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Abstract—Moving clouds affect the Global Solar Irradiance
(GSI) that reaches the surface of the Earth. As a consequence,
the amount of resources available to meet the energy demand in
a smart grid powered using Photovoltaic (PV) systems depends
on the shadows projected by passing clouds. This research
introduces an algorithm for tracking clouds to predict Sun
occlusion. Using thermal images of clouds, the algorithm is
capable of estimating multiple wind velocity fields with different
altitudes, velocity magnitudes and directions.

Index Terms—Cloud Tracking, Machine Learning, Flow Visu-
alization, Solar Forecasting, Sky Imaging

I. INTRODUCTION

The portion of energy generated by PV systems is increasing
in exponential scale since 2000 [1]. To continue this trend, it is
important to provide a reliable energy supply [2]. An algorithm
that forecasts Sun occlusion equips a grid with the capability
of efficiently controlling the dispatch and storage of energy
[3].

The forecasting horizon required to nowcast Sun occlusion
is between 1 to 5 minutes ahead. Numerical weather prediction
models that use mesoscale meteorology have problems of
collinearity [4] and the forecast is not effective within the
required range for nowcasting. Satellite imaging systems are
practical when the horizon ranges from 15 minutes to an
hour [5]. An alternative to satellite imaging systems are
ground-based all-sky imagers [6]. Visible light cameras are
inexpensive, and a lens or concave mirror may be attached
to increase the Field Of View (FOV) [7]. The disadvantage of
visible light imaging is that the pixels in the circumsolar region
are saturated. This is especially problematic for nowcasting
Sun occlusions. Ground-based thermal sky-imaging systems
reduce the saturation of the pixels in the circumsolar area
[8]. These systems have been used to measure spatiotemporal
cloud statistics to establish an optical link in Earth-space
communications [9].

Previous investigations have set the precedent of using
ground-based sky-images in computer vision algorithms to
detect clouds and to estimate their motion [10]. The Kalman
filter has been used to track clouds and approximate their
pathlines [7]. Artificial neural networks [11] and Support

Vector Machines (SVM) [12] have been shown capable of
finding spatiotemporal correlations between GSI and sky-
images of clouds.

This investigation introduces an algorithm which predicts
the pathlines of clouds moving in different wind velocity
fields. A Multi-Output Weighted Support Vector Machine with
Flow Constraints (ε-MO-WSVM-FC) is proposed to estimate
the multiple wind velocity fields detected in an image. The ve-
locity vectors are computed using a weighted implementation
of the Lucas-Kanade (WLK) algorithm. The weights are the
posterior probabilities of the temperatures in an image inferred
using a Beta Mixture Model (BeMM). The velocity vectors are
segmented and subsampled so that the implementation of the
proposed cloud tracking algorithm is feasible for nowcasting
Sun occlusions.

II. DATASET

The data used in this investigation was acquired with a sky
imager utilizing a solar tracker which maintains the Sun in
the center of the images. The sky imager is equipped with a
Lepton 2.5 thermal camera that measures temperature in centi-
kelvin degrees. The resolution of the camera is 80× 60 pixels
and the diagonal FOV is 60◦. The thermal sky-imaging system
is located at the UNM-ECE building. The weather parameters
are measured by a weather station at the UNM Hospital.

A. Thermal Sky Images

The intensity of a pixel i, j in a thermal image is a tem-
perature measurement in centi-kelvin degrees [13]. The tem-
peratures of the pixels in an image are defined as Tk={T kij∈
R |∀i=1, . . . ,M, ∀j=1, . . . , N}. The heights of the pixels
are defined as Hk={Hij∈R |∀i=1, . . . ,M, ∀j=1, . . . , N}.
The heights of the pixels are calculated using a linear function
defined as φ :(T kij ,ΓMARL, T

air) 7→Hk
ij which depends on the

temperature of the pixel Tij , the Moist Adiabatic Lapse Rate
(MARL) [14] and the air temperature at the ground-level T air.

B. Cloud Velocity Vectors

The distribution of the temperatures in a sky-image with
multiple layers of clouds is inferred using a BeMM. The
number of cloud layers in an image is defined as Ck, and
is determined by a previously trained algorithm. When clouds978-1-6654-4875-8/21/$31.00 ©2021 IEEE
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are flowing in different wind velocity fields, the BeMM is
expected to have Ck clusters.

1) Beta Mixture Model: Consider the temperatures T̄ij of
a given image (omitting superindex k). The distribution of the
normalized temperatures can be approximated by a mixture of
beta distributions T̄∼Be(αc, βc) with the density function,

f
(
T̄ij ;αc, βc

)
=

1

B (αc, βc)
· T̄αc−1ij ·

(
1− T̄ij

)βc−1 (1)

where T̄ij∈(0, 1), the beta function is B(αc, βc)=
[Γ(αc)Γ(βc)]/[Γ(αc + βc)], and the gamma function is
Γ(αc)=(αc − 1)!.

The parameters in the clustering of beta distributions can
be directly computed applying the Expectation Maximization
(EM) algorithm [15]. In the E stage, a posterior γijc,p(yij=
c |T̄ij ,θ) can be assigned to each sample from prior proba-
bilities for the classes an the likelihoods (1). In the M stage,
the parameters αc and βc of each cluster that maximize the
log-likelihood are computed by gradient descent.

The cloud average heights in a frame are computed as

Ĥc=

∑
ij γijc ·Hij · I (bij=1)∑

ij γijc · I (bij=1)
, (2)

where I (·) is the indicator function. An image segmentation
algorithm indicates which pixels belong to a cloud, so that
B={bij∈B |∀i=1, . . . ,M, ∀j=1, . . . , N} is a binary image
where 0 is a clear sky pixel, and 1 is a pixel belonging to a
cloud [16].

2) Weighted Lucas-Kanade: The method implemented to
compute the velocity vectors is WLK [17]. The weights γijc
are the posterior probabilities of the BeMM. A pixel i, j has a
velocity vector for each cloud layer c in a frame. The optimal
window size, weighted least-squares regularization, and dif-
ferential kernel amplitude are: W=16 [pixels2], τ=1×10−8,
and σ=1 respectively. The velocity components are uijc and
vijc. The velocity vectors in pixels per frame are transformed
to m/s using the geospatial transformation of the perspective
[13], which is a function of the Sun’s elevation and azimuth
angles ψ :(ε, α) 7→∆xij The transformations are

uij=
δ

fr
·∆xij

C∑
c=1

Ĥc · γijc · uijc

vij=
δ

fr
·∆yij

C∑
c=1

Ĥc · γijc · vijc

(3)

where fr is the frame rate and δ is the scale of the velocity
vectors.

3) Velocity Vector Segmentation: The pixel intensity dif-
ference between two consecutive frames is computed to find
which percentage of pixels τ show more change. The wind
velocity field is approximated using the segmented velocity

vectors of ` last frames. Hence, the set of velocity vectors
available to compute the wind velocity field are,

Ṽk=

 V′
k

...
V′

k−`

∈R2×Nk , (4)

the number of samples in Ṽk is Nk, this number is not the
same in each frame k.

4) Inference of Velocity Vector and Height Distributions:
A velocity vector ṽi (omitting superindex k) in the set
Ṽk={ṽki ∈R2 |∀i=1, . . . , Nk} is assumed to belong to a
cloud layer c. The probability of a vector to belong to a cloud
layer c is modelled as an independent normal random variable
ṽi∼p (ṽi |µc,Σc)=N (µc,Σc). In the case when two cloud
layers were detected, we propose to infer the probability
distribution of velocity vectors’ in each cloud layer as

p (ṽi |Θ)∝p (ṽi |µ1,Σ1)
λi · p (ṽi |µ2,Σ2)

(1−λi) , (5)

where Θ={λ,µ1,Σ1,µ2,Σ2}, and λi∈{0, 1}. The log like-
lihood is then expressed as the linear combination,

log p(ṽi |Θ)∝λi1 log p(ṽi |µ1,Σ1) + λi2 log p(ṽi |µ2,Σ2),
(6)

where λi1=λi and λi2=1 − λi. The probabilistic model
parameters are inferred using a fixed-point variation of the
Iterated Conditional Modes (ICM) [18]. After completing the
inference of the velocity vectors distribution, it is possible to
infer the cloud layer’s height using the same method and a
likelihood Hi,j∼N (µc, σ

2
c ).

5) Velocity Vector Subsampling: To reduce the computa-
tional burden of the algorithm, a subset of N∗ velocity vectors
is selected according to the estimated probability distributions
of the vectors p(ṽ∗ki |θc), their posterior probabilities are z∗ki .

III. WIND VELOCITY FIELD APPROXIMATION

Three methods were implemented to estimate the extrap-
olation function and compare their performances. The first
method uses a weighted ε-support vector regression machine
(ε-WSVM) for each one of the velocity components. The
second method is a ε-MO-WSVM that estimates both velocity
components. The third is an innovation which uses a ε-MO-
WSVM with flow constraints (ε-MO-WSVM-FC) to estimate
both velocity components. The flow constraints are used to
force the extrapolated wind flow to have zero divergence or
curl, so it can be assumed that, in the approximated wind flow,
streamlines are equivalent to the cloud pathlines.

A. ε-WSVM

The regression problem can be formulated as the optimiza-
tion of a function with the form,

f(xi)=w>ϕ(xi) + b, ∀i=1, . . . , N∗, w,xi∈RD, b∈R,
(7)

where xi,x∗ki and ϕ(·) is a transformation into a higher
dimensional (possibly infinite) Hilbert space H endowed with
a dot product K(xi,xj)=〈ϕ(xi), ϕ(xj)〉.
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1) Support Vector Machine for Regression: Assuming vi=
{ui, vi},v∗ki , the regression problem in a ε-SVM is formu-
lated [19], where the samples are weighted by their probability
of belonging to wind velocity field c,

zi,z
∗k
i , ci=zi ·

C

N
, zi∈R≤1, (8)

leading to a weighted SVR whose primal formulation is

min
w,b,ξ,ξ∗

1

2
‖w‖2 +

C

N

N∑
i=1

zi (ξi + ξ∗i ) (9)

s.t.


ui −w>ϕ (xi)− b ≤ε+ ξi

w>ϕ (xi) + b− ui ≤ε+ ξ∗i
ξi, ξ

∗
i ≥0

i=1, . . . , N, (10)

and identically for vi. We used linear, square exponential and
polynomial kernels [20] in the experiments. The dual problem
formulation for the SVR and its solution can be found in [21].

2) Multi-Output Weighted Support Vector Machine: When
the wind velocity field function is approximated by ε-MO-
SVM,the primal regression can be formulated as

vi=W>ϕ(xi) + b, (11)

where each one of the column vectors of primal parameter
matrix W approximates one of the velocities in vector yi.
Primal parameters are a function of the dual parameters as
well, but the dual parameters αi,α

∗
i are vectors in a 2-

dimensional multi-output problem.
Since independent variables are represented in vectors vi,

the training set is defined in a vector ṽ1×2N , and so are the
dual parameters α̃1×2N and α̃∗1×2N for notation simplicity.
The optimization for this model is similar to the one for the
standard SVR.

3) Multi-Output Weighted Support Vector Machine with
Flow Constraints: Assuming that the analyzed air parcel is
sufficiently small so that the flow can be considered approx-
imately incompressible and irrotational, a new set of flow
constraints are added to the original set of constraints with
the purpose of visualizing the wind velocity field to force the
divergence and the vorticity to zero:

s.t.


(
ṽk>c ∆xyV̇

)
·
(
ṽk>c ∆xyV̇

)>
=0(

ṽk>c ∆xyḊ
)
·
(
ṽk>c ∆xyḊ

)>
=0.

(12)

To compute the vorticity and divergence, the differentiation
of the velocity field along the x-axis, the and y-axis is
implemented using operator

∆xy=

[
∆x 0
0 ∆y

]
2N×2N

. (13)

The differential operators are ∆x=L − I and ∆y=L′ − I
∀ij∈{1, . . . , N}, where Li,j=δij+1 and L′i,j=δij+M+1 are a
lower sift matrices, δij is a Kronecker delta function and IN×N
is a diagonal matrix. The operators of the velocity field’s
vorticity and divergence are V̇=

[
I I

]>
and Ḋ=

[
I −I

]>
respectively.

The velocity field is extrapolated to the entire frame using
the inferred parameters in frame k

v̂kc =
(
α̃kc − α̃∗kc

)
· K
(
X∗k,X

)
+ bkc , (14)

where the velocity components are Ûk
c,v̂kxc, and V̂k

c ,v̂kyc,
where Ûk

c , V̂
k
c ∈RM×N . To compute the flow constraints,

the velocity field has to be extrapolated to the whole frame
using Eq. (14). The constraints in Eq. (12) are added to the
constraints in the dual formulation of the ε-MO-WSVM.

B. Streamlines

A wind velocity field may have divergence and vorticity.
However, the air parcel in one frame is very small compared
to the whole volume of air contained in the atmosphere. Within
this frame we assume that there is no divergence or vorticity
in the approximated wind velocity field, and that streamlines
are equivalent to the pathlines.

The trapezoidal rule of numerical analysis is applied to solve
the definite integrals [22]. The values of a streamline Φk

c and
a potential line Ψk

c are (omitting superindex k),

Φc=
Ĥc

2

{ i∑
m

ûmc �∆ymc

}M
i

−

{
j∑
m

v̂mc �∆xmc

}N
j


Ψc=

Ĥc

2

{ j∑
m

ûmc �∆xmc

}N
j

+

{
i∑
m

v̂mc �∆ymc

}M
i


(15)

where � denotes the element-wise matrix multiplication.

IV. RESULTS AND DISCUSSION

The algorithm validation has two steps. The first step is
the parameter validation of the algorithm which computes and
selects the velocity vectors. In the second step, the parameters
of the ε-MO-WSVM and ε-MO-WSVM-FC are validated. The
dataset is divided into training and testing. The training set is
used in both validation steps. The training set is composed
of sequences of 21 consecutive frames from 6 different days.
The selection of image sequences was based on the variety of
different types of clouds distributed across different heights. In
particular, 3 of the sequences contain a single layer of clouds,
and the other 3 contain multiple layers of clouds.

The parameters validated in the algorithm for the compu-
tation and selection of velocity vectors are δ, τ , ` and N∗.
The parameter validation of the algorithm requires labeling
the approximated wind velocity field. The necessary labels to
define the wind velocity field in a frame are: height, velocity
magnitude and angle. The clouds in a layer were segmented to
compute their average height, and the pathline which intercepts
the Sun was manually segmented to calculate the distance that
a cloud is moving as well as its direction.

The wind velocity field was approximated in each frame
of the training set for each set of parameters validated Θ=
{δ, τ, `,N∗}. The approximation was performed using an in-
dependent linear ε-WSVMs for each velocity component. The
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parameters C of the ε-WSVMs were cross-validated in each
training frame. The dataset used in the parameter validation
of the ε-SVMs does not require labels. The targets are the
velocity vectors computed using the WLK. The algorithm is
trained online in each new frame. The N∗ selected velocity
vectors are divided in training 75% and testing 25% sets. This
training set is used to validate the parameters of the ε-WSVMs
and to train the model. The testing set is used to evaluate
the Weighed Mean Absolute Error (WMAE) achieved by the
model.

The Mean Absolute Percentage Error (MAPE) was com-
puted using the labels and the approximated average height,
magnitude and angle of the wind velocity field. A MAPE was
calculated in each frame of the training set. The aim was
to find the set of parameters with less MAPE but without
considerable variation between consecutive frames. To meet
this end, two metrics were calculated and averaged together.
The first metric is computed by averaging the MAPE obtained
in each training frame. The second metric is computed aver-
aging together the differences of MAPE between consecutive
frames in the training set. The optimal validation parameters
of the algorithm are δ=2.29, τ=0.95, �=6 and N∗=200.
The implementation of the algorithm for the computation and
selection of velocity vectors is shown in Fig 1-2. The extracted
features and the weights used to compute the velocity vectors
with the WLK method are shown in Fig. 1. The selected
velocity vectors used to approximate a multilayer wind flow
are shown in Fig. 2.

The testing set is composed of 10 sequences of 21 consecu-
tive images. 5 of the sequences have one layer of clouds, and
the other 5 have multiple layers of clouds. The distribution
of the clouds is different in each one of the sequences and
each sequence was recorded during a different hour and day.
The performances of the ε-WSVMs were evaluated using the
testing subset. Two experiments were performed with each of
the ε-WSVMs. In the first experiment, the parameters of the
ε-WSVMs are validated in each testing frame. In the second
experiment, the parameters are fixed in each testing frame to
the optimal parameters computed with the training set. Using
the optimal parameters for the computation and selection of
velocity vectors algorithm, the parameters of the ε-WSVMs
were validated in each training frame. The optimal parameters
of the ε-WSVMs are the result of averaging together the
validated parameters in each training frame.

When the samples are weighted, the performance of the
models increases (see Table I). Wind flows approximated using
a ε-MO-WSVM have low WMAE and computing time but
high divergence and vorticity (see Table I). The wind flows
approximated using P2 or P3 kernels are very turbulent (see
Fig. 4a). When the wind flow is approximated using the ε-MO-
WSVM-FC with linear and RBF kernels, the wind flow has
low divergence and vorticity (see Fig. 4b). In addition, the
validation of the ε-MO-WSVM-FC requires less computing
time when using the linear and RBF kernels (see Table I).

The most suitable method in the application of nowcasting
requires a compromise between WMAE, computing time,

TABLE I: The table shows the results obtained approximating
the wind flow in the testing sequences when the parameters
were cross-validated and when they were fixed to the optimal.

Parameters Cross-Validated Fixed
K

(
x, x∗)

C ε γ β MAE WMAE ∇ · �V ∇ × �V MAE WMAE ∇ · �V ∇ × �V Time [s]

ε-MO-WSVM

Linear 31.06 0.31 13.27 12.49 1.30·103 1.35·103 13.17 12.45 1052.43 1196.68 19.95
RBF 38.71 0.36 17.81 14.00 13.13 1.21·103 1.22·103 13.83 12.87 620.99 641.04 12.22
P2 34.73 0.28 4.65 10.66 14.25 13.53 1.43·104 1.71·104 17.69 16.89 5.45·104 6.54·104 32.49
P3 38.47 0.22 4.19 2.33 19.29 18.12 8.89·105 8.93·105 42.77 43.03 1.84·106 2.16·106 44.77

ε-MO-WSVM-FC

Linear 38.50 0.19 13.47 13.31 0 0 13.57 13.32 0 0.01 55.53
RBF 38.52 0.35 13.92 14.09 13.72 24.48 24.25 13.65 13.31 131.74 132.01 109.82
P2 39.72 0.24 3.78 44.8 14.37 13.96 61.06 98.00 15.10 14.75 477.77 367.05 125.79
P3 12.88 0.22 5.61 8.34 61.65 63.62 3.30·107 3.53·107 51.43 50.40 2.22·106 2.19·106 139.99

divergence and vorticity. The computing time of a prediction
has to be feasible for nowcasting, and negligible divergence
and vorticity are required to use pathlines to approximate the
streamlines. Taking this into consideration, the most suitable
method is the ε-MO-WSVM-FC with a linear kernel. The
approximated streamlines and potential lines using this method
in a single layer flow are shown in Fig. 3b, and in a multilayer
wind flow in Fig. 4a-4b.

The experiments were carried out in the Wheeler high
performance computer of the UNM-CARC, which uses a SGI
AltixXE Xeon X5550 at 2.67GHz with 6 GB of RAM memory
per core, 8 cores per node.

Fig. 1: The images in the first row shows the temperature (left)
and the height (right) of the pixels. The images in the second
row shows the posterior probabilities of the BeMM.

V. CONCLUSIONS

The proposed algorithm uses features extracted from ther-
mal images of clouds to estimate the wind velocity fields in
which clouds are flowing. The velocity vectors are computed
using the WLK method for each layer of clouds detected in the
thermal images. The distribution of the velocity vectors and the
cloud height are used to infer which layer of clouds is lower
and which is higher. The wind velocity field is extrapolated to
the entire image using a ε-MO-WSVM-FC with a subset of
the velocity vectors. The wind flow streamlines (i.e. pathlines)
and potential lines are computed using the approximated wind
velocity fields in an image.
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Fig. 2: The images show the selected velocity vectors in
their respective coordinates. The color intensity represent the
velocity vectors posterior probability of belong to the upper
layer (left) or to the lower layer (right).

(a) Wind flow approximated with ε-MO-WSVM using a P3 kernel.

(b) Wind flow approximated with ε-MO-WSVM-FC using a linear
kernel.

Fig. 3: The thermal images are organized in time from left
to right. The first images is when the streamlines (green) and
potential lines (red) were calculated. The second and third
images are after 1 minutes and 2 minutes respectively.

(a) Upper layer of clouds Streamlines (green) and potential lines (red).

(b) Lower layer of cloud Streamlines (green) and potential lines (red).

Fig. 4: The thermal images are organized sequentially from
left to right. When the wind flow was approximated is frame
0, after 1 minute is frame 4 and after 2 minutes is frame 8.

Further research in this area will focus on the application
of the cloud tracking algorithm in GSI forecasting, using the
predicted pathlines. The pathline that will intercept the Sun
may be used to anticipate when a cloud will obstruct the direct
radiation of the Sun.
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