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Abstract

People estimate numerical quantities (such as the calories of foods) on a day-to-day basis.
Although these estimates influence behavior and determine wellbeing, they are prone to two
important types of errors. Scaling errors occur when people make mistakes reporting their beliefs
about a particular numerical quantity (e.g. by inflating small numbers). Belief errors occur when
people make mistakes using their knowledge of the judgment target to form their beliefs about
the numerical quantity (e.g. by overweighting certain cues). In this paper, we quantitatively
model numerical estimates, and in turn, scaling and belief errors, in everyday judgment tasks.
Our approach is unique in using insights from semantic memory research to specify knowledge
for naturalistic judgment targets, allowing our models to formally describe nuanced errors in
belief not considered in prior research. In Studies 1 and 2, we find that belief error models
predict participant estimates and errors with very high out-of-sample accuracy rates, significantly
outperforming the predictions of scaling error models. In fact, the best-fitting belief error models
can closely mimic the inverse-S shaped patterns captured by scaling error models, suggesting
that the types of responses previously attributed to scaling errors can be seen as errors of belief.
In Studies 3 to 8, we find that belief error models are also able to predict people’s responses in
semantic judgment, free association, and verbal protocol tasks related to numerical judgment,

and thus provide a good account of the cognitive underpinnings of judgment.
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Introduction

Decades of research on human cognition and judgment has established that people make
systematic errors when estimating numerical quantities, such as the frequencies of lethal events,
proportions of demographic groups, or the calories of food items (Chernev & Chandon, 2011;
Landy, Guay, & Marghetis, 2018; Lichtenstein et al., 1978). Researchers studying these
judgment errors have identified a number of factors responsible for numerical misestimation,
including the use of non-linear weighting functions (e.g. Gonzalez & Wu, 1999; Hollands &
Dyre, 2000; Landy et al., 2018; Tversky & Kahneman, 1992) or the use of heuristic cue-
aggregation rules (Brown & Siegler, 1993; von Helversen & Rieskamp, 2008).

These factors can be understood as involving two types of errors — scaling errors and
belief errors. Scaling errors occur when people make mistakes reporting their beliefs about a
particular numerical quantity. In other words, people may have the correct belief about the
numerical quantity (e.g. they may know that the calorie amount of 100g of walnuts is 654kcal')
but incorrectly scale this belief to a response (e.g. by reporting that the calorie amount of 100g of
walnuts is 160kcal due to a deflation of large values). Prior literature has found evidence for such
distortions of numerical representations, indicating that psychological magnitude does not
always correspond to the same physical magnitude (Stevens, 1957, 1975; Stevens & Galanter,
1957). These distortions are the cause of the overestimation of small values and underestimation
of large values, which leads to the common inverse-S-shape pattern when plotting participant
estimates against objective statistics (e.g. Erlick, 1964; Hollands & Dyre, 2000; Landy et al.,

2018; Varey, Mellers, & Birnbaum,1990). Inverse S-shaped patterns in numerical estimation can

! According to the United States Department of Agriculture (USDA), 100g of walnuts have 654kcal.
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be modeled using various non-linear functions, e.g. polynomial functions and their variants
(Curtis, Attmeave, & Harrington, 1968; Hollands & Dyre, 2000), log-odds transformations
(Shepard, 1981; Zhang & Maloney, 2012), and probability weighting functions (Fennell &
Baddeley, 2012; Tversky & Kahneman, 1992). Models that use non-linear functions to describe
scaling errors typically assume that a systematic distortion takes place when transforming
otherwise correct internal beliefs on to an explicit numerical response.

In contrast, belief errors occur when people make mistakes using their knowledge of the
judgment target to form their beliefs. These can lead to the formation of incorrect beliefs
through, for instance, the biased use of memory cues (e.g. thinking 100g of walnuts have only
160kcal because walnuts are associated with health and nutrition), though people may still be
able to accurately report these beliefs (e.g. by answering 160kcal). For example, Chernev and
Chandon (2011) have studied biases in food calorie estimation and have found that health-related
cues are given an incorrectly high weight, which can then lead to the underestimation of food
calories for healthy food sources. Media coverage and word frequency have also been shown to
be used as cues in probability estimation (Dougherty, Franco-Watkins, & Thomas, 2008; Tversky
& Kahneman, 1974) and frequency estimation (Hertwig, Pachur, & Kurzenhduser, 2005;
Lichtenstein et al., 1978), which can lead to the overestimation of the size of minority groups
(Gallagher, 2003; Herda, 2013, 2015). More generally, many researchers in psychology have
proposed that people use heuristics to weight and aggregate judgment cues, which can, at times,
lead to belief errors in numerical estimation. These heuristics simplify the decision process by
ignoring certain cues and thus assigning them incorrectly low weights, or by using equal weights

for all cues and thus over-weighting irrelevant cues and under-weighting relevant cues (see



NATURALISTIC JUDGMENT ERRORS 5

Hertwig, Hoffrage, & Martignon, 1999; Juslin, Olsson, & Olsson, 2003; von Helversen &
Rieskamp, 2008).

Our division of numerical judgment errors into scaling and belief errors has precedent.
For example, Lichtenstein et al. (1978) suggested that there are two types of biases in frequency
estimation — a primary bias (specifically, an overestimation of small numbers and
underestimation of large numbers) and a secondary bias (involving the formation of incorrect
beliefs due to the overuse of certain memory cues, such as familiarity and imaginability).
Likewise, Brown and Siegler (1993) argued that there are two types of knowledge that come into
play in quantitative estimation — metric knowledge (which involves knowledge of the
distributional properties in the judgment domain) and mapping knowledge (which involves
knowledge of the relative ranks of different entities within the distribution). Von Helversen and
Rieskamp (2008) similarly argued that people are likely to sample objects that are similar to the
judgment target (where belief errors may occur) and make estimates based on some
transformation of the sampled objects’ values (where scaling errors may occur). Finally, Landy et
al. (2018) suggested that two different features could lead to errors in domains such as
demographic estimation — domain-general process (i.e. a log-odds mental representation of
proportion) and topic-specific bias (e.g. media bias and xenophobia).

Although this work has greatly expanded our understanding of numerical estimation,
almost all of it uses artificial experimental stimuli, such as the toxicity of fictional bugs (Juslin et
al., 2003), the percentage of white dots in a mixture of black and white dots (Varey et al., 1990)
and the proportion of certain letters in a random letter string (Erlick, 1964). There is work that
studies more naturalistic judgment targets, though these targets are typically modeled using a

small set of experimenter-generated cues that provide only an abstract representation of the rich
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knowledge representations for the judgment targets in people’s minds. For example, Lichtenstein
et al. (1978) studied belief errors by predicting participant estimates of frequencies of lethal
events from cues such as participant ratings of their experience with lethal events and lengths of
news articles reporting lethal events. These experimenter-generated cues do predict participant
estimates. However, they certainly do not represent all of what people know about and associate
with lethal events, and may not be enough for understanding how people use knowledge to form
beliefs and the judgment errors that could arise from these beliefs.

Research on semantic memory offers one solution to this problem. Specifically, high-
dimensional semantic spaces, that have previously used to model knowledge representations for
words and concepts (Gilinther, Rinaldi, & Marelli, 2019; Jones, Willits & Dennis, 2015; Landauer
& Dumais, 1997; Mandera, Keuleers & Brysbaert, 2017; Mikolov et al., 2013), can also be used
to specify people’s knowledge for judgment targets (Bhatia, 2017, 2019a; Bhatia, Richie & Zou,
2019), allowing models of numerical estimation to permit more complex forms of knowledge,
and thus more complex forms of belief errors, not considered in prior research. Doing this has
numerous practical and theoretical benefits. Firstly, by allowing for richer and more nuanced
belief errors we can greatly improve our ability to predict estimates (and misestimates) for
judgment targets. This has direct policy implications, and our tests, which involve judgments of
food calories and judgments of infant mortality rates, can be used to inform behavioral
interventions for healthy eating and charitable giving (e.g. Butera & Houser, 2018; Glanz &
Mullis, 1988; Goswami & Urminsky, 2016; Michie et al., 2009; Oppenheimer & Olivola, 2011).

Additionally, by understanding accuracy rates using richer knowledge representations
such tests can also provide a better estimate of the explanatory power of belief error models

(relative to scaling error models). This can help researchers better understand how and why
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people make mistakes in numerical estimation, and the set of theoretical assumptions necessary
to describe these mistakes. Some prior work has found that after allowing for a domain-general
bias (which is due to a nonlinear psychophysical rescaling and is analogous to a scaling error),
there is little evidence for a topic-specific bias (which is due to media bias or xenophobia and is
analogous to a belief error) in participant estimates of demographic proportions, suggesting that
errors in demographic proportion estimates are largely due to scaling errors (Landy et al., 2018).
However richer knowledge representations for judgment targets, as well as formal models for
scaling these representations to responses, could result in different conclusions if such
representations accurately predict the structure of people’s judgment errors.

Finally, formally modeling the knowledge at play in numerical judgment will generate a
direct theoretical link between judgment research and research in semantic cognition (see e.g.
Jones et al., 2015 or Mandera et al., 2017 for a review), which pertains directly to the structure of
people’s knowledge representations, and how these representations guide memory, language, and
various high-order cognition tasks. These theoretical linkages can also be used to make novel
predictions regarding the use of memory in numerical estimation, e.g. by specifying the words
and concepts that are most strongly associated with or related to the estimated quantity. This in
turn can provide a more detailed understanding of the cognitive processes at play in numerical
estimation tasks.

Overview of Approach

The key insight underpinning our tests is that knowledge for naturalistic judgment targets
can be captured using high-dimensional vector representations obtained from semantic space
models. Semantic space models are powerful theoretical tools in semantic memory research, that

use the distributional structure of words and concepts in large natural language datasets, such as



NATURALISTIC JUDGMENT ERRORS 8

text corpora, to derive knowledge representations for the words and concepts. The corpora can be
a collection of books, Wikipedia, product reviews, and news articles, all of which capture the
knowledge shared among humans in a rich linguistic environment. As the linguistic environment
informs learning, and human behavior is shaped by how knowledge is communicated and
exchanged (Estes, 1955; Simon 1969), text corpora can serve as an approximation of language
experience (Johns, Jones, & Mewhort, 2016, 2019) in which the distributional patterns of words
correspond to their meanings or knowledge representations (Giinther et al., 2019; Mandera et al.,
2017; Lenci, 2018; Hollis, 2017). For this reason, the proximity between words in the semantic
space derived from word distributions in text corpora can be used to predict judgments of
semantic similarity and relatedness (Bhatia et al., 2019; Jones et al., 2015; Jones & Mewhort,
2007; Landauer & Dumais, 1997; Mandera et al., 2017; Mikolov et al., 2013; Pennington, Socher
& Manning, 2014). Vector space semantics have also been shown to mimic representations at
play in other settings, such as those involving semantic priming (Jones, Kintsch & Mewhort,
2006; Giinther, Dudschig, & Kaup, 2016), semantic memory search (Hills, Jones & Todd, 2012),
free recall (Manning & Kahana, 2012; Steyvers, Shiffrin, & Nelson, 2004), probability judgment
and factual judgment (Bhatia, 2017; Bhatia & Walasek, 2019), risk perception (Bhatia, 2019a),
multiattribute choice (Bhatia, 2019b; Bhatia & Stewart, 2018), and stereotype judgment (Bhatia,
2017; Caliskan, Bryson, & Narayanan, 2017; Garg et al., 2018). In all of these domains, semantic
vectors for items in memory, judgment, and decision making tasks, specify what people know
and associate with the items and thus predict their responses in the tasks.

Due to their ability to describe knowledge representations at play in people’s judgments,
we propose that semantic space models can also be used to study the types of belief errors that

accompany these judgments. Specifically, the vector representations for judgment targets
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specified by semantic space models are analogous to cue vectors used in existing research on
numerical estimation. These semantic vectors can be multiplied by cue weights to predict
participant responses, and the weighting vectors used by participants can be inferred by fitting
linear judgment models to participant numerical estimation data (as in e.g. Brunswik, 1952;
Gigerenzer & Kurz, 2001; Karelaia & Hogarth, 2008). Belief errors emerge if certain vector
dimensions are given disproportionally high or low weights (relative to the optimal weight vector
for predicting the criterion variable). Note that such a linear model of judgment implicitly
assumes that there is no further non-linear transformation of beliefs onto the response scale. In
this sense, this model permits only belief errors. The ability of such a model to predict participant
estimates is a measure of the explanatory scope of belief error models in describing numerical
estimation. Figure 1 provides an illustration of this approach. Additional technical details are
provided in subsequent sections.

Semantic space models are not only capable of predicting judgment errors. They can also
provide insights regarding the conceptual underpinnings of these errors. Particularly, the weight
vectors used by participants to map vector representations of judgment targets onto the response
variable, are themselves vectors in the semantic space (see Figure 1). These vectors occupy
regions of the semantic space that are most associated with or related to high responses on the
dimension being judged. Words and concepts that are close to the weight vectors in this space
are, in this sense, highly associated with or related to the judgment dimension. These words and
concepts may not themselves be judgment targets, but if they were, they would be given the
highest estimates by participants. Contemporary semantic space models have rich vocabularies,
spanning hundreds of thousands of words and concepts, and can thus be used to identify which

of a very large set of words are most associated with the judgment dimension in consideration.
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Figure 1. lllustration of a vector semantic space specification of a belief error model. Each
judgment target i (e.g. walnuts or spinach) has a normalized vector representation, x;, in the
semantic space. A vector of weights w multiplies against x; to generate participant estimates of
target i, y;, on the judgment dimension (e.g. calories). This approach can be applied to non-target
concepts (e.g. nutrient and fat) to predict participant estimates of that concept’s calories as if it
were a judgment target. This serves as a measure of the strength of association between that
concept and the judgment dimension. As vectors are normalized, multiplying w against x; is
proportional to measuring the cosine similarity between w and x;.

We will use this approach to test for the conceptual underpinnings of numerical estimation
predicted by our belief error models.

The predictions of the belief error models can be contrasted with those of scaling error
models. These are quite simply non-linear functions of the true value of the criterion variable
being judged, and thus implicitly assume that people have correct beliefs (i.e. know the true
value of this variable), but map these beliefs onto the response scale in some biased manner. As
scaling models are monotonic (e.g. see Hollands & Dyre, 2000; Litchtenstein et al., 1978), they
also predict that the rank-ordering of participant estimates should be fully accurate. Thus,
judgment targets with higher values on the criterion should always be given higher estimates,
even if the estimates themselves are incorrect. Belief error models, in contrast, can generate

participant estimates whose rank-ordering deviates from the correct ordering. For example,
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judgment targets with high values on overweighted cue dimensions can be given incorrectly high
ranks.

In this paper, we will be examining the predictions of both belief and scaling error
models. Such tests will allow us to directly compare the explanatory scope of these two causes of
judgment errors. Additionally, the use of a flexible non-linear function to scale correct criterion
values to participant estimates provides a particularly stringent test of our proposed semantic
space specification of belief errors. We can be confident in the power of our belief error models
if they are able to provide a more accurate account of participant data than the scaling error
models (despite the belief error models not having access to the correct value of the criterion
variable).

We will consider two domains to test our models: estimates of calories in food items and
estimates of infant mortality rates in countries. Judgments in these domains influence health
decision making and charitable decision making, making these domains suitable for applied (as
well as theoretical) research on judgment. Using the insights developed in this paper, it may be
possible to craft behavioral interventions to increase healthy and charitable choice (Butera &
Houser, 2018; Glanz & Mullis, 1988; Goswami & Urminsky, 2016; Michie et al., 2009;
Oppenheimer & Olivola, 2011). Similar judgment domains have been previously used to study
numerical estimation. For example, Chandon and Wansink (2007) found that (in a between-
subject design) calorie estimates were significantly lower when participants were given a healthy
menu than when they were given an unhealthy one, and Hertwig et al. (2005) and Litchtenstein
et al. (1978) found that participants on average overestimated small (and underestimated large)

incidence rates and mortality rates of lethal events (e.g. accidents and diseases).
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In Studies 1 and 2, we will examine participant estimates for 400 distinct naturalistic
entities in these two domains and fit scaling and belief error models separately to predict
participant estimates. We will compare the accuracy of the scaling and belief error models using
their out-of-sample predictions. In Studies 3 and 4, we will examine the accuracy of the word
and concept associations predicted by the belief error models by asking participants to rate the
relatedness of these words and concepts to the corresponding judgment dimensions. In Studies 5
and 6, we will use free association data to examine the words that are most associated with the
high and low ends of the two judgment dimensions. Finally, in Studies 7 and 8, we will use
verbal protocols to further explore the mental process underlying estimation. Through the
semantic judgments in Studies 3 and 4, free associations in Studies 5 and 6, and verbal protocols
in Studies 7 and 8, we can obtain a detailed understanding of how well our belief error models
predict the conceptual underpinnings of numerical estimation.

Studies 1 and 2: Modeling and Predicting Judgment Errors
Experimental Methods

Participants. We recruited a total of 50 participants (mean age = 30 years, 52% female)
in Study 1 and 51 participants (mean age = 31 years, 60% female) in Study 2 from Prolific
Academic, an online experiment platform. All participants were residents of the United States
and had an approval rate of 80% or above.

Stimuli. For Study 1, we obtained 200 food items and their calorie amounts from the
United States Department of Agriculture database (https://www.ers.usda.gov/data-
products/foodaps-national-household-food-acquisition-and-purchase-survey/). Sample items
included walnuts, spinach, lamb, mint, etc. For Study 2, we obtained the infant mortality rates of

200 countries from the Central Intelligence Agency World Factbook
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(https://www.cia.gov/library/publications/the-world-factbook/rankorder/209 1rank.html). Food
items and countries were chosen to ensure that they were present in the vocabulary of the
semantic space used for our belief error models (see computational methods below).

Procedure. In Study 1, participants were asked to estimate how many calories (in kcal)
there are in 100 grams of a particular food item; in Study 2, they were asked to estimate the
infant mortality rate (i.e. number of deaths of children younger than one year, per 1,000 live
births) in a particular country. The sample prompt for Study 1 read “How many calories are there
in 100g of [food]?” and that for Study 2 read “In the [country], what is the infant (child under 1-
year-old) mortality rate, in the number of deaths per 1,000 live births?”. Participants entered
answers in a textbox in both studies. Each participant estimated all 200 judgment targets and saw
only one target on each screen. The order of the 200 targets was randomized and there was a 30-
second break after every 50 targets. Additionally, for Study 1, participants were also told that
100g is approximately the weight of a stick of butter, allowing them to calibrate their responses
for the response scale in the study.

Computational Methods

Scaling Error Model. For each target i (e.g. walnuts), we obtained the (aggregate or
individual-level) participant estimate y; (e.g. estimated calories in walnuts) and the correct
answer z; (e.g. actual calories in walnuts). Our first model for describing participant estimates
was a linear model that assumes that y; is simply z; multiplied by some constant and added to an
intercept (Eq. 1). Although linear patterns are rarely found in previous literature, we included it
as a baseline. Note that the baseline model serves as a useful contrast against both scaling models
(that use z; to predict y; in a non-linear manner) and belief error models (which use a linear

transformation of a knowledge or cue vector to predict y;).
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yi=a+pz (1)

To quantitatively study scaling explanations for estimation errors, we fit two different
scaling error models that transformed correct answers into participant responses. Formally, our
scaling error models predicted y; as some non-linear function of z;. The first function we used
was a third-degree polynomial (Eq.2), and the second function was a power function with a
constant term (Eq.3). A third-degree polynomial can capture a potential S-shape or inverse-S-
shape pattern in participant responses (as in e.g. Erlick, 1964; Landy et al., 2018; Varey et
al.,1990). We incorporated a power function due to its prevalence in prior work (e.g. see
Hollands & Dyre, 2000).

Vi = Bo + Bz + Brz} + B3z} (2)
Vi =y +0z) 3)

Parameters for the baseline model and the two scaling models were estimated by
minimizing the residual sum of squares to participant responses. We used established Python
functions numpy.polyfit for Eq. 1 and Eq. 2 (which gives least squares polynomial fit) and
scipy.optimize.fmin for Eq. 3 (which minimizes sum squared errors using the downhill simplex
algorithm) with 100 iterations and random starting points for each iteration.

Belief Error Model. To examine belief errors, we used the pre-trained Word2Vec
semantic space model (Mikolov et al., 2013) to obtain semantic representations for food items
and countries. This model was trained on a large dataset of Google News articles (roughly 100
billion words in size with a vocabulary of three million unique tokens) using the continuous bag-
of-words (CBOW) method (which predicts words from their neighbors) and the skip-gram
method (which predicts neighboring words of a given word). These two methods allow words

that appear in similar contexts and share related meanings to be located in close proximity in the
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high dimensional semantic space, and the Word2Vec semantic space has previously been shown
to generate accurate predictions of human similarity judgment and associative judgment (Baroni,
Dinu, & Kruszewski, 2014; Bhatia, 2017; Bhatia & Walasek, 2019; Caliskan et al., 2017; Pereira
et al., 2016; Hollis, Westbury, & Lefsrud, 2017).

Each of the three million words and phrases in the Word2Vec vocabulary is described
using a 300-dimensional vector. This vocabulary includes a large number of food items and
countries, which we use in our studies. Specifically, for each food target, we used the Word2Vec
vector representation corresponding to the lower case of the food word (e.g. walnuts). We took
the plural form only for foods that are normally consumed in bulk (e.g. walnuts, blueberries, and
bran flakes). Everything else was in the singular form. It is also worth noting that in the
Word2Vec model, singular and plural forms have very similar vectors. For each country, we used
the Word2 Vec representation corresponding to the first letter uppercased and remaining letters
lowercased for the country word (e.g. France), except for a few countries whose vector
representations could only be found with all letters uppercased. Foods and countries with
multiple words in their names had each word separated by an underscore (e.g. peanut_butter or
South_Africa). Although the vectors in the original Word2Vec vocabulary have different
magnitudes, we normalized all vectors to unit norm prior to analysis.

Ultimately, the Word2Vec space gave us a 300-dimensional vector x; for each target i,
where x;; is the value of target on the j dimension, and |jxj| = 1. These vectors quantify the
knowledge representations people use to make numerical estimates. Our belief error model,
inspired by prior work on numerical judgment (Brunswik, 1952; Gigerenzer & Kurz, 2001;
Karelaia & Hogarth, 2008), used a linear transformation of x;, with weight vector w, to predict y;

(Eq. 4). As discussed above, each dimension of x; can be seen as a cue that participants might
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rely on to facilitate estimation, and the weight vector, w, can be seen as capturing cue weights on
knowledge and transforming knowledge represented in a 300-dimensional space to a one-
dimensional numerical estimation line (Figure 1). Mathematically, multiplying two n-
dimensional vectors @ and b results in a scalar ¢, with ¢ = },[=; a; * b;. For example, (1,2,3) *
(3,0,5)=1*¥3+2*¥0+3*5=3+0+15=18.

The weight vector and intercept of this model were estimated by minimizing the residual
sum of squares. Due to the high dimensionality of the weight vectors w, we estimated the weights
with a ridge regression (also known as L2 regularization). This involves a loss function with an
additional penalty based on the sum of squares of the weight vector multiplied by
hyperparameter A (Eq. 5). Using this penalty mitigates the problem of multicollinearity in such
high-dimensional modeling problems and leads to better fits.

yi = wo +wx; 4)

Yi(yi —wo = X; xijo)Z + A% w;? (%)

We implemented the ridge regression in the Python scikit-learn machine learning library
(Pedregosa et al., 2011). There were a set of hyperparameters in this library. To avoid
manipulating the hyperparameters to improve model performance, we took the default values of
all these hyperparameters (including, for example, A = 1). We focused on ridge regression
because previous results (e.g. Bhatia, 2019a; Richie, Zou, & Bhatia, 2019) suggested that
compared to other regression techniques such as lasso regression and support vector regression,
ridge regression often works best in predicting human judgments from vector semantic
representations.

To avoid overfitting, we compared scaling and belief error models through leave-one-out

cross-validation (LOOCYV), on both the aggregate and the individual level. Specifically, for each
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domain, we trained our models on 199 judgment targets and then used the trained model to
predict participant estimates of the left-out target. This procedure was repeated for each
judgment target to get LOOCYV predictions.

Results

Summary of data. Study 1 and 2 elicited a total of 40,400 participant estimates for 400
distinct naturalistic entities in two domains — calories of 200 common food items and infant
mortality rates of 200 countries. Consistent with prior work, we found that participants made
substantial errors. The average absolute differences between the participant estimates, y;, and the
correct answers, z;, for food calories and infant mortality rates were -45.28kcal per 100g (SE =
10.80) and 53.44 deaths per 1,000 live births (SE = 1.35) respectively, indicating an overall
underestimation of food calories and overestimation of infant mortality rates.

Figure 2 plots the average participant estimates for the calories and mortality rates against
the true calories and mortality rates in the two studies. Here each point is a judgment target.
Figure 2 shows some overestimation of low calories, significant underestimation of high calories,
and overall overestimation of infant mortality rates (with slightly more overestimation of small
infant mortality rates and less overestimation of large infant mortality rates). This is consistent
with an inverse-S shaped pattern previously documented in judgment and decision making
research.

Participants largely underestimated the calories of small-size foods (e.g. nuts, dressing,
and cookies) and overestimated the calories of creamy and savory foods (e.g. milkshake,
cappuccino, and chicken gumbo). Overestimation of infant mortality rates was mainly driven by
African countries (e.g. Zimbabwe, Rwanda, and Ethiopia) and Middle Eastern countries (e.g.

Syria, Kuwait, and Iran). It is not immediately clear what leads to these judgment errors. For
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Figure 2. Scatterplots of average participant estimates vs. correct answers in (a) Study 1 (food
calories) and (b) Study 2 (infant mortality). The dotted lines represent perfect calibration where
participant estimates are equal to the correct answers. Curves represent the baseline model
(baseline — Eq. 1) and scaling error models with different scaling functions (polynomial — Eq. 2,
power — Eq. 3), which were trained on the aggregate-level data.

example, it could be that small-size foods have high calories per 100g and people systematically
underestimate high calories (scaling error). Or it could be that people overweight portion size as

a cue and thus think that small-size foods tend to have low calories (belief error). Note that
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scaling error models predict that the rank ordering of participant estimates should be correct,
which means that the rank correlation between average participant estimates and correct answers
should be close to one. However, the rank correlation was 0.56 for food calories (p < 107'%) and
0.78 for infant mortality rates (p < 10#!), which indicates that scaling error models cannot
provide a complete account of the data. To formally test whether belief errors are present in our
data, and if belief error models can outperform the predictions of scaling error models, we need
to quantitatively fit and evaluate the models.

Aggregate-level fits. Figure 2 shows the predictions of the best-fitting baseline model, as
well as the best-fitting scaling error models with two different scaling functions (all trained on
the entire dataset of aggregate participant responses). Table 1 summarizes the parameter values
of these models. Although it appears based on Figure 2 and Table 1 that nonlinear scaling
functions like the polynomial and power functions capture a lot of variance in participant
estimates, these tests do not control for model flexibility, and there may be problems with
overfitting. To avoid this, we evaluated model accuracy using leave-one-out cross-validation
(LOOCYV). The results of the LOOCYV analysis are presented in Table 2. This table also contrasts
the predictions of the baseline and scaling error models with belief error models trained on the
aggregate participant data. Model performance is evaluated using the Pearson correlation, 7, and
root mean square error (RMSE), between the observed y; and the out-of-sample prediction of y;,
for each i. Figures 3 and 4 show scatterplots of predicted estimates for each judgment target on
the aggregate data using LOOCYV and average participant estimates, along with Pearson
correlations. Here each point is a different judgment target, and the prediction for each judgment

target is obtained by fitting the models on all other targets excluding that target.
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Study 1 Study 2

Baseline

a 136.13 58.35

B 0.22 0.79
Scaling Error -- Polynomial

Bo 60.19 40.48

B 1.37 3.15

B, -3.35%10°3 -0.05

S 2.42%10°° 3.09%10*
Scaling Error -- Power

y -714.25 -1010.51

6 696.81 1035.95

) 0.05 0.02

Table 1. Parameter estimates of the baseline model (Eq. 1) and scaling error models trained on
entire data with different scaling functions — polynomial (Eq. 2), power (Eq. 3) for Study 1 (food
calories) and Study 2 (infant mortality).

Study 1 Study 2

Correlation R’ RMSE Correlation R’ RMSE
Baseline 0.48 0.23 67.89 0.68 0.46 18.67
Scaling Error 0.61 0.37 61.42 0.74 0.55 17.08
— Polynomial
Scaling Error 0.59 0.35 62.47 0.78 0.60 16.08
— Power
Belief Error 0.83 0.68 43.86 0.83 0.68 14.43

Table 2. Aggregate level out-of-sample predictive accuracy of the baseline model (Eq. 1), and
scaling error model with different scaling functions — polynomial (Eq. 2), power (Eq. 3), and
belief error model, using leave-one-out cross-validation (LOOCYV) for Study 1 (food calories)
and Study 2 (infant mortality).
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As can be seen in Table 2 and Figures 3 and 4, the belief error model was able to predict
participant estimates fairly accurately, with out-of-sample accuracy rates of » = 0.83 for both
domains on the aggregate level. In contrast, the highest aggregate level out-of-sample correlation
rates achieved by scaling error models were 0.61 for calorie estimates and 0.78 for infant
mortality rate estimates. The baseline model had the lowest correlation of 0.48 for calories and
0.68 for mortality rates (all correlations are significantly different from 0, at p < 10"'?). These
differences in model correlations were accompanied by differences in out-of-sample RMSE error
rates. The belief error model generated an RMSE of 43.86 and 14.43 for Study 1 and 2. In
contrast, the lowest RMSEs for the scaling error models were 61.42 and 16.08, and the RMSEs
for the baseline models were 67.89 and 18.67. The differences in RMSEs between the belief
error models and the best-performing scaling error models are statistically significant when
evaluated with a paired t-test on the target-level (df =199, t = -5.13, p < 10 for Study 1; df =
199, t =-2.14, p = 0.03 for Study 2). Both belief and scaling error models outperformed the
baseline model (all p < 0.02 in paired t-tests).

Note that there appear to be floors in the baseline predictions for both domains (Baseline
in Figures 3a and 4a) and caps in the polynomial predictions for both domains (Scaling Error —
Polynomial in Figures 3b and 4b) and in the power prediction for calorie estimates (Scaling Error
— Power in Figure 3c). These were likely due to the intercepts that overrode the effect of other
parameters (see Table 1), and suggest a substantial limitation in the predictive power of scaling

error models. Belief error predictions, in contrast, do not appear to suffer from these limitations.



NATURALISTIC JUDGMENT ERRORS

450 -

400

350 1

300 4

250 4

Predicted Calorie Estimates

250 4

200 4

150

100 4

200 A

150

100 4

(a) Baseline

450

400

350 1

300 4

(c) Scaling Error -- Power

50 100 150 200 250 300 350 400

450 4

400 4

350 4

300 1

250 1

200 1

150 1

100 4

450 4

400 1

330 4

300 4

250 1

200 1

150 +

100 +

50

22

(b) Scaling Error -- Polynomial

(d) Belief Error
0 50 100 150 200 250 300 350 400

Observed Calorie Estimates

Figure 3. Scatterplots of predicted estimates by (a) baseline model (Eq. 1), (b) scaling error
model with polynomial scaling function (Eq. 2), (c) scaling error model with power scaling
function (Eq. 3), (d) belief error model (Eq. 4) using leave-one-out cross-validation (LOOCYV)
vs. actual participant estimates in Study 1 (food calories), along with Pearson correlations.
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Figure 4. Scatterplots of predicted estimates by (a) baseline model (Eq. 1), (b) scaling error
model with polynomial scaling function (Eq. 2), (c) scaling error model with power scaling
function (Eq. 3), (d) belief error model (Eq. 4) using leave-one-out cross-validation (LOOCYV)
vs. actual participant estimates in Study 2 (infant mortality), along with Pearson correlations.
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Figure 5. Bar graph of individual-level out-of-sample accuracy rates averaged across participants
in Study 1 (food calories) and Study 2 (infant mortality). Error bars represent standard errors.

Individual-level fits. We obtained similar results on the individual level. For each
participant, we tested the baseline model, the two scaling error models, and the belief error
model using the LOOCYV procedure. Figure 5 shows the individual level performance of all
models. For calorie estimates, the best-fitting scaling error model — a third-degree polynomial —
achieved an average individual-level out-of-sample accuracy rate of » = 0.37, while the belief
error model achieved 0.51. For infant mortality rate estimates, the best-fitting scaling error model
—a power function — achieved an average individual-level out-of-sample accuracy rate of » =
0.43, while the belief error model achieved 0.47. The baseline models performed poorly in both
domains, achieving accuracy rates of 0.27 and 0.35 in the two studies. Although the average
individual-level out-of-sample accuracy rates were lower than the corresponding aggregate level
accuracy rates, the average individual-level accuracy rates were higher for the belief error model

than the best-fitting scaling model. Two separate paired t-tests using participant-level
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correlations for the best scaling error models and the belief error models showed that the
difference of accuracy rates was significant for both calorie estimates (df =49, t =-6.72, p < 10
7) and infant mortality rate estimates (df = 50, ¢t = -3.54, p < 107®). Both belief and scaling error
models outperformed the baseline model in the two domains (all p < 107%).

Although the belief error model was the best at explaining participant estimates, there
may be differences across individuals in the degrees to which they show the two types of errors.
To understand individual heterogeneity in scaling errors and belief errors, Figure 6 plots the
individual level out-of-sample accuracy rates (in terms of correlations) of the best-fitting belief
error model against the best-fitting scaling error model, for each participant. Each point in Figure
6 represents an individual. Points lying above the diagonal represent individuals whose
predictions were better fit by belief error models than scaling error models. Out of 50
participants who estimated food calories, 41 (82%) were better predicted by the belief error
model. Out of 51 participants who estimated infant mortality rates, 35 (68%) were better
predicted by the belief error model. It is useful to note that the accuracy rates of the two models
are positively correlated across participants, indicating that participants that are well described
by a scaling error model can also be well described by a belief error model.

As we fit our belief error model to individual-level data, we obtained unique weight
vectors for each participant. As discussed previously in section ‘Computational Methods’, these
weight vectors represent how much individual participants rely on different dimensions of the
vector representations (i.e. different knowledge cues). If participants used semantic knowledge of
the judgment targets similarly to each other, the individual weight vectors should correlate with
each other. The average pairwise correlation was 0.32 for calorie estimates and 0.26 for infant

mortality, across participants. Roughly 6% of the pairwise participant weight vector correlations
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Figure 6. Scatterplots of individual-level out-of-sample correlations for belief error model vs.
scaling error model in (a) Study 1 (food calories) and (b) Study 2 (infant mortality). Each dot
represents a participant. Black dots represent participants whose responses are better explained
by the belief error model than the scaling error model.

were negative for calorie estimates and roughly 8% were negative for infant mortality. In

addition, we found that participants whose weight vectors were largely negatively correlated with

others tended to give small estimates. The overall low and even occasionally negative
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correlations between individual weight vectors suggest that participants varied a lot in relying on
knowledge to estimate food calories and infant mortality rates.

A joint modeling approach. So far, our results show a considerable amount of
improvement in predictive accuracy when using only the belief error models compared to only
the scaling error models on both the aggregate and the individual level. However, it is not clear
whether or not belief errors are the only cause of incorrect participant estimates. It could be that
participants display both belief and scaling errors, by over or underweighting certain cues to
form incorrect beliefs, and then scaling the beliefs nonlinearly to the response scale. Indeed, the
scatterplots in Figures 3 and 4 suggest that the belief error model overestimated the values of
low-value targets and underestimated the values of high-value targets, consistent with an inverse-
S shaped weighting function used in scaling error models. Thus, it could be possible to improve
the predictions of the belief error model by allowing its predictions to pass through some sort of
non-linear scaling error model.

The ideal test of this would be to embed the linear function in Eq. 4 within the non-linear
functions in Eq. 2 or 3 and then recover the weighting vectors and power or polynomial function
parameters using best fits to participant data. Such a test is unfortunately not feasible, as it would
involve fitting a high-dimensional non-linear weight vector to a relatively small (200
observation) dataset. But we did attempt a shortcut, which simplifies the estimation by
combining the belief and scaling error models sequentially. Specifically, we first trained the
belief error model on participant estimates of the 199 judgment targets in the training data, y;,
and obtained predictions for the training targets (call these belief-error-corrected estimates, z;”).
Then we trained a second scaling error model to predict participant estimates of these training

targets, y;, from the belief-error-corrected estimates, z;". Finally, we used the trained belief error
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model to get a belief-error-corrected estimate for the left-out target and passed it through the
trained scaling error model to get a final prediction for the left-out target. We repeated this
procedure for all 200 targets in both studies to get LOOCYV predictions for the joint model.
Drawing on the results in the previous sections, we used the third-degree polynomial for food
calories and power function for infant mortality rates for our scaling models.

Figure 7 shows scatterplots of participant estimates against belief-error-corrected
estimates. The aggregate level out-of-sample accuracy, measured by the correlation between
average participant estimates and the LOOCYV predictions, was 0.84 for food calories and 0.83
for infant mortality rates. Although these are both significantly different from a correlation of 0
(p < 10 for both), they are nearly identical to the belief error models alone (0.83 for both) and
much higher than the best-fitting scaling error models alone (0.61 for food calories and 0.78 for
infant mortality rates). Figure 7 also shows the best-fitting scaling error models used in the joint
models. Although these models do permit non-linearity, they appear to be almost linear within
the range of the stimuli.

Overall, these results suggest that our joint modeling of belief and scaling errors does not
significantly improve predictions, largely because belief-error-corrected estimates z;”have a
linear relationship with participant estimates y;. This in turn indicates that what seem to be
scaling errors in Figures 2-4 could simply be statistical artifacts. Of course, we cannot make
conclusive claims based on our fits as they involve a (potentially biased) shortcut to fitting the
joint model. It could be that the joint model does improve predictive accuracy if its belief and
scaling error components are fit simultaneously and not sequentially.

Explaining scaling errors with belief errors. The above section suggests that a joint

belief and scaling error model does not significantly improve predictions relative to a belief-
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Figure 7. Scatterplots of average participant estimates (y;) vs. belief-error-corrected estimates (z;’)
in (a) Study 1 (food calories) and (b) Study 2 (infant mortality). The solid curves represent the
best-fitting scaling error models used in the joint model — polynomial (Eq. 2) for food calories
and power (Eq. 3) for infant mortality rates.

error-only model. Additionally, our participant-level fits show that participants that were well
described by the scaling error models were also well described by the belief error models. This
suggests that assuming belief errors (without assuming scaling errors) may be enough to

appropriately model our behavioral data. Here we test one implication of this claim: If belief
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errors are the sole cause of judgment errors it may be possible to mimic scaling errors (such as
the overestimation of small values) with a belief error model alone.

In Figure 8 we plot the LOOCYV prediction of the belief error model on the aggregate data
for each judgment target, against the correct value for the judgment target. Recall that Figure 2,
which presents similar scatterplots of participant estimates vs. correct values, shows that
participants overestimated low calories, underestimated high calories, and overestimated infant
mortality rates. Although these biases can be due to scaling errors, in Figure 8 we can see that
our belief error model generates the same non-linearities as human participants. Indeed, in Figure
8, we can see polynomial and power scaling functions best capture the relationship between our
belief error model’s predictions and correct responses for Study 1 and 2 respectively. These
results provide further evidence that the belief error model is capable of describing the
qualitative and quantitative patterns underpinning judgment errors in naturalistic estimation
tasks.

Interpretation of weight vectors. To better understand the weight vectors underlying our
belief error model, we plot the dimensional values of these vectors (trained on aggregate-level
data) for the two studies. Figure 9 shows the distribution of weights across 300 dimensions. The
standard deviation across the dimensions of the weight vectors was 22.78 for food calories and
6.89 for infant mortality. Since the standard deviation is not a standardized measure, we also
computed the Gini coefficients of the weight vectors, which were 0.2 for both tasks. These low
Gini coefficients indicate a high degree of dispersion, suggesting that different dimensions
contribute unevenly to numerical judgments.

Next, we correlated the two weight vectors trained on aggregate level data for the two

studies. As shown in Figure 10, the correlation was minimal and insignificant (» = -0.09, p =
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Figure 8. Scatterplots of LOOCV predicted estimates of belief error model (Eq. 4) vs. actual
values in (a) Study 1 (food calories) and (b) Study 2 (infant mortality). The solid curves represent
the best-fitting scaling error model trained on aggregate-level data.

0.13), indicating that the weight vectors for the two judgment dimensions were distinct. We also
did more robust tests. First, we trained a single weight vector across both domains. The pooled

model performed worse than individual models (» = 0.81, p < 10"’ for food calories, and » = 0.6,
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Figure 9. Dimensional values (sorted from lowest to highest) of the best-fit weight vector trained
on aggregate-level data for (a) Study 1 (food calories) and (b) Study 2 (infant mortality).
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Figure 10. Scatterplot of dimensional values of the best-fit weight vector trained on aggregate
infant mortality estimates vs. those trained on aggregate calorie estimates. Each dot represents a
dimension.

p < 102 for infant mortality rates). Second, we predicted aggregate participant response in one
task with the model trained on the other task. The weight vector trained on infant mortality
predicted calorie estimates with an accuracy rate (correlation between predicted and observed) of
-0.06 (p = 0.38) and the weight vector trained on food calories predicted mortality estimates with
an accuracy rate of -0.41 (p < 10°®). Together, these results suggest that people use different
weights for different domains.

Conceptual underpinnings of judgment. The weight vector w obtained from the belief
error model in the above tests is also a 300-dimensional vector in the semantic space. Implicitly,
this vector corresponds to the point in the semantic space that would generate the highest
participant estimate, and concepts closest to this point are ones that participants associate most
with the criterion value. The reason for this is that all our vectors are normalized (have a

magnitude of one), and thus the dot product of these semantic vectors with the weight vector,



NATURALISTIC JUDGMENT ERRORS 34

wex;, 1S a simple linear transformation of the cosine similarity of the semantic vectors and the

w'X; w X

weight vector The dot product is the main determinant of participant estimates,

wllbell— liwll”
and cosine similarity is a measure of relatedness and association in semantic spaces (Bhatia,
2017; Bhatia et al., 2019; Jones et al., 2015; Landauer & Dumais, 1997; Mandera et al., 2017;
Mikolov et al., 2013). This relationship implies that we can use the weight vector to explore the
conceptual underpinning of participant estimates. Crucially, this analysis is not limited to the
food items or countries used in our studies. We can take any word or concept with a vector
representation in our semantic space, measure its dot product with the best-fitting weight vector.
Words or concepts with high dot products are also those with high cosine similarities, and thus
will be judged by participants to be especially related to or associated with the judgment
dimension. These words and concepts are also likely the ones that come to participants’ minds
while deliberating.

To find concepts that map strongly onto the weight vector, we took the 5,000 most
frequent words from the corpus of contemporary American English (http://corpus.byu.edu/coca/)
that were not judgment targets. For each word &, we obtained a 300-dimensional (normalized)
vector, sk, from the Word2Vec model, by querying the Word2Vec vocabulary for the lower-cased
representation of the word. By multiplying sx with the weight vector w (obtained from model fits
on the entire aggregate participant estimates in Studies 1 and 2) we got the predicted association
of word k& with the judgment dimension, ex= w-sx. Figures 11a and 11b present word clouds of 50
words that are most and least strongly associated with the judgment dimensions according to this
measure (i.e. having the largest or smallest values of ex). These words reveal potential associative
underpinnings of judgment errors. For example, Figures 11a and 11b show that words related to

feasting (e.g. restaurant, Thanksgiving, fat, and dinner) are strongly associated with high-calorie
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foods; words related to nature and nutrition (e.g. crop, leaf, nutrient) are strongly associated with
low-calorie foods; words related to bad living conditions (e.g. hunger, poverty, and AIDS) are
strongly associated with countries with high infant mortality rates; and words related to tourism
and industry (e.g. sail, cruise, and manufacturer) are strongly associated with countries with low
infant mortality rates. These words and concepts will be the basis of our analysis in Studies 3-8.
Discussion

We built computational models to compare two types of errors in numerical estimation:
scaling errors and belief errors. We used these models to predict naturalistic numerical estimates
in two studies involving judgments of calories of food items and judgments of infant mortality
rates of countries. Consistent with previous findings, the best-fitting scaling error models in both
studies were nonlinear and drastically outperformed a simple linear baseline. We found the
common inverse-S-shape pattern in food calorie estimation. Additionally, although almost all
countries’ infant mortality rates were overestimated, the magnitude of overestimation appeared to
be larger for countries with low infant mortality than for countries with high infant mortality.

Although our scaling error models were able to provide a good account of our data, we
obtained even higher out-of-sample predictive accuracy rates from our belief error models. This
was the case on both the aggregate and individual level, indicating that we can predict participant
estimates better if we assume some flexible (potentially incorrect) use of knowledge cues to form
beliefs, instead of some flexible (potentially incorrect) use of correct beliefs. Moreover, using a
simplified joint modeling approach, we showed that after accounting for belief errors, what
originally appeared to be scaling errors largely disappeared. Indeed, the belief error models were
also able to mimic the inverse-S shaped patterns observe in our behavioral data, which are often

considered to be caused by scaling errors. Thus, it appears that belief errors can mimic scaling
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errors if the belief error model is appropriately specified. This in turn suggests that judgment
errors may stem primarily from the incorrect use of knowledge, rather than the incorrect scaling
of the true beliefs. Of course, this does not mean that there is no explanatory value to scaling
errors, as both belief errors and scaling errors could be operating simultaneously. Additionally,
two types of errors may influence numerical estimation differently depending on the task at hand.
For example, the improvement of the belief error models over the best-fitting error models was
much smaller in infant mortality estimation (0.05 difference in out-of-sample correlation on the
aggregate level, 0.04 on the individual level) than in food calorie estimation (0.22 difference in
out-of-sample correlation on the aggregate level, 0.16 on the individual level), suggesting that
belief errors are less prominent (relative to scaling errors) in infant mortality estimation than in
food calorie estimation.

Finally, the best-fitting weight vectors to our aggregate participant estimates were used to
identify the conceptual underpinnings of participant judgments. As would be expected, we found
that feast and fat related words were associated with high calories; nature and health related
words were associated with low calories; hunger and disease related words were associated with
high mortality rates; and tourism and industry related words were associated with low mortality
rates. These results offer valuable insights regarding the psychological substrates of numerical
estimation, and suggest one reason why participants may be making judgment errors in our two
studies. They also offer precise quantitative predictions regarding the strength of participant
associations with the judgment dimension in these studies. These predictions can be tested by
eliciting relatedness ratings of these concepts with the high and low ends of the food calorie and

infant mortality dimensions. This is the goal of Studies 3 and 4.
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Figure 11. Word clouds of words that are predicted by belief error models as strongly associated

with high and low calories based on Study 1 data (a) and high and low infant mortality rates

based on Study 2 data (b). Word font corresponds to the magnitude of predicted association (i.e.

dot product of word vector and weight vector, ex). Word clouds of word associates that listed
most frequently under high and low conditions in (¢) Study 5 (food calories) and (d) Study 6

(infant mortality). Word font corresponds to the frequency of a word being listed.
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Studies 3 and 4: Semantic Relatedness Judgements
Experimental Methods

Participants. We recruited a total 50 participants (mean age = 18 years, 34% female) in
Study 3 and 51 participants (mean age = 18 years, 39% female) in Study 4 from Prolific
Academic. All participants were from the United States and had an approval rate of 80% or
above.

Stimuli. For Study 3, we selected concepts predicted by our best-fitting belief error
model (fit to aggregate data from Study 1) to be strongly related to high- and low-calorie foods.
Specifically, these were the ten concepts with the largest values of ex (leaf, garden, flower, bulb,
cotton, lawn, sunlight, agricultural, nutrient) and the ten concepts with the smallest values of ex
(fat, famous, recipe, restaurant, monster, chef, heaven, birthday, cooking, beast). Similarly, for
Study 4, we selected concepts predicted by our best-fitting belief error model (fit to aggregate
data from Study 2) to be strongly related to high and low infant mortality rates. These were the
ten concepts with the largest values of ex (bush, neighborhood, rice, pastor, homeless, poverty,
hunger, AIDS, African, hungry) and ten concepts with the smallest values e (European,
extensive, sail, manufacturer, cruise, throughout, maker, strict, leading, bow).

Procedure. Participants were asked to rate the relatedness of a concept to the judgment
dimension on a slider from -100 (strongly related to the low end of the judgment dimension) to
100 strongly related to the high end of the judgment dimension). In Study 3, the prompt read
“How related do you feel [concept] is to low- or high-calorie food?” In Study 4, the prompt read
“How related do you feel [concept] is to countries with low or high infant mortality rates?”. Each
participant rated all 20 concepts and saw only one concept on each screen. The order of the 20

concepts was randomized.
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Results

If our belief error model captures the conceptual underpinnings of judgment errors, then
the concepts identified by the model as having large values of e should be given higher ratings
by participants than the concepts identified by the model as having small values of ex. Figure 12
shows scatterplots of average participant relatedness ratings and the predicted associations, ex.
Each dot represents a concept. As can be seen in this figure concepts with high predicted
associations also typically have high relatedness ratings. Overall, the correlations between
average relatedness ratings and ex are 0.90 for the 20 food calorie concepts and 0.73 for the 20
infant mortality concepts. These are both significantly different to zero (p < 10”7 and p < 107
respectively). The Spearman correlations are 0.78 (p < 10) for food calories and 0.76 (p < 10™*)
for infant mortality rate.

Additionally, in Study 3, the ten concepts with high values of e; had an average
relatedness rating of 35.40, and the ten concepts with low values of e; had an average relatedness
rating of -42.23. Similarly, in Study 4 concepts with high values of e had an average relatedness
rating of 30.70, and concepts with low values of e; had an average relatedness rating of -19.69.
These ratings are significantly different when evaluated using a t-test (df = 8, ¢ = 8.43, p < 10
for Study 3; df =8, t = 3.92, p < 107 for Study 4). Finally, 76% of participants in Study 3 and
62% of participants in Study 4 gave positive relatedness ratings to all concepts with high values
of ex and negative ratings to all concepts with low values of ex, providing additional evidence for
our predictions.

Discussion
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We tested the ability of the belief error model to predict the concepts that are most related
to or associated with the judgment dimension. For this purpose, we used the association measure,

ek, obtained by taking the dot product between a concept vector and the best-fitting weight

(a)
100
.
birthday @
50 restaurant @
beast @
E' 25 | monster
&‘ recipe
A
& 0 famous
=]
2
]
= =25
[ bulb
“ y Ea?m light
unli
-50 .cr .ﬂowe.:agrlgcultural
®garden
L ]
~75 4 leaf
_100 L) T T L) LI T T T
75 100 125 150 175 200 225 250
Predicted Association
(b)
100
overt
75 - P ‘e hungry
hunger ® @
AIDS
30 1 homeless @ ..
o frican
5 25 4
]
o
v strict
© 0
=S manufacturer bo
9 extensive @
o _ leadin
- 25 [ e P
s neighborhood
[ ]
-50 European &
cruise
=75
-100 T T T T T T

4 S0 e 70 8 % 100
Predicted Association

Figure 12. Scatterplots of average participant relatedness rating vs. predicted association in (a)
Study 3 (food calories) and (b) Study 4 (infant mortality). Each dot represents a unique word
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associate predicted by belief error models from Study 1 (food calories) and Study 2 (infant
mortality).

vectors from participant data in Studies 1 and 2. On the aggregate level, we found that ey is
highly correlated with participant ratings, so that concepts considered by our model to be
positively or negatively related to food calories (in Study 3) and infant mortality rates (in Study
4) are indeed given high or low relatedness ratings by participants.

This result suggests that concepts with very high values of our association measure ek
could be highly activated in the minds of participants making judgments involving high-calorie
foods or high infant mortality rates. Similarly, concepts with very low values of ex could be
highly activated in the minds of participants making judgments involving low-calorie foods or
high infant mortality rates. These are predictions about the memory processes involved in
numerical judgment, which can be tested using a free association task. We do so in Studies 5 and
6.

Studies 5 and 6: Free Association
Experimental Methods

Participants. We recruited a total of 200 participants (mean age = 32 years, 34% female)
in Study 5 and 201 participants (mean age = 31 years, 50% female) in Study 6 from Prolific
Academic. All participants were from the United States and had an approval rate of 80% or
above.

Procedure. As the predicted association, e, specifies both the direction and the
magnitude of association, in each study, we examined two conditions — high and low. In the high
condition, participants were asked to list ten different words that first come to their mind when
they think of high-calorie foods (Study 5) or countries with high infant mortality rates (Study 6).

In the low condition, participants were asked to do the same thing but when they think of low-
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calorie foods (Study 5) or countries with low infant mortality rates (Study 6). Participants were
randomly assigned to either a high or low condition and entered all ten words at once in a list of
ten textboxes. The sample prompt in the low condition in Study 5 read “Please list 10 different
words that first come to your mind when you think of low-calorie food. These could be any
words, including words describing actual food, words describing sensations, emotions and
feelings, words corresponding to real-world objects, people and places, or words describing
abstract concepts.” The prompts for the high condition in Study 5 and the prompts in Study 6
were similar to this.

Results

With ten listed words per participant per condition, we obtained a set of 1,010
(nonunique) word associates for high-calorie foods, 990 for low-calorie foods, 1,010 for
countries with high infant mortality rates, and 1,000 for countries with low infant mortality rates.
Figures 11c and 11d show word clouds of the 50 most frequently listed word associates in the
high and low conditions for the two domains.

138 words in Study 5 and 142 words in Study 6 were listed at least three times and also
had a vector representation in the Word2Vec vocabulary. For each of these words &, we obtained
a normalized 300-dimensional vector, sk, from the Word2Vec model (note that we used a word
frequency cut-off of three as highly infrequent words are likely to give very extreme and
spurious association measures). Then using the approach outlined above, we calculated the value
of ex = wesik, where w was the weight vector from the belief error model trained on the aggregate
participant data in Study 1 or Study 2. Again, e; measures how much word £ is associated with

the criterion. If our belief error models are able to identify word associations, then we would
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expect ex to correlate with relative word frequencies in the high vs. low conditions in our free
association studies.

We measured these relative word frequencies using Eq. 6, where Hi is the number of
times word & was listed in the high condition, L is the number of times word k was listed in the
low condition, Hy is the total number of different words listed in the high condition, and Ly is the
total number of different words listed in the low condition. Implicitly, this equation gives us a
measure of the relative strength of association of a given word with high-calorie foods or
countries with high infant mortality rates, as revealed by our participant free association data. We

write the relative word frequency of word £ as 7.

Hi L

1, =
k Hy Ly

(6)

If the associations revealed by the best-fitting weight vectors in Study 1 and 2 capture the
associations that participants have with the criterion variable, we would expect to observe a
positive relationship between the relative frequency variable, r«, and the predicted association, e,
for the words listed by participants in Studies 5 and 6. We do observe this positive relationship.
As shown in Figure 13, the Pearson correlations between relative frequency and predicted
association are 0.52 (p < 10°'%) for food calories and 0.36 (p < 10"*) for infant mortality rates.
Spearman's rank correlations are likewise 0.62 (p < 107!%) for food calories and 0.39 (p < 107) for
infant mortality rates.

To understand the dynamics of participant word association, we also calculated the
predicted associations ey for the ten listed word associates for each participant, and for each
serial position, we averaged the predicted association across participants. If participants listed
word associates in descending order of semantic relatedness to the judgment dimension, i.e.

high-/low-calorie foods or countries with high/low infant mortality rates, then we should expect
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to see the average predicted association with the judgment dimension (ex) decreases with serial
position in the high condition and increases in the low condition. Figure 14 illustrates these
trends. Consistent with this figure, a linear regression reveals that predicted association ex has a

significant positive relationship with serial position in the low condition (f =1.40,1=3.17,p =
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calories) and (b) Study 6 (infant mortality). Each dot represents a unique word associate listed by
participants. Some word associates are labeled for illustration purpose.
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Figure 14. Serial position curves for (a) Study 5 (food calories) and (b) Study 6 (infant
mortality). The y-axis is the average predicted association, ey, for all the words being listed at the
given serial position (1 for listed first to 10 for listed last). Error bars represent standard errors.

0.013, 95% CI[0.38, 2.42] for Study 5; f=0.21, t = 2.35, p = 0.047, 95% CI1 [0.004, 0.406] for
Study 6) and a significant negative relationship with serial position in the high condition (5 = -
2.18,¢t=-3.11, p = 0.015, 95% CI [-3.81, -0.56] for Study 5; f=-0.47, t = -5.646, p < 103, 95%
CI [-0.67, -0.28] for Study 6).
Discussion

Our belief error models are able to make predictions regarding the associative
underpinnings of judgment. Implicitly, these models identify regions of the semantic space that
are most associated with the criterion variable. Words and concepts in these regions should be
the ones that come to people’s minds as they deliberate. In Studies 5 and 6 we tested these
predictions using a free association task. We found that the frequency with which participants
listed a given word in the high vs. low judgment prompt conditions correlated with the
association of that word with the judgment prompt inferred using the best-fitting belief error

models in Studies 1 and 2. Additionally, similar to past memory research that suggests recall
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outputs follow descending order of memory strength (Barnhardt, Choi, Gerkens, & Smith, 2006;
Gillund & Shiftrin, 1984; Jou, 2008), we found that participants listed words in descending order
of semantic relatedness to the weight vector of the belief error models. Thus our belief error
models could predict not only the relative frequencies of words in our free association tasks, but
also memory dynamics in these free association tasks. This provides further support in favor of
belief error models for studying the cognitive processes and mental representations underlying
numerical estimation.

However, since there was no numerical estimation task involved in Studies 5 and 6, it is
an open question whether participants would actually think of these words as they generate
estimates. Therefore, in Studies 7 and 8, we used Ericsson-Simon verbal protocols (Ericsson &
Simon, 1980) that ask participants to report thought process after an estimation task to verify the
results of Studies 5 and 6.

Studies 7 and 8: Verbal Protocols
Experimental Methods

Participants. We recruited a total of 48 participants (mean age = 32 years, 58% female)
in Study 7 and 52 participants (mean age = 33 years, 46% female) in Study 8 from Prolific
Academic. All participants were from the United States and had an approval rate of 80% or
above.

Procedure. Similar to Studies 5 and 6, in each study, we examined two conditions — high
and low. In the high condition, participants were asked to estimate the calories of two foods —
lard and cheeseburger (Study 7) or the infant mortality rates in two countries — Ethiopia and Haiti
(Study 8). In the low condition, participants were asked to do the same but for tea and lettuce

(Study 7) or Sweden and Japan (Study 8). These items were selected because they either received
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the highest or lowest average participants estimates in Studies 1 and 2. In the first part of the
study, participants were asked to perform the same estimation task as in Studies 1 and 2. Each
participant gave estimates for all four stimuli. The order of the two conditions was randomized
and so was the order of the two stimuli within the same condition. In the second part of the study,
participants were shown their previous answers and were asked to describe their thought process
when they gave estimates in each of the two conditions. The sample prompt in the low condition
in Study 7 read “You estimated tea to have [value] calories per 100g and lettuce to have [value]
calories per 100g. Please briefly describe how you estimated these foods.” The prompts for the
high condition in Study 7 and the prompts in Study 8 were similar to this. The order of the two
conditions was also randomized.
Results

The estimates in Studies 7 and 8 were not significantly different to those in Studies 1 and
2. In Study 7, the average number of words reported was 18.50 (s = 13.02) in the low condition
and 21.73 (s = 17.81) in the high condition. In Study 8, the average number of words reported
was 13.98 (s = 8.18) in the low condition and 14.77 (s = 8.70) in the high condition. There was
no significant difference in the word count between the two conditions in either study (df = 94, ¢
=-1.00, p = 0.32 for Study 7; df = 102, t = -0.47, p = 0.64 for Study 8). After removing stop
words? and excluding words mentioned less than three times in either condition, we obtained a
total of 56 unique words in Study 7 and 53 in Study 8. Following the same analysis done in
Studies 5 and 6, for each of these words &, we obtained a normalized 300-dimensional vector, sk,

from the Word2Vec model. Next, we computed the two measures — predicted association, ex =

2 We used the stop word library from NLTK toolkit in Python. Other data cleaning procedures (e.g.
stemming, lemmatizing, auto-correction) were also done by NLTK package.
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wesk, where w was the weight vector from the belief error model trained on the aggregate
participant data in Study 1 or Study 2; and the relative word frequencies, 1, obtained from Eq. 6
(where Hi was the number of times word k& appeared in the high condition, Lx was the number of
times word k appeared in the low condition, Hy was the total number of different words that
appeared in the high condition, and Ly was the total number of different words that appeared in
the low condition).

Again, e measures how much word £ is associated with the criterion and r;, measures the
relative strength of association of a given word with high-calorie foods or countries with high
infant mortality rates. Given the promising results in Studies 3-6, we would still expect to
observe a positive relationship between the relative frequency variable, r, and the predicted
association, ex. This is indeed the case. As shown in Figure 15, the Pearson correlations between
relative frequency and predicted association are 0.74 (p < 1071) for food calories and 0.34 (p =
0.01) for infant mortality rates. Spearman's rank correlations are likewise 0.62 (p < 10®) for food
calories and 0.20 (p = 0.16) for infant mortality rates. These high correlations persist even when

we remove the test items (e.g. lettuce, tea, etc.) from the data — in this case, the correlations are

(2)
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0.53 (p < 10™) for food calories and 0.34 (p = 0.05) for infant mortality rates. Spearman's rank
correlations are 0.51 (p < 107) for food calories and 0.21 (p = 0.23) for infant mortality rates.

Discussion

By asking participants to recall thought process right after performing an estimation task
involving stimuli with extreme estimates, we were able to recover the mental process underlying
numerical estimation. We measured the common words that participants thought of as they
estimated numerical quantities for stimuli with typically high or low estimates and tested the
ability of the belief error model to predict these words. On the aggregate level, we found that the
relative frequency of these words was highly correlated with the association strength predicted
by the belief error model. This result suggests that concepts with high predicted association by
our model are more likely to be activated during the estimation process.

It is worth noting that the correlations are much higher in the food calories domain
compared to infant mortality rates. This is consistent with findings from Studies 1 and 2 that the
difference between the accuracy of the best scaling error model and the best belief error model
was larger in calorie estimation than in infant mortality estimation. Together, these results
indicate that belief errors may be more prominent in calorie estimation than in mortality
estimation.

It is also worth noting that the current studies only collected general thought processes for
limited stimuli with extreme estimates (two stimuli with high average estimates and two stimuli
with low average estimates). Therefore, the words in participants’ verbal reports may not fully
represent the concepts that would be activated by other foods or countries. However, our results
show a promising direction to investigate more nuanced thought processes for different stimuli
and different individuals. As shown in Studies 1 and 2, the belief error model provides good

individual-level fits, which suggests that the belief error model can generate concepts that are



NATURALISTIC JUDGMENT ERRORS 52

likely to be activated by different people. If the thought process is collected immediately after
each individual estimation task for each participant, the belief error model can further predict
individual-level and item-specific psychological substrates of numerical estimation.
General Discussion

Predictive Accuracy

We modeled two types of errors in numerical estimation — scaling errors and belief errors.
Scaling errors emerge when participants incorrectly report (otherwise correct) beliefs about the
judgment target, whereas the belief errors arise from the incorrect use of knowledge to form
these beliefs. In Studies 1 and 2 we collected participant estimates of calories of common food
items and infant mortality rates of countries and built scaling error models and belief error
models to predict participant estimates. We found that the predictions of belief error models were
highly accurate (achieving out-of-sample correlations of 0.83 with aggregate participant
estimates), and additionally, significantly outperformed the predictions of scaling error models.
We obtained similar results on the individual-level showing that our belief error models are
capable of describing the structure of individual heterogeneity in belief formation and numerical
judgment. Overall, these results suggest that numerical estimation can be better described as the
outcome of an error-prone belief formation process (that correctly maps incorrect beliefs to the
response scale) than an error-prone response process (that utilizes correct beliefs but maps them
incorrectly onto the response scale).

Of course, we are not suggesting that scaling errors do not have a role in numerical
estimation, and it may be the case that certain tasks are more susceptible to scaling errors. For
example, the difference between the accuracy of the best scaling error model and the best belief

error model was larger in calorie estimation than in infant mortality estimation. Intuitively, model
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accuracy reflects the degree to which judgment errors can be predicted by either the incorrect use
of knowledge or the incorrect scaling of true beliefs. Therefore, our results suggest that people
may exhibit more scaling errors when estimating infant mortality rates than when estimating
calories. This could be due to the possibility that the knowledge representations of countries are
less biased than those of food, as in a supplementary analysis we found that vector space
semantics were able to explain 88% of the variance in true infant mortality rates and 78% of the
variance in true calories of food. On the other hand, it could also be that psychological
magnitudes of food calories are less distorted (or more closely match the objective values) than
those of infant mortality rates, since in general, people may have more knowledge about food
calories than about infant mortality. Unfortunately, we do not have any measures of the amount
of knowledge people have in either domain. Future work could investigate how previous
exposure to objective criterion values affects the difference between two types of models.

Even if scaling errors are involved in our tasks, the very high accuracy rates obtained by
the belief error models are especially striking given the fact that these models did not have access
to the true criterion value being judged. Note that although our models did have access to the
participant’s estimates in the training data, unlike the scaling error model, the belief error model
did not know the true criterion value — that is the true calorie of the food and the true infant
mortality of the country. Additionally, due to the LOOCYV procedure, the models did not have
access to the participant’s estimates for the test data. This is in contrast to the scaling error
models that were explicitly given the true calorie values of the food items and the true infant
mortality rates of the countries. We believe that these results are intriguing as they suggest that
the belief error model can be used to model participant judgments even when the researcher does

not have access to the ground truth values for the judgment dimension. So, for example, we
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could use the belief error model to predict people’s estimates for the probability of an earthquake
in different countries, even if we don’t know the objective probability of earthquakes.

The reason why we were able to achieve such high accuracy rates despite this limitation
is that we equipped our belief error models with rich knowledge representations in the form of
high-dimensional vectors for targets obtained from semantic space models (Bhatia, 2017; Bhatia
et al., 2019; Jones et al., 2015; Landauer & Dumais, 1997; Mandera et al., 2017; Mikolov et al.,
2013). Semantic space models use the structure of word distribution in natural language to derive
vectors for words that represent word meaning, so that words that are closely related or highly
associated with each other are given similar vectors. These vectors have been shown to describe
the structure of knowledge representation in humans, and predict similarity judgments and high-
level (associative) judgments obtained through standard cognitive tasks (Bhatia et al., 2019;
Jones et al., 2015; Jones & Mewhort, 2007; Landauer & Dumais, 1997; Mandera et al., 2017;
Mikolov et al., 2013; Pennington et al., 2014). By using word vectors derived from semantic
space models to describe the set of knowledge cues possessed by participants, we were able to
add to our belief models a degree of naturalism, richness, and generality, thereby greatly
improving their ability to describe nuances in belief formation and numerical estimation. This is
in contrast to prior work on belief errors in numerical estimation, which often specifies
participant knowledge using a small set of predefined experimenter generated cues (Brown,
2002; Juslin et al., 2003; Litchtenstein et al., 1978; MacGregor, Lichtenstein, & Slovic, 1988;
von Helversen & Rieskamp, 2008). Although this work has provided a number of important
insights regarding the psychology of numerical estimation, it has been unable to specify accurate
predictive models capable of predicting participant estimates for arbitrary natural judgment

prompts. It is only by representing participant knowledge with rich semantic representations can
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we build powerful quantitative models that are able to give accurate out-of-sample predictions of
everyday numerical estimates.
Mimicking Scaling Errors

One important property of our belief error models is their ability to mimic the types of
judgment errors generated by scaling error models. Specifically, as with our participants, and the
scaling error models fit to participant data, the best-fitting belief error models overestimated
small calories and underestimated large calories, and overestimated infant mortality rates (with
greater overestimation for small mortality rates than large mortality rates). This suggests that a
sufficiently sophisticated belief error model may be all that is needed to account for the
qualitative patterns typically attributed to scaling errors.

With that in mind, it is important to note that prior work has found strong evidence for
both scaling and belief errors in numerical estimation (Brown & Siegler, 1993; Hertwig et al.,
2005; Litchtenstein et al., 1978; von Helversen & Rieskamp, 2008), and some work has even
argued that apparent belief errors are actually caused by scaling errors (Landy et al., 2018).
Although belief error models equipped with semantic vector representations may be able to
explain some of the data captured by scaling error models, it is quite likely that the ideal model
will need to combine both sources of error in order to account for the full scope of participant
data. Such a model will over or underweight semantic vector dimensions when forming beliefs,
and then map the beliefs non-linearly to the criterion variable. Unfortunately, fitting this kind of
high-dimensional non-linear model to participant data is not computationally trivial. We
attempted to fit such model using various computational shortcuts, and found that the joint
scaling and belief error model did not outperform the predictions of the belief error-only model,

suggesting that scaling errors do not add any additional predictive power on top of belief errors.
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However, our shortcuts may have led to suboptimal fits, and so we consider their results to be
imprecise and speculative. Clearly, building better models of naturalistic numerical estimation is
an important research topic, one that will be able to shed light on the respective roles of belief
and scaling errors in judgment.
Conceptual Underpinnings of Judgment

One unique benefit of our belief error model is that it provides a theoretical connection
between research on numerical judgment and research on semantic cognition. Crucially, the
semantic vectors in our belief error model are trained on actual natural language that people use
to communicate knowledge. Therefore, these vectors provide comprehensive knowledge
representations for nearly all naturalistic objects and concepts. As mentioned above, semantic
vectors are commonly used to specify the contents of semantic memory, and in turn predict
similarity judgment, as well as list recall, memory search, and free association (Bhatia et al.,
2019; Jones et al., 2015; Jones & Mewhort, 2007; Landauer & Dumais, 1997; Mandera et al.,
2017; Mikolov et al., 2013; Pennington et al., 2014). By drawing on these important insights, we
were able to make predictions regarding the concepts most related to and associated with
criterion variables in our experiments. These concepts are those that are located closest to the
best-fitting weight vector of our belief error model: If these concepts were judgment targets, they
would be given the highest ratings. In Studies 3 and 4, we tested the ability of our belief error
models (fit on participant data in Studies 1 and 2) to identify the conceptual underpinning of
numerical judgment, by asking participants to rate various concepts in terms of their relatedness
to the judgment dimensions. As predicted, concepts identified by our models as being associated

with foods with high calories and countries with high infant mortality rates were indeed given
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higher relatedness ratings than concepts associated with foods with low calories and countries
with low infant mortality rates.

Although Studies 3 and 4 involve a semantic judgment task, the semantic space models
used in our analysis also make predictions regarding the words and concepts that come to mind
when participants are asked to think about foods with high or low calories and countries with
high or low infant mortality rates. We tested these predictions in Studies 5 and 6 and found that
our best-fitting belief error models (from Studies 1 and 2) predicted word frequencies in free
association tasks involving calories and mortality rates. Importantly, these belief error models
were also able to predict serial position effects, as concepts identified by our model as being
highly related to the judgment dimensions were listed earlier in the free association tasks. These
results provide novel insights regarding the dynamics of memory in naturalistic numerical
estimation.

Finally, Studies 7 and 8 utilized verbal protocols that allowed for a more robust test for
the belief error models in predicting thought processes that take place during numerical
estimation. Our results showed the concepts predicted by our model to be highly associated with
the judgment dimensions were more likely to be activated when participants gave high estimates,
as revealed by post hoc verbal protocols. This provides further evidence that our belief error
models are able to account for the conceptual underpinnings of numerical judgment.

Cognitive Modeling of Numerical Judgment

Our use of high-dimensional semantic representations for modeling knowledge shows
that it is possible to build cognitive models of naturalistic numerical judgment that mimic
individuals in both what they know about the judgment targets and how they transform this

knowledge onto the response scale. For this reason, these models able to predict responses on
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related cognitive tasks, such as those involving semantic relatedness judgments, free association,
or verbal protocols. Of course, the models considered in this paper are by no means the most
sophisticated cognitive models possible. For example, we have chosen to describe the response
process as involving a linear combination of the dimensions of our semantic vectors. This is
inspired by classical research on numerical judgment according to which judgment is the
outcome of a linear cue-aggregation process that weights cues in proportion to their statistical
values (Brunswik, 1952; Gigerenzer & Kurz, 2001; Karelaia & Hogarth, 2008). However, people
may be using other cognitive mechanisms for mapping semantic vectors onto the criterion value.
It is possible that the judgment prompt guides responses through a simple associative activation
process (e.g. Bhatia, 2017; Kahneman, 2002; Sloman, 1996), so that a judgment target that
activates the set of concepts related to the criterion variable is judged to have a high value on that
variable. For example, a food item that is associated with and activates the concept “fat” will be
judged to have high calories, whereas a food item that activates the concept “nutrient” will be
judged to have low calories. Such a model cannot be distinguished from the linear model used in
this paper on the basis of numerical judgment data (the linear model implicitly identifies a region
in the semantic space that is highly associated with the criterion, and thus rates judgment targets
closest to concepts in that region as being the highest on the criterion variable). However, the
associative activation model does predict that free association or think-out-loud responses made
during deliberation should correlate with judgment on the participant-level. Future work could
try to elicit free associations in conjunction with the numerical judgment (as in e.g. Johnson,
Haubl, & Keinan, 2007; Hardisty, Johnson, & Weber, 2010), thereby providing a more rigorous

process-level analysis of the cognitive mechanisms at play in judgment. Our successes at
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predicting free associations in Studies 5 and 6 and at predicting common words in recalled
thought processes in Studies 7 and 8 suggest that such tests are feasible.

Another possibility is that the activation of word associates is incidental and does not
influence estimation. Under this hypothesis, people may use the weight vector to make the
judgment (perhaps with some kind of algebraic judgment rule, as in our belief error model), but
the weight vector nonetheless activates concepts that are closely associated in the semantic
space. Again, this process would be identical to the belief error model (if the algebraic rule is the
vector dot product of the weight and concept vector). To test the different memory processes, it
may be possible to do a priming study in which participants are primed with different concepts
(e.g. fat, organic, tasty) and see if the prime affects the eventual judgment. This is another
promising avenue for future work.

Other, more complex ways of transforming semantic vectors onto the judgment
dimension involve exemplar models. Such models are capable of learning various complex cue-
criterion relations, and can, for this reason, describe non-linear transformations from the
semantic space onto the criterion. Exemplar models have previously been applied to numerical
judgment (e.g. Juslin et al., 2003; Juslin, Karlsson, & Olsson, 2008; also see Dougherty, Gettys
& Ogden, 1999; Juslin & Persson, 2002; Smith & Zarate, 1992). Although this work has mostly
used artificial cue values, a similar exercise can easily be repeated with semantic vectors. It is
also possible to apply the mapping model proposed by Von Helversen & Rieskamp (2008; also
see Brown & Siegler, 1993). This model assumes that cue values (or, in our case, semantic
vectors) are used by participants to specify ordinal relations between judgment targets. These

ordinal relations are then projected onto the response scale using typical criterion values for
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various categories of targets. Again, these are valuable directions for future research on
naturalistic numerical estimation.

Although overall, our results support the dominant role of belief errors, we do not rule
out the possibility of scaling errors. Even though the words generated in verbal reports are
predictable by the belief error model and most of the reports suggest that participants based their
estimates on associations, a few reports show that participants also relied on other non-verbal
cues to generate estimates. For example, a participant reported using one death per 60 child
births as a benchmark to estimate infant mortality rates; a participant whose estimates were
significantly lower than others believed that the infant mortality is low in general; some
participants estimated calories by imagining the portion size of 100 grams of foods or by
comparing them with other food items whose calorie they remembered. These individual thought
processes reveal knowledge cues that are not captured by the belief error model. In those cases, a
more complex model that incorporates belief errors, scaling errors, and perceptual traits would
provide a better picture of the cognitive process underlying numerical estimation. Moreover, in
some rare cases, the thought process was too quick that participants themselves could not even
verbalize their deliberation and later self-corrected their previous estimates in their verbal
reports. This suggests that even an immediate recall of the thought process may not necessarily
recover the actual estimation mechanisms (see e.g. Nisbett & Wilson, 1977 for a well-known
critique). A complementary and more robust approach to examine the underlying cognitive
process could involve using neuroimaging to measure real-time brain activation during
numerical estimation, which is also a valuable direction for future research.

Learning Processes
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Both the exemplar and mapping models discussed in the previous section require prior
information about criterion values of some judgment targets in order to make predictions. This
information can be given to participants in experiments with a learning task preceding numerical
judgment. Learning-based experiments are powerful tools for analyzing the complex mental
processes at play in numerical judgment, and we hope to apply them to the types of settings
considered in this paper in our future work.

A related question involves how and when people learn the weight vectors posited by our
belief error models. We believe that in settings without prior experience, participants may merely
use the word vector corresponding to the judgment dimension. For example, when estimating
food calories without any prior knowledge of actual calories, people may simply generate an
answer based on the similarity between the word vector for the target concept (e.g. apple) and the
word vector for the word “calories”. In this case, the weight vector is identical to the word vector
of the judgment dimension — “calories”. When people have some prior knowledge of actual
calorie amounts of various foods, we believe that people gradually adapt their weight vectors for
food calories to better reflect the calorie distribution in real life. Moreover, we assume that
weight vectors are learned as a by-product of everyday language experience where some
feedback learning could occur but not necessarily. Again, learning tasks could be useful for
investigating these hypotheses.

Naturalistic Judgments

Finally, we would like to emphasize the naturalism of the two domains examined in this
paper. Our approach is unique in that it can be used to study numerical estimates for complex
natural entities, such as food items and countries. This opens up new avenues for applying

psychological theories of semantic cognition and judgment and decision making, to policy-
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relevant applications, such as those pertaining to health-related and humanitarian issues. For
example, our belief error models can be used to pick out food items that tend to have large
estimation errors and accordingly develop behavioral interventions to help mitigate these errors.
Similar models can be used to diagnose biases in judgments of infant mortality rates. Ultimately,
with the theoretically grounded insights obtained through our analysis, it should be possible to
design behavioral interventions to more closely align participant calorie estimates and infant
mortality rates with true values, and more generally, to nudge healthy eating and charitable
giving (Butera & Houser, 2018; Glanz & Mullis, 1988; Goswami & Urminsky, 2016; Michie et
al., 2009; Oppenheimer & Olivola, 2011)

Models capable of describing judgments for natural entities are also desirable due to their
very large domain of applicability. Unlike judgment models trained on artificial experimental
stimuli, our models can predict, with high accuracy, the calories that people will assign to the
thousands of food items that have natural language labels. Similar predictions can be made for
infant mortality rates for hundreds of countries and geographic regions. More generally, the
semantic spaces used to equip our models with knowledge representations have vast
vocabularies, and thus can be applied to any domain with natural language judgment targets.
These judgment targets include food items and countries, but also consumer goods and brands,
job occupations, public figures and celebrities, and the many other concept categories at play
financial, consumer, social, political, and economic judgment (see Richie et al., 2019 for a
discussion). We look forward to future work that extends our approach to model the types of
psychological mechanisms at play in the many important judgments that people make on a day-

to-day basis.
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