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ABSTRACT

We propose heteroscedastic subset scan (HSS), a novel method for identifying covariates that are respon-
sible for violations of the homoscedasticity assumption in regression settings. Viewing the problem as one
of anomalous pattern detection, we use subset scanning techniques to efficiently identify the subset of
covariates that are most “heteroscedastically relevant” Through simulations and a real data example, we
demonstrate that HSS is capable of detecting heteroscedasticity in a wide range of settings, including
in cases where existing global tests lack power. Furthermore, the global power of our method compares
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favorably to methods such as the Breusch—-Pagan test. Supplementary materials for this article are available

online.

1. Introduction

Regression techniques are used in a wide range of scientific
fields to model the relationship between a set of covariates and
a response. Consider a regression model Y = mp(X) + e,
with response Y € R, covariate vector X € RP, error term
€ € R and unknown regression function my : R? — R.
We can take X to be fixed or random; our notation is based on
X being random but with no distributional assumptions made
on X so that this accomodates both cases (allowing a dirac
measure for X). We observe n iid observations from this model.
Assume that E(¢) = 0. Many regression paradigms require an
assumption of homoscedasticity, that is, var(e) = 0% > 0 is
constant and does not depend on the covariate X. Problems
may arise when attempting to fit a model where the constant
variance assumption does not hold. Such models are said to
exhibit heteroscedasticity.

The Gauss-Markov Theorem states that the minimum-
variance linear unbiased estimator of the coeflicient vector in
a linear regression model is the ordinary least squares (OLS)
estimator. However, this theorem does not hold if the error
terms do not have constant variance. If heteroscedasticity is
present, OLS estimates can be improved by accounting for the
variance structure.

It is well-known that not accounting for heteroscedasticity
when it is present can result in a “loss of efficiency” and “more
importantly, the biases in estimated standard errors may lead
to invalid inferences” (Breusch and Pagan 1979). And “in many
cases the loss of efficiency in using procedures for homoscedas-
tic models under heteroscedastic errors may be substantial”
Dette and Munk (1998). Biased estimates of standard errors
can result in higher rates of Type I errors in inference. And
using inefficient procedures or statistics in place of more effi-
cient ones can result in higher rates of Type II errors. On the
other hand, in a high-dimensional setting, Li and Yao (2019)

provide a simulation showing that using methods designed for
heteroscedasticy when none is present can result in a very large
loss of efficiency. The natural conclusion is that it is important
to properly assess whether heteroscedasticity does or does not
need to be accounted for.

Our work is motivated by a desire to identify covariates that
are associated with violations of the homoscedasticity assump-
tion. It is possible that € is dependent on some covariates but
independent of other covariates; therefore, we wish to identify
the subset that is related to the residuals. We do not assume
any particular model for mg. More formally, let X;; denote the
ith entry of the jth column of the observed covariate matrix X.
Then we call the jth covariate X; a “heteroscedastically relevant
variable” (HRV) if var(Y;|X;;) is nonconstant in i. Our goal is to
identify HRVs given data. We resist the term “heteroscedastic
variable,” as heteroscedasticity is a property of a model and
not of the covariates. This definition of HRVs includes only
covariates that are marginally related to error variance. A set
of covariates that are jointly related to the error variance could
be defined as a “heteroscedastically relevant set,” but such a set
would not necessarily be unique. As the two concepts are closely
related, we focus on HRV's and leave heteroscedastically relevant
sets for future research.

In this work we propose a novel method for identify-
ing heteroscedastically relevant variables, Heteroscedastic Sub-
set Scan (HSS). This method adds to the body of research
focused on diagnostic tests for regression and makes several new
contributions:

o HSS allows for the efficient discovery of HRVs. Unlike pre-
vious methods, we view the problem as one of anomalous
pattern detection. As such, we perform a search to identify
the subset of covariates which exhibits the most unexpected
relationship with the residuals under the null hypothesis,
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under which the residuals are independent of the covari-
ates. This differs from previous methods which have largely
focused on global tests for heteroscedasticity. Our approach
pinpoints relevant covariates in the data and gives us a better
understanding of how to proceed when choosing a model
that accounts for heteroscedasticity.

o HSSis computationally efficient. As the number of covariates
p grows, HSS performs a linear-time scan over subsets of the
covariate space. This efficiency follows from the fact that our
method satisfies the linear time subset scanning (LTSS) prop-
erty described by Neill (2012) and McFowland III, Speak-
man, and Neill (2013), as shown in Section 3. The LTSS
property allows us to reduce our search over the space of all
covariate subsets from O(2) to O(p) while still guaranteeing
that the most anomalous subset is found.

o HSS can identify heteroscedasticity in many different forms.
Existing methods such as the Breusch—Pagan test only test for
linear relationships between the covariates and the squared
residuals, giving these tests low power in situations where this
relationship is nonlinear. Due to its nonparametric nature,
HSS does not rely on any assumptions about the “shape” of
the heteroscedasticity and is therefore, capable of detecting
nonlinear violations, such as “butterfly residuals” described
by Celik (2015).

o Our scoring function makes a new contribution to the
subset scanning literature. Previous subset scan statistics
are focused on identifying anomalies in only one direc-
tion, typically searching for anomalous patterns in the data
where many values exceed their expectation. This is useful
in settings such as disease surveillance, where researchers
are solely interested in detecting high-risk sub-populations
and can reasonably ignore low-risk subpopulations, as in
McFowland III, Speakman, and Neill (2013). Our statistic
is ambidirectional, meaning that it is capable of identifying
anomalous patterns where values diverge from the expected
value, regardless of whether this divergence is above or below
expectation. While this innovation was motivated by the
heteroscedasticity problem, it is potentially useful in a wide
array of applications.

Once HRVs have been identified, the data analyst must
decide how to proceed. One option that is often mentioned in
this context is transformation of the response variable, although
that approach may introduce as many problems as it solves (it
may affect the mean relationship and it may cause new covari-
ates to become HRVs). A more direct general approach is to
model the heteroscedasticity in some way. In a linear regression
this can mean using weighted least squares, for instance; in
nonlinear models, the method for smoothing may be chosen
dependent on the variance (see, e.g., Muller and Stadtmuller
1987). Many other options are possible and the choice will be
very dependent on the details of the modeling situation.

We begin with a review of existing methods and gaps in
the literature (Section 2). Then we present HSS, which can
efficiently identify subsets of the covariate space where het-
eroscedasticity is present (Section 3). Next, we discuss selec-
tion of an important tuning parameter (Section 4.1) and other
computational considerations (Section 4.2). Section 5 presents
a simulation study that shows the efficacy of HSS in a variety of

situations compared to alternative methods. Finally, Section 6
discusses our results.

2. Methods for Identifying Heteroscedasticity

Many existing methods for modeling heteroscedastic data
require the user to have some knowledge of the form of
the heteroscedasticity, necessitating tests for violation of the
homoscedasticity assumption. We now give an overview of
existing tests. All are global in that they look for heteroscedas-
ticity but do not attempt to identify HRVs.

Goldfeld and Quandt (1965) give some of the earliest tests
for heteroscedasticity. They present a parametric test in which
the data are split into two groups based on the values of a
single covariate X,,, suspected to be heteroscedastically relevant.
Regression models are fit to both partial datasets and the ratio of
the sum of squared errors for the models is used as a test statistic.
To consider multiple variables one must apply the Goldfeld-
Quandst test separately to each one. If the error variance is a non-
monotonic function of a covariate X,,;, the Goldfeld—Quandt test
may have low power, as demonstrated in Section 5. Other tests
from this era are also univariate, including Glejser (1969) and
Harrison and McCabe (1979). Dette and Munk (1998) provide
a nonparametric approach, still in the univariate case.

In the setting of multiple covariates, Breusch and Pagan
(1979) present a test based on the Lagrangian multiplier statistic.
Cook and Weisberg (1983) independently present a similar
test. The Breusch-Pagan test is applicable to a wide range of
heteroscedastic models, although it assumes that the ¢; are
normal under the null hypothesis. Koenker (1981) proposes a
studentized version of the original test wherein the test statistic
can be computed by multiplying the sample size n by the R? of a
regression of the squared residuals €2 on the covariates, testing
whether the covariates and residuals show a linear relationship.
Koenker and Bassett (1982) and Newey and Powell (1987) pro-
pose methods based on quantiles which can be useful if con-
ditional variance is heavy tailed or asymmetric. White (1980)
extends the Breusch—-Pagan test to detect both heteroscedasticity
and more general model misspecification, although this test
requires p to be small relative to the sample size n, so is not
feasible even for moderate values of p.

Recent work by Li and Yao (2019) addresses the moderate-
dimensional situation where p is large but still less than #n so
that a standard linear regression model can be fit. They propose
a modified likelihood ratio test and a coeflicient-of-variation
test, both of which are suited for both low- and moderate-
dimensional problems if we wish to identify heteroscedas-
ticity present in first- or second-degree polynomials of the
covariates.

In summary, existing methods for identifying heteroscedas-
ticity have several deficiencies. Aside from Li and Yao’s tests,
none of the existing tests are powered to detect heteroscedas-
ticity if a covariate has a nonmonotonic relationship with the
error variance. Also, Breusch-Pagan and White assume that the
residuals follow a normal distribution under the null hypothesis
so that a rejection from one of these tests may be caused by
nonnormality and not by nonconstant variance. Finally, all of
the methods are global tests, providing no evidence of which
variables are responsible for heteroscedasticity.



HSS addresses all of these deficiencies. HSS can identify non-
monotonic heteroscedasticity, for example, “butterfly residuals,”
as described by Celik (2015) (when error variance is large at
the extreme values of a covariate and small for values near
the median). We make no parametric assumption about the
residuals, ensuring that our test is not responding to a mis-
specification of the residual distribution. Most importantly, HSS
detects heteroscedastically relevant variables, allowing the user
to make informed modeling decisions.

3. Heteroscedastic Subset Scan
3.1. Overview

Our method performs a scan for anomalies based on a hypoth-
esis testing framework where the null hypothesis is that the
distribution of €;|X;; is constant in i. We now give a brief
overview of the method with a more detailed explanation in the
subsequent sections.

The model s as given in Section 1. We observe n independent
observations from the model and stack the covariates into an
n x p data matrix X with entries X ;. We refer to the jth covariate
of X as X; and the column vector holding the values of X;
as X;. We assume that we have fit a model giving a vector of
residuals € with elements €;,i = 1,...,n. We omit discussion
of the response variable and regression model, since we only
need responses and the model to generate residuals. We fix an
integer K, a user-specified tuning parameter discussed in more
detail in Section 4.1. The values of X; can then be broken into
K disjoint quantile intervals called “K-intervals” We compare
residuals whose corresponding jth covariate values are in the
kth K-interval with the residuals whose jth covariate values are
outside the kth K-interval. To accomplish this, we first split
the data into reference and evaluation sets. Then for each j €
{1,...,p}, we further split both sets into K partitions, one for
each K-interval of X;.

Then we compute an empirical p-value for each evaluation
set residual by comparing each of these evaluation residuals
in a given interval to the distribution of reference set residuals
from the other K-intervals. These p-values are (asymptotically)
uniformly distributed under the null hypothesis. Thus, for each
covariate and each k € {1,..., K}, we compare the distribution
of observed p-values (for the kth K-interval of the jth covariate)
to what would be expected under the uniform distribution.
This yields a preliminary measure of the heteroscedastic signal
present in X;. Then we scan over the space of all possible subsets
of covariates to find a “most anomalous subset” Scanning over
subsets allows us to find subtle (anomalous) patterns spread
across multiple covariates, that may go undetected when eval-
uating each covariate individually.

However, after finding this initial most anomalous subset,
we still do not know if the subset we've identified is signifi-
cantly anomalous or not. We discuss how we finally arrive at a
(possibly null) set of HRVs in Section 4.1. In brief: we repeat
the above-described procedure using different random splits of
reference and evaluation sets, which allows us to compute an
average “inclusion rate” for each covariate. We then estimate
the distribution of these inclusion rates under the null using a
bootstrap. Each variable is then included or excluded depending
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Figure 1. lllustration of use of reference and evaluation sets

on whether its observed inclusion rate is larger or smaller than a
corresponding bootstrap distribution quantile with multiplicity
adjustment.

3.2. Reference and Evaluation Sets

First we must obtain a reference distribution for each evaluation
set residual. Consider the vector of residuals (€1, . . ., €,,). Unlike
previous methods, we do not assume a parametric form for
the distribution of the residuals. Instead we split the residual
vector into two parts, forming a reference set and an evaluation
set. These sets are kept disjoint to avoid issues of dependence
between the sets. For j = 1,...,p, let Z be a random sample
without replacement of size |pn]| from {1,...,n}, where p €
(0,1) is the proportion of the data to be used in the reference
set.! Let Z€ = {1,...,n} \ Z. Then we define the reference
set R = {&]i € Z} and the evaluation set V = {&l|i € ZC}.
The reference set is used to create several empirical estimates
of the residual distribution. Residuals in the evaluation set are
compared to these estimates to get empirical p-values. We do
a large number of random splits into reference and evaluation
sets. For simplicity of exposition we begin by describing the
algorithm for a single split, and return to discuss multiple splits
in Section 3.7. Figure 1 gives a pictorial representation of the
process described in Sections 3.2-3.4.

'We have found p = 1/2 to be acceptable in practice.
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3.3. Estimation of Empirical Error Distributions

In this section, we use the reference set residuals to estimate
K empirical error distributions for each covariate X;. These
distributions allow us to identify portions of the data where eval-
uation set residuals do not follow their reference distribution.

A covariate X; is heteroscedastically relevant if there is a
relationship between the residuals and X;. We work under the
mild assumption that the variance, as a function of each Xj,
is continuous. Therefore, if X; is an HRV, then there must be
two disjoint intervals of X; values with different residual distri-
butions. This logic underlies the ad hoc method of inspecting
residual plots to identify heteroscedasticity and informs tests
such as Goldfeld—Quandt. We use this same logic to propose a
more automatic procedure for identifying HRVs.

For each covariate Xjj = 1,...,p, we split the evaluation
set residuals into K groups, based on their corresponding X;
values. We refer to the subset of V whose X; values lie in the
kth K-interval of {Xj; : i € 7€} as the “(j, k)th evaluation
set”; we denote this subset as Vjx C V. Similarly, we define the
“(j» k)th reference set” as R x C R. Finally, we define the “(j, k)th
comparison set” as Rfk := R\ Rj}. These are the residuals to
which we compare V. If X; is an HRV and K is sufficiently
large to identify the heteroscedasticity, then for some k, the set
of residuals V;x will appear to have a different distribution than
the residuals in ng.

To quantify this, we first estimate empirical error distribu-
tions from the reference set. For each covariate Xj, the reference
set Ris used to estimate K empirical error distributions, f:j,k, k=
L,...,K, where

A 1

Fix(t) = — 1. Ly,

where |Z| denotes the cardinality of the set Z and 1 denotes the
indicator function.

Each IA:j,k is the empirical cdf of the magnitude of the esti-
mated residuals in R whose X; values fall outside of the kth K-
interval of X; in R. We compare residuals in V whose corre-
sponding X; values are in the kth K-interval of X;; to }A?j,k. In this
way, we compare evaluation set residuals to reference set residu-
als with nonsimilar covariate values. If the null hypothesis is true
and the distribution of residuals is the same across the domain
of Xj;, then let Fe denote the true distribution of the residuals. If

we formed I:“j,k using the true residuals € instead of the estimated
residuals €, then by the Glivenko-Cantelli Theorem (Ferguson
1996), we would conclude that l:"j,k is uniformly close to F. If
our model is correct and the sample size is large, the estimated
residuals will generally be close to the true residuals and I:“j,k will
be close to F..

We avoid parametric assumptions by fitting empirical esti-
mates for the error distribution. This distinguishes HSS from
tests like Breusch-Pagan and White, which assume the residuals
follow a normal distribution with mean zero and unknown
variance o'2. A violation of the null hypothesis for these tests
could be caused by nonnormally-distributed residuals, even if
the distribution of residuals is constant. By abstaining from
making parametric assumptions, we ensure that HSS is solely
a test for heteroscedasticity.

3.4. Generation of p-values

Now we use the empirical error distributions defined above to
calculate an empirical p-value for each residual in the evaluation
set. For j € {1,...,p}, let k(i,j) € {1,...,K} be the value
of k such that if i € Z€, then X; j is in the kth K-interval of
Xij 0" € ZCY and if i € Z then Xjj is in the kth K-
interval of {Xj«; : i* € Z}. Then the (i, j)th empirical p-value is
pij=1- Pj,k(i ;) (€i]). Under the null hypothesis, the residuals
whose X; value belongs to the kth K-interval of X; and the
residuals used to form lsjk share the same true distribution. If
the null hypothesis does not hold, these groups of residuals will
generally not come from the same distribution. We separate the
p-values into pK sets or subgroups, one for each K-interval of
each covariate. We denote these subgroups by Pjx = {p;; : i €
ZCk = k(i, )}.

3.5. A Scoring Function

We now present a scoring function that quantifies the amount
of heteroscedasticity found in a given subset S of the covariates.
LetS C {1,...,p}. We begin by counting the number of a-level
significant p-values in each subgroup P;x for constanta € (0, 1):

No(Pix) = Z 1(t <), forj=1,...,p, andk =1,...,K.

tEPj,k

We wish to compare the N, values to their expected behavior
under the null hypothesis. To do so, we must understand the
null distribution of the N, values.

We now argue that the probability mass function (pmf)
of Ny (Pjx) is related to Wallenius’ noncentral hypergeometric
(WNH) distribution (Wallenius 1963) under the null hypothe-
sis. Let WNH(M, B, m, w) denote a Wallenius random variable
with parameters M (population size), B (number of “successes”
in the population), m (number of draws without replacement
from the population), and w (the odds ratio of drawing a
“success”). A random variable H ~ WNH(M, B, m,w) has
probability mass function

_ 1
ri=n=()(5,25) [ a-emra- it

where D = w(B — h) + (M — B) — (m — h). Let n; be the
number of p-values that comprise subgroup P; x and let n; be the
size of the comparison set R?k. By way of analogy, imagine that
we are drawing balls (without replacement) from an urn with
n1 white balls representing evaluation set residuals and n, black
balls representing comparison set residuals. We let the first ball
drawn from the urn be the most extreme residual, the second
ball the second-most extreme, etc. For & € (0, 1), a p-value that
reaches «-level significance must come from an evaluation set
residual that is more extreme than at least (1 — «) x 100% of
the comparison set residuals. If there are exactly ¢ many «-level
significant p-values in Pjt, then the [any] + ¢ most extreme
residuals must have included exactly ¢ evaluation set residuals
and the next most extreme residual must be a comparison set
residual. To complete the analogy of drawing balls from an urn,
P(Ny(Pjx) = c) is the probability of drawing exactly ¢ white



balls in the first |any] + ¢ draws and then drawing a black
ball in the next draw, if white balls have weight w capturing the
propensity of evaluation set residuals to be «-level significant.
We let w = %2, where o = ﬁ Y iezc Il(lé,-| > q(Z,1 — a))
and g(Z, 1—a) is the (1-a)-quantile of {|¢;] s.t. i € Z}. Weighting
the residuals accounts for overall random differences between
reference and evaluation sets that might otherwise be attributed
to heteroscedasticity. This process relates to the Wallenius dis-
tribution; we have

P(Ne(Pjk) = ¢) = P(H; = o)P(H; = 0)

where Hi ~ WNH(n; + n,ni, lany| + ¢,w) and Hy ~
WNH(n; 4+ n3 — |anz] — ¢, n1 — ¢, 1, ). Within each subgroup
Pj x, we compare the observed number of significant p-values to
the expected number. We can numerically compute the expec-
tation, E(Ny (Pjx)) = 2?1:0 cP(Ny (Pjx) = c). We now assem-
ble a scoring function that will give higher values to subsets
of covariates that show larger differences from their expected
number of a-significant p-values. We start by defining Ty (S),
the sum of the differences between the number of expected ag-
significant p-values and the number of observed o-significant
p-values across each of the K subgroups, in each of the covariates
contained within S. We let

K
To(H=)_ )

jeS k=1

Na(Pig) = E(Nu (Pyp)].

An alternative approach to defining T, ({Xj}) would be to
directly aggregate all p-values for X; (i.e., Ux=1,...k Pjk) or equiv-
alently, let T, ({X;}) be | k_; Na(Pix)—E Yj_; No (Pjx)|. This
does not work because if X is an HRV we may have in one K-
interval generally lower than expected p-values and in another
K-interval higher than expected p-values, so that aggregating
those together (before taking absolute values) cancels out the
signal.

We must adjust or normalize T, before using it, since, under
the null hypothesis, the value of T, is dependent on o and on
the size of S. Thus, we define our final scoring function F (S) to
be a chi-squared-like statistic as follows. We let

2
(Tu(s)_E(Ta(S))

BT, (9) if Te(S) > E(Ta(S) (1)

Fo(S) =

0 otherwise

where

K 1Pkl
E(To()=>_> > }x — E(No (Pj)) |P(Na (Pi) = ).

j€S k=1 x=0

Setting F,(S) to zero when T,(S) < E(T,(S)) allows us to
ignore subsets where the observed difference T, (S) is actually
less than its expected value and ensures that the scoring function
solely rewards subsets that are more anomalous than expected.

Our scoring function F,(S) represents a departure from
statistics typically found in the subset scanning literature. Pre-
viously, subset scan statistics have placed greater weight on
subsets of the data with unexpectedly high numbers of events
and ignored subsets with unexpectedly low numbers (McFow-
land IT1I, Speakman, and Neill 2013). Such a statistic would prove
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futile here, as heteroscedasticity can cause both unexpectedly
high and unexpectedly low numbers of significant p-values. The
use of the absolute value in the definition of T, allows us to
widen our search to subsets with an unexpected number of
significant p-values regardless of whether this number is high
or low. The flexibility brought by this change has the potential
to be useful in other situations where we wish to perform an
ambidirectional search for anomalies.

3.6. Maximizing the Scoring Function

Our goal is to maximize the scoring function Fy (S) for any o and
subset S. In general, maximizing a function of S overall possible
2P subsets of a covariate space of size p is computationally
infeasible. We now introduce the linear time subset scanning
(LTSS) property and show that it applies to our scoring function,
reducing the problem to a search over only p possible subsets,
after a single sort, which is easily feasible.

Definition 1 (Neill 2012). Fix a € (0,1). The scoring function

Fy(S) and priority function G(j;X) satisfy the strong LTSS

property if and only if, for all j = 1,...,p, SIll’}gT.X‘Fa S =
HNES]

F, (XD, ..., XD}, where X9 is the feature with the jthhighest
value of G(+; X).

The LTSS property guarantees that the subset $* which maxi-
mizes F (S) for a given o must be the subset containing the k
highest-priority covariates {X1), ..., X®} for some k between
1 and p. Thus, to solve the global optimization problem for a
fixed «, we can first sort the covariates by their priority value of
G(+;X) and then compute F, (S) with S taken to be one of the p
subsets

XDV x®, x@y, . x®, . xPy,

By inspection, the LTSS property guarantees that we have then
achieved a global maximum. Neill (2012) gives a constructive
theorem that produces a specific priority function G(j; X) that
follows directly from the scoring function Fy (S) if certain prop-
erties hold. This pair of functions is then guaranteed to satisfy
the strong LTSS property.

Theorem 1 (Neill 2012). Let F, (S) = F, (T, |S|) be a function of
one additive statistic of subset S, T,,(S) = Zjes £ X) (where
£(j;X) depends only on feature X;) and the cardinality of S,
|S|. Assume that F, (S) is monotonically increasing with T (S).
Then F,(S) satisfies the strong LTSS property with priority
function G(j; X) = g(j; X).

We first note that Theorem 1 is considering a set of elements
(XM, ..., XP), that is, a fixed set of data covariates; therefore,

,,,,,

dition of monotonicity of F,(S) in Ty (S) is considered for a
fixed subset S and therefore, requires the 31;‘2 g) > 0, overall
possible values of Ty, (S) that the subset could exhibit. To see that
our scan satisfies the conditions of Theorem 1, recognize that
given a value of «, Fy (S) depends only on Ty (S), the cardinality
of S, E(Ty(S)), and indirectly E(N,(S)). T, (S) is still random

given S; however, the latter three values are all constant, given
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S. Moreover, in the definition of T, (S) we see that its outer
summand ensures T, (S) is an additive statistic of S, while its
inner summand depends on only one feature (covariate), as
required by Theorem 1. Finally, given that we set F, (S) to zero
when T, (S) is less than its expectation, Fy (S) is monotonically
increasing with T, (S). Therefore, our scoring function Fy (S)
satisfies the strong LTSS property with priority function

K
GGiX) = Y [Nu(P) = BN (P0)|
k=1

Therefore, if we prioritize covariates by the total difference
between the N, (P;x) values and their expected values, we are
guaranteed to find the subset which maximizes F,(S) after
searching over only p subsets.

Finally, we maximize F, (S) overall o values to find the most
anomalous subset, which is the subset $* which maximizes the
scoring function across all  values:

F(S*) = max,Fy(S).

As shown by McFowland III, Speakman, and Neill (2013), we
need only consider p-values found in the P;x as possible values
of a, as the statistic will achieve its maximum at one of these
values.

3.7. Multiple Random Splits of the Reference and
Evaluation Sets

In the previous section we computed a set S* maximizing F(-).
However, we do not know whether S* is in fact significantly
anomalous or not. Furthermore, $* is based on a single random
split of our data into reference and evaluation sets; we would
potentially get a different $* if a different split of the data were
used. In our final step we deal with both of these issues, by using
many different random reference and evaluation sets. We fix
N, the number of random splits we will use. Then N separate
times we run the procedure described in Sections 3.2-3.6, each
time beginning with a newly drawn random reference and
evaluation set split (as described in Section 3.2). Each iteration
of the method will return its own most anomalous subset. We
aggregate these subsets using a bootstrap method detailed in this
section.

Specifically, to determine whether to include a covariate X;
in our final subset, we will check the proportion of random
splits for which X; was included in $* and compare it to an
estimate of what this proportion would be under the null,
denoted NIR;. We define the observed inclusion rate of X; as
ﬁlj =N;! Zf\ﬁl Lijest)s where S7 is the most anomalous subset
identified for the ith random split of the data. We include X; in
our final subset if ﬁlj is significantly higher than I\/fﬁlj. We assess
this via the bootstrap.

We bootstrap as follows. We leave X fixed. For bootstrap
sample b = 1,..., B, we draw a new vector of residuals €, with
length n randomly with replacement from the observed resid-
ual vector €. Since we leave the covariates fixed but resample
the residuals, our resampling scheme breaks any link between
covariates and residuals. Then we perform HSS (as outlined in
steps 2 through 6 of Algorithm 1) using the new residuals Nj

times, with different reference and evaluation sets each time,
giving S\, for b = 1,...,B, 1 = 1,...,N;. We then compute
IRb,j = NS—1 Zf\ﬁl 1[165;,-].

Then we can find a p-value for the inclusion of each covariate
by finding the quantile of the observed inclusion rate based
on the estimated distribution of the null inclusion rate. After
applying a Holm correction to these p-values, any covariate with
a p-value below a desired significance threshold is included in
the final subset.

Algorithm 1 Outline of Method

Given covariate matrix X, estimated residual vector €, param-
eter K, and number of random splits N:

1. Randomly split the residuals into reference set R and eval-
uation set V.

2. Forj=1,...,pandk =1,..., K, estimate empirical error
distribution ﬁj,k(t)

3. For each residual in V, calculate p-value p;; based on the
relevant I:“j,k distribution. Form subgroups P . For a given
o and subset S, F,, (S) can now be calculated.

4. For all o, identify the subset S which maximizes F, (S).
Because Fy satisfies LTSS, we use priority function G(-; X;)
to perform subset scanning.

5. Find the most anomalous subset $* by maximizing F, (S)
overall o.

Repeat steps 1 through 5 N times, with different random ref-
erence and evaluation sets each time and calculate inclusion
rates for each covariate.

6. Estimate the null inclusion rate distribution for all X; using
the bootstrap method.

7. Use the estimated distributions from step 6 to get a p-value
for each X;. Select covariates with significant p-values after
Holm correction.

4. Further Considerations
4.1. Choosing an Appropriate K Value

The choice of K (i.e., the number of empirical distributions
to estimate) is an important one. In general, it is best to use
the smallest K capable of identifying the type of heteroscedas-
ticity in the data. Choosing a K that is too large can dilute
heteroscedastic signal by forcing the set of X; values into very
small partitions.

Choosing K = 2 is appropriate in situations where the
error variance is suspected to have a monotonic relationship
with a covariate. In such a scenario, because the error variance
increases (or decreases) with X;, residuals with small X; values
will have a different distribution than residuals with high X;

values. Therefore, 1:"j,1 and I:“j,z constructed from residuals with
Xj values above and below the median, respectively, should be
quite different from the evaluation set residuals they will be
compared to.

On the other hand, nonmonotonic heteroscedasticity may
not be detectable with K = 2. Assume, by way of example, that



the variance of the residuals increases with the distance of X;
from its median. If K = 2 were chosen in such a scenario, ij,l
and l:"j,z would be quite similar. The evaluation set residuals will
not have an anomalous signal and we are likely to conclude that
Xj is not heteroscedastically relevant. This problem is solved by
letting K = 3, where at least one of the three estimated empirical
distributions will be different from the others.

Without prior knowledge of the shape of any heteroscedastic-
ity present in the model, it is best to choose K sufficiently large to
identify a wide variety of shapes. We find that in most practical
situations, K = 3 is large enough to identify heteroscedasticity.
We leave it as future work to find a data-driven method for the
optimal selection of K.

4.2. Computational Considerations

The pmf of the noncentral hypergeometric distribution is chal-
lenging to compute, especially for large n. The probability of a
given ball being drawn depends on the weights of all balls left
in the urn, making the calculation of the pmf recursive. If com-
putational time is a concern, then we recommend a modified
version that reduces runtime considerably.

We now use the standard hypergeometric instead of Wal-
lenius’ noncentral hypergeometric. Let HG(M, B, m) denote a
hypergeometric random variable with parameters M (popula-
tion size), B (number of “successes” in the population), and m
(number of draws without replacement from the population).
A random variable H ~ HG(M, B, m) has pmf P(H = h) =

B\ M—-B
(’”)(T’”*h. We rely on the same analogy as in Section 3.5, except
here all balls in the urn are equally likely to be drawn. This
assumption simplifies the calculations considerably but does
not account for random differences between the reference and
evaluation sets. We account for these differences by replacing
a—the expected proportion of a-level significant p-values—
with the observed proportion in the entire evaluation set, which
is g as defined above. Borrowing notation from Section 3.5, we
have

P(Nua(Pjx) = clag) = P(H; = ¢)P(H, = 0)

where H; ~ HG(n; + ny, ny, lagnz| + ¢) and H, ~ HG(n; +
ny — lagnz] — ¢, n — ¢, 1). The rest of the method proceeds as
stated above.

While this modification relies on an inexact assumption, the
hypergeometric with a-correction is a close approximation of
the WNH distribution. Intuitively, the distribution of white balls
in a sample of C draws from a urn where the white balls have
weight w is similar to the distribution of white balls in a sample
of wC draws where all balls have equal weight. In the case of large
n, oy converges in probability to «, so the weights in Wallenius’
distribution converge to one and the two distributions approach
equality.

5. Results
5.1. Overview

In this section, we compare the performance of HSS to several
alternatives described in the following section. We consider
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three simulated settings as well as one real data example. The
simulations and their results are described in detail in Sec-
tion 5.3-5.5.

Throughout this section, we will use four metrics to assess
the performance of each method: power, recall, precision, and
Jaccard similarity. Let S* be the subset of HRVs as chosen by
a particular method and let Sy be the true subset of HRVs.
Then, we define the power of an individual simulation run
with nonempty Sp to be E1(|S*| > 0). We define recall to
be EIS 0% the expected proportion of the HRVs identified by

Sol
the method. We define precision to be E ‘S‘ Srls‘(’l ,

proportion of covariates identified by the method that are truly
heteroscedastically relevant. Finally, we define Jaccard similar-

[S*NSp|

[0S, |- For all
simulations, we use tuning parameter values K = 3and p = 0.5.
For each sample size setting and type of heteroscedasticity, we
create 128 datasets and perform HSS with N; = 50 random

splits for each dataset.

the expected

ity, a combination of precision and recall, to be E

5.2. Alternative Methods

Our method is the first built to identify individual HRVs. To
create comparison methods, we must modify existing global
tests so that they can perform the same identification task.

Koenker’s modification of the Breusch—Pagan test for global
heteroscedasticity tests whether there is a linear relationship
between the covariates and the residuals. The test statistic is
derived from the coefficient of determination of a regression
of the squared residuals on the covariates. We will fit the
same regression model to determine which covariates are het-
eroscedastically relevant. The covariates that have statistically
significant coeflicients after a Holm multiplicity correction are
considered heteroscedastically relevant.

The Goldfeld-Quandt test is also easily modified for an
identification purpose. Because this test is only specified for one
covariate at a time, we simply perform the test p times and get
p-values for each covariate. We again use a Holm correction and
consider any covariates with significant p-values after correction
to be heteroscedastically relevant.

We elect not to use the White and Li and Yao tests as com-
parisons due to the difficulty of modifying them for the purpose
of identifying HRVs.

5.3. Linear Regression

We first construct a simple data setting where none of the p
covariates have any covariance with the other covariates. We
simulate n x p covariate matrix X ~ N(5,X), where 5 =
(5,...,5), X = 4, and I, is the p x p identity matrix. We
let sample size n vary from 250 to 3000 and set the number of
covariates p equal to 25. We let the number of true HRVs d be
5. We used B = 499 bootstrap resamples except when n = 3000
when we used B = 249 bootstrap resamples. Throughout this
section, we will focus on three types of heteroscedasticity:

» Monotonic heteroscedasticity occurs when error variance
increases (or decreases) as the value of a heteroscedastically
relevant variable increases. This form of heteroscedasticity is
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Figure 2. Model comparisons for “fan,”“circle,"and “mixed” data types and linear regression. Results presented for HSS (green), modified Breusch-Pagan (red), and modified

Goldfeld-Quandst (blue).

often referred to as “fan” or “megaphone” error variance due
to the shape of its residual plot. In our simulations, we let
& ~NO,(1+ XL X)) fori=1,...,n

« Nonmonotonic heteroscedasticity occurs when error vari-
ance is not a strictly increasing or strictly decreasing function
of a covariate. Celik (2015) refers to a particular form of non-
monotonic heteroscedasticity as “butterfly residuals,” where
error variance is large at the extreme values of a covariate
and small for values near the median of the covariate. For
ease of simulating data, we focus on the inverse, which we
call “circle” residuals. We let ¢; ~ N(0, (Zle nij)%) for
i=1,...,n, where

2 .
max(l,XLj) ifX;; <5

. 2
max(1, (10 — Xi,j)z) ifX;>5

Nij =

o Mixed heteroscedasticity occurs when some covariates
exhibit a monotonic relationship with the error variance
while others have a nonmonotonic relationship. We let half of
the HRVs have fan error variance and let the other half have
circle error variance. Fori = 1,...,n,and n; j as above, we let

[d/2] d 5
> w))

€; "*N(O,(Z Z Xi,j"‘
=1 j=d/21+1

After generating X and €, welet Y; = Zle Xij+e€iand then
estimate residuals €; by performing ordinary linear regression
with all 50 covariates included as predictors.

Figure 2 compares power and recall across a range of sample
sizes and types of heteroscedasticity. Precision and Jaccard sim-
ilarity tend to be nearly equal to power and recall, respectively,
so we omit plots for these measures. The “fan” errors are (by
definition) linearly heteroscedastic, so that is where the (mod-
ified) Breusch-Pagan (and Goldfeld-Quandt) tests are built to
perform optimally. Thus, in those cases they tend to outperform
HSS. As expected, the modified Breusch-Pagan test outper-
forms the modified Goldfeld-Quandt test in all settings. The
gap between HSS and existing methods is smallest for power
(and precision, not presented). This indicates that much of the
gap in performance between HSS and the modified Breusch-
Pagan is due to HSSs ability scan over subsets of covariates—
combining their individual signals—to detect the presence of
heteroscedasticity.

Figure 2 also confirms what was expected to be a major
advantage of our method over existing methods in that HSS
has the power to detect nonmonotonic heteroscedasticity. Exist-
ing tests assume a linear relationship between error variance
and HRVs and therefore, struggle in detecting nonmonotonic
heteroscedasticity. The power, precision, recall, and Jaccard
similarity of HSS all approach one as #n grows, which is not
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Figure 3. Power comparisons with the global method of Li and Yao. Results presented for HSS (green) based on linear regression residuals and Li and Yao (orange).

true of the modified Breusch-Pagan or Goldfeld-Quandt. Fur-
thermore, Figure 2 shows that HSS is capable of handling
multiple forms of heteroscedasticity in a single dataset. It is
apparently the case that having mixed heteroscedastic “shapes”
(e.g., monotonic and nonmonotonic) causes the bootstrap some
difficulty (as recall is lower than for either purely “fan” or “cir-
cle”). There may be alternative methods for selecting the final
subset than the bootstrap, but we leave a study of this for future
work.

We compare the power of our test to the power of the global
Liand Yao test (coeflicient of variation version presented here),
as shown in Figure 3. The Li and Yao test is powered to detect
monotonic or nonmonotonic heteroscedasticity. The power of
HSS is similar to the power of the Li and Yao test (with Li and
Yaos tests generally having greater relative power as the ratio p/n
is larger); HSS is not constructed to have optimal global power
but rather to be able to detect individual HRV's, so we are pleased
that HSS has good overall power.

Thus, overall, HSS performs similarly to (or sometimes better
than) existing methods even when a global test for heteroscedas-
ticity is desired. Simulations with null (homoscedastic) data
indicate that Type I error rate is generally maintained near
the nominal 0.1 level, with values between 0.16 (at n = 250)
and 0.10 (when n > 1500). (Increasing B yields some [small]
improvement[s] in the level at smaller sampler sizes.)

5.4. Lasso Regression

Our method is especially useful when identifying HRVs from
among a large group of covariates. When p is small, man-
ual inspection of the residual plots can help to identify het-
eroscedasticity. When p is large, HSS obviates the need to man-
ually check a large number of residual plots. Lasso regression,
proposed by Tibshirani (1996), is a commonly-used tool for
variable selection when p is large. In this section, we investigate
the performance of HSS when Lasso regression is used. We
note that our methodology depends on classical large-n-fixed-p
asymptotics, so that if # is not large relative to p then HSS may
be less effective.

We simulate X as in Section 5.3. We let p = 25 and let
n vary from 250 to 3000. We use 10-fold cross-validation to
select the Lasso tuning parameter L. We let response Y; = ¢;,
where ¢; is simulated as in Section 5.3 for fan, circle, and mixed
error variance. Thus, the five HRVs X;, ..., X5 have no direct
effect on the response Y. These covariates are thus, unlikely
to be included in the Lasso model after variable selection is
performed. For Lasso regression, we will use residuals that arise
after Lasso variable selection but will still perform our search for
HRVSs over the entire covariate space.

The simulation confirms that the use of Lasso regression
instead of OLS does not noticeably impact the performance of
HSS. Although the Lasso regression coefficients differ from the
OLS regression coefficients, this does not effect the relationship
between the covariates and the error terms. Even in the case
where the Lasso regression coeflicients corresponding to HRV's
are zero (as in our simulations), the HRVs can be detected
without issue. We present the global power results in Figure 4
and also include the (global) Li and Yao test (which uses the
OLS residuals rather than the lasso residuals). We omit the recall
plots due to their strong similarity with Figure 2. Figure 4 shows
that HSS has similar power to the global Li and Yao test once we
are in a large-n-fixed-p regime, with results being similar to the
OLS case. Again, HSS is built to identify the individual HRVs,
rather than built to be a global test, so its good overall power
performance is positive.

5.5. Education Data Example

We now examine education expenditure data presented by
Chatterjee and Hadi (2006). The outcome variable is per capita
education expenditure in 1975, with three predictors: per capita
income (X;), number of residents per 1000 under 18 years of age
(X2), and number of residents per 1000 living in urban areas
(X3). Each row of the data corresponds to one U.S. state, so
there are 50 observations with three covariates for each. The
authors remove outlier Alaska from the data, so we follow suit
and proceed with the other n = 49 states. Although manual
inspection of the residual plots is feasible here, we use this
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example to show that HSS can identifying heteroscedasticity in a
real data setting where the Breusch-Pagan test lacks power. The
authors note that this covariate is visibly heteroscedastic, with
error variance increasing at larger per capita income levels, as
seen in Figure 5.

We use ordinary linear regression with X;,X,, and X3 as
covariates to estimate residuals and then proceed with HSS and
with the modified Breusch-Pagan method. For HSS, we use
the tuning parameters of K = 3 and p = 0.5. We perform
100 random splits of the data and observe inclusion rates of
0.99, 0.18, and 0.08 for X;, X», and X3, respectively. Using the
bootstrap with B = 199 to get a final subset, we get an estimated
p-value of 0.01 for X; (and p-values near 1 for the other two
variables) and conclude that X; is the only HRV.

The modified Breusch-Pagan test does not identify any of the
covariates as HRVs. Furthermore, the standard Breusch-Pagan
test is insignificant (p = 0.143). In this simple example, HSS
has shown the ability to detect heteroscedasticity and pinpoint
the covariate responsible for it. The Breusch-Pagan test cannot
perform either of these tasks, including the global test that it is
best suited for. This is perhaps due to the nonlinear relationship
between per capita income and error variance seen in the data.
While error variance appears to increase as income grows, it
does not increase at a consistent rate. The Breusch-Pagan test
assumes a linear relationship, while HSS looks more broadly for
differences in error distribution across the range of per capita
income levels, giving greater power in this setting.

6. Discussion

This article makes several contributions to the literature on
heteroscedasticity detection. We frame the problem as one of
anomalous pattern detection and present the heteroscedastic
subset scan (HSS) algorithm. This novel method represents a
departure from previous global tests for heteroscedasticity, as
HSS seeks to identify the subset of the covariate space that is
most responsible for violations of the homoscedasticity assump-
tion. Our method uses a reference set from the data to create
an estimate of the empirical error distribution which is then
used to identify covariates along which the error distribution
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Figure 5. Residual plot for per capita income from education expenditure data.

is nonconstant. The method is guaranteed to efficiently iden-
tify the most anomalous subset by calculating a scoring func-
tion for only a linear number of subsets. Furthermore, our
method makes a contribution to the subset scanning literature
by proposing an ambidirectional scoring function which prior-
itizes departures both above and below the expected value.

In simulation experiments, HSS outperformed existing
methods in a wide range of scenarios. Existing methods have
little power to detect nonmonotonic heteroscedasticity, but the
nonparametric nature of HSS gives it the ability to detect such
relationships. Furthermore, HSS can be used to identify rela-
tionships between higher moments of the error distribution and
the covariates, another area where existing methods are under-
powered.

Future work could investigate several outstanding areas of
interest. We have recommended that the tuning parameter K
be set to 3 in most settings. Future research may focus on data-
driven selection of K. Another extension of the method would
be to identify heteroscedastically relevant records in addition to
variables. McFowland III, Speakman, and Neill (2013) present



an algorithm that iterates between scanning over records and
attributes until the most anomalous subspace of the data is
identified. Such an extension could help the user further narrow
in on the source of homoscedasticity violations in the model.
Finally, future research may choose to focus on the identification
of heteroscedastically relevant sets, groups of covariates that
are jointly (but not necessarily marginally) related to the error
variance. While our method searches only for marginal het-
eroscedasticity, detection of joint heteroscedasticity could also
be useful from a model diagnostic perspective.

Supplementary Materials

The online supplementary materials provide a basic R implementation of
the HSS algorithm and the education expenditure data utilized in Sec-
tion 5.5.

Acknowledgments

Evan Olawsky was originally an author on this paper. He has chosen to not
participate in the revision, and to cede authorship of the paper.
Funding

Charles R. Doss is partially funded by NSF grant DMS-1712664 and
NSF grant DMS-1712706. Edward McFowland III gratefully acknowledges
funding support from the NSF Program on Fairness in Artificial Intelli-
gence in Collaboration with Amazon, grant I1S-2040898.

ORCID

Charles R. Doss 2 http://orcid.org/0000-0003-1364-5222
Edward McFowland III ¢ http://orcid.org/0000-0001-5249-7117

References

Breusch, T. S.,and Pagan, A. R. (1979), “A Simple Test for Heteroscedasticity
and Random Coeflicient Variation,” Econometrica, 47, 1287-1294.
[1,2]

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS ‘ il

Celik, R. (2015), “Stabilizing Heteroscedasticity for Butterfly-Distributed
Residuals by the Weighting Absolute Centered External Variable,” Jour-
nal of Applied Statistics, 42, 705-721. [2,3,8]

Chatterjee, S., and Hadi, A. S. (2006), Regression Analysis by Example (4th
ed.), Hoboken: Wiley. [9]

Cook, R. D., and Weisberg, S. (1983), “Diagnostics for Heteroscedasticity
in Regression,” Biometrika, 70, 1-10. [2]

Dette, H., and Munk, A. (1998), “Testing Heteroscedasticity in Nonpara-
metric Regression,” Journal of the Royal Statistical Society, Series B, 60,
693-708.[1,2]

Ferguson, T. S. (1996), A Course in Large Sample Theory, Texts in Statistical
Science Series, Boston, MA: Chapman & Hall. [4]

Glejser, H. (1969), “A New Test For Heteroskedasticity, Journal of the
American Statistical Association, 64, 316-323. [2]

Goldfeld, S. M., and Quandt, R. E. (1965), “Some Tests for Homoscedastic-
ity Journal of the American Statistical Association, 60, 539-547. [2]

Harrison, M. J., and McCabe, B. P. M. (1979), “A Test for Heteroscedasticity
Based on Ordinary Least Squares Residuals,” Journal of the American
Statistical Association, 74, 494-499. [2]

Koenker, R. (1981), “A Note on Studentizing a Test for Heteroscedasticity;
Journal of Econometrics, 17, 107-112. [2]

Koenker, R., and Bassett, G. (1982), “Robust Tests for Heteroscedasticity
based on Regression Quantiles,” Econometrica, 50, 43-61. [2]

Li, Z., and Yao, J. (2019), “Testing for Heteroscedasticity in High-
Dimensional Regressions,” Econometrics and Statistics, 9, 122-139.
(1.2]

McFowland II1, E., Speakman, S., and Neill, D. B. (2013), “Fast Generalized
Subset Scan for Anomalous Pattern Detection,” Journal of Machine
Learning Research, 14, 1533-1561. [2,5,6,10]

Muller, H.-G., and Stadtmuller, U. (1987), “Estimation of Heteroscedas-
ticity in Regression Analysis,” The Annals of Statistics, 15, 610-625.
(2]

Neill, D. B. (2012), “Fast Subset Scan for Spatial Pattern Detection,” Journal
of the Royal Statistical Society, Series B, 74, 337-360. [2,5]

Newey, Whitney K, and Powell, J. L. (1987), “Asymmetric Least Squares
Estimation and Testing,” Econometrica, 55, 819-847. [2]

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,”
Journal of the Royal Statistical Society, 58, 267-288. [9]

Wallenius, K. T. (1963), “Biased Sampling: The Non-central Hyperge-
ometric Probability Distribution,” Ph.D. thesis, Stanford University,
Department of Statistics. [4]

White, H. (1980), “A Heteroskedasticity-Consistent Covariance Matrix
Estimator and a Direct Test for Heteroskedasticity,” Econometrica, 48,
817-838. [2]


http://orcid.org/0000-0003-1364-5222
http://orcid.org/0000-0001-5249-7117

	Abstract
	1.  Introduction
	2.  Methods for Identifying Heteroscedasticity
	3.  Heteroscedastic Subset Scan
	3.1.  Overview
	3.2.  Reference and Evaluation Sets
	3.3.  Estimation of Empirical Error Distributions
	3.4.  Generation of p-values
	3.5.  A Scoring Function
	3.6.  Maximizing the Scoring Function
	3.7.  Multiple Random Splits of the Reference and Evaluation Sets

	4.  Further Considerations
	4.1.  Choosing an Appropriate K Value
	4.2.  Computational Considerations

	5.  Results
	5.1.  Overview
	5.2.  Alternative Methods
	5.3.  Linear Regression
	5.4.  Lasso Regression
	5.5.  Education Data Example

	6.  Discussion
	Supplementary Materials
	Acknowledgments
	Funding
	ORCID
	References


