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In this study we consider the Hamiltonian approach for the construction of a map for a
system with nonlinear resonant interaction, including phase trapping and phase bunching
effects. We derive basic equations for a single resonant trajectory analysis and then
generalize them into a map in the energy/pitch-angle space. The main advances of this
approach are the possibility of considering effects of many resonances and to simulate the
evolution of the resonant particle ensemble on long time ranges. For illustrative purposes
we consider the systemwith resonant relativistic electrons and field-aligned whistler-mode
waves. The simulation results show that the electron phase space density within the
resonant region is flattened with reduction of gradients. This evolution is much faster than
the predictions of quasi-linear theory. We discuss further applications of the proposed
approach and possible ways for its generalization.
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1. Introduction

The resonant wave–particle interaction is known to be one of the main drivers of
dynamics of such space plasma systems as planetary radiation belts (e.g. Thorne 2010;
Menietti et al. 2012), collisionless shock waves (e.g. Balikhin et al. 1997; Wilson et al.
2007, 2012; Wang et al. 2020), auroral acceleration region (e.g. Chaston et al. 2008;
Watt & Rankin 2009; Mauk et al. 2017) and solar wind (e.g. Krafft & Volokitin 2016;
Kuzichev et al. 2019; Roberg-Clark et al. 2019; Tong et al. 2019; Yoon et al. 2019).
The classical quasi-linear theory (Drummond & Pines 1962; Vedenov, Velikhov &
Sagdeev 1962) and its generalizations for inhomogeneous plasma systems (Ryutov 1969;
Lyons & Williams 1984) describe well charged particle resonant interaction with
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2 A. V. Artemyev et al.

low-amplitude broadband waves (Karpman 1974; Shapiro & Sagdeev 1997; Tao et al.
2012a; Camporeale & Zimbardo 2015; Allanson et al. 2020).
One of the important examples of the application of the quasi-linear theory is the

Earth radiation belt models that describe energetic electron acceleration and losses due to
resonances with electromagnetic whistler-mode waves and electromagnetic ion cyclotron
(EMIC) waves (see reviewsMillan & Thorne (2007), Shprits et al. (2008), Nishimura et al.
(2010), Thorne et al. (2010), Ni et al. (2016) and references therein). Moreover, the natural
inhomogeneity of the background magnetic field and plasma density in the radiation
belts can significantly weaken the conditions of applicability of the quasi-linear theory
(Solovev & Shkliar 1986; Albert 2001, 2010). However, this theory meets difficulties in
describing resonances with sufficiently intense waves (Shapiro & Sagdeev 1997), when
the nonlinear effects of phase trapping and phase bunching become important (Omura
et al. 1991; Shklyar & Matsumoto 2009; Albert, Tao & Bortnik 2013; Artemyev et al.
2018a). Indeed, sufficiently intense whistler-mode waves are frequently observed in the
radiation belts (Cattell et al. 2008; Wilson et al. 2011; Agapitov et al. 2014) and contribute
significantly to wave statistics (Zhang et al. 2018, 2019; Tyler et al. 2019). Theoretically,
phase trapping and bunching (also called nonlinear scattering) effects are responsible for
fast acceleration (e.g. Demekhov et al. 2006, 2009; Omura, Furuya & Summers 2007;
Hsieh & Omura 2017a; Hsieh, Kubota & Omura 2020) and losses (e.g. Kubota, Omura &
Summers 2015; Kubota & Omura 2017; Grach & Demekhov 2020) of energetic electrons
and for the generation of coherent whistler-mode waves (Omura, Katoh & Summers
2008; Demekhov 2011; Nunn & Omura 2012; Omura, Nunn & Summers 2013; Katoh
2014; Tao 2014; Katoh & Omura 2016). There are many observational evidences of such
nonlinear resonant wave generation (Titova et al. 2003; Cully et al. 2011; Tao et al.
2012b; Mourenas et al. 2015) and of the related electron acceleration/losses (e.g. Foster
et al. 2014; Agapitov et al. 2015b; Mourenas et al. 2016a; Chen et al. 2020; Gan et al.
2020b).
The quasi-linear diffusion theory describes a sufficiently weak scattering in

energy/pitch-angle space and operates with a Fokker–Planck diffusion equation for
the charged particle distribution function (Andronov & Trakhtengerts 1964; Kennel &
Engelmann 1966; Lerche 1968). In contrast to this description, the nonlinear phase
trapping assumes a fast transport in energy/pitch-angle space (e.g. Furuya, Omura &
Summers 2008; Artemyev et al. 2014b), when even a single resonant interaction changes
significantly the electron’s energy/pitch-angle (e.g. Albert et al. 2013; Artemyev et al.
2018a). This essentially non-diffusive process cannot be directly included into the
Fokker–Planck equation. One possible approach is the construction of an operator that
would describe fast charged particle jumps in the energy/pitch-angle; this operator can
be constructed with the numerical (test-particle) approach (e.g. Hsieh & Omura 2017b;
Zheng, Chen & Zhu 2019) or with the analytical calculation of jumps’ probabilities (e.g.
Vainchtein et al. 2018). The main advantage of this approach is the inclusion of an almost
arbitrary (as realistic as needed) wave spectrum and characteristics (e.g. wave modulation
and frequency drifts, see Kubota & Omura (2018), Artemyev, Vasiliev &Neishtadt (2019b)
and Hiraga & Omura (2020)). The main disadvantages are an accumulation of numerical
errors with running time, and the almost intractable fine details of the energy/pitch-angle
space binning needed to simultaneously resolve large jumps due to trapping and small
changes due to drift/diffusion.
An alternative approach to the construction of such an operator is a generalization of the

Fokker–Planck equation to include effects of phase trapping and phase bunching (Solovev
& Shkliar 1986; Artemyev et al. 2016b, 2017). This approach is based on a fine balance of
trappings and bunchings for a single wave system (e.g. Shklyar 2011; Artemyev, Neishtadt
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From Hamiltonian resonance theory to phase space mapping 3

& Vasiliev 2019a). The main advantage of this approach is that the evolution of a charged
particle distribution function can be investigated in arbitrary detail in the presence of
phase trapping, phase bunching and diffusion (e.g. Artemyev et al. 2018b, 2019a). The
main disadvantage is that there is no straightforward generalization of this approach for
multiwave (multiresonance) systems. A single-wave resonance results in charged particle
transport in the energy/pitch-angle space along one-dimensional (1-D) curves, so-called
resonance surface curves (e.g. Lyons & Williams 1984; Summers, Thorne & Xiao 1998),
and the Fokker–Planck equation with trapping was derived for such a quasi-1-D system
(Artemyev et al. 2016b).
Another alternative for the description of charged particle distribution evolution driven

by nonlinear wave–particle interaction (phase trapping and bunching) is the mapping
technique that describes the characteristics of the Fokker–Planck equation (Van Kampen
2003). The classical example of this approach is the Chirikov map (Chirikov 1979), which
describes particle diffusion and is widely used for systems with wave–particle resonances
(e.g. Vasilev et al. 1988; Zaslavskii et al. 1989; Benkadda, Sen & Shklyar 1996; Khazanov,
Tel’nikhin & Kronberg 2013, 2014). Such a map has been constructed for a single-wave
system with phase trapping and phase bunching effects (Artemyev, Neishtadt & Vasiliev
2020b). In this study we show the generalization of this map for a multiresonance system.
We consider a strong magnetic field system, where charged particle motion is very

gyrotropic and magnetic moments are well-conserved away from the resonances. Thus,
three-dimensional velocity space can be reduced to 2-D energy/pitch-angle space.
The mapping for this space should describe 2-D charged particle motion due to
energy/pitch-angle jumps with the time intervals between jumps equal to the interval
between passages through the resonances. Diffusive jumps (with zero mean values) and
jumps driven by nonlinear phase bunching and phase trapping depend on the resonant
phase ϕR, i.e. a variable proportional to the particle gyrophase, which changes fast. In low
wave intensity systems this phase is randomly distributed over the entire (ϕR ∈ [0, 2π])
range, and the phase dependence ∼ sinϕR can be directly included into the map (Vasilev
et al. 1988; Zaslavskii et al. 1989; Benkadda et al. 1996; Khazanov et al. 2013, 2014).
The phase bunching and phase trapping operate in certain ϕR ranges (e.g. Albert 1993;
Itin, Neishtadt & Vasiliev 2000; Grach & Demekhov 2020), whereas jumps depend on
ϕR quite non-monotonically (see Artemyev et al. 2014a, 2018a). However, due to phase
randomization between two successive resonances (see the appendix in Artemyev et al.
(2020b)), the phase dependence can be reduced to a simplified determination of ranges
corresponding to phase trapping ϕR ∈ [0, 2πΠ ] and phase bunching ϕR ∈ [Π, 2π] where
Π < 1 is the probability of trapping (see, e.g. Artemyev et al. 2018a). The phase gain
between two resonances is a large value depending on particle energy and pitch-angle,
but this dependence can be omitted in the leading approximation (see discussion in
Artemyev et al. (2020b)). Therefore, in this study we consider charged particle transport
in the energy/pitch-angle space due to nonlinear resonant interaction under assumption
of resonant phase randomization (limitations of this assumption have been studied in
Artemyev, Neishtadt & Vasiliev (2020a)).
The paper structure includes a description of the basic system properties and examples

of multiresonant systems observed in the Earth’s radiation belts (§ 1). We present three
examples: with two whistler-mode waves providing two cyclotron resonances; with one
oblique whistler-mode wave providing cyclotron and Landau resonances; and with one
whistler-mode wave and one EMIC wave providing two different cyclotron resonances.
Then we focus on the first example and construct the map for this system (§ 2). Theoretical
results derived from this map are verified with test particle simulations. At the end of the
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4 A. V. Artemyev et al.

paper we discuss the constructed map and possible extensions of the proposed approach
(§ 3).

2. Basic system properties

The Hamiltonian of a relativistic charged particle (e.g. an electron with rest mass me
and charge −e) moving in the 2-D inhomogeneous magnetic field of the Earth dipole and
interacting with electromagnetic waves (in the low amplitude limit with the wave energy
Uw much smaller than electron energy ∼ m2

ec, where c is the speed of light) can be written
as (e.g. Albert et al. 2013; Artemyev et al. 2018b)

H = mec2γ + Uw(s, Ix) sin(φ ± nψ),

γ =
√
1 + p2‖

m2
ec2

+ 2IxΩce

mec2
,

⎫⎪⎬
⎪⎭ (2.1)

where two pairs of conjugate variables are (s, p‖) (the field-aligned coordinate and
momentum) and (ψ, Ix) (gyrophase and momentum Ix = cμ/e; μ is the classical magnetic
moment). The electron gyrofrequency Ωce = eB0/mec is determined by the background
magnetic field B0(s), given by, e.g. the reduced dipole model (Bell 1984). The sign ± in
front of ψ is determined by the wave polarization: + for whistler-mode waves interacting
with electrons and − for EMIC waves interacting with electrons. The resonance number
is n = 0,±1,±2 . . .. The wavevector k = (k‖(ω, s), k⊥(ω, s)) is given by a cold plasma
dispersion equation (Stix 1962) for a constant wave frequencyω (i.e. ∂φ/∂s = k‖, ∂φ/∂t =
ω). For a finite angle θ = arctan(k⊥/k‖) between the wavevector and the background
magnetic field, the wave amplitude in Hamiltonian (2.1) takes the form (Albert 1993; Tao
& Bortnik 2010; Nunn & Omura 2015; Artemyev et al. 2018b)

Uw =
√
2IxΩce

mec2
eBw

k

∑
±

cos θ ± C1

2γ
Jn±1

⎛
⎝

√
2Ixk2

meΩce
sin θ

⎞
⎠

+ eBw

k

(
p‖

γmec
+ C2

)
Jn

⎛
⎝

√
2Ixk2

meΩce
sin θ

⎞
⎠ sin θ, (2.2)

where Bw is the wave magnetic field amplitude, C1,2 are functions of wave dispersion and
θ , and Jn are Bessel functions. Equation (2.2) shows that for field-aligned waves θ = 0
there is only one cyclotron resonance n = −1: Uw = √

2IxΩce/mec2eBw/kγ (with C1 = 1
for θ = 0, see Tao & Bortnik (2010)). For oblique wave propagation θ �= 0 the whole set
of resonances with different values of n is present.

2.1. Field-aligned whistler waves
Let us start with the system of two field-aligned whistler waves with the Hamiltonian

H = mec2γ +
√
2IxΩce

mec2
e
γ

∑
i=0,1

Bw,i

ki
sin(φi + ψ), (2.3)

where ∂φi/∂s = ki = ki(ωi, s) with the two different wave frequencies ωi. Figure 1 shows
an example of such system observations. The THEMIS spacecraft measure waves within
the whistler-mode frequency range (f ∈ [0.1, 1]fce; fce = Ωce/2π): there are two clear
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(a)

(b)

(c)

(d)

FIGURE 1. Observational example of two whistler-mode waves by Van Allen Probe A (Mauk
et al. 2013): magnetic field spectrum (a) and electric field spectrum (b) are obtained from
EMFISIS measurements (Kletzing et al. 2013), wave-normal angle (c) is estimated using Mean’s
method (Means 1972). Resonance curves for the system with two observed whistler-mode
waves (d).

maxima in the magnetic and electric field spectra at f ∼ fce/4 and f ∼ 3fce/8 (see panels
(a) and (b)). Both waves propagate along the background magnetic field: panel (c)
shows θ as a function of the frequency. These double-peak spectra are quite typical for
whistler-mode waves in the inner magnetosphere (see, e.g. Meredith et al. 2007; Crabtree
et al. 2017; Ma et al. 2017; He et al. 2020; Yu et al. 2020; Zhang et al. 2020b).
To study electron energy/pitch-angle variation in the system with Hamiltonian (2.3),

we follow the standard procedure (Neishtadt & Vasiliev 2006; Neishtadt 2014) and
introduce the wave phases as new canonical variables, ϕi = φi + ψ , with the generating
function

W = sP +
(∫

k0(s̃) ds̃ − ω0t + ψ

)
I0 +

(∫
k1(s̃) ds̃ − ω1t + ψ

)
I1. (2.4)

This function gives new variables: P = p − k0I0 − k1I1, S = s (we keep s notation), Ix =
I0 + I1 and new Hamiltonian HI = H + ∂W/∂t = H − ω0I0 − ω1I1

HI = −ω0I0 − ω1I1 + mec2γ +
√
2(I0 + I1)Ωce

mec2
e
γ

∑
i=0,1

Bw,i

ki
sinϕi,

γ =
√
1 + (P + k0I0 + k1I1)2

m2
ec2

+ 2(I0 + I1)Ωce

mec2
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.5)

Hamiltonian HI describes a conservative system (HI = const.; without loss of generality
we take HI = 0) with three degrees of freedom, i.e. with three pairs of conjugate variables
(s,P), (ϕ0, I0), (ϕ1, I1). The resonance ϕ̇i = 0 conditions give I0 = I0R(s,P, I1), I1 =
I1R(s,P, I0) as solutions of equations ωi = mec2∂γ /∂Ii = 0. Thus, there are two resonant
surfaces. If these surfaces cross (i.e. at the same s,P electron can have simultaneously
I0 = I0R and I1 = I1R), then electrons can simultaneously be in resonance with the two
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6 A. V. Artemyev et al.

waves (Zaslavsky et al. 2008; Shklyar & Zimbardo 2014). This quite complicated system
would require a separate consideration (Lichtenberg & Lieberman 1983; Sagdeev, Usikov
& Zaslavsky 1988). Hereafter, we focus instead on the simpler case of well-separated
resonances, when resonant surfaces do not cross. Equations I0 = I0R and I1 = I1R together
with the conditionHI = 0 determine two families of curves in (s,P) plane; values I0 and I1
are parameters of these families. Thus, on the curve I0 = I0R(s,P, I1) there is no change of
I1, and on the curve I1 = I1R(s,P, I0) there is no change of I0. With constant I1 (or I0) the I0
(or I1) variation is directly related to the variation of energy: −ω0I0 − ω1I1 + mec2γ = 0.
Taking into account that I0 + I1 = Ix = mec2(γ 2 − 1) sin2 αeq/2, we can plot resonance
curves (e.g. Lyons & Williams 1984; Summers et al. 1998; Mourenas et al. 2012), along
which Ii change, in the energy/pitch-angle space (mec2(γ − 1), αeq) (note that we use the
equatorial pitch-angle αeq defined at the minimum of B0(s) field, i.e. at the minimum of
Ωce(s)). Figure 1(d) shows these curves mec2γ − ωiIi = const.: each curve of I0 change
corresponds to a fixed value of I1, and vice versa. Electrons move along these curves with
the time step of the interval between resonances. Note between resonances both Ii and γ
are conserved, and electrons are moving along adiabatic orbits without wave influence, i.e.
energy and pitch-angle change only at the resonances.
Let us consider electron dynamics in the energy/pitch-angle space for the system

with Hamiltonian (2.3). We numerically integrate Hamiltonian equations for systems
with a single wave and with two waves. Figure 2(a,b) show electron motion in the
energy/pitch-angle space due to the resonance with a single wave. Solid curves are
resonant curves of −ω0I0 − ω1I1 + mec2γ = const. for the wave frequency ω0 and for
the wave frequency ω1. Electrons move along this curve due to phase bunching (small
negative jumps of energy and pitch-angle; see panels (d,e)) and phase trapping (rare
large positive jumps of energy and pitch-angle; see panels (d,e)). Conservation of
−ω0I0 − ω1I1 + mec2γ and one of the momenta (I0 or I1) makes electron dynamics 1-D
in the energy/pitch-angle space. However, this dynamics becomes 2-D in the system
with two waves, when both I0 and I1 change, see figure 2(c). The electron moves
along resonance curves and jumps between these curves due to Ii jumps. There are
still the same energy and pitch-angle jumps due to phase bunching and phase trapping
(see panels (d,e)), but electron phase trajectory covers the entire energy/pitch-angle
space. We describe this 2-D dynamics with the mapping technique in this
study.

2.2. Oblique whistler-mode wave
The second example corresponds to electron resonant interaction with a single oblique
(θ �= 0) wave, for which Hamiltonian (2.1) takes the form

H = mec2γ + eBw

kγ
h0 sin(φ) +

√
2IxΩce

mec2
h1
eBw

kγ
sin(φ + ψ),

h0 = −
√
2IxΩce

mec2
C1J1 +

(
p‖
mec

+ C2

)
J0 sin θ,

h1 = 1
2
(J2(cos θ + C1) + J0(cos θ − C1)) +

(
p‖
mec

+ C2

)
kc

2Ωce
(J2 + J0) sin θ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(2.6)
where we restrict our consideration to the first two resonances: Landau resonance
n = 0 and the first cyclotron resonance n = 1. The Bessel function argument is√
2Ixk2/meΩce sin θ . Such oblique whistler-mode waves are widely observed in the
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(a) (b) (c)

(d) (e)

FIGURE 2. Panels (a–c) show resonance curves (black) and electron trajectories in the
energy/pitch-angle space for Hamiltonian (2.3): only the first whistler-mode wave (a), only the
second whistler-mode wave (b), both whistler-mode waves (c). In panel (c) different colours
correspond to different time intervals. Panels (d,e) show energy and pitch-angle time series for
the three trajectories in panels (a–c). We use parameters of dipole field at a radial distance of ∼ 5
Earth radii. Plasma density is given by the model from Sheeley et al. (2001) and constant along
magnetic field lines. Wave frequencies are ω0 = 0.4Ωce, ω1 = 0.2Ωce. Both wave amplitudes
are 300 pT (see discussion of such wave observations in Zhang et al. (2018) and Tyler19). Wave
amplitude is distributed along magnetic field lines as tanh((λ/δλ1)2) exp(−(λ/δλ2)

2) with λ the
magnetic latitude (ds = Rdλ

√
1 + sin2 λ cos λ) and δλ1 = 2◦, δλ2 = 20◦. This function fits the

observed whistler-mode wave intensity distribution (Agapitov et al. 2013).

radiation belts (Agapitov et al. 2013, 2015a; Li et al. 2016), and their amplitudes are often
sufficiently high for nonlinear resonances (Agapitov et al. 2015b; Artemyev et al. 2016a;
Mourenas et al. 2016a). Figure 3 shows an example of an oblique whistler-mode wave
measured by THEMIS spacecraft in the outer radiation belt. Electric and magnetic field
spectra show the one wave power maximum around f /fce ∼ 1/3 (see panels (a,b)), i.e. this
is a single wave. Wave-normal angle θ ≈ 70◦ (see panel (c)), i.e. this wave propagates
obliquely to the background magnetic field.
Using the same approach as the one we applied for Hamiltonian (2.3), we introduce

wave phases as new variables, ϕ0 = φ0 and ϕ1 = φ1 + ψ , using the generating function
(Neishtadt & Vasiliev 2006; Neishtadt 2014)

W = sP +
(∫

k(s̃) ds̃ − ωt
)
I0 +

(∫
k(s̃) ds̃ − ωt + ψ

)
I1. (2.7)
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8 A. V. Artemyev et al.

(a) (d)

(b)

(c)

FIGURE 3. Observational example of oblique whistler-mode wave by Van Allen Probe A (Mauk
et al. 2013): magnetic field spectrum (a) and electric field spectrum (b) are obtained from
EMFISIS measurements (Kletzing et al. 2013), wave-normal angle (c) is estimated using Mean’s
method (Means 1972). Resonance curves for the system with two observed whistler-mode
waves (d).

This function gives the new variables: P = p − k0I0 − k1I1, S = s (we keep s notation),
Ix = I1 and new Hamiltonian HI = H + ∂W/∂t = H − ωI0 − ωI1

HI = −ωI0 − ωI1 + mec2γ + eBwh0
kγ

sinϕ0 +
√
2I1Ωce

mec2
eBwh1
kγ

sinϕ1,

γ =
√
1 + (P + k0I0 + k1I1)2

m2
ec2

+ 2I1Ωce

mec2
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.8)

The resonance curves in the energy/pitch-angle space are given by two equations:
mec2γ − ωI1 = const. with I1 = Ix = (γ 2 − 1) sin2 αeq/2 for the cyclotron resonance and
Ix = const. for the Landau resonance. Figure 3(d) shows that at αeq < π/4 Landau
resonance curves cross cyclotron resonance curves almost transversely, i.e. in the Landau
resonance electrons quickly change energy with weaker pitch-angle change, whereas in
the cyclotron resonance the energy change is more effective than the pitch-angle change.
To demonstrate the effects of the two resonances on electron transport in

energy/pitch-angle space, we numerically integrate Hamiltonian equations (2.8) for three
systems. Figure 4(a) shows results of the Landau resonance of the electron and oblique
whistler-mode wave. The electron moves along a single resonant curve Ix = rmconst.
with phase bunching responsible for pitch-angle increase and energy decrease, and
the phase trapping responsible for pitch-angle decrease and energy increase (panels
(d,e)). Figure 4(b) shows results of the cyclotron resonance: electron motion in the
energy/pitch-angle space are quite similar to motions shown in figure 2(a,b): phase
bunching is responsible for pitch-angle and energy decrease, whereas the phase trapping is
responsible for pitch-angle and energy increase (panels (d,e)). The combination of the two
resonances results in rapid electron motion within the whole energy/pitch-angle domain,
see figure 4(c). The phase bunching decreases electron energy in both resonances, but
moves electrons in opposite directions in pitch-angle. As a result, a resonant electron loses
energy until it reaches the region with a high probability of trapping into the Landau
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(a) (b)

(d) (e)

(c)

FIGURE 4. Panels (a–c) show resonance curves (black) and electron trajectories in the
energy/pitch-angle space for Hamiltonian (2.6): only Landau resonance (a), only cyclotron
resonance (b), both resonances (c). In panel (c) colour shows time. Panels (d,e) show energy and
pitch-angle time series for three trajectories from panels (a–c). System parameters are the same as
in figure 2, wave frequency is ω = 0.35Ωce, wave amplitude is 500 pT and wave-normal angle θ
is 5 ◦ away of the resonance cone angle acos(ω/Ωce) (see discussion of such wave observations
in Wilson et al. (2011), Agapitov et al. (2014), Artemyev et al. (2016a) and Mourenas et al.
(2016a)). The wave amplitude distribution along magnetic field-lines is the same as one used in
figure 1.

resonance (Artemyev et al. 2013). After being trapped in Landau resonance, the electron
gains energy and reaches the energy/pitch-angle domain where it can now be trapped into
the cyclotron resonance with further energy increase. Such cycles of bunching, Landau
trapping and cyclotron trapping, quickly cover a large energy/pitch-angle domain for a
single electron trajectory.

2.3. Field-aligned whistler-mode and EMIC waves
A third example is a system with field-aligned whistler-mode wave and field-aligned
EMIC wave with polarization opposite to the whistler-mode wave. The corresponding
Hamiltonian of a relativistic electron (reduction of Hamiltonian (2.2)) takes the form

H = mec2γ +
√
2IxΩce

mec2

(
eBw,0

k0γ
sin(φ0 + ψ) + eBw,1

k1γ
sin(φ1 − ψ)

)
, (2.9)

where k0 = k0(ω0, s) follows the whistler-mode wave dispersion, whereas k1 = k1(ω1, s)
follows the EMIC wave dispersion. Figure 5(a,b) shows a typical example of observation
of such two waves: the high-frequency magnetic field spectrum shows the whistler-mode
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10 A. V. Artemyev et al.

(a)

(b)

(c)

(d)

FIGURE 5. Observational example of a system with whistler-mode and EMIC waves by Van
Allen Probe A (Mauk et al. 2013): magnetic field spectrum of EMIC wave (a) and whistler-mode
wave (b) are obtained from EMFISIS measurements (Kletzing et al. 2013), the wave-normal
angle of the EMIC wave (c) is estimated using Mean’s method (Means 1972). Resonance curves
for the system with the two observed whistler-mode waves (d).

wave with f /fce ∼ fce/2, whereas the low-frequency magnetic field spectrum shows the
EMIC wave with f /fcp ∼ fcp/2 (fcp is the proton gyrofrequency). The EMIC wave is
field-aligned (see panel (c)). Due to the low EMIC wave frequency, the resonance
condition φ̇1 − ψ̇ = k1p/γ − ω1 − Ωce/γ = 0 can be reduced to k1p = Ωce, with typical
k1 approximately the inverse ion inertial length (Silin et al. 2011). Thus, only high-energy
electrons (with large enough p) can resonate with EMIC waves (e.g. in the Earth radiation
belts the resonant energy is typically larger than ∼ 1 MeV, see Thorne & Kennel (1971),
Summers & Thorne (2003) and Shprits et al. (2016); Chen, Zhu & Zhang (2019)). Let us
compare whistler-mode and EMIC wave resonance curves for such high energies.
First, we introduce wave phases as new variables, ϕ0 = φ0 + ψ and ϕ1 = φ1 − ψ , with

the generating function (Neishtadt & Vasiliev 2006; Neishtadt 2014)

W = sP +
(∫

k0(s̃) ds̃ − ω0t + ψ

)
I0 +

(∫
k1(s̃) ds̃ − ω1t − ψ

)
I1. (2.10)

This function gives new variables: P = p − k0I0 − k1I1, S = s (we keep s notation), Ix =
I0 − I1 and new Hamiltonian HI = H + ∂W/∂t = H − ωI0 − ωI1

HI = −ω1I0 − ω1I1 + mec2γ +
√
2(I0 − I1)Ωce

mec2
∑
i=0,1

eBw,i

kiγ
sinϕi,

γ =
√
1 + (P + k0I0 + k1I1)2

m2
ec2

+ 2(I0 − I1)Ωce

mec2
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.11)

The EMIC resonance curves are given by equation mec2γ − ω1I1 = const., and taking
into account the smallness of ω1 we obtain γ ≈ 0, i.e. resonance curves are almost
straight lines parallel to the energy axis (see figure 5d). The whistler-mode resonance
curves (mec2γ − ω0I0 = const. with I0 = Ix + const.) cross these lines: the EMIC wave
is responsible for electron transport along pitch-angle space, and the whistler-mode wave
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(a) (b) (c)

(d) (e)

FIGURE 6. Panels (a–c) show resonance curves (black) and electron trajectories in the
energy/pitch-angle space for Hamiltonian (2.9): only whistler-mode wave (a), only EMIC wave
(b), both whistler-mode and EMIC waves (c). In panel (c) colour shows time. Panels (d,e) show
energy and pitch-angle time series for three trajectories in panels (a–c). System parameters
are the same as in figure 2. The EMIC wave is H+ band with the frequency ω = 0.7Ωcp and
amplitude 1 nT (see discussion of such wave observations in Kersten et al. (2014) and Zhang
et al. (2016)). Whistler-mode wave frequency is ω = 0.35Ωce and wave amplitude is 300 pT.
The wave amplitude distribution along magnetic field-lines is the same as one used in figure 1.

leads to both pitch-angle and energy changes. Figure 6(a,b) confirms this scenario: the
EMIC wave resonates with small pitch-angle (large p) electron and phase bunch it to larger
pitch-angles (phase trapping by EMIC waves is responsible for pitch-angle decrease; see
panels (d,e)) with an approximate conservation of energy, whereas the whistler-mode wave
can resonate with large pitch-angle electrons and transport them to smaller pitch-angles
via phase bunching with energy decrease (moving them away from the EMIC wave
resonance).
The combination of EMIC and whistler-mode wave resonances (see figure 6c) can result

in a very effective transport of large pitch-angle electrons to small pitch-angles (rapid
electron losses): bunching of ∼ 2 MeV electrons with initially large pitch-angles results
in electron transfer to small pitch-angles, where even faster EMIC phase trapping may
move this electron to the loss-cone (see discussions of similar effects of combined EMIC
and whistler-mode waves in the diffusive approximation in Mourenas et al. (2016b) and
Zhang et al. (2017)). From small pitch-angles (note that the loss-cone is not included in
our simulations) the EMIC wave can transport an electron via phase bunching to higher
pitch-angles, where whistler-mode resonance can accelerate it via trapping. As a result
of such different resonant interactions with EMIC and whistler-mode waves, the electron
trajectory can quickly fill up a large domain in the energy/pitch-angle space.
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12 A. V. Artemyev et al.

3. Mapping technique for multiresonances

To describe the long-term evolution of electron dynamics in the energy/pitch-angle
space, we propose to develop a map providing relations for each resonant interaction
Δγ = Δγ (γ, αeq),Δαeq = Δα(γ, αeq). Changes Δγ,Δαeq are due to phase bunching
(nonlinear scattering) and phase trapping. Thus, the first step in the construction of such
a map is to derive equations for Δγ,Δαeq driven by both these processes. We start with
Hamiltonian (2.5) and follow the standard procedure of Hamiltonian expansion around
the resonant I0, I1 values (Neishtadt 2014; Artemyev et al. 2018a), which are defined by
equations ∂HI/∂Ii = 0,

kiIiR
mec

= −P + ki′Ii′
mec

− Ωce

ki
+ 1√

(kic/ωi)2 − 1

√
1 −

(
Ωce

kic

)2

− 2
Ωce

kic
P + (ki′ − ki)Ii′

mec
,

(3.1)
where i′ = 0 for i = 1 and i′ = 1 for i = 0. Expansion of Hamiltonian (2.5) around Ii = IiR
gives

HIi ≈ Λi + mec2 12gi(Ii − IiR)2 + uiR sinϕi,

Λi = mec2γiR − (ω0I0 + ω1I1)Ii=IiR,

γiR = (kic/ωi)√
(kic/ωi)2 − 1

√
1 −

(
Ωce

kic

)2

− 2
Ωce

kic
P + (ki′ − ki)Ii′

mec
,

uiR =
√
2Ωce(I0 + I1)Ii=IiR

mec2
e

γiR

Bw,i

ki
,

gi = ∂2γ

∂I2i

∣∣∣∣
Ii=IiR

= k2i
m2

ec2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

where ϕi are fast variables and Ii − IiR) and (s,P) are slow variables (note that Λi does
not depend on fast variables). Next, we introduce new variables Pϕi = Ii − IiR with the
generating function Qi = (Ii − IiR)ϕi + sP̃i. New Hamiltonians are

Fi = Λi(s̃, P̃) + mec2 12giP
2
ϕi + uiR sinϕi

≈ Λi(s,P) + {Λi, IiR}s,Pϕi + mec2t 12giP
2
ϕi + uiR sinϕi, (3.3)

where s̃ = s − (∂IiR/∂P)ϕi, P̃ = p + (∂IiR/∂s)ϕi, { } are Poisson brackets, and we expand
Λ(s̃, P̃) over small ∂IiR/∂s, ∂IiR/∂P terms. Hamiltonian Fi is the sum of Λi(s,P)
describing slow variable dynamics and pendulum Hamiltonian describing fast variable
dynamics,

Fϕi = mec2 12giP
2
ϕi + {Λi, IiR}s,Pϕi + uiR sinϕi, (3.4)

where the coefficients depend on the slow variables. Figure 7 shows phase portraits of
Fϕi for systems with ai = |uiR/{Λi, IiR}| < 1 (panel (a)) and with ai = |uiR/{Λi, IiR}| >
1 (panel (b)). For low wave amplitude ai < 1 the phase portrait does not contain
closed orbits, i.e. all particles cross the resonance ϕ̇i = mec2giPϕ,i = 0 within an interval
of approximately one period of ϕi. There are only weak scatterings in this regime with
zero mean changes of Ii, and such scatterings can be described by the quasi-linear
diffusion model for inhomogeneous plasma (e.g. Karpman 1974; Albert 2010; Grach
& Demekhov 2020). For sufficiently high wave amplitude ai > 1, however, the phase
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From Hamiltonian resonance theory to phase space mapping 13

portrait contains both closed and open orbits, i.e. there are now phase trapped particles
oscillating around the resonance ϕ̇i = mec2giPϕ,i = 0 for a long time. Scattering (crossing
of the resonance along the open orbits) would result in phase bunching with a small, yet
non-zero mean change of Ii (see reviews by Shklyar & Matsumoto (2009), Albert et al.
(2013) and references therein), whereas phase trapping would significantly change Ii. We
would like to include this nonlinear regime of wave–particle interaction into the map in
energy/pitch-angle space. For this reason, we derive expressions for changes of Ii due to
phase bunching,ΔscatIi, and due to phase trappingΔtrapIi. AsΔscatIi is local, i.e. depends on
particle and system characteristics at the resonance, we can keep slow variables unchanged
for ΔscatIi evaluations

ΔscatIi = 2
∫ tiR

−∞

∂HIi

∂I
dt = 2uiR

mec2gi

∫ ϕiR

−∞

cosϕi dϕi

Pϕi

=
√

2uiR
mec2gi

∫ ϕiR

−∞

√
uiR cosϕi dϕi√

Fϕi − {Λi, IiR}s,Pϕi − uiR sinϕi

=
√

2uiR
mec2gi

∫ ϕiR

−∞

√
uiR cosϕi dϕi√{Λi, IiR}s,P(ϕRi − ϕi) + uiR(sinϕRi − sinϕi)

=
√

2uiR
mec2gi

∫ ϕiR

−∞

√
ai cosϕi dϕi√

(ϕRi − ϕi) + ai(sinϕRi − sinϕi)
=

√
2uiR
mec2gi

fi(ϕRi, ai), (3.5)

where tiR is the time of passage through the resonance, ϕiR is the wave phase
at this time, and we use ϕ̇i = mec2giPϕi = 21/2

√
Fϕi − {Λi, IiR}ϕi − uRi sinϕi,Fϕi =

{Λi, IiR}ϕRi + uRi sinϕRi (resonant energy Fϕi value evaluated at Pϕi = 0). Note (3.5)
describes the ΔscatIi change for the particle motion throughout the resonance from −∞
to resonant ϕiR, whereas the motion in the opposite direction would result in the change
of sign of ΔscatIi. Function fi(ai, ϕiR) is periodic for ϕiR, see figure 7(c). Although the sign
of fi changes within one ϕiR period, the mean value of this function for ai > 1 is not zero,
providing the effect of phase bunching. To consider the precise ΔscatIi dependence on
ϕiR in the mapping, one would need to keep information about resonant phase ϕi and
calculate the phase gain between resonances. However, the phase is fast rotating, and
even a small change of ϕi at the resonance would result in a significant change of phase
gain between resonances. Therefore, we can assume that ϕiR is a random variable with
a uniform distribution of the resonant energy Fϕi(ϕiR) at Pϕi = 0 axis (see justification of
this assumption in Itin et al. (2000), Artemyev et al. (2020a) and Artemyev et al. (2020b)),
and all resonant particles with the same slow variables (same energy and pitch-angle) at
the resonance would experience the same ΔIi change equal to 〈ΔIi〉 averaged over the
resonant energy (Artemyev et al. 2020b).
An important property of the f function from (3.5) is that being averaged over energies

in resonance, Fϕi = {Λi, IiR}ϕRi + uRi sinϕRi, this function gives

〈fi〉 = −
√
mec2gi
2uiR

S
2π

= −
√

8|uiR|
aimec2gi

∫ ϕiR

ϕi−

√
(ϕRi − ϕi) + ai(sinϕRi − sinϕi) dϕi, (3.6)

where S is the area surrounded by the separatrix in the phase portrait in figure 7(b)
(see details of (3.6) derivations in Neishtadt (1999) and Artemyev et al. (2018a)).
Therefore, the ΔscatIi change due to phase bunching is equal to −S/2π and for ai � 1
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14 A. V. Artemyev et al.

(a) (b)

(c) (d)

FIGURE 7. Phase portraits of Fϕi for systems with |uiR| < |{Λi, IiR}| (a) and with |uiR| >
|{Λi, IiR}| (b). Black curves show contours of Fϕ,i = const., red curve is the separatrix
demarcating region of trapped (closed) electrons orbits and region of transient (open) orbits.
Function f (hφ, a) for several a and (−ϕiR + a sinϕiR)/2π (c) and scheme of trapping/
detrapping (d).

(i.e. for very weak magnetic field inhomogeneity; note {Λi, IiR} ∼ ∂/∂s) we have ΔscatIi =
−8

√
2uiR/mec2gi where S = 16

√
2uiR/mec2gi is the width of the resonance for large

amplitude waves (Palmadesso 1972; Karimabadi et al. 1990).
The change of Ii due to phase bunching (nonlinear scattering) is sufficiently small to

consider this process locally in energy/pitch-angle space, i.e.ΔscatIi � Ii (see discussion of
exceptions forΔscatIi ∼ Ii in Appendix A), whereas the change of Ii due to phase trapping is
essentially non-local. To evaluate ΔtrapIi, we take into account that Ii = IiR in the resonance
(during the trapping), the trapping time is defined as 2πIφ = ∫

Pϕi dϕiR = S, and Iφ is
conserved during the trapping (because trapped particles oscillate in the (ϕiR,Pφi) plane
much faster than the system evolves (much faster than variations of slow variables s,P).
Thus, the trapping time is defined as the time of arrival to the resonance tR with Ṡ(tR) > 0
(the growth of the area surrounded by the separatrix allows trapping of particles moving
along open trajectories into closed trajectories), whereas the time t∗R of escape from the
trapping is defined by S(t∗R) = S(tR) and Ṡ(t∗R) < 0 (see scheme in figure 7d)

ΔtrapIi = IiR(t∗iR) − IiR(tiR), S(t∗iR) = S(tiR), Ṡ(tiR) > 0, Ṡ(t∗iR) < 0. (3.7a–d)

At the resonance, an electron can be scattered (i.e. experience the phase bunching)
or trapped, and this depends on the ϕiR value (e.g. Albert 1993; Itin et al. 2000;
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From Hamiltonian resonance theory to phase space mapping 15

Grach & Demekhov 2018). However, as ϕiR is a fast oscillating variable, we can consider
the so-called probability of trapping instead of tracing the precise ϕiR value: the range of
ϕiR of trapped particles, i.e. the ratio of trapped particles to the total number of resonant
particles for a single resonance, is the probability of trapping, Πi (e.g. Arnold, Kozlov
& Neishtadt (2006), and references therein). For small Πi, this probability is defined
as the ratio of the change of the area under the separatrix, Ṡ, and the total resonant
flux

∫ 2π
0 Ṗϕ,i dφ = 2π{Λi, IiR}: Πi = Ṡ/2π{Λi, IiR} = {S,Fi}/2π{Λi, IiR}. This definition

of the trapping probability has been verified for various plasma systems (e.g. Artemyev
et al. 2014a; Leoncini, Vasiliev & Artemyev 2018; Vainchtein et al. 2018). Therefore, the
resonant interaction can be characterized by Π, ΔtrapIi and ΔscatIi.
Due to conservation of Hi = mec2γ − ω0I0 − ω1I1, changes of Ii are directly related to

γ changes, whereas the Ix = I0 + I1 relation gives the pitch-angle change

ωi sin2 αeq

γ 2 − 1
(Δiγ )2 − 2Δiγ

Ωeq − γωi sin2 αeq

γ 2 − 1

+ ωi(sin2(αeq + Δiαeq) − sin2 αeq) = 0, (3.8)

that for small changes (phase bunching) can be rewritten as

Δiαeq = Δiγ
Ωeq − γωi sin2 αeq

ωi sinαeq cosαeq(γ 2 − 1)
. (3.9)

Therefore, the map for one resonance can be written as⎛
⎝ γ̄

ᾱeq,

⎞
⎠ =

(
Gγ i(γ, αeq)

Gαi(γ, αeq)

)
=

(
γ

αeq

)
+

(
Δiγ

Δiαeq

)
,

Δiγ = ωi

{
ΔscatIi(γ, αeq), ξi ∈ [Πi(γ, αeq), 1]
ΔtrapIi(γ, αeq), ξi ∈ [0,Πi(γ, αeq)]

Δiαeq =
⎧⎨
⎩

Ωeq − γωi sin2 αeq

sinαeq cosαeq(γ 2 − 1)
ΔscatIi(γ, αeq), ξi ∈ [Πi(γ, αeq), 1]

Δiαeq(ΔtrapIi, γ, αeq), ξi ∈ [0,Πi(γ, αeq))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)

where ξi is a random variable uniformly distributed in [0, 1]. If there are two resonances
(one with the first wave and another one with the second wave) during one electron bounce
period τb, then over this period the electron energy/pitch-angle change should be(

γ̄
ᾱeq

)
=

(
Gγ 1(Gγ 0(γ, αeq),Gα0(γ, αeq))
Gα1(Gγ 0(γ, αeq),Gα0(γ, αeq))

)
. (3.11)

Figure 8 shows 10 main characteristics of map (3.11) in the energy/pitch-angle space:
amplitudes of scattering Δscat,iγ,Δscat,iαeq; amplitudes of trapping Δtrap,iγ,Δtrap,iαeq;
and trapping probabilities Πi for two field-aligned whistler-mode waves. To derive
these characteristics for given energy and pitch-angle, we (1) calculate γ, αeq and
resonance location sR given by equation Ii = IiR; (2) determine coefficients of Hamiltonian
Fi, S, Ṡ, and trapping probability Π at sR; (3) determine ΔscatIi = −S/2π, position
of escape from the resonance s∗R (if Ṡ(sR) > 0), and ΔtrapIi = IiR(s∗R) − IiR(sR); (4)
recalculate ΔscatIi,ΔtrapIi into energy and pitch-angle changes. Numerical verification
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16 A. V. Artemyev et al.

(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

FIGURE 8. System characteristics for two field-aligned whistler-mode waves with the
parameters as in figure 1: energy change due to scattering (a) and trapping (b), pitch-angle change
due to scattering (c) and trapping (d), trapping probability (e).

of this technique of Δscat,iγ,Δtrap,iγ,Πi with test particle trajectories can be found in
Vainchtein et al. (2018) and Artemyev et al. (2020b).
Substituting characteristics from figure 8 into map (3.11), we evaluate dynamics of

resonant electrons. Figure 9 shows a sample trajectory: energy and pitch-angle are
plotted versus the number of iterations k and versus time t = ∑

k τb,k(γ, αeq). The
trajectory obtained with the mapping technique contains all elements that can be found
in the numerically integrated trajectory (compare with figure 2): energy decrease due to
phase bunching and rare jumps due to phase trapping. Note that the bounce period is
given by τb = 4

∫ smax

0 ds/p with p = mec2
√
1 − γ − 2IxΩce(s) and 2IxΩce(smax) = 1 − γ .

Any direct comparison of trajectories obtained via numerical integration and mapping
technique is not possible due to significant randomization of resonant electron motion, i.e.
trajectories in energy/pitch-angle plane for two test electrons can differ significantly even
with small difference of initial electron phases (e.g. Shklyar 1981; Le Queau & Roux 1987;
Albert 2001). Thus, the verification of map (3.11) is mainly based on verification of (3.5)
and (3.7a–d) (see Artemyev et al. 2015, 2016b; Vainchtein et al. 2018) and on verification
of 1D analogues of this map (see Artemyev et al. 2020b).
Using map (3.11), we can simulate the evolution of the electron distribution function as

an ensemble of test trajectories. We start with the test simulation of electron spread in the
energy/pitch-angle space. Four populations of electrons with small ranges of initial energy
and pitch-angles are traced for 500 interactions and their positions in energy/pitch-angle
space are shown at six different times, see figure 10. White colour shows the area
of resonant wave–particle interaction (see Appendix B for a definition of this area
and for technical details of the map (3.11) application). Electrons of different initial
populations quickly (already after tc/R ∼ 50, i.e. ∼15 resonant interactions) spread within
a wide pitch-angle range, but are somehow separated in energy. After tc/R ∼ 300 (∼80
resonant interactions) the populations fill large areas in energy/pitch-angle space and start
overlapping. After tc/R ∼ 1000 (∼250 resonant interactions) the entire energy/pitch-angle
space is covered, and electrons from low energy populations (black and blue) reach high
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(a)

(b)

(c)

FIGURE 9. A sample trajectory obtained using map (3.11): energy and pitch-angle versus
number of map iterations (a), energy and pitch-angle versus time (b), particle trajectory in the
energy/pitch-angle space (c).

FIGURE 10. Evolution of four electron populations modelled with map (3.11). Six moments of
time are shown. White colour shows the area of wave–particle nonlinear resonant interaction,
see Appendix B.

energies (∼1 MeV), whereas electrons from high-energy populations (red and magenta)
decelerate with energy losses of several hundred keVs. Such fast phase mixing should
result in spreading and smoothing of the electron phase space density.
To examine the evolution of the electron phase space density, we start with a power

law distribution f0(γ, α) = C · sinαeq · (γ − 1)−3 typical in the radiation belts, and fit
this distribution by 2 × 107 trajectories. There are 180 × 400 pitch-angle/energy values,
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(a) (b) (c)

FIGURE 11. Evolution of electron distribution modelled with map (3.11). Three moments
of time are shown: tc/R = 0 (a), tc/R = 300 (b), tc/R = 1000 (c). The initial distribution
f0(γ, α) = C · sinαeq · (γ − 1)−3 in panel (a).

and ∼ 22600 within the resonant area; for each value within the resonant area, we run
1000 trajectories. Each trajectory is traced for 300 interactions with the map (3.11),
and corresponding αeq(k), γ (k) profiles transferred to time series. Then, we recalculate
the distribution from f0 using phase space density conservation along the trajectories.
Figure 11 shows three snapshots of the distribution f (α, γ ) at different times (inserted
panels show the low energy subinterval). The rapid evolution of the distribution function
results in phase space density flattening within the resonant region: there is an increase
of high-energy/small pitch-angle phase space density and a decrease of low energy/large
pitch-angle phase space density. During the simulation time, one electron can be trapped
several times, i.e. most of particles circulate in the energy/pitch-angle space, because
trappings bring them to the high energy region from which they then drift by bunching.
Such a circulation also comprises successive trappings by two waves that bring electrons
to the very high-energy region, whereas long periods of phase bunching without trappings
can transport very energetic electrons to quite low energies. The last two phenomena are
less frequent, and mixing of ∼1 MeV electrons with <100 keV electrons is slower than
mixing within energy localized domains.
The general trend of the resonant electron transport in the energy/pitch-angle space is

the reduction of phase space density gradients. In the presence of a single wave, such a
gradient smoothing occurs along the resonant curves, γ − ω0I0 = const. (Artemyev et al.
2020b). In systems with two waves, the intersection of resonant curves γ − ω0I0 = const.
and γ − ω1I1 = const. results in 2-D gradient smoothing, i.e. we can expect a reduction of
gradients in energy space after integration over pitch-angle. Figure 12 shows such electron
acceleration: increase of high-energy population and decrease of low energy population
that result in gradient smoothing. This is the typical evolution of the electron distribution
due to resonant interaction with whistler-mode waves (see similar results for nonlinear
(Vainchtein et al. 2018) and quasi-linear (Thorne et al. 2013; Li et al. 2014) simulations).

4. Discussion and conclusions

The proposed approach allows us to investigate the long-term evolution of the electron
distribution function in a systemwith nonlinear wave–particle interaction. This approach is
based on the mapping technique that significantly simplifies electron trajectory integration
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FIGURE 12. Pitch-angle integrated electron distribution,
∫ π

0 sinαeq · psd(E, αeq) dαeq, from
figure 11.

by excluding from the consideration the main, adiabatic part of electron orbits and by
focusing only on small intervals of resonant electron phase bunching and trapping. This
approach is somewhat analogous to the Green function method proposed by Furuya
et al. (2008) and Omura et al. (2015), and to the nonlinear kinetic equation proposed
by Artemyev et al. (2016b) and Vainchtein et al. (2018). However, contrary to these other
methods, the mapping does not require a very fine discretization of energy/pitch-angle
space and it can easily be generalized to multiwave systems. Resonances with different
waves are very important for the destruction of the symmetry typical for the single wave
system, where conservation of (γ − ωI) results in a reduced mixing in energy/pitch-angle
space. Already, two waves with different characteristics are sufficient to produce a total
mixing in energy/pitch-angle space (see figure 10) and a smoothing (reduction) of electron
phase space density gradients (see figure 12). The similar effect of fast mixing due to two
independent resonances has been found in various dynamical systems with quite general
properties (e.g. Gelfreich et al. 2011; Itin & Neishtadt 2012).
Moreover, note that our simulations shown in figures 9–12 are quite localized in time,

since R/c ∼ 1000 is approximately 100 s in the outer radiation belt (L ∼ 5), and that
this time period is much smaller than the characteristic time of evolution of any process
typically modelled by quasi-linear theory (Thorne et al. 2013; Drozdov et al. 2015;
Albert et al. 2016; Ma et al. 2016, 2018). Therefore, we extend the simulation interval
to tc/R = 2.5 × 104 (∼40 min) to show that this time scale is already sufficiently long
to almost fully smooth gradients within <1 MeV, see figure 13. Generally, however, 40
minutes is a too long interval to keep whistler-mode wave activity at the same high level
(although such long-living regions of intense waves are sometimes observed, see Cully,
Bonnell & Ergun (2008), Agapitov et al. (2015b) and Cattell et al. (2015)).
Figure 8 shows energy/pitch-angle domains of nonlinear wave–particle interaction, and

these domains are used for the simulation of the electron distribution function evolution
(see figures 10–13 and Appendix B). For simplicity, we assume that the boundary of these
domains is impenetrable. However, additionally to nonlinear wave–particle interactions
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FIGURE 13. Evolution of pitch-angle integrated electron distribution,∫ π

0 sinαeq · psd(E, αeq) dαeq in a long-term simulation (psd is the electron phase space density).

(phase bunching and phase trapping), there is also in reality some electron diffusion. This
diffusion is finite everywhere in the energy/pitch-angle plane where there is an electron
resonance with the whistler-mode wave. Thus, this diffusion would transport electrons
across the boundary of the domains of nonlinear wave–particle interaction. The direction
of this transport depends on the phase space density gradients. At low energies, the
nonlinear wave–particle interaction results in phase space density decrease (see figure 13),
and thus pitch-angle diffusion will bring new small-energy particles into these domains.
At high energies, the nonlinear wave–particle interaction results in phase space density
increase (see figure 13), and thus both energy and pitch-angle diffusion will try to spread
this phase space density maximum. Such diffusion can be included into the map (3.11) as
random energy and pitch-angle jumps with zero mean values and amplitudes given by the
quasi-linear model (e.g. Albert 2010). However, the diffusion is generally much weaker
than nonlinear phase bunching and trapping, and the diffusion-driven evolution of the
phase space density should mostly appear after nonlinear wave–particle interaction has
already partly smoothed the initial phase space density gradients (Artemyev et al. 2019a).
The map (3.11) has been constructed for electron interaction with monochromatic waves

(see (2.1)), whereas spacecraft observations in the Earth’s radiation belts often report
about more complex wave field distributions, e.g. significant wave amplitude modulation
(Tao et al. 2013; Santolık et al. 2014; Zhang et al. 2018, 2019), accompanied by fast, strong
and random variations of wave frequency and phase (Zhang et al. 2020a,b), often resulting
in the formation of almost independent short wave packets or subpackets (Mourenas et al.
2018; Zhang et al. 2020a). Such a chaotization of wave fields is likely partly driven by
currents of resonant electrons (Nunn et al. 2009; Demekhov 2011; Katoh & Omura 2011,
2016; Tao, Zonca & Chen 2017; Tao et al. 2020) and sideband instability (Nunn 1986),
as well as by the simultaneous excitation of at least two different waves with a significant
frequency difference (Katoh & Omura 2013; Crabtree et al. 2017; Zhang et al. 2020b).
Since phase bunching is a local process, wave modulation cannot affect the theoretical
model of energy and pitch-angle jumps due to bunching, but the inclusion of such a
modulation into the two-wave model map would require some probabilistic distribution of
wave amplitudes within short wave packets. The situation is more complicated for phase
trapping, which is non-local and depends on wave packet size and amplitude modulation
within the packets (Mourenas et al. 2018). Test particle simulations demonstrate that
wave modulation alone makes phase trapping less efficient for electron acceleration, but
increases the probability of phase trapping (Kubota & Omura 2018; Gan et al. 2020a;
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Zhang et al. 2020a). Thus, an important further development of the mapping technique
for nonlinear wave–particle interaction would require modifications of the phase trapping
model.
Another important constraint for trapping efficiency is related to the resonance

overlapping in the multiwave system. We restrict our consideration to the case of well
separated resonances; however, spacecraft observations often report the presence of quite
broad-band whistler-mode emission where resonances of two neighbouring waves can
overlap (see discussion in, e.g. Summers et al. (2014) and Tong et al. (2019)). Such
resonance overlapping should enhance the electron diffusion, but destroy the phase
trapping (e.g. Karimabadi et al. 1990; Artemyev et al. 2010; Shklyar & Zimbardo 2014).
In the absence of trapping resonant systems can be described by the simple Fokker–Plank
equation (Lichtenberg & Lieberman 1983; Sagdeev et al. 1988), i.e. the mapping technique
described within this study can be reduced to a standard map. The most natural partial
overlapping would result in a quite complex situation where the assumption of the resonant
phase randomization (the basic assumption of the described map) could be violated.
Such systems would be described by fractional Fokker–Plank equations (e.g. Zelenyi
& Milovanov 2004; Zaslavsky 2005; Isliker, Vlahos & Constantinescu 2017), and this
is a poorly investigated topic in application to the physics of resonant wave–particle
interaction.
To conclude, we have demonstrated the usefulness of the mapping technique for

Hamiltonian systems describing nonlinear resonant interaction of charged particles and
intense electromagnetic waves. We have shown that in systems with two (and more) waves,
the resonant interaction destroys the symmetries of the single wave resonance and drives a
rapid smoothing of particle phase space density gradients. The proposed approach appears
very promising for the investigation of relativistic electron interaction with various intense
whistler-mode waves and EMIC waves in the Earth’s radiation belts (Katoh & Omura
2013; Mourenas et al. 2016a,b; Ma et al. 2017; He et al. 2020; Yu et al. 2020; Zhang et al.
2020b) or in the solar wind (Wilson et al. 2007, 2013; Krafft, Volokitin & Krasnoselskikh
2013; Krafft & Volokitin 2016; Roberg-Clark et al. 2019; Tong et al. 2019). It could be
useful also for studying electron acceleration by simultaneous laser-driven plasma waves
(Modena et al. 1995; Tikhonchuk 2019), and electron precipitation driven by VLF waves
generated by electron beams or antennas in space (Carlsten et al. 2019; Borovsky et al.
2020).
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Appendix A

Equation (3.6) describes energy decrease due to phase bunching, and natural limitation
of this equation is that γ + Δγ should be larger than one; or, alternatively, Ix +
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(mec2/ω)Δγ should be larger than zero. This effect of drift asymmetry, i.e. the absence
of electron drift to negative Ix, has been noticed by Lundin & Shkliar (1977) who showed
that for very small Ix the phase bunching changes the drift direction. This effect is called
anomalous phase bunching (Kitahara &Katoh 2019; Gan et al. 2020a; Grach &Demekhov
2020) and basically consists in positive Ix (and γ ) changes due to bunching at very small
Ix. Theoretically, the parametrical boundary of anomalous bunching in energy/pitch-angle
space is determined by Ix < I∗x with I

∗
x scaling as (Bw/B0)

2/3. Let us derive this scaling, but
leave the more detailed consideration of small Ix phase bunching to further consideration.
We start with (2.5) written for a single wave

HI = −ωI + mec2γ +
√
2IΩce

mec2
e
γ

Bw

k
sinϕ, γ =

√
1 + (P + kI)2

m2
ec2

+ 2IΩce

mec2
. (A 1a,b)

Hamiltonian equations for I and ϕ take the form

İ = −
√
2IΩce

mec2
eBw

kγ
sinϕ, ϕ̇ = k2

γme
(I − IR) +

√
Ωce

2Imec2
eBw

kγ
sinϕ, (A 2a,b)

where IR = (γωme − P)/k is the solution of ∂H/∂I = 0 equation for Bw = 0. Equation
(A 2a,b) describes fast phase rotation (with frequency k2(I − IR)/γme) and I, ϕ evolution
driven by much weaker wave force ∼ Bw/B0. Until I (and IR) is sufficiently large to
keep this time separation, we can apply the theory of phase bunching resulting in (3.6).
However, let us consider small I, IR values. We introduce a small parameter ε = Bw/B0

and normalized (Ĩ, ĨR) = (I, IR)/εβ

dĨ
dt

= −
√
2ĨΩce

mec2
eB0

kγ
ε1−β/2 sinϕ,

dϕ
dt

= k2εβ

γme
(Ĩ − ĨR) +

√
Ωce

2Ĩmec2
eB0

kγ
ε1−β/2 sinϕ.

(A 3a,b)
Introducing slow time τ = tε1−β/2, we obtain

dĨ
dτ

= −
√
2ĨΩce

mec2
eB0

kγ
sinϕ,

dϕ
dτ

= k2

γme
(Ĩ − ĨR)ε3β/2−1 +

√
Ωce

2Ĩmec2
eB0

kγ
sinϕ.

(A 4a,b)
Thus, for β = 2/3 (A 4a,b) lose the small parameter, and Ĩ, ϕ would change with the
same rate. Then the applicability of equations of the phase bunching theory breaks, and
a new model for ΔI (or Δγ,ΔIx) is required. Here β = 2/3 gives the threshold value for
Ix ∼ I ∼ (Bw/B0)

β .

Appendix B

Figure 8 shows that there are certain domains in the energy/pitch-angle space where
electrons resonate with whistler wave nonlinearly. Thus, simulation of resonant electron
dynamics should be within these domains. Figure 14(b) shows the largest domain that
cover all energies and pitch-angles where electrons experience phase bunching. The phase
bunching results in energy/pitch-angle change and electron drifts within the domain. An
important property of the domain boundary is that Δscatγ tends there to zero as ∼ (I −
Iboundary)4/3 where I and Iboundary are values of moment and its boundary value (Artemyev
et al. 2019a), i.e. Δγ drops to zero at the domain boundary and no particles should leave
this domain (in absence of diffusion that is characterized by a finite diffusion coefficient
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(a) (b) (c)

FIGURE 14. Domains in energy/pitch-angle space with: positive probability of trapping (a), a
finite phase bunching energy/pitch-angle change (b), positions of release from the trapping (c).
Red curve shows boundary of panel (b) domain.

within the entire energy/pitch-angle space). As Δscatγ has been derived numerically,
there are possible fluctuations making Δscatγ finite at the boundary. Thus, distribution
Δγ (E, αeq) should be corrected to set Δscatγ = 0 at the domain boundary. Moreover, if
during the simulation resonant electrons escape from the domain of phase bunching (e.g.
because of numerical effects), these electrons should be returned into the domain (e.g.
reflecting them back from the boundary on the same Δscatγ ). Note that this procedure is
required only in the absence of particle diffusion.1
The domain of a finite trapping probability is smaller than the bunching domain (see

figure 14a). Again, the probability of trapping tends to zero at the phase bunching domain
boundary as Π ∼ (I − Iboundary)1/3 (Artemyev et al. 2019a), and Π should be set equal
to zero on this boundary even if numerical fluctuations of Π evaluation give some finite
value. Of course, there are no regions with Π > 0 outside the phase bunching domain.
Release of trapped electrons from the resonance also should be within the phase

bunching domain (see figure 14c). Numerical errors put some release locations outside this
domain; the trapping variation Δtrapγ should be corrected to move the release locations
within the domain. This guarantees that for each energy/pitch-angle within the phase
bunching domain we would have incoming and outgoing phase space flows.
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