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A B S T R A C T   

Study region: Delaware, USA and its surrounding watersheds. 
Study focus: An ensemble using multiple Kernel K-nearest neighbors (KKNN) models was trained 
to predict daily grids of SSM at 100-meter resolution based on SSM estimates from the European 
Space Agency’s Climate Change Initiative Soil Moisture Product, terrain data, soil maps, and local 
meteorological network data. Estimated SSM was evaluated against independent in situ SSM 
observations and were investigated for relationships with land cover class and vegetation 
phenology (i.e., NDVI). 
New hydrological insights for the region: Downscaled daily mean SSM estimates had lower error in 
space (27%) and greater predictive performance over time compared to the raw, coarse resolution 
remotely sensed SSM dataset when calibrated to field observed values. Downscaled SSM identi
fied stronger and more widespread temporal relationships with NDVI than other estimation 
methods. However, both coarse and fine resolution datasets greatly underestimated SSM in 
wetland areas. The findings highlight the need for enhanced in situ SSM monitoring across diverse 
settings to improve landscape-level downscaled SSM. The downscaling methodology developed in 
this study was able to produce daily SSM estimates, providing a framework that can support 
future SSM modeling efforts, hydroecological investigations, and agricultural studies in this and 
other regions around the world when used in conjunction with ground-based monitoring 
networks.   

1. Introduction 

Soil moisture content is a critical driver of many ecosystems due to its influence on climate, plant productivity, soil biogeo
chemistry, and surface water hydrology (Seneviratne et al. 2010, McColl et al. 2017). Climate induced changes in the water cycle are 
expected to alter soil moisture regimes and resulting feedback mechanisms across local to global scales (Bates et al. 2008, Green et al. 
2019, Huntington, 2006). Soil moisture variability may limit carbon uptake by terrestrial ecosystems (Green et al. 2019), and 
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reductions in crop productivity due to deficient or excessive soil moisture may have major societal and economic consequences (Bates 
et al. 2008). Thus, understanding and mapping the spatial and temporal variability of soil moisture in our environment is of great 
interest to a broad audience in academic, agricultural, and economic communities. 

Soil moisture in the top few centimeters of the soil profile, known as surface soil moisture (SSM), is of particular interest to re
searchers as it is relatively easier to measure than, and often well correlated to, moisture conditions deeper in the soil profile (McColl 
et al. 2017). Measuring in situ SSM at single points is made possible by using time-domain reflectrometry probes, which respond to 
changes in the dielectric constant of soil (Topp et al., 1980). Though very useful, these probes may require calibration to soil type and 
present additional challenges when used to assess SSM dynamics with multiple probes across large spatial scales in heterogeneous 
environments. Consequently, assessing the distribution of saturated areas across a landscape or agricultural fields is financially and 
logistically challenging with soil moisture probes alone. 

Advances in airborne and satellite remote sensing have provided an alternative approach for assessing spatial patterns of SSM. 
Active and passive microwave imaging is also affected by the dielectric constant of the soil surface and can be used to estimate SSM 
from a remote sensing perspective (Dubois et al. 1995, Wagner et al. 1999). Microwave imagers operating in the decimeter wavelength 
range are powerful tools for remote sensing of SSM measurement as they are relatively unaffected by atmospheric conditions, 
moderately resistant to vegetation interference and day and night cycles, and can determine SSM in the top 0–5 cm of the soil surface 
(Schmugge et al. 2002). Remote sensing is advantageous for assessing large-scale spatial and temporal SSM patterns as measurements 
are an average of a target land surface (which is dependent on the specific instrument used (Mohanty et al. 2017)), while in situ 
measurements can provide more accurate local SSM values (with a sensor footprint of a few cm3) but lack broad spatial coverage (Ford 
and Quiring, 2019). Global SSM products generated from satellite microwave information are now widely available and have proved 
valuable for assessing large regional-to-global scale soil moisture trends with high temporal frequency (Dong et al. 2020). These global 
products have been used to examine the impacts of large-scale weather and climate patterns, biogeochemical cycles, and terrestrial 
hydrology in new and insightful ways (Dorigo and de Jeu, 2016) but have limited application for addressing the spatiotemporal 
variability of soil moisture at more localized landscape scales (e.g., ≤ 100-m grids) due to their coarse spatial resolution. Higher spatial 
resolution SSM estimates may be achieved using remote sensors such as infrared imagers and synthetic aperture radars, but the 
resulting SSM products from these remote sensors still have reduced spatial coverage and limited temporal frequency (Dorigo et al. 
2017). Thus, there is a need for SSM products with both high temporal and spatial resolution, but current satellite remote sensing 
technology cannot meet both needs alone. 

Recent research has aimed to address these spatial resolution limitations by attempting to “downscale” coarse resolution global soil 
moisture datasets using a wide variety of algorithms and statistical approaches. Downscaling approaches (e.g., methods and algo
rithms) are diverse, and developing and testing various downscaling approaches is a pressing need for improving the quality and 
spatial detail of current and future satellite soil moisture missions (Liu et al. 2017, Liu et al. 2020, Peng et al. 2017). Some 
process-based approaches are based on the relationship between soil moisture and other environmental data such as vegetation in
dexes and land surface temperature (Fang et al. 2018, Gillies et al. 1997). These relationships can be represented by fitting nonlinear 
models using a triangle or trapezoid feature space to derive soil moisture estimates with increased granularity with the spatial support 
of land surface or vegetation index datasets (Carlson, 2007). This is because localized land surface characteristics and vegetation 
indexes can be more easily represented with higher spatial resolution (fine grained) compared to global satellite soil moisture datasets. 
Beyond process-based models, empirical downscaling approaches treat the data mechanism regulating the SSM variability as unknown 
(Liu et al. 2017). These empirical approaches can be based in probability theory or may employ machine learning approaches 
including regression trees, deep learning methods, or combined approaches such as ensemble or multiple regressors or classifiers. 
Across all downscaling approaches, many studies leverage linear and nonlinear models for predicting or downscaling satellite soil 
moisture estimates using a variety of ancillary information available with increased granularity (Guevara and Vargas, 2019, Merlin 
et al. 2013, Montzka et al. 2018, Piles et al. 2011, Ranney et al. 2015, Sharma et al. 2021, Yan and Bai, 2020, Zappa et al. 2019). 
Arguably, most common predictors for soil moisture are vegetation indexes and climate datasets, although there are a large number of 
environmental layers potentially useful for predicting satellite soil moisture values with higher granularity and accuracy than satellite 
estimates. While using ancillary vegetation data may improve downscaling performance, it also increases the risk of confounding 
problems (e.g., spurious correlations) in downstream investigations into vegetation-SSM relationships. Spatiotemporal relationships 
between SSM and vegetation phenology are of great importance to ecological and agricultural sciences, as SSM is an important 
environmental variable for developing agricultural drought forecasting systems (CEC, 2021, Ford and Quiring, 2019, Han et al. 2014). 
As an example, a researcher investigating landscape scale drought patterns may want to examine correlations between a spectral 
vegetation index and a downscaled SSM grid, but if the downscaled SSM grid used this vegetation index as an ancillary predictor 
dataset, the resulting investigation would be inherently biased towards the downscaling model relationship and results could be 
potentially influenced by spurious correlations. Recent research has demonstrated that a purely geomorphometric (i.e., terrain is the 
only ancillary dataset employed) downscaling approach is viable for continental scale application at a moderate resolution of one 
kilometer, though the usefulness of such an approach at landscape scale resolutions (≤ 100 m) has not been explored (Guevara and 
Vargas, 2019). While a few downscaling approaches have targeted resolutions in the 30–100 m range capable of assessing landscape 
scale SSM variations (Abowarda et al. 2021, Merlin et al. 2013, Ranney et al. 2015), all have employed vegetation datasets as ancillary 
predictors. 

This study presents a landscape-scale SSM downscaling methodology employing a kernel-based approach that relies on spatial 
information (e.g., spatial structure of satellite soil moisture values), topographic land surface characteristics, and meteorological data 
rather than vegetation or land cover data. The overarching goal of this study was to develop a methodology for downscaling a coarse 
spatial resolution global daily SSM dataset to a spatial resolution suitable for evaluating landscape scale SSM variability (i.e., 100 m 

D.L. Warner et al.                                                                                                                                                                                                     



JournalofHydrology:RegionalStudies38(2021)100946

3

Fig. 1. General workflow of the downscaling method (left) and overview of study area with land cover classifications and locations of DEOS network meteorological stations noted (right). The location 
of the study area within the United States is noted in the inset. 
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resolution) that minimizes potential confounding bias in subsequent investigations of downscaled SSM with relation to local vege
tation indices (e.g., NDVI) and land cover classes. The specific goals of this study were to evaluate the performance of this downscaling 
approach compared to a coarse resolution remotely sensed product against a local SSM monitoring network, explore potential re
lationships between SSM estimates and vegetation and land cover data, and identify limitations and areas of poor downscaling per
formance to target in future downscaling efforts. This study focuses on the state of Delaware, USA and its surrounding watersheds. This 
study area is anticipated to experience a complex shift of hydrologic regimes in the coming decades, with potentially higher mean 
annual precipitation but also higher occurrence of droughts and intense storm events that may impact agricultural activities (Najjar 
et al. 2000, Huntington et al., 2009). The study area contains a relatively dense meteorological monitoring network that includes 21 
SSM monitoring stations, allowing for testing and evaluation of downscaling methodologies. 

2. Methods 

2.1. Study area 

The area considered in this study included the state of Delaware, USA and portions of major watersheds (USGS HUC12 de
lineations) flowing into or out of the state, constituting a total land area of roughly 8130 km2. The study area was elected because it has 
a dense meteorological network with in situ soil moisture information (see Section 2.2) with about 1 station per 390 km2. Contained 
within this study area are distinct subregions of the rugged Piedmont, the heavily agricultural mid-Atlantic coastal plain, and large 
networks of coastal bays and wetlands (Fig. 1). The study area lies in a transition zone between continental and subtropical climate 
zones, experiencing a four-season climate mostly based on temperature with warm, humid summers and cold, relatively dry winters 
and nearly constant precipitation throughout the year. The 40-year mean average annual temperature is roughly 13 ºC, reaching a 
minimum monthly mean of 1.8 ºC in January and maximum monthly mean of 25 ºC in July. Average annual precipitation is roughly 
1143 mm (Office of the Delaware State Climatologist, http://www.climate.udel.edu/). 

2.2. Data sources: ESA CCI and DEOS network 

The satellite-based estimates of daily soil moisture were taken from the soil moisture program of the European Space Agency’s 
Climate Change Initiative (ESA-CCI SM version 4.5; Dorigo et al. 2017, Gruber et al. (2017,2019)). This dataset consists of daily global 
soil moisture estimates at 0.25 degree spatial resolution (approximately 27 km vertical and 21 km horizontal in our study area), which 
are generated by combining multiple satellite soil moisture records available since the late 1970 s (Dorigo et al. 2015, Dorigo et al. 
2017). This dataset is constantly being updated and improved (Chung et al. 2018). Soil moisture records contained in the ESA-CCI are 
estimated using passive and active microwave remote sensors (e.g., spaceborne radiometers and radar sensors) able to measure the 
dielectric constant in the top layer of soil, from 0 to roughly 5 cm depth (Llamas et al. 2020). Specifically, ESA-CCI SM was developed 
by combining data from C-band scatterometers from European remote sensing satellite missions (e.g., ERS-½, METOP) and data from 
multi-frequency radiometers such as the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager 
(SSM/I), Microwave Imager (TMI), Advanced Microwave Scanning Radiometer (AMSR-E), and Windsat (Llamas et al. 2020). 

Ground-based in situ soil moisture measurements were taken from the Delaware Environmental Observing System (DEOS) 
network. The DEOS maintains a dense network of meteorological monitoring stations throughout the State of Delaware, extending 
northward into southeastern Pennsylvania to cover the upper basins of the Brandywine River, White Clay Creek, and Red Clay Creek. 
The network has been operating for over 15 years and now consists of over 60 monitoring stations. Recently, DEOS has begun to add 
soil moisture and soil temperature monitoring capabilities across its many stations using probes capturing the upper 0–5 cm of the soil. 
In total, 21 of the DEOS stations had consistent SSM data for 2018, the study year of interest, and these station observations were used 
as an independent benchmark for evaluating and calibrating both the ESA datasets and downscaled SSM estimates (Fig. 1). Weather 

Table 1 
Descriptions of terrain attributes considered as potential predictors in the downscaling model.  

Terrain Attribute Description 

Aspect The direction that a slope faces relative to due south 
Catchment Slope The mean slope of all grid cells within a given grid cell’s upslope accumulation area 
Channel Network Base 

Level 
The interpolated elevation of a channel network with a sufficiently large upslope accumulation area (Conrad et al. 2015) 

Closed Depressions The depth of a grid cell identified as a topographic depression relative to its lowest surrounding grid cell (Conrad et al. 2015) 
Cross-Sectional 

Curvature 
The surface curvature perpendicular to aspect and slope normal line 

Flow Accumulation The number of grid cells that drain through a given grid cell 
Flow Line Curvature The curvature of the nearest grid cells draining through a given grid cell (Conrad et al. 2015) 
Slope The maximum slope angle at a given grid cell 
Topographic Position 

Index 
The difference of grid cell elevation and local mean elevation, this index is indicative of the local high and low points (Gallant and 
Wilson, 2000) 

Topographic Wetness 
Index 

The upslope accumulation area of a grid cell divided by its slope, this index is indicative of where water tends to accumulate on a 
landscape (Beven and Kirkby, 1979) 

Valley Depth The difference of grid cell elevation beneath an interpolated local ridge line (Conrad et al. 2015)  
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data obtained from DEOS included ambient air temperature, soil temperature, and precipitation. For all variables, 5-min observations 
were averaged to produce daily mean values, except precipitation, which was considered as the sum of the 5-min intervals. Because of 
gaps in the data, at least 12 h of soil moisture data, or 18 h for weather data, must have been present for daily values to be valid. One of 
the 21 stations, located near Dover, Delaware towards the center of the study area, had a large gap in its SSM record during spring and 
early summer 2018 (200 days), but was still used for evaluation purposes in other seasons. 

2.3. Ancillary data processing 

Terrain attributes were extracted from a 100-m resolution DEM, which was generated by resampling a LIDAR-derived 3-m reso
lution DEM of the study area. A resolution of 100-m was selected as it captured general landscape features (i.e., hills and valleys) while 
still allowing for relatively rapid computation. LIDAR for the State of Delaware was collected during the leaf off period of winter 2014 
with a minimum return density of 2 points m-2 and hydroflattened water bodies, while small portions of the northern section of the 
study area were taken from 1-m resolution county level elevation datasets in the states of Pennsylvania and Maryland. A set of terrain 
attributes were derived from the DEM using several SAGA GIS terrain analysis modules (SAGA GIS 6.4) and are described in Table 1. 
Surface layer saturated conductivity data was sourced from the National Resources Conservation Service’s Soil Survey Geographic 
Database (Soil Survey Staff, National Resources Conservation Service, US Department of Agriculture, 2015), which was converted to a 
gridded format at 100-m resolution. An additional set of six oblique, or rotated, geographic coordinate axes were generated and 
converted to gridded values to be considered as potential predictors. Oblique coordinates are used as spatially explicit predictors in the 
downscaling model as one may use latitude and longitude, but unlike 2-dimensional latitude and longitude, oblique coordinates are 
less likely to introduce orthogonal artifacts in resulting prediction grids made by nonlinear models (Møller et al. 2020). The elevation 
attributes, oblique coordinates, and soil data were referred to as temporally static predictors. 

Because SSM is a temporally dynamic variable, our downscaling methodology also incorporated daily grids of antecedent mean 
temperature, antecedent cumulative precipitation, and day length grids as predictors. Daily temperature and precipitation at the DEOS 
network stations were interpolated to a 100 m grid spatially aligned with the elevation grid using a regularized spline with an n value 
(i.e., the number of points considered for local approximation) of 10 and smoothing weight of 0.2. The resulting daily grids were 
stacked and processed to generate precipitation and temperature variables to establish a meteorological context of current and 
antecedent conditions across the study area. Antecedent precipitation and temperature conditions were considered as potential pre
dictors as they have shown to be related to SSM dynamics in previous research (Buczko et al., 2007, Han et al. 2014). Day length grids 
were based on a single value estimated from the day of year and the latitude of the centroid of our study area. This set of predictors 
were referred to as temporally dynamic predictors. 

2.4. Model training and variable selection 

The downscaling method used in this study employed a Kernel K-Nearest Neighbors (KKNN) regression algorithm for fitting ESA- 
CCI SSM values to terrain attributes and temporal predictors. This algorithm was chosen based on its relative speed, simplicity, and 
demonstrated performance in previous SSM downscaling efforts at larger scales (Guevara and Vargas, 2019; Guevara et al. 2021). The 
methodology of training KKNN models in the variable selection process and in the final model training followed the same general 
approach shown in Fig. 1. A set of 10 KKNN models were trained based on a set of 100 randomly selected dates in 2018. On each date, a 
stack of predictor grids was built consisting of ESA-CCI SSM estimates and grids of predictor variables. Temporally static predictor 
variables were held constant, while temporally dynamic variables were specific for each date. Spatial points (n = 200) were then 
randomly sampled from each date’s predictor stack, yielding a dataset of 20,000 input points. A KKNN model was then fit to these 
points using 10 repetitions of 5-fold cross validation to select the optimal kernel function and k (number of surrounding points to 
consider) that minimized cross validated mean absolute error (MAE; Fig. 1). We selected MAE as the reference criteria over root mean 
square error as it provides a general measure of model error but is less sensitive to infrequent, large magnitude errors. 

To select which of the predictor variables will be included in the model, each predictor variable was sequentially excluded from 
repetitions of the described KKNN model training process and evaluated for its importance based on the change in model MAE before 
and after its exclusion. Variables that had consistently low-importance across this process were then eliminated from the predictor set, 
yielding a set of influential predictor variables that also reduced the dimensionality of the predictor variable space. 

A final ensemble of 10 KKNN models were then trained using the final set of predictor variables using the workflow illustrated in 
Fig. 1. Soil moisture predictions were then extrapolated from each model across the study area on each date using gridded data of each 
predictor variable. Final downscaled estimated daily SSM values represent the mean prediction of all ten model outputs at each 100 m 
grid cell. 

2.5. Evaluation against ground network observations 

We evaluated SSM predictions using methods similar to those used in global scale SSM studies (Gruber et al. 2020). Daily estimated 
SSM was compared to daily DEOS network SSM observations in grid cells corresponding to station locations. Given the narrow and 
conservative range of values modeled from the ESA-CCI soil moisture product, daily predicted grids (both coarse resolution and 
downscaled) were then normalized from zero to one over the entire prediction domain. These grids were then linearly rescaled based 
on the highest and lowest SSM values observed by the DEOS network on each day (i.e., values taken from two of the 21 stations). The 
purpose of this rescaling, or calibration, was to better account for spatiotemporal variability in SSM values that is lost due to the 

D.L. Warner et al.                                                                                                                                                                                                     



Journal of Hydrology: Regional Studies 38 (2021) 100946

6 (caption on next page) 

D.L. Warner et al.                                                                                                                                                                                                     



Journal of Hydrology: Regional Studies 38 (2021) 100946

7

averaging effects of the large footprint ESA-CCI product grid cells. While it is possible that this calibration may introduce a small degree 
of confounding bias into later evaluations of downscaling model performance, beyond the two stations used for daily calibration, the 
remaining DEOS network stations were not used to calibrate SSM values in any way. For the remainder of this manuscript, the 
following terms will be used:  

• DEOSOBS: SSM observed by the DEOS network  
• ESARAW: SSM values from original ESA-CCI soil moisture grid cells  
• ESASC: ESARAW values that are calibrated to daily minimum and maximum SSM observed by the DEOS network  
• KKNNRAW: modeled SSM from our downscaling method  
• KKNNSC: KKNNRAW values that are calibrated to daily minimum and maximum SSM observed by the DEOS network. 

Raw and calibrated values of both the ESA and KKNN products were evaluated spatially based on the mean absolute error (MAE), 
and mean bias error (MBE) between predicted values and DEOSOBS. These performance metrics were evaluated across all network 
stations on a daily basis between predicted SSM at grid cells corresponding to DEOS station observations. An overall coefficient of 
determination (R2) was calculated for all predictions and corresponding observations over the whole study period. To assess the 
predictive performance of SSM estimates temporally (i.e., at individual network stations over time) Nash-Sutcliffe Efficiency (NSE) was 
calculated for each station on a seasonal and annual basis (Nash and Sutcliffe, 1970). Values of NSE theoretically range from negative 
infinity to one, with values greater than zero indicating that the predictive performance of a given model for a given site is greater than 
simply using the mean of observed data. These evaluations allowed us to assess the general performance of our downscaling method 
relative to the coarser ESA product, as well as the performance of both products after being calibrated to observed daily maximum and 
minimum values in the ground-based network. 

2.6. Comparison across land cover classes and vegetation indices 

We investigated how different SSM estimates varied across land cover classes and in relation to the Normalized Difference 
Vegetation Index (NDVI) with the intent of identifying strengths and weaknesses of the estimates in the context of observations from 
previous research. 

Distributions of predicted soil moisture across different land cover classes were assessed using the 2016 National Land Cover 
Dataset (NLCD; Yang et al. 2018). Zonal means, standard deviations (S.D.), and coefficients of variation (C.V.; standard deviation 
expressed as a percentage of the mean) of SSM were extracted for each date and each land cover class in the published NLCD 2016 grid 
after resampling from 30 m to 100 m resolution based on the majority class of each cell. 

Spatiotemporal relationships between SSM estimates from each of the four methods and NDVI were investigated for each NDVI 
retrieval in 2018. The NDVI product used was a MODIS-Terra 16-day composite NDVI, generated at 250-m resolution and processed to 
minimize influences from clouds, aerosols, and view angles (Didan, 2015). Pixel-wise linear regressions were used to investigate 
temporal relationships at each individual point across the 22 NDVI retrieval dates, which were evaluated based on the regression slope, 
p-values, and R2 values for all individual grid cells and within different land cover classes. Correlations between NDVI and SSM across 
space were also examined for each NDVI retrieval date and were evaluated based on the same metrics for each retrieval date. 

2.7. Software and packages 

All terrain attributes and daily climate surfaces were produced in SAGA GIS (version 6.4; Conrad et al. 2015). All statistical analyses 
and modeling were performed in R statistical software (version 3.5; R Core Team, 2019), using packages “geosphere” (Hijmans 2017a), 
“raster” (Hijmans 2017b), “kknn” (Schliep and Hechenbichler, 2016), “RSAGA” (Brenning et al. 2018), and “caret” (Kuhn et al. 2018). 
An example code and small set of test data is available on GitHub (Warner, 2020), and the downscaled SSM grids produced in this study 
are available on the Hydroshare repository (Warner et al. 2020). 

3. Results 

3.1. Variable selection and model ensemble performance 

The final set of high-importance variables selected for training the ensemble of KKNN models consisted of slope, cross-sectional 
curvature, channel network base level, catchment slope, topographic wetness index, valley depth, topographic position index, the 
set of six oblique geographic coordinate grids, three-day cumulative antecedent precipitation, and two-day antecedent mean tem
perature. A visualization of a daily ESARAW dataset and resulting downscaled KKNNRAW dataset is shown in Fig. 2. 

After training, model testing set MAE values ranged 0.019–0.020 m3 m-3. In this instance, values of MAE reflect how well testing set 
predictions matched the values of the ESA grid cells used as inputs rather than in situ SSM observations. Model optimal k ranged from 

Fig. 2. Illustrated example of two raw ESA-CCI SSM datasets at 0.25 degree resolution (left) and datasets produced by our KKNN downscaling 
method at 100-m resolution (right), which reflects the large scale variations of the coarse resolution data as well as small scale variations in un
derlying ancillary datasets. The dates pictured are 2018–04–16 and 2018–08–17. 
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13 to 16, and the optimal kernel across all models was triangular. 

3.2. Evaluation of SSM estimation methods against ground network observations 

Over the course of 2018, DEOSOBS had an annual mean ( ± 1 S.D.) of 0.26 ± 0.11 m3 m-3. Across individual dates, mean DEOSOBS 
ranged 0.09–0.38 m3 m-3 and standard deviations ranged 0.02–0.13 m3 m-3, with generally higher values in spring, fall, and winter, 
and several network-wide decreases in SSM during July, August, and September (Fig S1). In early January 2018, several dates with 
very low observed SSM let to high errors to corresponding modeled grid cell values. These erroneous dates correspond to a series of 
cold snaps with daily ambient temperatures well below 0 ºC across the DEOS network, potentially causing frozen soil conditions that 
decrease accuracy of measurements by soil moisture probes. 

Fig. 3 illustrates MAE and MBE from spatial evaluations (i.e., comparisons of SSM estimates in grid cells corresponding to DEOS 
SSM monitoring station locations) of the four SSM estimates relative to DEOSOBS calculated of each date in 2018, and a summary of 
these values is provided in Table 2. MAE for KKNNSC was relatively low throughout the year, while both ESARAW and KKNNRAW had 
large positive bias and absolute error in the summer and early fall (Fig. 3) corresponding to periods of low SSM based on DEOSOBS (Fig 
S1). Although ESASC and KKNNSC had relatively lower MAE and MBE than ESARAW and KKNNRAW in the summer months, both es
timates had a “wet bias” and consistently overestimated SSM in the spring and winter months (Fig. 3b). As a result, the annual means of 
MBE values for ESARAW, KKNNRAW, and ESASC were roughly double that of KKNNSC, at 0.031, 0.030, and 0.032 compared to 0.015 m3 

m-3, respectively. Evaluating across all daily predictions corresponding to DEOSOBS station locations, SSM estimates from ESARAW, 
KKNNRAW, ESASC, and KKNNSC had R2 values of 0.48, 0.52, 0.66, and 0.73, respectively (Fig S2). 

Temporal evaluations of SSM estimates against DEOSOBS were calculated on an annual and seasonal basis for each SSM monitoring 
station in the DEOS network. When evaluated on an annual basis, NSE from KKNNSC was greater than zero for 62% of DEOS network 
stations, compared to 43%, 29%, and 19% for ESASC, KKNNRAW, and ESARAW, respectively, with noticeably improved performance in 
the southern portion of the study area (Fig. 4). KKNNSC SSM estimates generally had higher NSE across network stations when 
evaluated on a seasonal basis, though ESARAW and KKNNRAW estimate NSE exceeded the calibrated estimates only in winter when 
performance of all estimation methods was poor (Fig S3). 

3.3. Spatial and temporal variability of SSM with land cover class and NDVI 

Estimates of daily zonal mean SSM varied significantly across major land cover classes although the relative differences among land 
cover classes were similar for each estimation method (Fig. 5). Variability in daily zonal mean SSM was much higher in ESASC and 
KKNNSC, and lowest in KKNNRAW. Cropland, barren, evergreen forest, and woody wetland land cover classes had consistently low daily 
mean SSM, while pasture land, developed, and deciduous forest land cover classes were consistently high. Although emergent wetlands 
had generally higher SSM than woody wetlands, neither wetland class was predicted to have high mean daily SSM relative to the other 
classes in any of the estimation methods. Developed land cover classes had very little separation among daily mean values. Daily zonal 
C.V. varied within each estimation method as well, with particularly high C.V. values in barren land cover and particularly low values 
in pasture lands. 

The four methods (i.e., ESARAW, ESASC, KKNNRAW, and KKNNSC) yielded significant differences (pairwise Wilcoxon test, p < 0.05) 
in daily mean SSM over the entire year for several land cover classes. KKNNSC estimated lower SSM than all other methods in barren 
lands, evergreen and mixed forests, croplands, and both wetland land cover classes. In emergent wetlands, both KKNN datasets had 
significantly lower estimated SSM than both ESA products. In pasture lands, both ESASC and KKNNSC estimated higher SSM than the 
other products. Daily zonal C.V. values also varied across the different estimation methods and were generally higher for ESASC and 
KKNNSC. 

Over the course of 2018, significant (p < 0.05) pixel-wise correlations between NDVI and estimated SSM were identified at 2% and 
7% of grid cells using the ESARAW and KKNNRAW, methods, and 77% and 91% of grid cells using the ESASC and KKNNSC methods, 
respectively (Fig. 6, top row). The occurrence of these significant relationships varied across land cover class. Notably, significant 
NDVI and SSM relationships were less common in barren, cropland, and evergreen forest grid cells (63%, 71%, and 79% of grid cells for 
ESASC, and 66%, 85%, and 85% of grid cells for KKNNSC, respectively) than for pastureland, deciduous forest, and mixed forest grid 
cells (83%, 96%, and 96% for ESASC, and 98%, 99%, and 99% for KKNNSC, respectively). Slopes and R2 values of pixel-wise NDVI-SSM 
relationships showed similar variability among land cover classes for both ESASC and KKNNSC, with both datasets identifying the 
highest mean pixel-wise R2 values and steeply negative slopes in deciduous forests, mixed forests, emergent wetlands, and pasture 
lands. Barren lands, croplands, and evergreen forest classes generally showed weaker relationships less steeply negative slopes be
tween NDVI and SSM from ESASC and KKNNSC. Coarse resolution grid cell-specific artifacts were evident in the relationships between 
NDVI and SSM derived from ESASC data (Fig. 6), with rectangular zones exhibiting particularly strong or weak relationships relative to 
other coarse cell footprints. We did not identify any clear spatial correlations between NDVI and SSM on each retrieval date. 

4. Discussion 

4.1. Strengths and limitations of the KKNN-based downscaling method 

This study demonstrates a geomorphometry based downscaling method that provides estimates of daily SSM at much higher spatial 
resolution than is available in daily remotely sensed products using ancillary terrain, spatial, and meteorological data from publicly 
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available data sources. The performance indicators (i.e., MAE and MBE) calculated between our best-performing high resolution 
downscaled SSM estimates (KKNNSC) and in situ observations were comparable to those identified in continental scale comparisons of 
observations and coarse remotely sensed (Draper et al. 2012, Albergel et al., 2012, Gruber et al. 2020) and downscaled (Guevara and 
Vargas, 2019) SSM products. A novel benefit of this approach is that by not using ancillary vegetation or land cover data in the 
downscaling process, we are able to examine spatiotemporal relationships between downscaled SSM estimates, vegetation distribu
tions, and land cover maps while minimizing the risk of confounding factors and misleading interpretations (e.g., spurious correla
tions). It should be noted, however, that land cover and NDVI are not wholly independent of terrain features. In the northern portion of 
our study region, for example, developed areas and pasturelands primarily occupy the relatively flat hilltops in the landscape while 
steep hillslopes and valley bottoms contain dense forested and scrub areas that are unsuitable for development or agriculture. Thus, 
some confounding effects are inevitable in any geospatial research (Kedron et al., 2021). 

Our results highlight the importance of comparing and calibrating remotely sensed environmental products with field observations 
when assessing SSM at specific regions or localities. Although KKNNRAW showed slightly higher temporal predictive performance for 
DEOS network stations than ESARAW (Fig. 4), daily calculated MAE and MBE was similar for both estimates, reflecting the limited 
ability of the raw values to capture the pronounced seasonal decline of SSM during the warm summer months (Fig. 3). This lack of 
seasonality resulted in a narrow range of SSM values across all land cover classes (Fig. 5) and a lack of significant temporal correlations 
between NDVI and SSM estimates from ESARAW and KKNNRAW (Fig. 6). Calibrating daily SSM datasets to the daily minima and maxima 
of DOESOBS helped capture these seasonal patterns and revealed widespread significant relationships between NDVI and SSM in both 
the coarse and downscaled datasets (Fig. 6). Both ESASC and KKNNSC outperformed their non-calibrated counterparts in both the daily 
calculated performance metrics (Table 2, Fig. 3) and in their predictive performance (i.e., NSE) for DEOS network stations over the 
study year (Fig. 4). The higher NSE values observed from KKNNSC in the southern part of the study area may indicate a benefit of the 
increased resolution of the downscaled estimates, as this area has a large degree of spatial heterogeneity in network station obser
vations that may be challenging to resolve using low resolution satellite products. The need for calibration is not unexpected, as 
previous research has highlighted the need for calibration as a way to overcome the hurdle of systematic differences between large 
scale remotely sensed SSM products and field observations (Reichle et al. 2004, Draper et al. 2012). Thus, the accuracy of SSM es
timates in our study region appears to be highly dependent on the availability of in situ data, and our calibrated SSM estimates are 
influenced by the environmental monitoring network design. The DEOS network is an excellent data source, but it is fundamentally 
designed as a meteorological network with stations located in open fields and roadsides to provide exposure to wind and solar 

Fig. 3. Spatial evaluations of mean absolute error (MAE) and mean bias error (MBE) between DEOSOBS and the four SSM estimates. MAE and MBE 
were calculated on each date during 2018 at grid cells corresponding to DEOS network site locations and plotted over time in units of m3 m-3. Points 
represent daily values while lines represent the generalized trend using a LOESS smoother with span = 0.1. 
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radiation. It is unlikely that this distribution captures the full spectrum of spatial heterogeneity of SSM, terrain, and land cover across 
the study region. Consequently, this network design limits our downscaling and calibration efforts. Improved SSM monitoring ca
pabilities in this region and others will facilitate the development of high-resolution data products that better capture the spatio
temporal variability of SSM. 

While the downscaling and calibration method used in this study showed promise when evaluated against in situ SSM observations, 
there are major limitations of this method in some areas. One limitation is the challenge of model interpretability that results from an 
approach using a randomly generated ensemble of empirical machine learning models, which makes assessing variable dependence 
challenging. We clarify that this is not necessarily a weakness of our approach, but we recognize that this is a challenge for inter
pretation of machine learning approaches (Gilpin et al. 2018). A more practical limitation was identified because downscaled SSM 
estimates in wetland land cover classes were similar to (or lower than) many other land cover classes across all seasons (Fig. 5). This is a 
clear underestimation, as wetland soils are, by definition, saturated or near saturation for most of the year. However, wetland SSM was 
also similarly low in both coarse resolution ESA datasets (Fig. 5). Wetlands have long been known to present challenges for coarse scale 
remotely sensed SSM products due their small spatial extent but high SSM within a given grid cell (Wagner et al. 1999). As a result, the 
coarse resolution SSM products used as inputs to our downscaling model cannot reflect the very high SSM of wetland features within 
the landscape due to averaging effects within each grid cell. Within the multivariate space of our ancillary data alone, the extensive 
coastal wetland networks within our study area likely appear similar to nearby coastal plain areas (i.e., flat to mild slopes, low 
elevation, low relief), which generally sit atop well-drained sandy soils containing agricultural fields. As a result, the model was unable 
to distinguish the coastal wetlands from the neighboring dry soils. Thus, the inputs to our geomorphological downscaling methodology 
(i.e., ESARAW values and ancillary terrain and spatial datasets) inherently limit the ability of its outputs (i.e., KKNNSC values) to 
represent these high SSM features. Accounting for this remains a major challenge to prioritize in future downscaling efforts across 
landscapes containing wetland areas. 

Our results demonstrated a consistent wet bias towards higher values of both ESASC and KKNNSC in the spring, fall, and winter 
(Fig. 3), which may explain why calibrated estimates had lower NSE at many sites in winter and fall (Fig S3). This bias may be 
explained by the relatively small scale of the study area relative to ESARAW grid resolution. Our downscaling methodology is based on 
daily information derived from ESARAW values, where each grid cell provides a single SSM value representing all the heterogeneity 
within its 27-km footprint. The spatial extent of our study area is defined by the spatial extent of the DEOS network, which limits the 
number of ESARAW grid cells from which our randomized sampling could draw on any given day and in turn limits the number of 
possible values that could be modeled in the KKNNRAW output on any given day. This resulted in limited variance among higher range 
SSM estimates, which, when calibrated to DEOS network minima and maxima, yielded wide swaths of the study area with values 
skewed towards the daily maximum SSM observed by the DEOS network. This highlights the challenges of accounting for small scale 
spatial SSM heterogeneity, particularly in separating localized, high SSM features from the greater landscape. 

4.2. Spatial and temporal relationships of SSM with land cover and NDVI 

We were able to examine how different estimation methods lead to differences in SSM among land cover classes as well as the 
variability of SSM values within each class by comparing zonal means and C.V. values of daily SSM estimates. Mean daily estimated 
SSM showed similar variations among land cover classes for all four estimation methods, suggesting that both coarse and downscaled 

Table 2 
Summary of mean absolute error (MAE) and mean bias error (MBE) values from SSM estimation methods. Values are reported as means and standard 
deviations for MAE and MBE calculated for each date (n = 365) between DEOSOBS and SSM estimates at corresponding grid cells. All units are in m3 

m-3.  

Source Season MBE.mean MBE.sd MAE.mean MAE.sd 

ESARAW Annual  0.031  0.077  0.066  0.050  
Spring  0.012  0.072  0.059  0.043  
Summer  0.080  0.067  0.087  0.058  
Fall  0.036  0.067  0.062  0.044  
Winter  -0.010  0.073  0.058  0.046 

ESASC Annual  0.032  0.067  0.059  0.045  
Spring  0.029  0.072  0.060  0.048  
Summer  0.019  0.064  0.054  0.040  
Fall  0.036  0.057  0.054  0.040  
Winter  0.044  0.073  0.070  0.049 

KKNNRAW Annual  0.030  0.076  0.065  0.051  
Spring  0.009  0.069  0.056  0.041  
Summer  0.084  0.070  0.091  0.061  
Fall  0.036  0.065  0.060  0.044  
Winter  -0.012  0.066  0.051  0.043 

KKNNSC Annual  0.016  0.060  0.048  0.039  
Spring  0.018  0.064  0.051  0.042  
Fall  0.017  0.051  0.042  0.033  
Summer  0.007  0.059  0.048  0.036  
Winter  0.021  0.065  0.053  0.044  
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resolution methods were able to distinguish general differences in SSM between land cover over the course of the year across our study 
region (Fig. 5). However, the downscaled grids have the advantage of the ability to resolve sub-grid cell variability that is lost in the 
coarser ESA datasets. In fact, the combination of downscaling and calibration (i.e., KKNNSC) led to the greatest degree of SSM vari
ability throughout the study region compared to other estimation methods, as SSM C.V. (i.e., the zonal standard deviation expressed as 
a percentage of the zonal mean) was consistently higher from KKNNSC than other estimation methods for most land cover classes 
(Fig. 5). 

Except for wetland land cover classes, all SSM estimation methods provided values that generally agreed with observed SSM in 
major land cover classes in this region. Unfortunately, the DEOS network SSM monitoring locations were only located in cropland, 
open spaces, and reported SSM observations from many other land cover classes are scarce. SSM values in the cropland class fell within 
ranges of surface water content reported in previous work in various types of croplands in the mid-Atlantic coastal plain (McCann et al. 
2007, Roygard et al. 2002) which contains most croplands in the study area. Of the forest classes, mixed and deciduous forests are 
concentrated in the northern Piedmont region and scattered throughout the rest of the study area, while evergreen forests are almost 
exclusively located on sandy coastal plain soils in the southern portion of the study area (Fig. 1). Estimated ranges of SSM for deciduous 
and mixed forests fell within ranges of in situ seasonal observations from a recent study in a typical Piedmont forest in this region 
(Warner et al. 2018). Barren and grassland land cover classes occupy a very small fraction of the study area and, though they generally 
correspond to beaches and dune areas, we found no in situ SSM data for comparison in this region. Reported in situ SSM observations 
for the study region were also lacking for developed land cover classes. For all methods, estimated SSM was similar across all developed 
land cover intensities, which may reflect a limitation of our methodology to capture the well-established heterogeneity of urban SSM 
driven by human influenced factors like soil disturbances and the extent of impermeable surfaces (Wiesner et al. 2016, Zhang et al. 
2019). The ancillary datasets used in our downscaling methodology could not account for such factors, limiting its ability to resolve 
fine scale variation of soil moisture in developed areas. We highlight the importance of collecting and cataloging in situ SSM data in all 
heterogeneous features and varieties of land cover to support future SSM downscaling and modeling efforts, echoing the sentiments of 
other recent research on soil moisture downscaling (Zappa et al. 2019). 

Estimates from ESARAW appeared unsuitable for evaluating temporal relationships between NDVI and SSM across the study region 
based on the pixel-wise linear regressions, of which only 2% suggested significant correlations (p < 0.05). Downscaling alone (i.e., 
KKNNRAW) only slightly increased the number of significant temporal relationships (7%), most of which featured very steep slopes 
resulting from the narrow range of KKNNRAW SSM values throughout the year. The additional calibration to daily DEOS network 
minima and maxima (i.e., ESASC and KKNNSC) greatly improved our ability to identify temporal relationships between SSM and NDVI 
(77% and 91%). Spatial evaluations of relationships between NDVI and KKNNSC had the additional benefit over ESASC of being free 
from artifacts introduced by the coarse resolution ESA grids (Fig. 6), which arise from the averaging of estimated SSM across all land 
cover and vegetation heterogeneity within each ESA grid cell footprint. 

The pixel-wise temporal correlations between NDVI and KKNNSC indicated that SSM and NDVI are generally negatively correlated 
through time across the study area (Fig. 6). This reflects seasonal transitions of vegetation greening and corresponding increases in root 
zone water use resulting in decreased SSM. The R-squared values suggested that these relationships were particularly strong in de
ciduous forests, mixed forests, and pasture lands. Conversely, these relationships were relatively weak in evergreen forests, barren 
lands, and croplands. These weaker correlations may be a result of limited seasonal variations in evergreen forest canopy foliage, a lack 
of foliage in barren lands, and irregular seasonality of NDVI in croplands due to agricultural practices (i.e., irrigation regimes, harvest, 
land tillage) for which our downscaling approach cannot account (Hmimina et al. 2013, Moulin et al. 1997). In fact, 71% of grid cells 
lacking significant temporal correlations between NDVI and KKNNSC corresponded to croplands, though croplands accounted for only 
41% of the study area. Agricultural land management may also explain the lack of clear spatial correlations between NDVI and SSM 
estimates across the study area for each date of NDVI retrieval, as the modeled SSM cannot account for irrigation practices that may 
keep cropland NDVI values high throughout the growing season. The spatial distribution of agricultural land management regimes for 
individual crop fields is unknown in this region, and coordinated studies with agricultural stakeholders may help improve future SSM 
downscaling efforts for the benefit of the agricultural community. Without including such land management strategies, high spatial 
resolution SSM downscaling methods employing primarily terrain data may have limited application for targeted field or farm-specific 
studies, though they may still be useful for assessing mesoscale SSM dynamics in agricultural areas. 

5. Conclusions 

This study demonstrates the strengths and limitations of a geomorphometric kernel K-nearest neighbors downscaling method for 
estimating high resolution distributions of SSM based on remote sensing products from the ESA-CCI soil moisture program using 
meteorological data from a ground network, spatial coordinates, and terrain attributes as predictors. Our downscaled estimates were 
evaluated against ground network data and showed improvement over the coarse resolution product, although calibration of both 
coarse and downscaled SSM was necessary for capturing seasonal SSM variations and identifying temporal relationships to NDVI. All 
SSM estimates indicated a consistent wet bias, and subsequent analysis of SSM estimates in relation to land cover classes found clear 
limitations of all estimation methods in wetland areas. Our methodology provided high spatiotemporal resolution SSM maps with 

Fig. 4. Annual map of Nash-Sutcliffe Efficiency (NSE) across all DEOS monitoring stations for each of the four estimation techniques. Increasingly 
dark and large circles indicate increasingly negative (red) and positive (blue) NSE. Percentages indicate the percent of stations above the threshold 
of 0, indicating that the modeled values outperformed the observational mean. 
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Fig. 5. Boxplots of daily zonal means (top) and daily zonal coefficients of variation (C.V., bottom, expressed as the standard deviation as a percentage of the mean) for daily SSM estimates and land 
cover classes over the year 2018. Colored bars represent different land cover classes, while the wide grey bar in the background represents all classes combined. 
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lower error than coarse resolution datasets and showed higher predictive performance through time when evaluated against moni
toring network observations. This data driven downscaling methodology may be applied to other (coarse spatial scale/high temporal 
scale) remotely sensed SSM datasets (e.g., SMAP; Entekhabi et al., 2010a) and in other regions provided the necessary spatial and 
monitoring network data. We highlight the need for more spatially representative ground based SSM monitoring networks that will 
enhance our ability to evaluate and refine downscaled SSM estimates. Future work should address the challenges posed by down
scaling remotely sensed SSM in wetland areas and attempt to account for causes of wet bias, perhaps with greater interaction between 
ground networks and satellite data. Finally, we emphasize the importance of developing downscaling techniques that allow for in
vestigations into spatiotemporal relationships between SSM and remotely sensed vegetation data, which will support investigations 
into ecological processes, drought forecasting, and agricultural management strategies at localized landscape scales. 
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Wiesner, S., Gröngröft, A., Ament, F., Eschenbach, A., 2016. Spatial and temporal variability of urban soil water dynamics observed by a soil monitoring network. 

J. Soils Sedim. 16 (11), 2523–2537. https://doi.org/10.1007/s11368-016-1385-6. 
Yan, R., Bai, J., 2020. A new approach for soil moisture downscaling in the presence of seasonal difference. Remote Sens. 12 (17), 1–19. https://doi.org/10.3390/ 

rs12172818. 
Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., Grannemann, B., Rigge, M., Xian, G., 2018. A new generation of 

the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 
146, 108–123. 

Zappa, L., Forkel, M., Xaver, A., Dorigo, W., 2019. Deriving field scale soil moisture from satellite observations and ground measurements in a Hilly Agricultural 
Region. Remote Sens. 11 (22), 2596. https://doi.org/10.3390/rs11222596. 

Zhang, J., Li, S., Sun, X., Tong, J., Fu, Z., Li, J., 2019. Sustainability of urban soil management: analysis of soil physicochemical properties and bacterial community 
structure under different green space types. Sustainability 11 (5), 1–17. https://doi.org/10.3390/su11051395. 

D.L. Warner et al.                                                                                                                                                                                                     


