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Abstract—Deploying unmanned aerial vehicle (UAV) mounted
base stations with a renewable energy charging infrastructure
in a temporary event (e.g., sporadic hotspots for light recon-
naissance mission or disaster-struck areas where regular power-
grid is unavailable) provides a responsive and cost-effective
solution for cellular networks. Nevertheless, the energy constraint
incurred by renewable energy (e.g., solar panel) imposes new
challenges on the recharging coordination. The amount of avail-
able energy at a charging station (CS) at any given time is
variable depending on: the time of day, the location, sunlight
availability, size and quality factor of the solar panels used, etc.
Uncoordinated UAVs make redundant recharging attempts and
result in severe quality of service (QoS) degradation. The system
stability and lifetime depend on the coordination between the
UAVs and available CSs. In this paper, we develop a reinforce-
ment learning time-step based algorithm for the UAV recharging
scheduling and coordination using a Q-Learning approach. The
agent is considered a central controller of the UAVs in the
system, which uses the ϵ-greedy based action selection. The goal
of the algorithm is to maximize the average achieved throughput,
reduce the number of recharging occurrences, and increase
the life-span of the network. Extensive simulations based on
experimentally validated UAV and charging energy models reveal
that our approach exceeds the benchmark strategies by 381%
in system duration, 47% reduction in the number of recharging
occurrences, and achieved 66% of the performance in average
throughput compared to a power-grid based infrastructure where
there are no energy limitations on the CSs.

Index Terms—UAV, wireless networks, renewable energy,
recharging, reinforcement learning.

I. INTRODUCTION

According to the National Oceanic and Atmospheric Ad-
ministration (NOAA), “the first half of 2020 brought 10
billion-dollar weather disasters, making 2020 the sixth consec-
utive calendar year where 10 or more billion-dollar weather
events occurred, a new record” [1]. These weather-related
disasters have led to an inequity of response and affected
citizens through preventable loss of life and property. In ad-
dition, communication systems can be compromised, leading
to longer response times and recovery. UAV-assisted mobile
networks with mounted Drone Base Stations (DBSs) can
relay network traffic from a local uncompromised Macro Base

Station (MBS) to a place of interest (PoI) and provide cellular
service to users in that area who may be in need of emergency
measures. Utilization of DBS networks will provide rapid
information to responders to make informed decisions when
entering disaster areas for search and rescue and assessing
where there is a priority need for assistance.

Deploying UAV mounted base stations with a renewable
energy charging infrastructure in a temporary network (e.g.,
sporadic hotspots for light reconnaissance mission or disaster-
struck areas where regular power-grid is unavailable) is a
responsive, flexible, and low-cost solution to provide cellular
data access to the user equipment. Figure 1 demonstrates the
architecture of the scenario where a free-space optical back-
haul link [2] transmits/receives the network traffic to/from the
DBS. The RF transceiver onboard the DBS transmits/receives
the network traffic to/from the users through the wireless
access links. The CSs are powered via solar energy collected
by the onboard solar panels and is harvested through a battery
storage bank for later use. There are also charging pads on the
station used to wirelessly recharge the UAVs when they sit on
the platforms.

Fig. 1: UAV-assisted mobile network architecture with renew-
able energy powered recharging infrastructure.
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There are three available options for the recharging schedul-
ing of the UAVs: (1) CSs are connected to the power-grid,
(2) replenishment stations with UAV replacements or battery
replacements [3], and (3) renewable energy CSs. The first
option may not be available in the regions under exploration or
disaster-struck areas. The second option would require several
UAVs or several battery packs to be available on hand, which
is a costly solution. The last option, which is also the option we
considered in this paper, is the most flexible and cost-effective
solution. This option requires the deployment of only a few
stations that can charge several UAVs simultaneously.

One of the challenges with solar energy powered CSs is the
energy availability limitation. Solar power can be impacted
by many environmental factors. This makes the optimization
of the recharging coordination between multiple UAVs and
multiple CSs more complex. In this paper, we utilize the
reinforcement Q-Learning method with a time-step based
approach to address the energy availability limitation. We show
that the recharging scheduling can be modeled as an ϵ-greedy
based method given that the decision policy allows a sufficient
exploration-to-exploitation trade-off which, in the long run,
will affect the long-term gain. We evaluate the performance
of the proposed algorithm using simulations comparing the
average throughput received each episode, the number of
recharging occurrences per episode, and the time duration of
the episode, which is recorded the instant where at least one
UAV in the network fully depletes.

In summary, we make three key contributions:
• To the best of our knowledge, the work, in the first time,

addresses the scheduling optimization problem of UAV
assisted wireless networks with renewable energy CSs as
the UAV recharging infrastructure.

• Modeling the energy constraints of the renewable energy
CSs in the state space and reward function, we develop
a Q-learning based algorithm to optimize the recharging
coordination and the average achievable data rate of the
users in the PoI.

• Based on experimentally validated energy models from
[2], [6], and [13]-[19], extensive simulations are per-
formed to evaluate the impact of the time-step duration
on the convergence. Our results confirm that our proposed
method out perform the benchmark strategy by 381% and
achieves about 66% of recharging option (1) mentioned
above where the CSs are connected to the power-grid.

II. RELATED WORK

UAV networks without recharging stations. Trajectory
design methods using machine learning approaches are pro-
posed in [4] and [5]. Some works optimize the performance
of the network by designing energy-efficient algorithms based
on predictions of users’ mobility information and geographical
fairness. Other work use resource allocation methods to min-
imize the total energy consumption while satisfying the data
rate requirements of the users [6]. [7] proposed a method that
enables external input from users to make decisions on their
access linkage to enhance the overall achieved throughput.

However, none of them take into account the energy limitation
on the UAVs.

UAV networks with recharging stations. There have been
several works that have looked into utilizing ground [8], [9]
and aerial based CSs using RF [10], [11] or optical energy
wireless transmission [2]. [11] controls the aerial recharging
scheduling of the UAVs in the network via some other “charg-
ing host” UAVs. However, the set-up introduces some risks in
that there will be a period when the charging host becomes
unavailable to the other UAVs in the network and they must
stay aloft until the charging host returns. [9] proposes the
use of solar-powered CSs to address the challenge of the
UAV battery capacity limitation, however, the researchers also
assumed the station has a backup option by being connected
to the power-grid in case there is not enough power in the
battery bank. The work in [8] assumes static CSs with a
set battery capacity and proposes a replenishment scheduling
policy to minimize the energy consumption by the UAVs while
guaranteeing user fairness, however, the simulation duration is
very short at only 2 hours.

Other related works. Some other works, such as [4], [8],
[11], and [12], develop Q-Learning based methods to solve
similar problems using a time-step based approach and are
taken as inspiration for the proposed method. Yet, different
from these works, our objectives are to increase the life-time
of the network by having the algorithm learn how and when
to take the best actions at certain time-steps and certain UAV
battery thresholds.

III. SYSTEM MODELS

A. Scenario

We consider a geographical area of size X×Y km2, where
a set of K ground users are distributed using a Poisson Point
Process. In this network, a set of N UAVs and M static solar
powered CSs are deployed uniformly within the geographical
area. Each UAV moves between two positions, i.e., its serving
spot and its CS assignment given by the Q-learning algorithm.
The total service time is given by T and is divided equally
into time-steps given by tS . We assume there is a ground
control station (GCS) that is collecting and monitoring the
UAV locations, their energy levels, the energy levels of the
CSs, as well as controlling the actions of the UAVs.

The locations of the users are given by the horizontal
coordinates (xk, yk) (m) for k ∈ {1, ...,K}. The locations of
the UAVs are denoted by (xn, yn) (m) for n ∈ {1, ..., N}.
The locations of the CSs are given by (xm, ym) (m) for
m ∈ {1, ...,M}. The heights of the UAVs and the CSs are
denoted as hUAV and hCS (m), respectively. The 3D distance
between user k and the UAVs is denoted as dk,n (m). Similarly,
the 3D distance between UAV n and CS m is denoted as dn,m
(m).

Users are associated with their closest UAVs, which provide
them with the highest signal strength. The users are allocated
different bandwidth to meet their data rate requirements de-
pending on the channel bandwidth capacity, B (Hz), for each
UAV. The current energy of a UAV, per tS , is given by Et
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(J), where t ∈ {1, ..., (T/ts)} (sec.). If a UAV is assigned to a
CS, the communication links between the UAV and its served
users are disconnected until the UAV returns.

B. Channel Model

The air-to-ground (A2G) wireless communication between
the UAVs and the users can be divided into line-of-sight (LOS)
and non-line-of-sight (NLOS) relations. Probabilistic models
have been developed to compute the pathloss obtained for
each case [13]. Let ηLOSk,n be the pathloss in LOS (dB) and
ηNLOSk,n be the pathloss for NLOS (dB) between user k and

UAV n. Then we have: ηLOSk,n = 20 log10

(
4πfCdk,n

c

)
+ γLOS

and ηNLOSk,n = 20 log10

(
4πfCdk,n

c

)
+ γNLOS , where fC is

the carrier frequency (Hz), c is the speed of light (m/s), and
γLOS and γNLOS account for the mean additional pathloss
(dB) found in the LOS and NLOS links, respectively, which
are determined by the environment. According to [13] and
[14], the access link between user k and UAV n has a LOS
probability of PLOSk,n = 1

1+ψe
−ξ(θk,n−ψ)

, where ψ and ξ are

the environmental parameters and θk,n is the elevation angle
(o) between user k and UAV n.

The NLOS probability is PNLOSk,n = 1− PLOSk,n . Therefore,
the mean pathloss (dB) between user k and UAV n is given
by [13]:

ηavgk,n = ηLOSk,n PLOSk,n + ηNLOSk,n PNLOSk,n (dB). (1)

C. Data Rate Model

Depending on the available channel bandwidth capacity B,
users will be allocated bandwidth to exactly meet their data
rate requirement, ϕk (Mbps). The achievable data rate, rk
(Mbps), for user k to download data traffic from UAV n is
given by the Shannon-Hartley theorem as

rk = bk log2

(
1 +

Pr,k
N0

)
. (2)

bk is the amount of allocated bandwith to user k (Hz), N0

is the noise power spectral density measured (Watt/Hz), and
Pr,k (Watt) is the average received signal power given in [2]

as: Pr,k = Pt× 10−
η
avg
k,n
10 , where Pt (Watt) is the transmission

power of the access link and ηavgk,n is the mean pathloss between
user k and UAV n given in Eq. (1). Rearranging Eq. (2)
and setting rk = ϕk, the amount of allocated bandwidth is
computed by bk = ϕk

log2

(
1+

Pr,k
N0

) .

To achieve the maximum total system capacity, users are
associated to their closest UAVs and are allocated bandwidth
bk such that the total amount of bandwidth allocated to the
subset of users is no larger that the total amount of available
bandwidth B:

∑
k∈An bk ≤ B where An is the set of users

associated with UAV n and An ⊆ {1, ...,K} =⇒ ∪Nn=1An =
{1, ...,K} and An ∩ An′ = ∅, where n ̸= n′ ∀n (users are
associated with, at most, one UAV).

D. UAV Energy Models

The energy consumption of the UAV depends on the energy
needed for: communication, hovering, and mobility mode.
Communication energy depends on the transceiver subsystems
on the UAV, while hover and mobility energy depend on the
motors and weight of the UAV. Considering the proposed
system model, hover and mobility modes are considered the
dominant energy consumptions of the UAVs in this work.

1) Mobility Energy: The aim is to have the UAVs transition
from their hovering spots to their CS assignments and back
as quickly as possible as to maximize the system throughput.
Thus, we assume all the UAVs are transitioning using a for-
ward flight motion at a constant velocity (VUAV ). The thrust
(Newtons) for climb, descent, and switch modes are given by:
Tc =W sin (θn,m) + Fdrag , Td = Fdrag −W sin (θn,m), and
Ts = Fdrag , respectively, where W = (MUAV +Mbattery) g,
MUAV is the mass of the UAV (kg), Mbattery is the mass
of the UAV battery (kg), g is the gravitational acceleration
(kg/m2), Fdrag is the drag force (Newtons), and θn,m is the
climb/descent angle (o) between UAV n and CS m.

From fluid dynamics, the drag force can be expressed
as Fdrag = 1

2ρV
2
UAV CDA, where ρ is the density

of air (kg/m3), VUAV is the constant speed of the
UAV (m/s), CD is the drag coefficient, and A is the
cross-sectional area of the UAV (m2). From conserva-
tion of momentum, the required minimum power for
propulsion in climb/descent/switch mode is represented by
[15]: Pmin,{c,d,s} = T{c,d,s} ×

(
VUAV sin (αp) + VI,{c,d,s}

)
(Watt), where αp is the pitch or tilt angle (o), VI,{c,d,s}
is the induced velocity (m/s) in climb/descent/switch
mode which can be computed as [15], VI,{c,d,s} =

2T{c,d,s}

πRD2ρ
√

(VUAV cos(αp))
2+(VUAV sin(αp)+VI,{c,d,s})

2
, where R is

the number of rotors on the UAV and D is the rotor disc
diameter (m).

From the discussed equations, the required power for climb/
descent/switch is [15]: Preq,mobility,{c,d,s} = Pmin,{c,d,s}/η
(Watt), where η is the overall power efficiency (%). Therefore,
the amount of energy consumed by a UAV during transition,
per tS , is: Emobility,{c,d,s} = Preq,mobility,{c,d,s}tS (J).

2) Hover Energy: It is assumed the UAVs are perform-
ing stationary hover modes over their serving spots in no-
wind conditions. The power consumption in hover flight
mode is adapted from momentum theory by W.J.M. Rankine
(1865), A.G. Greenhill (1888), and R.E. Froude (1889) as:
Preq,hover =

RT
3/2

h√
1
2πD

2ρ
(Watt), where Th = W is the gen-

erated rotor thrust (Newtons). Thus, the amount of energy
consumed by a UAV in hover mode per tS is given by
Ehover = Preq,hovertS (J).

E. Recharging Station Energy Model

Each CS is powered by means of solar energy via solar
panels and battery banks for energy storage. The relationships
between a solar panel and the incident solar radiation can
be modeled in terms of several angles (o) [16]: ϕ: Latitude
- indicates the north/south angular measurement of a point
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relative to the Earth’s equator; δ: Solar Declination - formed
between the equatorial plane and the solar noon; β: Tilt -
formed between the solar panel plane and the horizontal; w:
Hour angle - expression of time in angular deviation from solar
noon; θ: Solar incidence - formed between the incident solar
radiation and the normal to the solar panel plane surface.

The solar declination angle is modeled by the following
function [16]: δν = 23.45 sin

(
360(284+ν)

365

)
, where ν is the

day of the year. An equation relating the solar incidence
angle (θν), the solar panel tilt, the hour angle, and the
latitude of the PoI, per tS , is given by [16]: cos (θν(t)) =
cos(ϕ− β) cos(δν) cos(wν(t)) + sin(ϕ− β) sin(δν). wν(t) is
dependent on the time of the day and the location of the sun.
wν(t) is divided according to the tS size and is computed
by [16]: wν(t) = 15 × (Hr(t) − 12) for Hr(t) ≤ 12, or
wν(t) = −15 × (12 −Hr(t)) for Hr(t) > 12, where Hr(t)
is the solar time (Hr(t) ∈ {0 : tS/3600 : 24}).

Solar panel performance can be heavily impacted by their
orientation and the amount of tilt [17]. [18] presents a method
for finding the optimal tilt angle for maximal extraterrestrial
radiation over a period of several days, Ho,T =

∑ν2
ν=ν1

Ho,ν

where Ho,ν is the daily extraterrestrial radiation (Watt/m2),
T = [ν1, ν2], where the optimal tilt angle is βopt,T =

ϕ − tan−1

[ ∑ν2

ν=ν1

24
π Gsc(1+0.034 cos( 2νπ

365 )) sin (δν)
ws,νπ

180∑ν2

ν=ν1

24
π Gsc(1+0.034 cos( 2νπ

365 )) cos (δν) sin (ws,ν)

]
for Gsc is the solar constant (1367 Watt/m2) and ws,ν is the
sunset hour angle [16]: ws,ν = cos−1 (− tan (ϕ)× tan (δν)).

To determine how much energy will be collected at the solar
panel surface, [19] proposes an experimentally determined
equation to find the amount of sunlight intensity incident on
a tilted solar panel, given as:

I(t) = Gsc

(
0.7AM(t)0.678

)
sin (αs + βopt,T ) (Watt/m2),

(3)

where AM(t) is the air mass ratio and αs = 90o−ϕ+βopt,T
is the solar elevation angle. Eq. (4) is used to compute how
much power the CS accumulates for each tS throughout the
period duration T :

chrate,CS(t) = ηsp × PR×Asp × I(t) (Watt), (4)

where ηsp is the solar panel efficiency (%), PR is the
performance ratio, and Asp is the area of the solar panel (m2).
The performance ratio is a quality factor of the panel that takes
into account environmental effects such as degradation.

IV. RECHARGING SCHEDULING

A. Q-Learning and ϵ-greedy Method

This paper will use a discrete-time, finite range, Q-Learning
algorithm, and ϵ-greedy strategy to make action selections. In
the Q-Learning model, the GCS acts as the agent to control
the network of N UAVs. At each time-step, the agent observes
a state, st, from the state space S. The agent can move to
the next state st+1 after taking an action, at, from the action
space A. Upon executing this action, the system receives a
reward, rt, for the state-action pair (st, at). The reward and

state-action pair are used to update a Q-Table which is used
to determine a decision policy. The Q-values in the Q-Table
are updated according to the following formula at each time
t [20]:

Q (st, at)← Q (st, at) + α
[
R(st, at) +

γ × max
{a∈A}

Q (st+1, a)−Q (st, at)
]

(5)

where max{a∈A}Q (st+1, a) chooses the action that leads to
the maximum Q-value, given the system is in the state st+1,
α ∈ [0, 1] is the learning rate, and γ ∈ [0, 1] is the discount
factor.

Action selection is determined by the ϵ-greedy method
where the agent will try to learn its environment. The process
can be outlined as follows: (1) Let r ∈ [0, 1] be a uniform
random variable; (2) if r < ϵ, then select a random ac-
tion a from action space A, else select action a that leads
to the maximum Q-Value given the system is in state s:
a ← max{a∈A}Q (s, a), where ϵ ∈ [0, 1] is a parameter.
Small values of ϵ close to 0 will cause the agent to exploit
the information it has learned, while values of ϵ close to 1
will cause the agent to take random actions rather than use
acquired past knowledge.

B. Reinforcement Learning

In this paper, the focus of the Q-Learning algorithm is to
learn the best coordination between the UAVs in the network
and the CSs while taking into account the limited energy
available to charge the battery banks at the CSs.

1) State Space: In each time-step, the state st ∈ S, is given
by the vector

st = {BUAV 1,t BUAV 2,t ... BUAV n,t

BCS1,t BCS2,t ... BCSm,t}, (6)

where BUAV n,t for n ∈ {1, ..., N} represents the battery
levels of the UAVs at time-step t (%) and BCSm,t for
m ∈ {1, ...,M} represents the battery levels of the CSs at
time-step t (%). st is then a vector with N +M elements.
To accelerate the process of learning, the battery levels of the
UAVs are divided into four groups. Let sUAV n,t be the state
of UAVn at time t. Then the state of the UAV is given by:

sUAV n,t ≡


1 for BUAV n,t < UAV TLow,

2 for UAV TLow ≤ BUAV n,t < UAV TMid,

3 for UAV TMid ≤ BUAV n,t < UAV THigh,

4 for UAV THigh ≤ BUAV n,t,

where UAV TLow, UAV TMid, and UAV THigh are the lower,
middle, and high battery thresholds (%), respectively. Sim-
ilarly, the battery levels of the CSs are divided into three
groups. Let sCSm,t be the state of CSm at time t. Then the
state of the CS is given by:

sCSm,t ≡


5 for BCSm,t < CSTLow,

6 for CSTLow ≤ BCSm,t < CSTHigh,

7 for CSTHigh ≤ BCSm,t,
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where CSTLow and CSTHigh are the low and high battery
thresholds (%), respectively. Therefore, there are 4N × 3M

possible states.
2) Action Space: At each time-step, the UAVs will carry

out an action at ∈ A, given by

at = {AUAV 1,t AUAV 2,t ... AUAV n,t} (7)

where AUAV n,t ∈ {0, 1, 2, ...,M} for n ∈ {1, ..., N} repre-
sents the CS assignment of UAV n. AUAV n,t = 0 indicates
that UAV n is assigned to its hovering location. Therefore,
there are (M + 1)N possible actions.

The charging scheduling is organized on a first-come first-
serve basis. Each CS has a lower threshold of ELowT,CS =
(CSTLow)ECap,CS where ECap,CS (J) is the total battery
bank capacity of the station. This means that once a CS gets
below CSTLow% battery capacity, it can only finish satisfying
the UAVs that are currently there and will not accept any new
assignments. This forces the UAVs to choose between the other
”available” CSs and its hovering spot for future time-steps
until the station charges to ≥ CSTLow%. A CS is considered
”available” if: (1) it can reserve at least some amount of energy
to charge a UAV, and (2) there are no more than four UAVs at a
station at any given time. If these two conditions are satisfied,
the UAV can be charged at that station at a rate of chrate,UAV
(Watt); otherwise, the UAV must select another CS option in
the next time-step, or return to hovering.

There are three cases to consider when reserving energy
from CSs:

• First, suppose UAVn is assigned to CSm at time t.
If CSm has enough energy to fully charge the UAV,
then Echarge,UAV n × (disrate,CSs/chrate,UAV ) (J) is
reserved from CSm, where disrate,CSs is the discharge
rate of the CSs (Watt), Echarge,UAV n = ECap,UAV −
(EUAV n,t − Emobility,d,UAV n) (J), EUAV n,t is the en-
ergy of the UAV at t (J), and ECap,UAV (J) is the battery
capacity of the UAVs. The action for UAVn is held until
the charging process is complete. Once the UAV is fully
charged, the UAV returns to it’s hovering location.

• Now, suppose CSm does not have enough energy to
fully charge the UAV, but it does have enough to
charge the UAV another 10% until the station reaches
or will go beyond its CSTLow threshold. Then, 10% ×
(disrate,CSs/chrate,UAV ) is reserved from the station.

• The last case is CSm cannot provide any energy to charge
the UAV. Then, the next action for that particular UAV
is limited to only the other available CSs and hovering.
This action is selected based on the ϵ-greedy method.

– The ϵ-greedy decaying function to support conver-
gence of the optimal policy is given by [12]:

ϵ =
ϵint

(1 +Kep/a)
b
, (8)

where Kep ∈ {1, ...,MaxIter} is the episode num-
ber (MaxIter is the maximum number of episodes),
ϵint is the initial ϵ-factor used in episode Kep = 1,

and a and b are parameters used to alter the steepness
and shape of the decaying function.

If multiple UAVs are assigned within the same time-step to
the same CS, the order of energy reservations is taken based on
which UAV will arrive first (i.e. the transit time). Otherwise,
the order is based on the time-step.

As mentioned before, all the UAVs in the network, at each
time-step, will either be: (1) hovering and providing communi-
cation services to the users in the PoI, (2) transitioning to their
assigned CSs, (3) charging, (4) switching to another station,
or (5) returning to their hovering spots. An indicator I is used
to keep track of what physical state ((1)-(5) above) each UAV
is performing at each time-step. Actions that require mobility
all take place at the same fixed velocity, VUAV . Using the
energy models discussed in Section III-D and the indicator I
the number of time-steps the UAV will be in (1)-(5), depending
on the action at, can be computed.

3) Reward Function: The reward function is computed at
the end of each time-step and is given as follows:

rt ≡


−2Γ, if ∃ {sUAV n,t+1 = 1 | sCSm,t+1 = 5},
−Γ, if ∃ {AUAV n,t ̸= 0},
τt, o.w.,

(9)

where Γ is some high value parameter, τt =
∑N
n=1 τn,t is the

total throughput received from the N UAVs. Note: τn,t = 0
if UAVn is transitioning, charging, returning from the CS,
or if the UAV depletes to 0%. τn,t > 0 only when UAVn
is hovering and BUAV n,t > 0%. Since the achievable data
rate for each user is assumed to exactly meet the users’ data
rate requirements, then the received throughput for each user
associated with a UAV is the same as its achievable data rate
rk. The throughput (τn,t in Mbps) for UAVn at time-step
t is then τn,t =

∑
k∈An rk. The first penalty in the reward

function is defined for cases when the performed action causes
BUAVn,t < UAV TLow for any n or BCSm,t < CSTLow for
any m. The second penalty is defined so the agent learns to
minimize the number of recharge occurrences by prioritizing
hovering actions. The magnitude of the two penalties ensures
that the algorithm finds an efficient tradeoff between the num-
ber of recharge occurrences and the lifespan of the network.

If an action causes the battery level of any of the UAVs to
reach 0%, then that state-action pair receives a large penalty,
and the corresponding Q-value is updated. Once a UAV
reaches total depletion at 0% in the updated state st+1, the
time instance t is recorded as Tend(Kep). The current episode
is then terminated and a new episode begins to continue the
training process of the Q-Table.

The psuedo-code of the proposed method is summarized
in Algorithm 1. The algorithm has three outputs used as
metrics to evaluate the system performance in Section V: the
average throughput obtained per episode (AvgT in Mbps), the
number of recharging occurrences per episode (RechOccur),
and duration of the episode/system (Tend in Days).
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Algorithm 1: Proposed Q-Learning Algorithm
Input: N,K,M , Battery thresholds, ECap,UAV ,
ECap,CS , chrate,UAV , and chrate,CS .

Output: AvgT , RechOccur, and Tend.
Initialization: Q-Table, MaxIter, ϵ(1) = ϵint, and tS .
for Kep = 1 :MaxIter do

t = 1; Set the UAVs and CSs to full charge (100%)
while t < T/tS do

Select an action at ∈ A;
if any UAV begins charging in t then

Update RechOccur(Kep);
end
Compute the reward rt using Eq. (9);
Update UAV and CS energies: st+1 ∈ S;
Update the Q-Value according to Eq. (5);
if any(BUAV n,t+1 == 0) then

Update Q(s, a) with a HIGH penalty;
break;

end
t = t+ 1;
Update chrate,CS(t) using Energy Models;

end
Update ϵ(Kep) according to Eq. (8);
Record Tend(Kep);
Compute AvgT (Kep) =

∑Tend(Kep)
t=1 τt;

end

V. SIMULATION AND PERFORMANCE EVALUATION

A. Simulation Setup

In this work1, we consider N = 5 UAVs and M = 2 CSs
distributed uniformly in a X × Y = 3 × 3 km2 grid. The
Q-Learning model runs for MaxIter = 10, 000 episodes. In
each episode, the UAVs are assumed to start in their hovering
locations with 100% full battery. The battery banks at the CSs
also start at 100%. We test the performance of the algorithm
for three different time-steps, i.e., tS ∈ {30, 45, 60} sec. The
UAVs provide cellular service in an urban environment with
fC = 2 GHz, B = 20 MHz, PT = 1 Watt, N0 = −104
dBm/Hz, ψ = 9.6, ξ = 0.28, γLOS = 6 dB, and γNLOS = 26
dB. The total time duration, T , is 1 week. The other system
model and main simulation parameters are shown in Tables I
and II, respectively.

B. Numerical Results and Discussion

For each simulation, the number of recharging occurrences
in each episode, and the episode duration results are shown in
Figures 2-4, respectively. Figure 5 compares the performance
of the proposed algorithm compared to an infrastructure where
the CSs are connected to a power-grid, and thus the CSs have
no energy limitations.

It can be observed from Figure 2 that the average throughput
achieved per episode (AvgT ) is very low in the first 1500

1https://github.com/msherman-na24/UAV-ACN-QL.git

TABLE I: System Model Parameter Values

Notation Description Value
ϕ Latitude of PoI 40o N

[ν1, ν2]
Days of the Year

for Duration Period [229, 235]

PR
Performance Ratio
of a Solar Panel 0.8333

Asp Area of a Solar Panel 1.4424 m2

ηsp Efficiency of a Solar Panel 35%
MUAV Mass of a UAV 0.570 kg
Mbattery Mass of a UAV Battery 0.198 kg

R Number of Propellers 4
D Propeller Diameter 0.183 m
A Projected Area of a UAV 0.046 m2

CD Drag Coefficient of a UAV 1.5

VUAV
Steady-Flight Velocity

of a UAV 10 m/s

η Overall Power Efficiency 0.7
ρ Air Fluid Density 1.225 kg/m3

g Gravity 9.81 kg/m2

c Speed of Light 2.997× 108 m/s
hUAV Height of a UAV 100 m
hCS Height of a CS 12 m

ECap,UAV Energy Capacity of UAV Battery 40.425 Watt-hr
ECap,CS Energy Capacity of CS Battery 1500 Watt-hr

chrate,UAV Max. Charging Power of a UAV 38 Watt

TABLE II: Simulation Parameter Values

Notation Description Value
T Time Duration per episode 7 Days
tS Time-step per episode 30, 45, 60 seconds

MaxIter Number of Episodes 10, 000
α Learning Rate 0.9
γ Discount Factor 0.8

ϵint ϵ-greedy initial value 0.8
a, b ϵ-greedy control factors 10000, 15

episodes for all three time-steps. Then, the throughput starts
to show some fluctuations between 1500 and 4500 episodes,
after which they start to gradually increase and converge. With
ϵint = 0.8, the value of ϵ will decay to 2.544 × 10−5 by
the 10000th episode. The converged values are shown by the
dashed lines where RLconv = 137.8 Mbps for tS = 60 sec.,
RLconv = 131.7 Mbps for tS = 45 sec., and RLconv = 137.1
Mbps for tS = 30 sec.

These results are consistent with those shown in Figure
3, which gives the total number of times a UAV began a
recharging process during each episode. Initially, due to the
high ϵint value, the UAVs will constantly be recharging, even
at high battery levels as the algorithm is exploring actions to
take randomly. As the number of episodes increases and the
Q-Table is populated with larger quantities, due to the reward
received at each time-step, more desirable actions are learned
and taken at the appropriate time-step. This causes the num-
ber of recharging occurrences to converge and significantly
decrease by about 41.8%-47%. Since the UAVs are going to
CSs less, then this leads to a higher throughput as they will
value hovering and providing cellular service to get a higher
reward versus going to a CS too early or too often.
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Fig. 2: Evaluation of convergence (shown by the dashed lines)
of the average throughput (AvgT ) for the different time-steps.

Fig. 3: The number of UAV recharging occurrences
(RechOccur) as the number of episodes increases for the
different time-steps.

Figure 4 shows the time-duration of each episode when at
least one UAV fully depleted for each simulation of different
time-steps. The dashed line demonstrates the fixed strategy
where the UAVs are only sent to their closest CS and there
is no coordination between the UAVs and the secondary CS.
The fixed strategy constrains the UAVs to only be sent when
their battery level is < 40%. Since there is no coordination,
even with high efficiency and charging rate of the CSs during
the day, one of the CSs is going to drop below the threshold
in just over a day (nighttime hours) due to the high energy
demand of several UAVs. From the Figure, we can see that
the fixed strategy has a time-duration of 1.1 Days, while the
proposed algorithm has a time-duration of 4.2 Days for all
three time-steps. Over a 381% increase in the life-span of
the system compared to the fixed strategy. This implies that
the proposed algorithm is utilizing a coordination strategy to
schedule the UAVs around the available energy at the CSs.

When one station runs below its threshold, UAVs are sent to
the other station when they need to be recharged until the first
station accumulates enough energy to become available again.
We may also notice that there were ten instances where the 30
sec. time-step simulation had a duration of more than 5 Days.
Since the 30 sec. time-step simulation had a higher number of
time-steps to execute, there were more opportunities for the
agent to select random actions and explore compared to the
other two simulations, and then exploit this information in the
later episodes to improve the performance.

Fig. 4: Tend for the proposed algorithm for the different time-
steps compared to the fixed strategy (dashed line).

It can also be observed that the proposed algorithm results
seemed to reach this average duration in the first few thousand
episodes. However, as the number of episodes increases, we
see more and more fluctuations in the Tend for all three simu-
lations and it does not seem to improve beyond the 4.2 Days.
After thorough consideration, we observed that the system is
sensitive to the energy threshold levels used by the state space
S. Allowing a UAV to go at a lower energy threshold may
lead to the system being more prone to depletion instances,
even though this will decrease the number of recharging
occurrences and thus leading to a higher throughput. This also
increases the chance of a UAV encountering a case where there
are already four UAVs at a station, but the secondary station is
below its threshold so this leaves the UAV struggling to find
an available station while getting to dangerously low levels
in the meantime. However, if a UAV is constantly being sent
to a station at high battery levels, this will have a significant
impact on the average throughput. Our goal is to optimize
the energy resolution to have better control of the UAV to
give it accurate capabilities at different energy levels. The
fact that all three time-steps show a high fluctuation of Tend
as the episode number increases and becomes more dense,
this indicates that the agent needs better control to distinguish
between different energy levels that are taking the same action
strategies determined by the maximum Q-value.
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Figure 5 shows a bar plot comparison between the aver-
age throughput across all 10000 episodes of the proposed
algorithm, for the different time-steps, and an ideal case
where there are no limitations on the available energy at
a CS at any given time throughput the week. In this case,
the UAVs will always be able to charge at their closest
CS without having to worry about reserving energy. It is
apparent that the different time-steps did not have a significant
impact on the simulation results nor on the achieved average
throughput for both the proposed algorithm and the power-
grid connected infrastructure strategy. However, the proposed
algorithm achieved around 66% of the performance of the
power-grid strategy.

Fig. 5: Average throughput achieved by the proposed algo-
rithm, using each time-step, compared to the case when the
CSs are connected to a power-grid.

VI. CONCLUSION AND FUTURE WORK

We introduced the concept of using renewable energy pow-
ered charging stations and a charging scheduling algorithm
to improve the life-span of a temporary UAV-assisted mobile
network. We designed a reinforcement Q-Learning algorithm
using experimentally derived energy and recharging accumula-
tion models, to closely represent what would occur in practice,
with the goal of maximizing the average throughput achieved
and minimizing the number of recharging occurrences for a
given time duration. Using simulations, it was found that the
proposed algorithm can significantly improve the lifespan of
benchmark (fixed) strategies. It was also observed that the
system is sensitive to the thresholds set for the state space
levels of the learning agent, which is heavily impacting the
results of the episode time duration. For future work, our
objective is to have more precise control of the UAVs in terms
of communication and recharging scheduling. This includes
diversity of energy levels, trajectory, velocity, channel assign-
ment, etc. Deep reinforcement learning will be investigated to
enhance the convergence performance.
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