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The increasing penetration of photovoltaic systems in the power grid makes it vulnerable to cloud
shadow projection. Real-time cloud segmentation in ground-based infrared images is important to
reduce the noise in intra-hour global solar irradiance forecasting. We present a comparison between
discriminative and generative models for cloud segmentation. The performances of supervised and
unsupervised learning methods in cloud segmentation are evaluated. The discriminative models are
solved in the primal formulation to make them feasible in real-time applications. The performances are
compared using the j-statistic. Infrared image preprocessing to remove stationary artifacts increases the
overall performance in the analyzed methods. The inclusion of features from neighboring pixels in the
feature vectors leads to a performance improvement in some of the cases. Markov Random Fields achieve
the best performance in both unsupervised and supervised generative models. Discriminative models
solved in the primal yield a dramatically lower computing time along with high performance in the
segmentation. Generative and discriminative models are comparable when preprocessing is applied to
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the infrared images.
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1. Introduction

A large power grid system fully operated using only renewable
power in Europe can be theoretically possible by 2050 [1], and the
projected solar energy share will increase to 47% by 2050 in the USA
[2]. Clouds increase or decrease the global solar irradiance reaching
Earth's surface. This is of great importance when a considerable
percentage of the energy in a power grid is generated using large
Photovoltaic (PV) systems [3]. Even when the PV arrays in a power
plant are arranged in a configuration capable of attenuating the
effects caused by moving clouds, cloud shadows produce in-
terruptions in energy generation which may be out of the grid
operator's admissible range [4]. Moving clouds have an effect not
only on the generation of energy from PV systems, but also on solar
thermal power plants [5]. The inclusion of cloudiness information
from sky images into a statistical model for forecasting Global Solar
Irradiance (GSI) improves the overall performance of the prediction
[6].

Computer recognition of clouds is a geospatial information
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problem [7]. The tropopause limits the range of cloud formations,
which seasonally varies across latitudes [8]. Different cloud types
are expected to be found at a different range of altitudes [9]. When
using features extracted from color intensity channels, cloud pat-
terns inferred from data acquiesced at different latitudes may not
be correlated. Feature extraction methods based on Gabor filter
texture analysis and statistics are more easily replicable across
databases [10].

In GSI forecasting [11], ground-based methods without features
extracted from clouds are not effective in intra-hour forecasting
and are generally used when the forecasting horizon is hours-
ahead [12—17]. For an intra-day hours-ahead forecast, the effects
of clouds on ground-level solar irradiance can be assessed using
satellite images [18,19] and the accuracy of numerical weather
models for GSI nowcasting is improved when cloudiness informa-
tion is extracted from satellite images [20]. Ground measurements
(GSI or PV power) are an option for intra-day forecasting, but are
not capable of predicting ramp events (when a cloud will abruptly
affect a PV system [21]). Ground-based sky imaging is the most
suitable method in applications requiring intra-hour GSI fore-
casting [22—24].

When using visible light ground-based sensors, the circumsolar
region appears saturated in images including the Sun [25,26].
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Abbreviations

CNN Convolutional neural networks

DAQ Data acquisition system

EM Expectation-maximization

FOV Field of view

GDA Gaussian discriminant analysis
GMM Gaussian mixture model

GPC Gaussian process for classification
GSI Global solar irradiance

ICM Iterated conditional modes

IR Infrared

LOO Leave-one-out

MALR Moist adiabatic lapse rate

MAP Maximum a posteriori

ML Maximum likelihood

MRF Markov random field

NBC Naive Bayes classifier

PV Photovoltaic

ROC Receiver operating characteristic
RRC Ridge regression for classification
SA Simulated annealing

SsvC Support vector classifier

VSH Voting scheme

WLK Weighted Lucas-Kanade

Structures that block the Sun's direct irradiance partially obstruct
the images [27—30], creating forecasting problems [31]. Never-
theless, total sky imagery [32,33], and fisheye lenses are capable of
recording a large Field of View (FOV) [34]. When these technologies
are applied with the aim of motion estimation, fisheye lens’
distortion should be removed [35]. Recent ground-based Infrared
(IR) sky imaging developments increase the FOV of thermal images
[36,37]. IR images allow for the derivation of physical features of the
clouds such as temperature [38] and height, which are more
interpretable for modelling physical processes. Ground-based IR
cameras providing radiometric measures [39,40], are used to study
statistical cloud features [41], and in earth-space communications
applications [42]. Further research shows how to stabilize the
thermal image from microbolo meters in atmospheric measure-
ments [43].

Previous investigations in cloud segmentation concluded that
pixel segmentation using features extracted from neighboring
pixels improves performance [44,45]. Graph models based on
neighboring pixels’ classification are referred to as MRFs. They are a
generalization of the Ising Model, first introduced in ferromagnetic
problems [46], and later applied to 2-dimensional crystal lattice
problems [47]. The Iterated Conditional Modes (ICM) algorithm,
developed for unsupervised training of MRFs in image processing
[48], was implemented for IR satellite image cloud segmentation
[49], and visible light ground-based images [50].

The superpixel approach speeds-up computing time, but pro-
duces a coarse segmentation [51]. Real-time cloud segmentation is
a problem for kernel learning methods, as the Gram matrix is
generally dense [52,53]. One alternative is the use of primal
formulation optimization. The same problem appears with Con-
volutional Neural Networks (CNN). The required computing time is
high [10], although it is considerably reduced when using GPUs
[54,55]. Nevertheless, these methods require data augmentation
and regularization techniques to avoid overfitting. Otherwise, the
conclusions obtained are not comparable between different data-
bases of cloud images, since the distribution of the features will
vary. We prove that when effective preprocessing is applied to the
IR images to extract informative physical features, discriminative
models are faster and have similar accuracy to generative, kernel or
CNN methods.

This research utilizes data acquired from an innovative radio-
metric long-wave IR sky-imaging system, rather than a visible light
sky-imaging system. The Data Acquisition (DAQ) system is moun-
ted on a solar tracker. An advantage of using the IR sky-imaging
system is that the saturated circumsolar region of the image is
smaller. The saturation of the circumsolar area removes necessary
information about the clouds for intra-hour GSI forecasting.
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Another advantage of the IR imaging system is that thermal images
allow for the extraction of physical features that are useful for cloud
segmentation. A novelty of this work is the implementation of a
preprocessing algorithm to increase the cloud segmentation per-
formances in IR sky images. The proposed preprocessing algorithm
applies two models to the IR images [56]. The first model re-
produces the scattering effect caused by debris (e.g. water stains
and dust) on the outdoor germanium window of the camera. The
second model reproduces the effect of direct irradiation from the
Sun and scatter irradiation from the atmosphere to remove satu-
ration in the circumsolar region, making it possible to differentiate
between the Sun and clouds.

Cloud segmentation is useful to identify which pixels in an
image are cloudy and which are clear-sky. This information can
then be used in a solar forecasting algorithm. This research con-
tributes to the field of cloud segmentation and solar forecasting
through a comparative analysis of generative and discriminative
models. The objective is to determine which model performs better
in an IR sky-imaging system mounted on a solar tracker. The
discriminative methods used in the analysis are: Ridge Regression
for Classification (RRC) [57], Support Vector Classifier (SVC) [58]
and Gaussian Processes [59] for Classification (GPC). The training
and testing time is drastically reduced when the RRC, SVC and GPC
models are implemented in their primal formulation, because the
number of dimensions obtained after mapping data to the Hilbert
space is much smaller compared to the dual formulation. MRFs are
part of the analyzed generative models. MRF models are compu-
tationally expensive but suitable for segmentation problems,
because information from the classification of neighboring pixels is
included in the prior. The generative models include effective
methods with low computational requirements. The training and
testing computation time is improved by simplifying the covari-
ance matrix. The Naive Bayes Classifier (NBC) and k-means clus-
tering are simplifications of the Gaussian Discriminant Analysis
(GDA) and Gaussian Mixture Model (GMM) respectively. The per-
formances of generative models are compared between supervised
(NBC, GDA and MRF) and unsupervised learning algorithms (k-
means, GMM and ICM-MRF). Unsupervised learning models are
less time intensive because they do not require labels to train a
segmentation model, simplifying training for the user. The Simu-
lated Anneling (SA) algorithm is implemented to perform an
intelligent optimization that reduces the testing time of the MRF
and ICM-MRE. A voting scheme improves the overall cloud seg-
mentation performance of an algorithm [44]. In this investigation,
the performances of the voting schemes that use all proposed
methods and the optimal combination of methods are compared.
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2. Datasets and measurements

The features from the IR images are extracted after processing to
remove the Sun and atmospheric scattering effects. Due to diffi-
culty accessing the DAQ location, the IR camera's window cannot be
routinely cleaned. We implemented a persistent model to remove
the effects produced by dust particles and water spots on the
window, using standard weather parameters from a nearby
weather station [56], prior to the feature extraction. The extracted
features from a pixel and its neighboring pixels are cross-validated
to find the set of features that increases the segmentation perfor-
mances in each method.

2.1. Data acquisition system

The proposed segmentation methods utilize a DAQ system
equipped with a solar tracker that updates its pan and tilt every
second, maintaining the Sun in a central position in the images
throughout the day. The IR sensor is a Lepton' radiometric camera
with an 8 to 14 um wavelength. The pixels in a frame are emission
temperature measurements in centi-kelvin units. Henceforth, the
emission temperature is referred to as “temperature” for short. The
resolution of an IR image is 80 x 60 pixels, and the diagonal FOV is
60°. The DAQ is located on the roof of the UNM-ME building in
Albuquerque, NM. The data is publicly accessible in the Dryad re-
pository [60].

The weather parameters that were used to compute cloud
height and remove cyclostationary artifacts on the IR images are:
atmospheric pressure, air temperature, dew point and humidity.
The weather station performs a measurement every 10 min. The
data was interpolated to match the IR images samples. The weather
station is located at the University of New Mexico Hospital. It is
publicly accessible.?

2.2. Feature extraction

A pixel of the camera frame is defined by a pair of Euclidean
coordinates i.j. The temperature of the clouds in an IR image are T =
{Ti; ERT|Vi=1,....,M, Vj=1,..,N} in Kelvin, and are measured
using the radiometric IR camera. The temperature of a particle in
the troposphere is roughly a function of the height [61] (other
weather variables affect the height of clouds). The height of a pixel
in a frame can be approximated using the Moist Adiabatic Lapse
Rate (MALR) function [62], that we define as ¢ : (T®" Tdew patmy,,
I'vare [56]. The weather parameters necessary to compute I'yarr
are: air temperature T%", dew point T and atmospheric pressure
Pam (measured on ground-level). The height of a cloudy pixel is
computed using this formula H;; = [T;; — T%r] /T psare- The height of
the pixels are defined in kilometers as
H = {H;; eRﬂVi: 1,...,M, Vj=1,...,N} and they are computed
using the MALR function.

2.3. Image preprocessing

The DAQ system germanium outdoor lens is cleaned when it
rains. However, after the water droplets have evaporated, a water
stain is left on the lens. Due to the inconvenience of cleaning the
lens in person, we propose implementing a model of the stains
caused by dried water droplets. The algorithm to model the out-
door lens begins with a classification model determining the sky
conditions in an IR image.

! https://www.flir.com/.
2 https://www.wunderground.com/dashboard/pws/KNMALBUQ473.
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A linear SVC model was trained to distinguish between four
classes of sky-conditions: clear-sky, cumulus, stratus or nimbus
cloud. The feature vectors of the model include the mean, variance,
kurtosis and skewness of the temperatures T;; in the images, and
the clear-sky index values. Consecutive sequences of images from
non consecutive days with different conditions were manually
labelled for training and validation. The total number of images was
8200. A 5-fold cross-validation of the linear SVC complexity
parameter was implemented keeping a balance between classes
during each training and validation iteration.

When sky conditions are detected as clear-sky, the IR image is
added to the clear-sky set. At the same time, the algorithm forgets
the oldest clear-sky image in the set. The clear-sky set contains the
last L = 250 of clear-sky images. The scatter irradiance produced by
dust and water stains on the outdoor germanium lens is the median
image computed using all the IR images in the clear-sky set W =
{w;j ER} Vi=1,...,M, Vj =1,...,N}. The outdoor lens algorithm
and the sky conditions classification model are fully detailed in
Ref. [56]. In this investigation, we use the obtained temperature of
each pixel, after removing the dust and stains. The temperatures
are defined as T' = {T;j €R"| Vi=1,...,M, Vj =1,... N}, and the
heights are H' = {H;; eR*|Vi=1,...,.M, Vj=1,...N}.

The image preprocessing method implemented in this article is
introduced in Ref. [56]. The raw temperature of a pixel i,j is pro-
cessed using a model that combines the effects of the scatter irra-
diance .7’(+) and the direct irradiance from the Sun Z(-). The
function of the background atmospheric irradiance .«/( ) is,

A (1,J; X0, @) = -7 (j; Yo, 01, 02) + Z(i,J; X0, 03, 04)

=0, exp{%} + 03
(1)

2
where the parameters are ® = {6, ...,04} and Xg = {Xg, Y0} is the
position of the Sun in the image. This function is used to model the
deterministic component of the irradiance in the IR images.

The optimal parameters of the scatter irradiance model are
different in each image. We propose to model these parameters as
the predictors of a function whose covariates are: air temperature,
dew point, and the Sun's elevation and azimuth angle. To approx-
imate the parameters of the modeling function, the atmospheric
background model is optimized in a set of frames with clear-sky
conditions from different days of year. The parameters of the
Sun's direct radiation model are constants.

After removing both the window model and the atmospheric
model from the images, differences of temperature with respect to
the tropopause's temperature are defined as AT = {AT;; € R|Vi=
1,...,M, Vj = 1,...,N}. The differences of height are also computed
and multiplied by the tropopause's average temperature in the
image, estimated using the atmospheric background model. The

resulting heights are H' = {H;’j eRT|Vi=1,..,M, Vj=1,...,N}L.

The temperature differences are normalized to 8 bits, I =
{ijj € N2 |Vi=1,.. .M, Vj =1,...,N}. He aim of the normalization
is to extract a feature that simplifies the classification of a model.
Through the normalization, information about the feasible mini-
mum temperature of a cloud is added to each pixel. The normali-
zation formula is i;; = [AT;; — min(AT)]/[(11.5 — 1.52) -9.8], the
lowest value is set to 0, and then divided by the clouds’ maximum
feasible temperature [56]. The feasible temperature is calculated
assuming a linear temperature decrease of 9.8K/km in the tropo-
pause [63], and that the average tropopause heightis 11.5km at 36°
latitude north [64]. The average height above sea level is 1.52km in

1

[(i=%0)* + (G~ y0)* +

3
2
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Table 1
Type of clouds, percentage of cloud covered and the Sun's position in the horizon in each IR image of the training and test sets.
Type of Cloud Cloud Covered [%] Elevation [°] Azimuth [°]

Train No. 1 Stratocumulus and Cumulus 38.67 29.69 160.91
Train No. 2 Stratocumulus 28.13 28.70 157.49
Train No. 3 Cirrocumulus and Stratocumulus 36.6 24.43 146.99
Train No. 4 Altocumulus 4.5 31.40 183.09
Train No. 5 Cumulus 37.94 73.52 172.20
Train No. 6 Nimbus 100 29.92 164.81
Train No. 7 Clear-Sky 0 28.94 158.59
Test No. 1 Contrail 38.67 48.76 183.94
Test No. 2 Cumulus 28.13 37.53 149.34
Test No. 3 Altocumulus 12.29 32.10 204.17
Test No. 4 Clear-Sky 0 76.58 190.5
Test No. 5 Altostratus 100 60.07 165.62

Albuquerque, NM.

The velocity vectors were computed applying the Weighted
Lucas-Kanade method (WLK) [65,66]. For each two consecutive
images I*"1, I¥ of the data set, the velocity vectors are defined as
vk = {vij = (u,v)ﬁfj €R?|Vi=1,...,M, Vj=1,...,N}. The upper
index k denoting the frame is omitted in the rest of the document.

The pixels in the images that form the dataset were manually
labelled as clear y;; = 0 or cloudy y;; = 1. The temperature in the
background of the images varies. The background temperature is
the temperature of the tropopause. For each image, this tempera-
ture was first identified, and then used to distinguish pixels that
have the image background temperature.

2.4. Feature vectors

To find the optimal feature combination, we propose the vali-
dation of different physical features extracted from a pixel, and
three sets of neighboring pixels, included as dependent variables in
the model.

The first feature vector, xilj = {T;j, Hij}, contains the raw
radiometric temperature of the pixels and the heights computed
using the raw temperatures. The second feature vector, xfj = {T;j,

H; J/}, contains the temperature and height of the pixels after
removing the artifacts on the IR camera's window. The third feature
vector, x,.3J = {AT;j, H;ij}, contains the incremental temperatures
and heights after removing the Sun's direct radiation and the at-
mospheric scatter radiation. The fourth feature vector includes the
magnitude of the velocity vectors, the normalized increments of
temperature, and the increments of temperature; and is defined as
Xﬁi = {mag(v,-J»), i,‘j, ATU}

To segment a pixel, its feature vectors and those of its neigh-
boring pixels are introduced into the classifier. In the experiments,
we define 15¢ order neighborhood feature vector as the set of four

w S(j; Yo, 01, 62)

Temp. [K]

pixels closest to the test pixel i j, 2"d order neighborhood is defined
as the eight closest pixels, and term single pixel is used when no
neighbors are included, that is:

° Slngle piXEI: {le}7 Vl7] = il 7j1’ -~-7iM7jN

o 1%t order neighborhood: {X; 1, X;j_1, Xjj11, Xi11,}-

2™ order neighborhood: {Xi—1js Xij—1, Xiji1> Xig1js---
coos XiZ1j-15 Xim1je1s Xig1j+1> Xiv1j-11-

3. Methods

The methods summarized below can be classified as generative
when they have the capacity of generating new samples from a
likelihood model, that is, when the model implements a density
approximation of the form p(x| ) where # is the segmentation
label of the pixel. Discriminative models do not have the ability to
generate data since they implement a direct approximation of the
posterior p( #|X).

3.1. Generative models

Generative models are either Maximum Likelihood (ML), or
Maximum A Posteriori (MAP) methods. When generative models
use an input feature structure, together with the use of an energy
function for the probabilistic modeling of data (Ising model), they
are generally known as MRF models. We summarize below the
discriminant analysis, which applies ML inference, GMM and k-
means clustering, and supervised and unsupervised MRF methods,
with MAP inference.

3.1.1. Discriminant analysis

GDA and NBC are both supervised learning methods, because
the training dataset input features X; are paired with a label #;. As
we assume that the prior in these models is uniform, the inference
applied is ML.

D(i, ]; X0, 3, 84)

A(I'.Ir Xo, e)

Fig. 1. Models applied to preprocess the radiometric IR images. The models correspond to the IR image in Fig. 2. The first image is the atmospheric scattered irradiance. The second
is the Sun's direct irradiance. The third is the atmospheric background model that combines both previous models. The last image is the outdoor lens scattering effect model.
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TII

Temp. [K]

Fig. 2. The IR images are shown in a 3-dimensional surface graph in the top row and in the figures in the bottom row. The figures in the first column are the raw pixels obtained
from the radiometric IR camera. The figures in the second column show the processed IR images, removing the atmospheric background model. The figures in the third column are
the IR images after processing to remove the atmospheric background and the outdoor lens scattering effect. The applied models are shown in Fig. 1.

Gaussian Discriminant Analysis. GDA obtains the posterior
probability of y; = % given a set of features x; € R? when applying
the Bayes theorem [G7], where a prior is chosen over the classes,
and a Gaussian likelihood is used for the observations. The poste-
rior of class #’, where ke{1,...,K} are possible classes, is maxi-
mized by the Bayes’ rule with the expression p(X;) «p( %)p(X;| Z’)-

The corresponding means u;, € R and covariance matrices =,
R?*d are estimated with the samples that have assigned class
and d is the sample dimension, i.e, the number of features in vector
X;.

Naive Bayes Classifier. The NBC applies the Bayes theorem,
similarly to a ML classifier, but it computes a likelihood by assuming
that all features are independent. Therefore, the corresponding
Gaussian likelihood is approximated by a product of a univariate
Gaussian distribution per each dimension of the observation x [68].

3.1.2. Clustering

The GMM and k-means are unsupervised learning algorithms.
Their respective objective functions group the samples in clusters
represented by conditional likelihood functions, and then a poste-
rior distribution for each class #’ is computed with the likelihood
and a prior distribution of the labels. Thereby, the inference level
applied is MAP. K-means can be considered as a simplification of
the GMM.

Gaussian Mixture Model. The GMM assumes a known number K
of possible latent variable values. For each one, a Gaussian distri-
bution is constructed. Initial values are proposed for these param-
eters and for the priors of the classes. The Expectation
Maximization (EM) algorithm [68] is used to iteratively adjust all
these parameters. In the E step, posteriors p( #|X;) are computed
for all samples. In the M step, mean p,, is computed by averaging all
samples weighted by their corresponding posterior. The covariance
is computed similarly. The priors are computed by averaging the
posteriors. Once these statistics are computed, the E step is
repeated, until convergence.

k-means. K-means is a simplification of a GMM, where co-
variances ¥ = I, 4, are assumed to be constant [68,69]. The pos-
terior distribution for the latent variables is 1 for the class whose
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mean is closer to the sample and zero otherwise.

3.1.3. Markov Random Fields

In a MREF, pixels are grouped in cliques of a graph 2 where a
clique is a set of nodes which are neighbors of each other given a
definition of neighborhood. For the problem at hand, a node rep-
resents a pixel, and a neighborhood is defined in terms of pixel
proximity. The prior probability of a pixel's class is a normalized
exponential of an energy function. This represents the energy of a
clique.

The energy function of a MRF is composed of ¢, or the joint
distribution of a class, and ¢, the potential energy of the system's
configuration [70].
EyiXi)=>_¢(Xi, i) +Z¢<J’i>y]'), (2)

i ij

In graph G, a sample i has a set of neighboring pixels, and each
neighboring sample j has class y;. A sample X; is classified using the
Bayes’ theorem,
pWi= ZklXi, 0k) =< p(Xilyi= €, O)p(yi = ©). (3)
where p(X;|y;= @, 0k) = 4 (g, =) With 0, = {p, =} . The log-
likelihood of class & is defined as ¢(x;,y;) in the energy function
(2). The prior is

pi) = gexp(—4 ) = yexp | 3 vify; | (4)

ijeQ,

where the potential function has been factorized in cliques of a
graph 2 by applying the Hammersley—Clifford theorem [71]. A
clique is defined as a set of nodes that are all neighbors of each
other [68]. With the above model, a posterior can be constructed to
classify the pixels. If there are no labelled images, then unsuper-
vised inference of the class parameters in a MRF model can be
performed using the ICM algorithm [48]. The standard optimization
goes through all the pixels calculating their potential and
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Fig. 3. This figure shows the features extracted from three test images. The test images are organized in columns. The images in the first row show the normalized intensity of the
pixels. The images in the second row show the magnitude of the velocity vectors. The images in the third row show the increments of temperature with respect to the height of the
tropopause. The images in the fourth row show the height of the clouds. The last row shows the test images in which the clouds were manually segmented.

classifying them in each iteration of the algorithm. The computa-
tional cost of this method is high, but we can assume that it is not
necessary to evaluate the pixels whose state has high energy,
because their classification will not change. The computational cost
can be reduced by sampling the pixels that are likely to be mis-
classified, and applying the optimization procedure only to them.

We propose to optimize the configuration of the pixels in an IR
image applying the SA algorithm [72] to the MRF models [73]. The
SA algorithm is applied on the implementation, after the inference
of the class distributions. Temperature parameter T in the SA al-
gorithm is linearly cooled down Tt*1 = oT" at each iteration t with
an acceptance rate o«. The optimal parameter o is a trade off be-
tween accuracy and speed.

3.2. Discriminative models

The discriminative algorithms in this work are based on kernel
models [57], where the data is implicitly transformed into a Hilbert
space 7 of higher dimensionality (possibly infinite) with a dot
product expressible as a positive definite function of the input data
[74]. Kernel Learning uses the generalized Representer Theorem
[75], which states that, under mild conditions, any machine can be
represented by a linear combination of dot products between the
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training and test data (which is called a dual formulation). This
implies the use of a matrix containing the N2 kernel dot products
between data, which can be overwhelming due to the high quantity
of data to be used during the training in the present problems.
Therefore, we use explicit basis functions for the nonlinear trans-
formation into /7. The matrices to be manipulated have the same
dimension of this space.

The transformation is a polynomial expansion of the elements of
X. The expansion is defined as ¢ : 2/ +— 2", where n is the order of
the expansion and " = (n+ d)!/n!. The polynomial expansion of
the dataset = {®, y}, is defined in matrix form as

., Y1
pxn)|€r”N,y = |

@ =[¢(x1) : (5)

IN
where y;{0, 1} which are labels for a clear or cloudy pixel,
respectively. The polynomial expansion is used in the primal
formulated kernel for RR, SVC and GPC is defined such as
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Fig. 4. The graph shows the j-statistic achieved by the generative models. The color of the bars in the graph indicate the order of neighborhood from dark to light. The neigh-
borhoods are organized from the left to right within the groups of bars. This corresponds with the order of the feature vectors used in the model.

T oph
¢(x,~) =1 ax; - aj’kaXk Clj,kA]XijXI ] er” s
Vi kl--=1,...D

(6)

where scalars aj,a;,djy, -~ €R are chosen so that the corre-
sponding dot product in the space can be written as
(7)

o(xi) T (%)= [1+x]x;]".

which is the well known polynomial kernel of order n.

3.2.1. Ridge Regression
The RRC is a minimum mean squared error method with
quadratic norm regularization applied on the parameters w,

N
- T )2
min (v —w' @)% + y||wl|,. (8)

i=1
where v is the regularization parameter, and it requires cross
validation. The solution is simply W= (®®' + vyI)"'® y. The
output is passed through a sigmoid function in order to provide it
with probability mass properties, i.e

1
1+exp(— W' ¢(x))

p(y=1¢(x), 7)= (9)

3.2.2. Primal solution for support vector machines
Several approaches to solve the SVC in the primal space have
been proposed, as the iterative re-weighted least squares method

[76], or by directly solving the following quadratic problem [77,78],

N
min Wi, + €Y (max(0, 1 - yw g(x))]) (10)
i=1

where C > 0 is a penalty term, x;(W, X;, y;) is the loss function, and in
our model the norm is a L,. This is a maximum margin problem
[77]. The complexity parameter C has to be cross-validated.

The original formulation of the linear SVC does have not a
probabilistic output. However, the distance from a sample to the
hyper-plane can be transformed to a probability measure,

1
1+exp(— W' ¢(x«))
) =1-p(Z1lp(xX+), 7),

using the sigmoid function, similarly to the proposed RRC for
classification.

p(Z1lp(xx), 7) =

p(72lp(x:), 7

(11)

3.2.3. Primal solution for Gaussian Processes

When formulated in the primal, a GPC is known as Bayesian
logistic regression [59,68,79]. A posterior over the primal param-
eters w is computed as

p(W|7) < p(y|®,w)p(W). (12)
The likelihood function of the model is p(y;|®, w) =
m.ya 1= where § = [;...55] " are the predictions. The

prior is Gau551ar1 p( ) ~ . (W|ug, Zg), but the posterior is not
Gaussian. In contrast to Bayesian linear regression, this approach
does not have an analytical solution. The Laplace approximation is
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Fig. 5. The graphs show the j-statistic achieved by the MRFs using different cliques in their potential function. The four feature vectors are organized in groups of three bars. There

are two groups of feature vectors: those with a potential function of 15 order cliques Q;( -), and those with a potential function of 2" order cliques Q;( +).

applied to assume that the posterior is Gaussian q(W) ~ /V(W|W, 4. J-statistic
=n). The optimal set of parameters are found maximizing the

marginal log-likelihood via numerical gradient.

The Younde's j-statistic or Younde's Index is a test to evaluate

the performances of a binary classification [80], that is defined as,

J = sensitivity + specificity — 1.
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Fig. 7. Left: Computing time of each model during training. Right: Average computing time during the segmentation in the test subset. The legend displays the optimal feature
vectors, neighborhood order, polynomial expansion and cliques of each model.

The entries on the confusion matrix are used to compute the

sensitivity,

TP

TP + FN’ (14)

sensitivity =

where TP and FN are the true positives and false negatives, and the
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GDA - J-stat: 0.64 GDA - J-stat: 0.91

NBC - J-stat: 0.78 NBC - J-stat: 0.8

GMM - J-stat: 0.93

k-means - J-stat: 0.28 k-means - J-stat: 0.92

e
e S,

Fig. 8. Three images from the test organized in columns. The images in each row show the segmentation performed by a generative model. The higher j-statistic was achieved by
the NBC in the first image, and the GMM in the second and third images.

k-means - J-stat: 0.84

specificity is, also obtained using the entries of the confusion matrix, and that it

is,
. N

specificity = ——— 15

pecificity = pp (15) P TN
A= 1o PP+ IN T N (16)

where TN and FP are the true negatives and false positives. It is TN+

different than the accuracy score of a binary classification, which is As the optimized loss function is different in each model, we
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A
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Fig. 9. Three images from the test subset organized in columns. The images in each row show the segmentation performed by a MRF model. The highest j-statistic was achieved by
ICM-MREF in the first image, SA-ICM-MRF in the second, and ICM-MRF and SA-ICM-MREF in the third image.

—

propose to define a prior A, which has to be cross-validated for each

one of models, and has an optimal value for each classification I 7 _p(Zy|2)p(Zy)

function p(o|Cy) =——T =

unction, p(7) -
«p( 21| Z)p( )

so the maximized loss function is the same in all the models. The
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Labels

Fig.10. Three images from the test subset are organized in columns. The images in each row show the segmentation performed by the discriminative models. When segmenting the
images, a higher j-statistic was achieved by RRC (in the first and second image), and SVC (in the third image).

classification probabilities are defined as p(Z|%1) = p(€1|2)A,
and p(Z|%5) =1 — p(2|&1). The j-statistic score is maximized
finding the optimal binary classification A threshold. For that, the j-
statistic is applied to the conventional Receiver Operating Charac-
teristic (ROC) analysis [81], and it is computed at each point of the
ROC. We propose to use the maximum value of j-statistic in the ROC
curve as the optimal point.

After the cross-validation of the virtual prior A, a class & is
assigned to a sample x« following this criteria,

Y« =argmax p( &y|X«, Z)A, (18)
k

which is a MAP estimation.

5. Experiments

The selected samples constitute the dataset used in the cross-

1036

validation and testing of the segmentation models. The samples
include different days in all four seasons. The sample images
include partially cloudy, fully clear-sky and fully covered sky con-
ditions. The images were captured at different hours of the day, so
the Sun's elevation and azimuth angle are different. Therefore, the
atmospheric background model is different in all of the images. The
dataset is composed of different types of clouds found at different
heights in the tropopause. We found that the most difficult clouds
for the models to classify are cirrus stratus, which are also included
in the dataset. Artificially created clouds like contrails are also
included in testing set. Contrails are highly difficult for the models,
as the scattering effect is similar to that produced by cirrus clouds.
The dataset is composed of 12 images with labels (see Table 1),
amounting to a total of 57,600 pixels. They are organized chrono-
logically and divided into training (earlier dates) and testing set
(later dates). The training set has 7 images, which are 33,600 pixels
in total. The testing set has the remaining 5 images, which are
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Fig. 11. Three different test images. First and second rows: results of the voting scheme. The first row displays the probability of a pixel belonging to a cloud. The second row shows
the segmentation performed by the voting scheme. Third and fourth rows: probability of a pixel belonging to a cloud and the segmentation of the optimal voting scheme (VSH).

24,000 pixels. The training set contains 5 images with clouds, 1
image with clear-sky, and another one with covered sky conditions.
The testing set has 3 images with clouds, 1 with clear-sky, and 1
with covered sky conditions.

The Leave-One-Out (LOO) method is implemented in the cross-
validation of the parameters. In this method, the training samples
are left out for validation one at a time, while the rest of the training
samples are used to fit the model. In our problem, the training
samples are the images in the training set, so a training image is
used for validation while the others are used for training the model.

The cross-validation is done using a high performance com-
puter. Each validation sample (in the LOO routine) runs on a
different CPU, and 7 CPUs are necessary for each experiment. When
the LOO routine is finished, the results are communicated to the
main node, and a new set of hyperparameters and virtual prior A
are validated. This procedure is repeated until all possible
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combinations of hyperparameters and virtual priors are validated.
The LOO routine runs in multiple experiments at the same time.
Each experiment has a combination of feature vectors, neighbor-
hoods, polynomial expansions (in the discriminative models) and
cliques (in the MRF models). All CPUs are operating at full capacity
and are only inactive during the waiting time (i.e. until all jobs of
the LOO routine are finished).

The cross-validation is computationally expensive due to the
amount of training samples, but running the LOO routine and the
experiments in parallel reduces the training time by several orders
of magnitude. The testing times are obtained when running each
segmentation model in a single CPU.

Exploratory results showed that the features that work best are
those in vectors x; and x.;. All possible combinations were tested,

but none produced any improvement in the classification
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performance, with the exception of those in x;‘j. However, the
original features require preprocessing to achieve reasonable per-
formances. This is shown in the classification results obtained by x}J
and. x;.

In the generative models, NBC and k-means clustering do not
have hyperparameters. The GDA and GMM have the covariance
matrix regularization term y which has to be cross-validated. In the
k-means clustering, the feature vectors were standardized X;; =
[x;j — E(X)]/Var(X). The rest of the models neither required
normalization nor standardization of the feature vectors.

In the MRF models, the cliques potential § in Eq. (4) was cross-
validated in all the models. The supervised MRF have the covari-
ance matrix regularization term y which was cross-validated. The
unsupervised ICM-MRF is computationally expensive, so the reg-
ularization term of the covariance matrix was set toy = 1. In the
supervised MRF with SA in the implementation, the cross-validated
parameters were the regularization term of the covariance matrix
v, and the cooling parameters «. In the unsupervised MRF trained
with the ICM algorithm (using the SA algorithm in the imple-
mentation), the parameters of the regularization term of the
covariance matrix and cooling were settoy =1 and « = 0.75.

In the discriminative models, the RRC has the regularization y in
Eq. (8) that has to be cross-validated. The SVC has the complexity
term C of the loss function in Eq. (10). The hyperparameters of the
GPC are the prior mean pug and the covariance matrix =. The prior
mean and covariance matrix are simplified to uy = 0 and =g £ vIp,p,
so only the parameter vy is cross-validated.

In addition to each set of hyperparameters, all models have a
virtual prior A that corrects possible class-imbalances in Eq. (17).
The hyperparameters and the virtual prior A have to be cross-
validated. A set of hyperparameters define the ROC curve, and the
virtual prior A is used to find the optimal j-statistic along this curve
with the predicted probabilities of each class for each combination.
The validation j-statistic is the average of the j-statistics obtained in
each LOO cross-validation loop. The model selection criteria is the
highest validation j-statistic.

The experiments were carried out in the Wheeler high perfor-
mance computer of the UNM-CARC, which uses a SGI AltixXE Xeon
X5550 at 2.67 GHz with 6 GB of RAM memory per core, 8 cores per
node, 304 nodes total, and runs at 25 theoretical peak FLOPS. Linux
CentOS 7 is installed.

6. Discussion

The segmentation performed on three testing images by the
generative models are shown in Figs. 7—9. The NBC and GDA are
both discriminant analysis and supervised learning models (Fig. 8).
The k-means and GMM are unsupervised learning methods (Fig. 8).
The MRF and SA-MRF are supervised learning models and ICM-MRF
and SA-ICM-MRF are unsupervised learning models. The SA algo-
rithm is implemented to speed-up the MRF and ICM-MRF conver-
gence. When MRF models use the SA algorithm, the segmentation
is not so uniform (Fig. 9). The cooling mechanism of the SA algo-
rithm ends the optimization before the segmentation has
converged to a state of higher energy. The discriminative models
used are the RRC, SVC and GPC (Fig. 10). These were solved in the
primal formulation so their performances are feasible for real-time
cloud segmentation (see Fig. 7). The performances of the models
are compared in terms of j-statistic vs. training computing time vs.
average computing time in testing. The j-statistic is evaluated with
the images in the testing subset. The computing time is measured
in seconds. The time in the y-axes of the graphs shown in Fig. 7 are
displayed in logarithmic scale. The highest j-statistic is achieved by
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the unsupervised MRF, but the training and the average testing
computing time are the largest. NBC and RRC have the lowest
training times. In the implementation, the k-means, NBC and RRC
have the lowest computing time. If we have considered all of this
information, the most suitable model would be one of these model.

The unsupervised MRF model (ICM-MRF) achieved the highest
j-statistic in testing among generative and discriminative models.
The ICM-MRF model uses the feature vector x3 with a 15t order
neighborhood and the set of cliques Q; in the prior. The classifi-
cation performance of the model decreased when optimized using
the SA algorithm, but the average testing time was faster (Fig. 5).
The MRF models that use a prior potential function lead to the
largest training and average testing computational time. When only
generative models without the prior potential function are
considered (NBC, GDA, k-means and GMM), the GDA has the
highest j-statistic with the feature vector x* of a 2" order neigh-
borhood (Fig. 4). However, if the trade-off between average testing
time and j-statistic is considered, the most suitable generative
model is the GMM with a feature vector x* of a single pixel
neighborhood. The generative models which include a simplifica-
tion of the covariance matrix and that do not use a prior potential
function (NBC and k-means) yield the fastest average testing time
among all classification models (without considerably decreasing
the j-statistic). However, these models have the lowest j-statistic
among all the models implemented. Fig. 6 shows the discriminative
models’ j-statistics. The average testing time is lower than that
obtained by the generative MRF models, but the j-statistic is higher
than that obtained by the generative models without the potential
function. The polynomial expansion yields overfitting in all the
discriminative models. The discriminative model that achieved the
highest j-statistic is the linear GPC with the feature vector x* of a
single pixel neighborhood. As seen in Fig. 7, the RRC and SVC are the
most suitable methods, as they offer the best compromise between
average testing times and accurate segmentation.

The results in Figs. 4—6 show the importance of the feature
extraction method in cloud image segmentation (see Fig. 3). The
extraction of features makes it easier for the models to differentiate
between cloudy and clear-sky pixels, because the distance between
feature vectors of different classes increases in the feature space.
Through feature extraction, the feature vectors of the same classes
group together forming clusters in the feature space. Without
extracting features correctly, the feature vectors from both classes
(cloudy and clear-sky) are grouped in a single cluster, making it
difficult to perform a classification. When the magnitude of velocity
vectors are included in the feature vectors, combined with tem-
perature increments and normalized temperature increments, the
segmentation models achieved a higher j-statistic. The addition of
features from neighboring pixels to the feature vectors improves
the performance in some of the models.

When the raw temperature and height are used, all models have
poor performance. However, when the images are preprocessed
with the outdoor germanium camera window model and the at-
mospheric model (see Fig. 2), the ICM-MRF reaches a reasonable
performance of 92.55% at the expense of a high computational cost
of 641 ms per image in testing. The performance of discriminative
methods with this set of features is lower, ranging between 72.58%
and 84%. When velocity vectors are added to the features, the
discriminative methods achieve a similar performance as the ICM-
MREF, with computational times of 2.2 ms (RRC), 3.7 ms (SVC) and
77 ms (GPC). The best compromise is the SVC, which is 150 times
faster than the ICM-MRF with a small difference in accuracy. The
image preprocessing and feature extraction time is 0.1 ms for x!,
4.7 ms for x2, 99.9 ms for x> and 1079 ms for x*. When pre-
processing time is added to the segmentation time, the average
time required by the ICM-MRF is 740.9 ms. This is faster than the
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average time required by the discriminative models: 1081 ms
(RRC), 1083 ms (SVC) and 1156 ms (GPC).

A voting scheme using the predictions from the models dis-
played in Figs 8, 9 and 10 (not including SA-MRF and SA-ICM-MRF)
achieved higher j-statistic but have a higher computing time. The j-
statistic is 93%, see Fig. 11. The combination of the RRC, SVC and
ICM-MRF lead to the best j-statistic. The optimal voting scheme
reached a j-statistic of 94.68% in testing (see Fig. 11). The voting
scheme's training and testing times are the sum of each method's
respective computing times. When the models are trained and
tested in parallel, the voting scheme's training and testing times are
that of the slower models.

7. Conclusion

This investigation seeks to find the optimal methods for real-
time ground-based IR cloud segmentation through image pre-
processing and feature extraction. Preprocessing was applied to
remove underlying cycle-stationary processes, and feature extrac-
tion was used to compute cloud height and velocity. The results
show that cloud segmentation in ground-based IR images is not
only feasible, but achieves high performance in real-time applica-
tions. Ground-based IR cameras perform better than visible ones in
poor light conditions. We implement a preprocessing algorithm
that uses physical features extracted from IR images. The j-statistic
is proposed to independently measure the accuracy of the classi-
fication in each classes.

Preprocessing the ground-based IR images using the window
and atmospheric models leads to an overall performance
improvement. Simplification of the covariance matrix reduces the
computing time, but the j-statistic achieved is lower than that of
the models using the full covariance matrix. Adding the features of
neighboring pixels to the feature vectors yields an increase in
segmentation performance in some cases. The discriminative
models formulated in the primal result in feasible segmentation
models for real-time application. MRF models remove possible
outliers using cliques from neighboring pixels. This increases the
overall performance of the generative models when trained with
unsupervised and supervised algorithms. The optimal voting
scheme achieved the best j-statistic. However, the implementation
computing time might be slow for real-time applications when not
run in parallel.

Further investigations may focus on segmentation in multiple
layers of clouds. The clouds in each layer may be segmented into
different classes. An algorithm can be trained to detect multiple
layers of clouds when clouds have different heights or directions. In
this way, the extraction of features may be performed indepen-
dently in each one of the cloud layers. A multiple cloud layer seg-
mentation algorithm will reduce the noise when extracting
features. This algorithm may be implemented to increase the per-
formance of ground-based intra-hour GSI forecasting.
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