV electrons and the frequency-integrated intensity of 
whistler waves measured by THEMIS A and D show that intense whistlers were likely generated by ani-
sotropic hot electrons that were also modulated by ULF waves over a wide (E L , MLT) region. Low-altitude 
measurements of tens of keV precipitating electrons by ELFIN A and NOAA spacecraft confirm that 
intense equatorial whistlers were indeed present. Simultaneous observations at ground-based stations 
(KAN and LOZ) in good conjunction with the satellites demonstrate that such waves indeed propagated 
to the ground and, thus, show that these waves were ducted. Low-altitude measurements of precipitating 
and trapped electron fluxes on ELFIN A CubeSat finally show that these ducted waves efficiently scat-
tered relativistic electrons with energies up to 700 keV toward the loss cone

2.	 �In the second event in September 29, 2019 04:00–06:00 the near-equatorial ERG observed intense whis-
tler-mode chorus waves in a wide E L -shell range. Simultaneous observations of whistlers at ground-based 
stations (KAN and LOZ) demonstrate that such whistlers also propagated to the ground and, thus, were 
ducted waves. These observations are partly confirmed by low-altitude measurements of tens of keV 
precipitating electrons by ELFIN A and NOAA spacecraft, although both ELFIN A and NOAA orbits are 
well separated in MLT from ERG and ground-based stations. Low-altitude measurements of precipitat-
ing and trapped electron fluxes on ELFIN A CubeSat reveal that these ducted waves efficiently scattered 
relativistic electrons

3.	 �In the third and fourth events in October 06, 2019 00:00–02:00 and October 07, 2019 00:20–02:00, ERG 
observations either showed oblique waves (for | |  15  ) or no waves (for | |  25  ). NOAA spacecraft 
measurements of precipitating fluxes of 30  keV electrons indicate whistler-mode wave generation 
around the equator. These waves, however, were not seen on the conjugate ground-based station (LOZ). 
Thus, these equatorial whistler-mode waves were likely damped and did not reach middle latitudes, 
let alone the ionosphere. Low-altitude measurements of precipitating and trapped electron fluxes on 
ELFIN A show that these waves only scattered electrons with energies below 150  keV into the loss 
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cone, in agreement with expectations based on the minimum resonant energy with those waves near 
the equator

Although the obtained results are based on only four events, they suggest that whistler-mode wave ducting 
may play a significant role in losses of relativistic electrons, and that it may be important to include ducted 
whistlers into radiation belt models.

Data Availability Statement
ELFIN data is available at http://themis-data.igpp.ucla.edu/ela/, THEMIS data is available at http://themis.
ssl.berkeley.edu. Data access and processing were done using SPEDAS V3.1, see Angelopoulos et al. (2019). 
Data of ground-based VLF receivers is available at https://www.sgo.fi/pub_vlf/, http://aurora.pgia.ru/. Sci-
ence data of the ERG (Arase) satellite were obtained from the ERG Science Center operated by ISAS/JAXA 
and ISEE/Nagoya University (https://ergsc.isee.nagoya-u.ac.jp/index.shtml.en, Miyoshi, Hori, et al., 2018). 
The present study analyzed the HEP L2_v03_01 data (Mitani, Hori, et al., 2018), MEPe L2_v01_02 data 
(Y. Kasahara, Kojima, et al., 2018), MGF L2_v04_04 data (Matsuoka, Teramoto, Imajo, et al., 2018), PWE 
OFA L2_v02_01 data (S. Kasahara, Yokota, Hori, et al., 2018), and ORB L2_v03 data (Miyoshi, Shinohara, 
& Jun, 2018).
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