Forward Build Systems, Formally

Sarah Spall Neil Mitchell Sam Tobin-Hochstadt
Indiana University Meta Indiana University
USA UK USA

sjspall@iu.edu
Abstract

Build systems are a fundamental part of software construc-
tion, but their correctness has received comparatively little
attention, relative to more prominent parts of the toolchain.
In this paper, we address the correctness of forward build sys-
tems, which automatically determine the dependency struc-
ture of the build, rather than having it specified by the pro-
grammer.

We first define what it means for a forward build system
to be correct—it must behave identically to simply executing
the programmer-specified commands in order. Of course, re-
alistic build systems avoid repeated work, stop early when
possible, and run commands in parallel, and we prove that
these optimizations, as embodied in the recent forward build
system RATTLE, preserve our definition of correctness. Along
the way, we show that other forward build systems, such as
FABRICATE and MEMOIZE, are also correct.

We carry out all of our work in AGpa, and describe in
detail the assumptions underlying both RATTLE itself and
our modeling of it.

CCS Concepts: + Software and its engineering — For-
mal software verification.

Keywords: agda, build systems, concurrency, functional pro-
gramming, program verification, systems, verified applica-
tions

ACM Reference Format:

Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt. 2022. For-
ward Build Systems, Formally. In Proceedings of the 11th ACM SIG-
PLAN International Conference on Certified Programs and Proofs
(CPP °22), January 17-18, 2022, Philadelphia, PA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3497775.3503687

1 Introduction

Build systems are used by everyone. They provide the pow-
erful ability to describe how complex projects should be

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

CPP °22, January 17-18, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9182-5/22/01.
https://doi.org/10.1145/3497775.3503687

ndmitchell@gmail.com

130

samth@indiana.edu

built and to build them in a repeatable and efficient fash-
ion. Two of a build systems most important features are
incrementality and parallelism. To provide both incremen-
tality and parallelism build systems like MAKE [4] require
the user to declare the targets to build, what those targets
depend on, and how to build those targets. Assuming the
user specified all the dependencies of the project correctly,
the software project will be built correctly; during re-builds
only those targets whose dependencies have changed will
be built again; and targets which do not depend on one an-
other can be built in parallel. But, getting the dependencies
of a software project correct is not so easy, as Licker and
Rice [7] show. Omitted or incorrect dependencies can lead
to consequences ranging from missed opportunities for par-
allelism to failure to rebuild in the presence of changes (of-
ten requiring a “clean” step) to outright incorrect results.

An alternative to a build system such as MAKE is a forward
build system, where a user writes a program that says how
to build their software project, without declaring targets or
dependencies. A forward build system is, conceptually, just
a simple command interpreter; it takes a sequence of com-
mands and executes them, without checking for things such
as targets or dependencies, as if the build was a SHELL script.
Unlike a SHELL however, it can provide incrementality and
even parallelism. Let’s take an example:

gcc -c file.c

gcc -c string.c

gcc -c print.c

gcc file.c string.c print.c -o program

A SHELL script would run each of the commands in this
script every time the script was run. A forward build system
however, by using system tracing, runs each command and
records the files the command read or wrote during its ex-
ecution. When the build is re-run, perhaps after a change
to one of the files, it can use this information to decide if
it should run a command again, much how MAKE decides
if it should re-build a target by checking if its dependen-
cies have changed. Forward build system implementations
include MEMOIZE [9], FABRICATE [5] and RATTLE [14].

Like our notional SHELL script, forward build systems are
typically embedded in full-fledged languages to provide con-
trol structures, libraries, and other conveniences: MEMOIZE
and FABRICATE build scripts are Python programs, and RAT-
TLE build scripts are Haskell programs. In this paper we
model forward build systems in general, and then continue

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

with RATTLE in more detail. Our reason for focusing on RaT-
TLE is that it contains two unique features—first, it provides
support for implicit parallelism via speculation, and second
it defines a notion of whether the commands in a forward
build system are valid or conflict with each other via haz-
ards.

Hazards allow stating correctness for Rattle in a way that
is not possible for prior forward build systems. In particular,
a build process that writes to some of the inputs to the build
cannot be correctly executed based solely on remembering
past commands, since there’s no one answer as to what the
past state was. In this situation as well as others, RATTLE
detects the hazard and reports an error to the user.

We thus aim for the following notion of correctness:

A forward build system is correct if, for every build,
it either produces the same result as running the
commands in order, or reports an error.

Our central contribution is a simple yet formal account
of what it means for a forward build system to be correct,
based on the above idea. We demonstrate the utility of our
approach with application to models of both simple and so-
phisticated forward build systems, including hazard detec-
tion, memoization, and parallel speculation.

This paper informally introduces RATTLE, the optimisa-
tions is provides, and what correctness means in §2. We then
move to AGDA, providing:

e The key concepts and definitions underpinning all of
our models of forward build systems in §3.

e A formal model of FABRICATE, as a representative of
simple forward build systems, and proof of its correct-
ness in §4.

e A formal model of RATTLE and proof of its correct-
ness in §5. We prove the correctness of RATTLE first
without speculation, and then including speculation.

In the process of formalising these proofs we found a
small bug in RATTLE hazard computations, which we fixed
in the proof, see §6.4. The same fix can be applied to RATTLE
itself, showing the value of proving these complex concepts
formally.

2 Rattle

RATTLE is a forward build system that is implemented in
Haskell and whose build scripts are Haskell programs which
use the RATTLE API, given in Figure 1. A RATTLE build script
comprises of control logic in Haskell and calls to cmd which
execute external processes. Taking our example from §1, we
can write the following RATTLE program, which uses both
the RATTLE API and the Haskell library System.FilePath.

131

Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt

-- The Run monad
data Run a
rattle ::

Run a -> IO a

-- Running commands
cmd :: CmdArguments args => args
data CmdOption = Cwd FilePath |

class CmdArguments args
-- instances to allow any number
-- of String/[Stringl/CmdOption values

Figure 1. Part of the Rattle API.

main = rattle $ do
let cs = ["file.c" , "string.c"
, "print.c"]

forM cs (\c¢ -> cmd "gcc -c" ¢)
let to@ x = takeBaseName x <.> "o"
cmd "gcc -o program” (map to@ cs)

This program is made up of regular Haskell logic, such as
forM and let, which is not visible to RATTLE, and the calls
invoked by cmd, which are visible to RATTLE. The control
logic is executed every time the script is run, so RATTLE’s
view of the script is:

gcc -c file.c

gcc -c string.c

gcc -c print.c

gcc -o program file.o string.o print.o

Whenever RATTLE executes a command, it uses tracing to
record which files were read (inputs) and written (outputs)
by the command, and the contents of those files. In future
executions, if RATTLE sees a command which previously ran
with the current value of the inputs and outputs, it skips exe-
cution, assuming that the command would have no effect. If
RATTLE sees a command which previously ran with the cur-
rent inputs, but where RATTLE has access to a copy of the
previous outputs, it copies those outputs to where the com-
mand would put them, and doesn’t run the command. If the
command has never been seen before with these inputs, it
will be run afresh with tracing.

One weakness of this approach is that the execution is
single-threaded, only running one command at a time. In
our example, it should be possible to run all the gcc -c com-
mands in parallel, since they work on disjoint source files
and destinations. To overcome that weakness, RATTLE uses
speculation, where it predicts commands that are likely to
be required in future but also unlikely to conflict with other
commands, and runs them before the script requests them.
The commands RATTLE considers for speculation are simply
those that executed in the previous run. Of more interest
is the way RATTLE decides whether a command is likely to

Forward Build Systems, Formally

conflict, which it does using a concept called hazards. RaT-
TLE chooses a command to speculate next by picking a com-
mand which would not cause a hazard with any command
already completed, or a read conflict with any command cur-
rently running, according to the tracing data from the com-
mands’ previous run.

2.1 Hazards

A build system has reached a fixed point if on a subsequent
rebuild, no work is done, because every command is already
up to date. However, that’s not true for all shell scripts -
consider the script:

gcc -¢ foo.c
echo X >> foo.c

On the first execution the file foo. c is compiled and then,
after it has been used as the input to gcc, is modified. The
RATTLE paper [14] introduced hazards, which detect bad be-
haviour, where the absence of any hazards implies the build
has reached a fixed point. In particular, writing to a file af-
ter it has already been read from, as in the echo X command
above, is a read-before-write hazard. The three kinds of haz-
ards defined by RATTLE are:

Read-before-write hazard One command reads a file
which a later command writes to. On a subsequent
rebuild the first command will need to run again be-
cause the second command wrote to its dependency.

Write-before-write hazard A command wrote to a file
a later command writes to the same file again. On a
subsequent rebuild the first command will need to run
again because the second command changed its out-
put file, and that first command rerunning will likely
trigger the second command to run again.!

Speculative write-before-read hazard When RATTLE
runs commands requested by the build, it marks them
as required. If a command was run speculatively and
hasn’t been marked as required yet, it is speculated. If
a speculated command writes to a file later read by a
required command then RATTLE has run commands in
the wrong order, and a speculative write before read
hazard has occurred.

2.2 Assumptions

In order for a hazard-free build to have reached a fixed point,
RATTLE makes certain assumptions which it does not check:

Determinism of commands RATTLE assumes all com-
mands are deterministic, although it doesn’t enforce
this property. When a command is not deterministic
it assumes all possible outputs are equivalent. RATTLE

INote that file moves as commands are likely to cause hazards, under these
definitions, unless the moved file was in the input, which would make the
build fundamentally non-idempotent. Moves can be combined with the
command that produced the moved file, however, to produce a command
that Rattle accepts.

132

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

supports using hash forwarding for non-deterministic
commands, hashing the inputs of a command rather
than the outputs. If a build contains non-deterministic
commands then it might have a different result each
time it runs, which is not the desired behavior of a
build system. Note that this is assumed by all practi-
cal build systems, including MAKE—the alternative is
to abandon the value of build systems entirely.

Disjoint reads and writes RATTLE assumes commands
do not write to their own inputs (aka all writes first
truncate). If a command writes to its own inputs, RAT-
TLE cannot record the true value of its inputs since the
tracing used only captures their value after the com-
mand has completed.

Tracing data is correct RATTLE assumes tracing data
is complete and correct, if it is not, then RATTLE might
make the wrong decision about when to re-run com-
mands and which commands it is safe to run in paral-
lel. RATTLE supports a number of tracing backends per
platform (using LD_LIBRARY_PRELOAD, hooking sys-
tem calls, etc), which vary in their precision vs per-
formance trade-offs, but we assume an ideal model
where they are correct. For example, RATTLE does not
track directory operations or operations that are not
reads or writes; our model does not contain directo-
ries or any such file operations. A detailed discussion
of Rattle’s approach to tracing is given by Spall et al.
[14, §3.5]

2.3 Correctness

The RATTLE implementation executes a build with specula-
tion, and if that raises a hazard, repeats the build without
speculation. Some build scripts are considered flawed, and
always raise a hazard, even without speculation. We con-
sider the RATTLE approach to be correct if every execution
either raises a hazard or produces a result equivalent to that
of the shell script.

In the following sections we model RATTLE in AGDA, then
prove that this model, including its approach to speculation,
meets this definition of correctness.

3 Modeling Forward Build Systems

In this section we describe the framework in which we model
both the forward build systems FABRICATE (§4) and RATTLE
(§5). In particular we aim to prove that the build systems
are equivalent to running the underlying shell script, which
we define as the function shell. All these definitions are in
AcpAa [12] 2. The most important types are given in Figure
2.

2The full source is available at https://github.com/spall/rattle-model/tree/
paper_version_final

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

FileName : Set

FileName = String

FileContent : Set

FileContent = String

File : Set

File = FileName x FileContent

FileSystem : Set

FileSystem = FileName — Maybe FileContent
MaybeFile : Set

MaybeFile = FileName x Maybe FileContent
Memory : Set

Memory = List (Cmd x List MaybeFile)

Cmd : Set
Cmd = String
Build : Set

Build = List Cmd

Figure 2. Table of key types used in our model.

3.1 Modeling Files

For any build system, files are an inherently important as-
pect. Therefore we define:

1. FileName, being a String which represents a path to a
specific file on the file system.
2. FileContent, being a String which represents the con-
tents of a specific file on the file system.
3. File, being a pair of FileName and FileContent which
describes a particular file.
. FileSystem, being a mapping from a FileName to a
Maybe FileContent, where Nothing represents that
the file does not exist in the FileSystem.

3.2 Modeling Commands

From the view of RATTLE, a build is just a series of com-
mands it is given to execute, so we model a Build as a list
of commands. We define a command as Cmd, represented
as a String, although the choice of representation is not too
important - they need equality but little else. The actions of
a command, such as gcc -c file.c depend on the FileSys-
tem it is run on. It isn’t sufficient for a command to be mod-
eled by something static, the result of the command depends
on gcc and file.c, and in particular the header files ac-
cessed depend on the contents of file.c. We model the ef-
fect of a Cmd as a function, CmdFunction, which describes
the actions of the command and reports the files read and
written to by the command when run on a FileSystem.

CmdFunction : Set
CmdFunction = FileSystem — List File x List File

133

Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt

There is an Oracle for converting a Cmd to a CmdFunc-
tion. CmdFunctions are deterministic, so the result of a Cmd-
Function will be equivalent for equivalent FileSystems. But,
our intuition tells us a command will have the same result
when run on many different FileSystem values, as long as
the files the command depends on are the same. So, the Or-
acle maps a Cmd to a dependent product of a CmdFunc-
tion and a CmdProof. CmdProof provides us with evidence
that for any two FileSystems, s; and sa, the CmdFunction
f will produce an equivalent result when run on both s;
and sy if the files read by the command according to f have
the same value in both s; and s5. Although RATTLE allows
adjusting equality comparison using hash forwarding, thus
supporting commands that are only weakly deterministic,
our model assumes strong determinism (that is, that com-
mands produce identical outputs on identical inputs) for
command outputs because weak determinism would pro-
vide us with no additional expressiveness. Modeling weak
determinism would require adding a function which maps
all equivalent FileContents to the same FileContent, but no
other changes to the model.

Oracle : Set
Oracle = Cmd -> X[fe CmdFunction]J(CmdProof f)

-- names of files read according to cmdFunction
reads : CmdFunction — FileSystem — List FileName

reads f's = map proj; (proji (fs))

CmdProof : CmdFunction — Set
CmdProof f=V s;1 s2
— (V g1 — g1 €reads fs; — 51 81 = $2 81)

— fsi=fs

Stated alternatively, while the CmdFunction takes the en-
tire FileSystem, its result is only dependent on the subset of
the FileSystem it claims to use. This property matches the
assumptions of determinism and accurate tracing from §2.2.

Running a Cmd, using run, extends the FileSystem with
the files the CmdFunction writes to.

-- writes according to Cmd's CmdFunction
writes : Cmd — FileSystem — List File
writes = projs o9 (proj; oracle)

run : Cmd — FileSystem — FileSystem
run x s = foldr extend s (writes x s)

Our reference behavior is that which happens when a
build is executed as if it was a script, i.e. when the commands
are executed with no incrementality or other optimizations.
To express that concept, we define a function script, which
executes a Build by calling run on each command in the

Forward Build Systems, Formally

build. This script function is used to prove that optimisa-
tions preserve the reference behavior.

script : Build — FileSystem — FileSystem
script [] sys = sys
script (x: b) sys = script b (run x sys)

3.3 Preconditions and Simplifications

Our model has certain preconditions and simplifications based
on RATTLE’s behavior, which we outline here.

Builds cannot contain duplicate commands Some of
our lemmas explicitly require that a Build contain no
duplicate commands. This assumption is sufficient to
model RATTLE builds because RATTLE does not run du-
plicate commands. If a command occurs more than
once in a build it will be skipped on subsequent ap-
pearances.

Builds are static lists Our model makes the simplify-
ing assumption that builds are static lists. RATTLE pro-
vides support for monadic builds, meaning the result
of previous commands can influence the future com-
mands run. While convenient for users, monadic com-
mands complicate the proof, and if the proof is consid-
ered as a consequence of the initial FileSystem, pro-
vides no additional expressive power.

Commands are run sequentially RATTLE can support
parallel builds, but our model does not explicitly model
parallelism. Instead, builds are a list of commands that
run sequentially, each modifying a FileSystem in se-
quence. In reality, RATTLE is only able to detect which
files were accessed after a command completes, so to
be conservative and report all possible hazards, it as-
sumes all reads happened at the beginning of the com-
mand and all writes at the end. We simplify our model
to ignore parallelism, but any successful parallel in-
terleaving can be encoded by having multiple distinct
commands writing to temporary files, which composed
together form the full command (capturing the early
read and late write that RATTLE assumes). If the com-
mands are not atomic, and thus have a different result
when run sequentially, then there must be a hazard
in the overall build, which would be detected in the
sequentialization as well as in the actual parallel exe-
cution.

In our AGpa model some of these preconditions are cap-
tured as PreCond s br bs, where s is a FileSystem, bs repre-
sents the Build provided as the script, and br represents the
Build that was actually run (which may be different from bs
if speculation was involved).

134

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

3.4 Hazards

In §2.3 we introduced RATTLE’s notion of correctness. We
say a build system is correct if executing the build script
gives identical results to the shell script and is also idem-
potent, or raises a hazard. We also showed there are builds
which won’t be idempotent because they contain sequences
of commands, which modify each others dependencies in a
way that can cause those commands to re-run on an imme-
diate subsequent rebuild. RATTLE considers such sequences
of commands to be hazardous, and defines two hazards to
describe these problematic sequences, read before write haz-
ards and write before write hazards.

Hazards also enable RATTLE to detect when it has made an
error with speculation. When RATTLE speculates commands
it does so assuming the command is part of the build script
and that its dependencies have not changed since it was last
run. But, a speculated command might no longer be part of
the build, or its dependencies might have changed, poten-
tially leading to a speculative write before read hazard, where
a speculated command wrote to a file a later non-speculated
command read from, indicating RATTLE did not run the com-
mands in the order intended by the build author. For exam-

ple:

gcc -c file.c

gcc -c string.c

gcc -c print.c

gcc file.c string.c print.c -o program

Let’s say RATTLE ran the above list of commands, specu-
lating gcc -c file.c, which is no longer part of the user’s build
script. Then, gcc file.c string.c print.c -o program would read
a version of file.o unintended by the build script’s author.
Through speculation RATTLE inadvertently ran a command
it was not meant to run, causing a later command to poten-
tially read the wrong data.

In this section we present two data types, Hazard and
HazardFree, which provide evidence when one of the three
hazards has occurred, or evidence that a build contains no
hazards, respectively.

The Hazard data type (Figure 3), represents a hazard oc-
curing in the build. Hazard is indexed on a FileSystem, Cmd,
Build, and Filelnfo, and provides evidence of a hazard oc-
curring after the Cmd has run on the FileSystem. The Build
Hazard is indexed on, is the script build, the one meant to
be executed, and is specified for the purpose of deciding if a
speculative write before read hazard has occurred. Filelnfo is
a list, used to record the Cmds run so far, and the files they
read and wrote to, for the purpose of detecting hazards.

-- FileNames == List FileName
FileInfo : Set
FileInfo = List (Cmd x FileNames x FileNames)

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt

-- The FileNames the Cmd read according to the FileInfo
cmdRead : FileInfo — Cmd — List FileName

-- The FileNames the Cmd wrote according to the FileInfo
cmdWrote : Filelnfo — Cmd — List FileName

-- extends FileInfo with a new entry for the Cmd
save : FileSystem — Cmd — FileInfo — Filelnfo

save s x fi = (x, (cmdReadNames x s) , (cmdWriteNames x s)) : fi

data Hazard : FileSystem — Cmd — Build — FileInfo — Set where
ReadWrite : V {s} {x} {b} {Is} {v} — v € (cmdWriteNames x s) — v € (filesRead Is) — Hazard sx b Is
WriteWrite : ¥ {s} {x} {b} {Is} {v} — v € (cmdWriteNames x s) — v € (filesWrote Is) — Hazard s x b Is
Speculative : V {s} {x} {b} {Is} {v} x1 x2 — x5 before x; € (x: (cmdsRun Is)) — xo € b — = x; before x, € b
— v € cmdRead (save s x Is) xo — v € cmdWrote (save s x Is) x; — Hazard sx b Is

data HazardFree : FileSystem — Build — Build — FileInfo — Set where

[1:V {s}{b}{Is} — HazardFree s[] bIs

_i YV AsH{xd {b1} {bo} {Is} — — Hazard s x by Is — HazardFree (run xs) by ba (save s x Is) — HazardFree s (x: by) by Is

Figure 3. Data structures capturing hazards and the absence of hazards and associated helper functions.

Hazard has a constructor for each of the three types of
hazard. ReadWrite and WriteWrite construct evidence of
read before write or write before write hazards respectively.
A read before write or write before write hazard has occurred
if the command writes to a file a previous command read
or wrote to. ReadWrite constructs a Hazard by showing the
writes of the Cmd intersect with the files read by the previ-
ous Cmds run, as recorded in the Filelnfo. WriteWrite con-
structs a Hazard by showing the writes of the Cmd intersect
with the files written to by previous Cmds, as recorded in
the Filelnfo.

Constructing evidence of a speculative write before read
hazard is more complicated, because whether or not a spec-
ulative write before read hazard has occurred depends on the
order the commands in the build were meant to run. Specu-
lative constructs evidence of a speculative write before read
hazard by showing there are two commands, x; and x2, from
those run so far (i.e. recorded in the Filelnfo, or the Cmd just
run, x) where the later command, x5 read a file, which the
earlier command x; wrote to, but x; was not meant to run
before x5 , possibly because x; was never meant to run (x be-
fore y € Is says x is before y in the list Is). Unlike ReadWrite
and WriteWrite, which say there exists a Hazard explicitly
involving Cmd Speculative says there was a speculative haz-
ard somewhere in the history of the build. When coming up

135

with a representation for speculative write before read haz-
ards we realized currently RATTLE does not correctly detect
all speculative write before read hazards. Our model assumes
a fixed version of RATTLE which correctly detects all specu-
lative hazards. We discuss the specifics of how RATTLE was
wrong in §6.4.

The converse of the Hazard data type is the HazardFree
data type (Figure 3), which provides evidence a build con-
tains no hazards. HazardFree is indexed on a FileSystem,
two Builds, and a FileInfo. The FileSystem is the one we are
running the first Build in, the second Build is the script build,
required to prove there are no speculative write before read
hazards, and the Filelnfo is the record of the commands run
so far. HazardFree is an inductive data type with an empty
constructor , [], which trivially says that an empty Build is
HazardFree, and a constructor, _ :: _ which says the first
command in the build is hazard free, = Hazard, and the rest
of the build is HazardFree after running the first command.

4 Correctness of FABRICATE

A forward build system is fundamentally just a script with
support for incrementality. FABRICATE traces the commands
it runs, and records the files they read to decide whether
or not they should be run on re-builds. In this section we
present a model of the forward build system FABRICATE

[5], as well as a correctness lemma and proof in AGpA. Given

Forward Build Systems, Formally

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

correct-fabricate : V {s} b — PreCond s b b — HazardFree s b b [] — (V fi — proj; (fabricate b (s, [])) fi = script bs f1)

Figure 4. A correctness lemma for FABRICATE.

the similarity to MEMOIZE [9], the same model and proofs
apply identically.

4.1 Modeling FABRICATE

We model FABRICATE by extending script, described in §3
with the use of a Memory to support incrementality. Mem-
ory is a list of Cmds and a list of File values (see Figure
2), which records the commands run and which files they
read. Before we state the definition of fabricate we define
a new function runF for running commands. runF checks
if a command should be run, using run?, which checks if
the Cmd is in the Memory and the Files recorded have un-
changed values in the FileSystem and thus would have no
effect if run(assuming determinism, see §2.2). If run? says
the Cmd should be run, either because there is no entry for
it in the Memory or the values of the FileNames stored have
changed in the current FileSystem (get retrieves the files
stored in the Memory for x and maybeAll checks if they
have changed in the FileSystem), runF calls doRun. Func-
tiondoRun calls run defined in §3 and extends the Memory
with a new entry for the Cmd run and the files it read; only
the files read are recorded just as FABRICATE does.

run? : Cmd -> State -> Bool

run? x (s, m) with x €? map proj; m

... | no x¢ = Bool.true

... | yes xe€ = is-nothing (maybeAll {s} (get x m x€))

-- store extends the Memory with a new entry
doRun : State -> Cmd -> State
doRun (s, m) x = let sp = St.run x s in

(s2 , store x (cmdReadNames x s) s m)

runF : Cmd — (FileSystem x Memory)
— (FileSystem x Memory)
runF c¢cmd st = if (run? cmd st)
then doRun st cmd
else st

Finally, below we define fabricate. It takes a Build, FileSys-
tem, and Memory and returns a FileSystem and Memory,
using runF to run commands.

fabricate : Build — (FileSystem x Memory)
— (FileSystem x Memory)

fabricate [] st = st
fabricate (x: b) st = fabricate b (runF x st)

4.2 Proving FABRICATE Correct

In §2.3, we informally stated that a forward build system is
correct if for all hazard free builds, executing a build with
the forward build system has the same effect as executing it
as a script. So, we state the following correctness theorem
for FABRICATE:

FABRICATE is correct if for all hazard free builds,
executing a build with FABRICATE has the same
effect as running it as a script.

Figure 4 shows the corresponding lemma in AGDA, correct-
fabricate. It says for a FileSystem, s, and a Build, b, for which
we know our pre-conditions are true, and which is Hazard-
Free, the FileSystem produced by executing b with fabri-
cate is equivalent to the FileSystem produced by executing
b with script. Two FileSystems are equivalent if for all File-
Names, the values are the same in both FileSystems. Essen-
tially, fabricate and its usage of a Memory preserves the be-
havior of script for HazardFree builds.

We omit the details of the proof here, but it proves that for
each Cmd, ¢, in the Build, b, the FileSystem produced by run-
ning ¢ with runF is equivalent to the FileSystem produced
by running ¢ with run, because if ¢ has been run before then
running it is equivalent to not running it because its writes
could not have changed in the FileSystem after ¢ was last
run, otherwise there would be a WriteWrite Hazard.

Of note, the proof does not require the ReadWrite hazard
free property, although we would require such a property
if we were to prove idempotence. The proof also doesn’t
require Speculative either as FABRICATE does not perform
speculation.

5 Correctness of Sequential RATTLE

In this section we extend our model from §3 to RATTLE, and
state and prove a correctness lemma for sequential RATTLE.

5.1 Modeling RATTLE

We model two variants of RATTLE in order to express the
necessary proofs — rattle-unchecked which doesn’t check
for hazards, and rattle which does. Like FABRICATE, RATTLE
offers incrementality through the use of memory, but unlike
FABRICATE, RATTLE stores both the files a command read
and wrote, rather than just those read.

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

We begin by defining a new function for running com-
mands, runR, which is identical to runF, except it calls
doRunR rather than doRun. We omit the body of doRunR
here, because it is the same as doRun except it records the
Cmd’s writes in the Memory in addition to the reads. We
then use runR to define rattle-unchecked almost identically
to fabricate; it uses runR rather than run.

runR : Cmd — (FileSystem x Memory)
— (FileSystem x Memory)
runR cmd st = if (run? cmd st)
then doRunR st cmd
else st

rattle-unchecked : Build — (FileSystem x Memory)

— (FileSystem x Memory)
rattle-unchecked [] st = st
rattle-unchecked (x : b) st = rattle-unchecked b (runR x st)

When RATTLE executes a build, after each command fin-
ishes it checks for the hazards described in §2.1. RATTLE
keeps a record of the files accessed so far in the build, which
command accessed the file as well as a timestamp of when
the file was accessed, for a read the command’s starting
timestamp is recorded, and for a write the command’s fin-
ishing timestamp is recorded. RATTLE also keeps a record
of which commands have been required by the build so far,
meaning the build script has requested them to run, they
were not just run via speculation. To check for hazards Rat-
TLE compares the files the command which just completed
accessed to the files accessed so far. If the current command
wrote to a file after another command read or wrote to that
file, then a read write hazard or a write write hazard has
been detected, respectively. To detect if a speculative write
before read hazard has occurred, RATTLE checks if a previ-
ous command, which was not meant to run before the cur-
rent command, wrote to a file it read. RATTLE uses the list
of required commands to learn the order commands were
meant to run in. If both commands are in the required list,
and the current command is first, then the commands ran in
the wrong order and a speculative write before read hazard
has occurred. If only the current command is in the required
list, then a speculative write before read hazard has occurred.
Commands are added to the required list when they are re-
quired by the build script, regardless of whether or not they
were run speculatively.

Because rattle-unchecked does not check for hazards we
also define rattle, which checks for the hazards described in
§2.1, to more closely model RATTLE. To facilitate this we de-
fine a new function for running commands, runWError. Just
as runR, runWError uses run?, but now it also now performs
hazard checking using checkHazard, before calling doRunR
and adding a new entry to the FileInfo with rec. We omit

137

Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt

the implementation of checkHazard here, but it looks for
ReadWrite and WriteWrite hazards by checking if the Cmd
just run wrote to any files recorded in the Filelnfo. It checks
for Speculative hazards by seeing if two Cmds exist, includ-
ing the Cmd just run, where the first Cmd run wrote to a
file the later Cmd read, but the first Cmd was not meant
to run before the later Cmd. Unlike RATTLE, the model has
perfect information about which commands were meant to
run and the order they were meant to run in. So, the model
could detect all speculative write before read hazards as soon
as they happen, but to more closely simulate RATTLE, the
model waits until the latter command could be detectably re-
quired by RATTLE to report a Speculative hazard. The model
checks if a Cmd has been required by seeing if all of the
Cmds meant to run before it, are recorded in the Filelnfo.

checkHazard : V s x {b} Is — Maybe (Hazard s x b Is)

runWError : V {b} x s m Is
— Hazard s x b Is @ (FileSystem x Memory) x Filelnfo
runWError x s m Is with (run? x (s, m))
.. | false = injs ((s, m) , Is)
.. | true with checkHazard s x Is
.. | just hz = inj; hz
.. | nothing = injy (doRunR (s, m) x, rec s x Is)

Finally, we define rattle, which returns either a Hazard
(proving that a hazard was reached), or a FileSystem and
Memory. 3Hazard is an abbreviation for existentials and a
Hazard, because Hazard is indexed on things we cannot in-
clude in rattle’s type signature.. To support speculation, rat-
tle takes two builds, the build to run, br, and the script build
supplied by the user, bs. In the case of sequential RATTLE,
these two are the same.

JHazard : Build — Set
JHazard b = 3[sys |(3[x 1(3[Is](Hazard sys x b Is)))

rattle : (br bs : Build) — (FileSystem x Memory) x FileInfo
— JHazard bs W (FileSystem x Memory) x Filelnfo

rattle [] bs st = injo st

rattle (x: by) bs st@((s, m), Is) with runWError x s m Is

... | inj1 hz =inj; (proji (proji st), x, projs st, hz)

... |inja (st1, Is1) = rattle by bs(st; , Isy)

5.2 Correctness of rattle-unchecked

Before we prove rattle is correct, we state and prove rattle-
unchecked is equivalent to script; that RATTLE which does
not check for hazards is equivalent to the ScripT. The lemma,
script=rattle-unchecked, is stated formally in Figure 5, and
says:

Forward Build Systems, Formally

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

script=rattle-unchecked : V s b — DisjointBuild s b — (V fi — script b s fi = proj; (rattle-unchecked b (s, [])) f1)

Figure 5. A lemma stating rattle-unchecked and script produce equivalent FileSystems.

=toScript : FileSystem — Build — Build — Set

=toScript s br bs = [51 1(3[m 1(3[Is](rattle br bs (s, []), [1) = injo (51, m), Is) x ¥V fi — s1 fi = script bs s f1)))

correct-rattle : V s b — PreCond s b b — — HazardFree s b b [] W =toScript s b b

soundness : VY {s1} {my} {Is} s br bs — DisjointBuild s br — rattle br bs ((s, []), []) = inj> ((s1 , m1), Is)

— (V fi — script brsfi = s1 f1)

completeness : V s br bs — PreCond s br bs — HazardFree s br bs [| — 3[st](3[Is |(rattle br bs ((s, []), [1) = inj2 (st, Is)))

Figure 6. The correctness lemma for sequential RATTLE, correct-rattle. As well as the soundness and completeness lemmas

used to prove it.

For all builds, b, where Cmds in b do not write
to their reads, executing b with rattle-unchecked
produces a FileSystem equivalent to the one pro-
duced by executing b with script.

This is analogous to the correctness of FABRICATE in §4,
but notably does not include a requirement that the build be
hazard free. This is because rattle-unchecked records both
the files a command read and wrote to, and will re-run a
command if the reads or writes of a command have changed
since it was last run, rather than just the reads. Therefore,
there is no need to prove the writes of a command haven’t
changed since it was last run. Evidence is still required that
commands do not write to their own inputs, which is pro-
vided by DisjointBuild, because we need to know the values
of the files read by a command are accurately recorded in the
Memory, since those values are recorded after a command
has completed.

5.3 Correctness of Sequential RATTLE

We now wish to prove the correctness lemma for sequential
RaTTLE. Following the correctness definition for a forward
build system stated in §2.3, we provide the following infor-
mal correctness definition for sequential RATTLE:

Sequential RATTLE is correct if running a build,
b with RATTLE, either results in a hazard or a file
system equivalent to the one produced by running
b as a script.

The formal correctness lemma in AGDA, correct-rattle is
in figure 6.

This definition of correctness is faithful to the one in §2.3,
because the only hazards in a sequential build, are those

138

caused by problematic sequences of commands in the build
script and not due to speculation. In the remainder of this
section we prove soundness and completeness before finally
proving the correctness of sequential RATTLE.

5.3.1 Soundness. RATTLE is sound if it preserves the se-
mantics of the ScripT. Applied to our AGpA model of RAaT-
TLE, rattle is sound if when it does not find a Hazard, the
resulting FileSystem is equivalent to the one produced by
script. In Figure 6 we formally state a soundness lemma for
rattle:

rattle is sound if, when executing a Build, br, if
it produces a FileSystem and not a Hazard, then
script produces an equivalent FileSystem when ex-
ecuting br.

We omit the details of the proof here, but rattle is sound
because runWError is sound, meaning the FileSystem run-
WError produces is the same one runR produces. The proof
of runWError’s soundness is trivial, so we also omit the de-
tails here.

5.3.2 Completeness. The final lemma we introduce and
prove is the completeness of rattle. RATTLE is complete if for
all builds with no hazards it does not discover a hazard. We
state a corresponding lemma in our AGpa model for rattle
in Figure 6:
rattle is complete if for any Build, br, where the
standard preconditions are true, and which is Haz-
ardFree, executing br with rattle produces a FileSys-
tem and Memory, and not a Hazard.

At a high level, the proof of completeness shows for each
Cmd in br, that runWError produces a new FileSystem and

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

Memory and not a Hazard, because it would be a contradic-
tion to produce a Hazard. Therefore, rattle will produce a
FileSystem and Memory rather than a Hazard.

5.3.3 Correctness. The proof of correctness, correct-rattle
in figure 6, easily follows from soundness and completeness.

6 Correctness of Speculative RATTLE

In the previous section we presented a correctness defini-
tion for sequential RATTLE and proved sequential RATTLE is
correct. In this section we present a correctness definition
for RATTLE with speculation, where RATTLE is executing an
ordering of commands other than the one specified by the
build author, and prove in its current state that RATTLE is
only partly correct.

RATTLE achieves parallelism by speculating commands be-
fore they are required by the build script. A command is
required when the build script passes it to the build sys-
tem with a call to cmd. If RATTLE already speculated the
command it can skip it and immediately continue. RATTLE
uses the commands the build required last time it was exe-
cuted to decide which commands to speculate. Things can
go wrong when running a build with speculation. First, if
the build script has changed since it was last run RATTLE
could speculate commands that are no longer part of the
build. Second, the dependencies of the recorded commands
could have changed since they were last run causing Rat-
TLE to speculate commands when it shouldn’t have. We limit
ourselves to proving what happens in the case where Rat-
TLE only runs commands in the build, but we will briefly
discuss how we could extend the lemmas for the case where
RATTLE runs unnecessary commands in §6.3.

Rather than encode the speculation algorithm used by
RATTLE, we instead model two builds, the script build, bs,
which is the one the user wants to execute and the spec-
ulative build, br, which is the build RATTLE actually exe-
cutes. The total correctness lemma and the partial correct-
ness lemma’s we state below are for all builds, where br
is a permutation of bs, and thus regardless of the strategy
RATTLE chooses for speculating builds, our model and lem-
mas are correct. These proofs leave RATTLE free to speculate
any way it chooses, balancing performance against the like-
lihood of hazards.

6.1 Total Correctness (Not Provable)

We first state a total correctness lemma for RATTLE with
speculation, which we cannot prove:

Speculative RATTLE is correct if either the script
build contains a read before write or write be-
fore write hazard, or executing the speculative
build with RATTLE is equivalent to executing the
script build as a script.

139

Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt

Informally, if the script build has no read before write or
write before write hazards, then whatever speculatively re-
ordered build RATTLE decides to run produces a result equiv-
alent to executing the script build. We state this lemma in
AcgDA, correct-speculation in Figure 7, but are not able to
prove it.

In practice, RATTLE first runs a build with speculation,
and if a hazard occurs, reruns the build without speculation
in the hope the hazard was a consequence of speculation
rather than inherent in the build. However, it is possible in
rare circumstances that speculation might mess up the in-
puts to the build (probably because in previous runs they
were outputs). As a result, there might be builds that have
hazards caused by speculation, but no real hazards, and can-
not be executed equivalent to a script. There are techniques
discussed in the RATTLE paper [14] to address these (using
git for inputs, segregating inputs from outputs), but none
are yet implemented in the RATTLE tool. If RATTLE were to
address this issue, we believe RATTLE could be proven to be
correct by the above definition, but as it is, we seek to prove
partial correctness of RATTLE.

6.2 Partial Correctness

Our partial correctness theorem weakens the total correct-
ness theorem with an additional clause:

Speculative RATTLE is partially correct if either
the script build contains a read before write or
write before write hazard, or the speculative build
contains a hazard, or executing the speculative
build with RATTLE is equivalent to executing the
script build as a script.

Specifically, we consider a hazard caused by speculation
to be a partially correct execution. See Figure 9 for the par-
tial correctness lemma and proof in AGDA, semi-correct.

Before we prove partial correctness we require an addi-
tional lemma stated below, and in Agpa in figure 8:

For two builds br and bs, which are permutations,
where br is HazardFree with respect to bs, execut-
ing br with script produces a FileSystem equiv-
alent to the one produced by executing bs with
script.

We prove this reordering lemma (reordered= in Figure 8)
by assuming it is true for br and bs with x, the last Cmd
in bs removed from both. And then showing that adding x
back to both br and bs still results in equivalent FileSystems
because x reads and writes to the same files when run as part
of br and bs, and x does not write to any file another Cmd in
either br or bs read or wrote to, because if it did there would
be a Speculative hazard.

We can now explain our proof of partial correctness. Using
the decidability of HazardFree, we can case on whether or
not the speculative build, br is HazardFree with respect to

Forward Build Systems, Formally CPP 22, January 17-18, 2022, Philadelphia, PA, USA

correct-speculation : V s br bc — PreCond s br bc — — HazardFree s bc be [] W =toScript s br be

Figure 7. A total correctness lemma for RATTLE with speculation, which says the script build has a hazard, or running the
re-ordered build has the same effect as running script build. We cannot prove this lemma for the current implementation of
RATTLE.

reordered=:V s br bc — PreCond s br bc — HazardFree s br bc [| — (V fi — script be s fi = script brs fi)

Figure 8. The reordering lemma for script, which says for two builds which are permutations of one another, and are Haz-
ardFree, executing both with script is equivalent.

semi-correct : V s br bs — PreCond s br bs — — HazardFree s br bs [] W - HazardFree s bs bs [] W =toScript s br bs
semi-correct s br bs pc with hazardfree? s br bs []
... | no hz=inj; hz
... | yes hfi with completeness s br bs pc hfy
v | (s1,my), Is, =1 =injs (injo (s1, my, Is, =1, V=))
where V=:V fi — s1 fi = script bss fi
V= fi = sym (trans (reordered= s br bs pc hfi f1)
(soundness s br bs (proj; pc) =1 f1))

Figure 9. The partial correctness lemma for speculative RATTLE; which says br has a hazard, or bs has a hazard or running
br has the same effect as running bs.

bs. If it is HazardFree, we can trivially use soundness, com- RATTLE currently checks for hazards when a command fin-
pleteness and reordered= to show that rattle executing br ishes running, and in order to provide an efficient imple-
is equivalent to script executing bs. mentation (hazard checking can be quite expensive) only

considers the files that were read or written by that com-
mand. Moreover, when a command is required but skipped

6.3 Correctness with Extra Commands because it was already run, RATTLE does not recheck for haz-
The lemmas in this section state correctness if RATTLE ex- ards. As a consequence, there is a bug that if the command,
ecutes a permutation of the script build, but not what hap- x, was marked as speculated when it went through hazard
pens when RATTLE introduces extra commands. When RAT- checking, but later become required, RATTLE will potentially
TLE is executing unnecessary commands we consider the fail to detect a speculative write read hazard involving x.

“output” of the build to be those files written to by the script When attempting to prove and model RATTLE in AGDa it
build. We would then say executing a build with extra com- became obvious that if the commands were only considered
mands is equivalent to executing the script build, if the files when they were run, some speculative write read hazards
written to by the script build have the same values in both would be missed. In particular, a required? predicate needed
FileSystems. All of our lemmas could be adjusted to support to be tested with the full set of commands, not a prefix, as
this definition of correctness by stating two FileSystems are RaTTLE was doing. The fix in the model was to see if the
equivalent for the set of files written to by the script build command is ever required, and the fix in RATTLE would be to
rather than equivalent for all files. Future work involves retest for hazards when a command changes required status.
proving these alternative correctness lemmas. This flaw in RATTLE was far from obvious, and the ten-

sion between efficient implementation and simplicity made

it hard to spot. Testing for the correctness properties is hard,

especially around speculative hazards, as RATTLE is quite
Hazards careful as to what it speculates — making it hard to find a

Speculative write read hazards occur when a command re-

quired by the build script, reads a file, which a speculated

command has already written to. The implementation of

6.4 Bug Detecting speculative write before read

140

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

sequence of edits that would cause a problem with a specu-
lative hazard. In contrast, the approach of modeling specu-
lation as producing all permutations makes the bug trivial
to find with AGpa (or any proof-based technique).

7 Related Work

This paper formalises forward build systems and proves cer-
tain properties about these systems. While forward build
systems have been around a long time, they are undoubtedly
less popular than the more traditional backward build sys-
tems. Backward build systems were classified in the Build
Systems a la Carte paper [11], which contains small rep-
resentative implementations for each type of build system,
along with definitions of correctness (that the result is equiv-
alent to rebuilding everything) and minimality (only actions
whose dependencies have changed are run). However, the
implementations were in Haskell, and the definitions were
specified informally. Those definitions were subsequently
formalised [8], using Coq to reimplement the build systems.
While working towards correctness and minimality (not yet
achieved when that paper was published) it was determined
that the notion of acyclic tasks (tasks which do not depend
on themselves, including indirectly) was an important con-
straint to prove termination.

In addition to the formalisation of generic build systems,
we are aware of two specific backwards build systems that
have been had properties proven about them in more depth
— specifically the systems PLuto and CLOUDMAKE. Starting
with PruTo, the paper introducing Pruto [3] included a sim-
plified rebuild algorithm (without cycle support), and then
provided manual proofs of soundness (what we call correct-
ness) and optimality (also known as minimality). Compared
to our system, soundness property S3 most closely matches
our definition, with the property that everything that was
built must now be up to date. For their minimality property,
the proof relies on a cache so nothing will be built twice
(which RATTLE shares) alongside a proof that nothing not re-
quired is built. For RATTLE, because speculation might intro-
duce unnecessary work, we do not expect minimality under
these definitions. These proofs were reused and extended to
apply them to model-driven development [15], showing the
utility of these proofs. We are aware of an existing project to
mechanise these Pluto proofs® and eagerly await the results.

The CLOUDMAKE build system was modeled formally by
Christakis et al. [1] using DAFNY [6]. A CLOUDMAKE build
is driven by a script in a mutation-free subset of JavaScript,
which is then modeled in DAFNY, along with the rebuild al-
gorithm. In particular there is an operation exec that exe-
cutes an external program, with specific axiomatized prop-
erties, which has similarities our Cmd definition. The authors
focus is not on proving that the build is correct, but proving

3https://wp.doc.ic.ac.uk/vetssannualreport/mechanising-the-theory-of-
build-systems/

141

Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt

that certain optimisations performed by CLouDMAKE do not
change the semantics. Using the framework the authors are
able to prove that functions can be evaluated in parallel and
that operations are able to be cached, giving the key prop-
erties of parallelism and incrementality as an optimisation
over the standard build algorithm.

In this paper we have focused on the RATTLE build sys-
tem, but also included MEmoIZE and FABRICATE, which can
be viewed as a subset of RATTLE without speculation. There
are other forward build systems, which contain different
features that RATTLE does not. Both Fac [13] and STrRoOLL
[10] do not require a complete order to be given, meaning
there is no corresponding SHELL evaluation order that can
be matched. The LAFORGE [2] system uses tracing to observe
execution at a more fine grained level than the user spec-
ifies, meaning that commands are sometimes executed in
part. A command can be broken into sub-commands, which
can be executed in place of the complete command. We be-
lieve the our high-level definition of correctness for forward
build systems is applicable to these systems, but more work
is needed to determine how to model them and prove that
they meet this definition. For example, LAFORGE’s partial ex-
ecution of commands might result in additional hazards in
typical cases.

8 Conclusion

Compilers, operating systems, and web servers need to be
correct, and substantial effort has gone into verifying them.
But a humble build system can sit in between all of these,*
and thus must be correct as well. We modeled RATTLE, a
state-of-the-art forward build system, and proved it correct.
In doing so we found a bug which we have a proposed fix
for in RATTLE.

While we have used this model to figure out if RATTLE
as it stands is correct, we haven’t yet talked about what
corrective action RATTLE could take to recover from haz-
ards. For speculative hazards, RATTLE’s current strategy is
to rerun without speculation and thus without parallelism,
which can be expensive. The reason for this simplistic strat-
egy is that it’s not yet clear what would be both better and
correct. Our formal model will let us figure that out formally
in AGDA initially, before transferring the knowledge to RaT-
TLE itself.

References

[1] Maria Christakis, Rustan Leino, and Wolfram Schulte. 2014. Formal-
izing and Verifying a Modern Build Language. In FM 2014: Proceed-
ings of Formal Methods (Lecture Notes in Computer Science, Vol. 8442).
Springer, 643-657.

4https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-
leverages-solarwinds-supply-chain-compromises-with-sunburst-
backdoor.html

Forward Build Systems, Formally

[2] Charlie Curtsinger and Daniel W. Barowy. 2021. LaForge: Always-
Correct and Fast Incremental Builds from Simple Specifications.
(2021). https://arxiv.org/abs/2108.12469.

[3] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. 2015. A Sound
and Optimal Incremental Build System with Dynamic Dependencies.
In Proceedings of OOPSLA 2015 (Pittsburgh, PA, USA). ACM, 89-106.
https://doi.org/10.1145/2814270.2814316

[4] Stuart Feldman. 1979. Make - A program for maintaining computer
programs. Software: Practice and experience 9, 4 (1979), 255-265.

[5] Berwyn Hoyt, Bryan Hoyt, and Ben Hoyt. 2009. Fabricate: The better
build tool. (2009). https://github.com/SimonAlfie/fabricate.

[6] K Rustan M Leino. 2010. Dafny: An Automatic Program Verifier for
Functional Correctness. In LPAR 2010: Logic for Programming, Artifi-
cial Intelligence, and Reasoning. 348-370. https://doi.org/10.1007/978-
3-642-17511-4_20

[7] Nandor Licker and Andrew Rice. 2019. Detecting incorrect build rules.
In Proceedings of ICSE 2019. ACM, 1234-1244. https://doi.org/10.1109/
ICSE.2019.00125

[8] Georgy Lukyanov and Andrey Mokhov. 2019. Towards a Coq Formal-
isation of Build Systems. In The Fifth International Workshop on Coq
for Programming Languages.

142

(9]
(10]

(1]

[12]

[13]

[14]

[15]

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

Bill McCloskey. 2008. Memoize. (2008). https://github.com/
kgaughan/memoize.py.

Andrey Mokhov. 2021. Stroll: a build system that doesn’t require
a plan. In IFL 21: Implementation and Application of Functional Lan-
guages.

Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2020. Build
systems a la carte: Theory and practice. Journal of Functional Program-
ming 30, 55. https://doi.org/10.1017/S0956796820000088

Ulf Norell. 2008. Dependently Typed Programming in Agda. In Pro-
ceedings of the 6th International Conference on Advanced Functional
Programming (Heijen, The Netherlands) (AFP’08). Springer-Verlag,
Berlin, Heidelberg, 230-266.

David Roundy. 2019. Fac build system. (2019). https://sites.science.
oregonstate.edu/~roundyd/fac/.

Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt. 2020. Build
Scripts with Perfect Dependencies. In Proceedings of the ACM Pro-
gramming Languages 4, OOPSLA. Article 169, 28 pages. https://doi.
org/10.1145/3428237

Perdita Stevens. 2020. Connecting software build with maintaining
consistency between models: towards sound, optimal, and flexible
building from megamodels. Software and Systems Modeling 19, 4
(2020).

