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Abstract
We present a method for learning multi-stage tasks from demonstrations by learning the logical structure and atomic propo-
sitions of a consistent linear temporal logic (LTL) formula. The learner is given successful but potentially suboptimal
demonstrations, where the demonstrator is optimizing a cost function while satisfying the LTL formula, and the cost function
is uncertain to the learner. Our algorithm uses the Karush-Kuhn-Tucker (KKT) optimality conditions of the demonstrations
together with a counterexample-guided falsification strategy to learn the atomic proposition parameters and logical structure of
the LTL formula, respectively. We provide theoretical guarantees on the conservativeness of the recovered atomic proposition
sets, as well as completeness in the search for finding an LTL formula consistent with the demonstrations. We evaluate our
method on high-dimensional nonlinear systems by learning LTL formulas explaining multi-stage tasks on a simulated 7-DOF
arm and a quadrotor, and show that it outperforms competing methods for learning LTL formulas from positive examples.
Finally, we demonstrate that our approach can learn a real-world multi-stage tabletop manipulation task on a physical 7-DOF
Kuka iiwa arm.

Keywords Learning from demonstration · Linear temporal logic · Motion planning

1 Introduction

Imagine demonstrating a multi-stage task to a robot arm
deliveryworker, such asfinding anddelivering a set of objects
from a storage area to some customers (Fig. 1). How should
the robot understand and generalize the demonstration? One
popular method is inverse reinforcement learning (IRL),
which assumes a level of optimality on the demonstrations,
and aims to learn a reward function that replicates the demon-
strator’s behaviorwhen optimized (Ratliff et al. 2006;Abbeel
and Ng 2004; Argall et al. 2009; Ng and Russell 2000).

This is one of the several papers published in Autonomous Robots
comprising the Special Issue on Robotics: Science and Systems 2020.
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Due to this representation, IRL works well on short-horizon
goal-directed tasks, but can struggle to scale to multi-stage,
constrained tasks (Krishnan et al. 2019; Vazquez-Chanlatte
et al. 2018; Chou et al. 2018). Transferring reward functions
across environments (e.g. from one storage area to another)
can also be difficult, as IRL may overfit to aspects of the
training environment. It may instead be fruitful to decouple
the high- and low-level task structure, learning a logic-based
temporal abstraction of the task that is valid for different
environments which can combine low-level, environment-
dependent skills. Linear temporal logic (LTL) is well-suited
for representing this abstraction, since it can unambiguously
specify high-level temporally-extended constraints (Baier
andKatoen 2008) as a function of atomic propositions (APs),
which can be used to describe salient low-level state-space
regions. To this end, a growing community in controls and
anomaly detection has focused on learning linear temporal
logic (LTL) formulas to explain trajectory data. However,
the vast majority of these methods require both positive and
negative examples in order to regularize the learning prob-
lem. While this is acceptable in anomaly detection, where
one expects to observe formula-violating trajectories, in the
context of robotics, it can be unsafe to ask a demonstrator
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Fig. 1 Multi-stage delivery task: place the soup in an open-top box and deliver it, then deliver the Cheez-Its to a second delivery location. To avoid
spills, a pose constraint is enforced while the soup is being delivered in the open-top box

to execute formula-violating behavior, such as dropping a
fragile object or crashing into obstacles.

In this paper, our insight is that by assuming that demon-
strators are goal-directed (i.e. that they approximately opti-
mize an objective function that may be uncertain to the
learner), we can regularize the LTL learning problemwithout
being provided any formula-violating behavior. In particu-
lar, we learn LTL formulas which are parameterized by their
high-level logical structure and low-level AP regions, and we
show that to do so, it is important to consider demonstration
optimality both in terms of the quality of the discrete high-
level logical decisions and the continuous low-level control
actions. We use the Karush-Kuhn-Tucker (KKT) optimality
conditions fromcontinuous optimization to learn the shape of
the low-level APs, along with notions of discrete optimality
to learn the high-level task structure. We solve a mixed inte-
ger linear program (MILP) to jointly recover LTL and cost
function parameters which are consistent with the demon-
strations. We make the following contributions:

1. We develop a method for time-varying, constrained
inverse optimal control, where the demonstrator opti-
mizes a cost function while respecting an LTL formula,
where the parameters of the atomic propositions, formula
structure, and an uncertain cost function are to be learned.
We require only positive demonstrations, can handle
demonstration suboptimality, and for fixed formula struc-
ture, can extract guaranteed conservative estimates of the
AP regions.

2. We develop conditions on demonstrator optimality
needed to learn high- and low-level task structure: AP
regions can be learned with discrete feasibility, while
logical structure requires various levels of discrete opti-
mality. We develop variants of our method under these
different assumptions.

3. We provide theoretical analysis of our method, showing
that under mild assumptions, it is guaranteed to return the
shortest LTL formulawhich is consistentwith the demon-
strations, if one exists. We also prove various results on
our method’s conservativeness and on formula learnabil-
ity.

4. We evaluate our method on learning complex LTL
formulas demonstrated on nonlinear, high-dimensional
systems, show thatwe canuse demonstrations of the same
task on different environments to learn shared high-level
task structure, and show that we outperform previous
approaches.

Components of this work were first presented in our
Robotics: Science and Systems conference paper (Chou et al.
2020a). The primary contributions specific to this journal
paper include a hardware demonstration of our approach on
a real-world 7-DOFmanipulation task, an overview of exten-
sions and variants of the method in Chou et al. (2020a),
expanded theoretical analysis, including proofs that were
omitted from Chou et al. (2020a), and expanded discussion.

2 Related work

There is extensive literature on inferring temporal logic for-
mulas from data via decision trees (Bombara et al. 2016),
genetic algorithms (Bufo et al. 2014), andBayesian inference
(Vazquez-Chanlatte et al. 2018; Shah et al. 2018). However,
most of these methods require positive and negative exam-
ples as input (Camacho and McIlraith 2019; Kong et al.
2014, 2017; Neider and Gavran 2018), while our method
is designed to only use positive examples. Other methods
require a space-discretization (Vaidyanathan et al. 2017;
Araki et al. 2019; Vazquez-Chanlatte et al. 2018), while
our approach learns LTL formulas in the original continu-
ous space. Some methods learn AP parameters, but do not
learn logical structure or perform an incomplete search, rely-
ing on formula templates (Leung et al. 2019; Bakhirkin et al.
2018; Xu et al. 2019), while other methods learn structure
but not AP parameters (Shah et al. 2018). Perhaps themethod
most similar to ours is Jha et al. (2019), which learns para-
metric signal temporal logic (pSTL) formulas from positive
examples by fitting formulas that the data tightly satisfies.
However, the search over logical structure in Jha et al. (2019)
is incomplete, and tightness may not be the most informa-
tive metric given goal-directed demonstrations (cf. Sect. 9).
To our knowledge, this is the first method for learning LTL
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formula structure and parameters in continuous spaces on
high-dimensional systems from only positive examples.

IRL (Ratliff et al. 2006; Abbeel and Ng 2004; Keshavarz
et al. 2011; Englert et al. 2017; Johnson et al. 2013; Sadigh
et al. 2017) searches for a reward function that replicates
a demonstrator’s behavior when optimized, but these meth-
ods can struggle to represent multi-stage, long-horizon tasks
(Krishnan et al. 2019). To alleviate this, Krishnan et al.
(2019),Ranchod et al. (2015) learn sequences of reward func-
tions, but in contrast to temporal logic, these methods are
restricted to learning tasks which can be described by a sin-
gle fixed sequence. Temporal logic (Baier and Katoen 2008;
Kress-Gazit et al. 2009) generalizes this, being able to rep-
resent tasks that involve more choices and can be completed
withmultiple different sequences. Somework (Papusha et al.
2018; Zhou and Li 2018) aims to learn a reward function
given that the demonstrator satisfies a known temporal logic
formula; we will learn both jointly.

Finally, there is relevantwork in constraint learning. These
methods generally focus on learning time-invariant con-
straints (Chou et al. 2018, 2019, 2020c; Calinon and Billard
2008) or afixed sequence of task constraints (Pais et al. 2013),
which our method subsumes by learning time-dependent
constraints that can be satisfied by different sequences.

3 Preliminaries and problem statement

We consider discrete-time nonlinear systems

xt+1 = f (xt , ut , t),

with state x ∈ X and control u ∈ U , where we denote
state/control trajectories of the system as ξxu

.= (ξx , ξu).
We use linear temporal logic (LTL) (Baier and Katoen

2008), which augments standard propositional logic to
express properties holding on trajectories over (potentially
infinite) periods of time. In this paper, wewill be given finite-
length trajectories demonstrating tasks that can be completed
in finite time. To ensure that the formulas we learn can be
evaluated on finite trajectories, we focus on learning formu-
las, given in positive normal form, which are described in a
parametric temporal logic similar to bounded LTL (Jha et al.
2009), and which can be written with the grammar

ϕ::=p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | �[t1,t2]ϕ |
ϕ1 U[t1,t2]ϕ2, (1)

where p ∈ P .= {pi }NAP
i=1 are atomic propositions (APs)

and NAP is known to the learner. t1 ≤ t2 are nonnegative
integers. Here, ¬p denotes the negation of atomic propo-
sition p, the “or” operator ϕ1 ∨ ϕ2 denotes the disjunction

of formulas ϕ1 and ϕ2, the “and” operator ϕ1 ∧ ϕ2 denotes
the conjunction of formulas ϕ1 and ϕ2, the “bounded-time
always” operator �[t1,t2]ϕ denotes that ϕ “always” has to
hold over the interval [t1, t2], and the “bounded-time until”
operator ϕ1 U[t1,t2] ϕ2 denotes that ϕ2 must eventually hold
during the interval [t1, t2], and ϕ1 must hold for all timesteps
prior to that. Due to the positive normal form structure, nega-
tion can only appear directly before APs. Let the size of
the grammar be Ng = NAP + No, where No is the num-
ber of temporal/boolean operators in the grammar. A useful
derived operator is “bounded-time eventually” ♦[t1,t2]ϕ

.=
� U[t1,t2] ϕ, which denotes that a formula ϕ eventually has
to hold during the interval [t1, t2].

In this paper, we will consider LTL formulas ϕ(θ s, θ p)

that are parameterized by θ s ∈ Θs , which encode the logical
and temporal structure of the formula, and by θ p .= {θ p

i }NAP
i=1 ,

where θ
p
i ∈ Θ

p
i defines the shape of the region where pi

holds. Furthermore, we will consider APs of the form: x |�
pi ⇔ gi (ηi (x), θ

p
i ) ≤ 0, where ηi (·) : X → C is a known

nonlinear function, gi (·, ·) .= [gi,1(·, ·), . . . , gi,N ineq
i

(·, ·)]�
is a vector-valued parametric function, and C is the space in
which the AP constraint is evaluated, elements of which are
denoted constraint states κ ∈ C.

To show how this notation maps onto a concrete robotics
example, consider a 7-DOF arm.We can define the state x as
the joint angles, the control u as the joint velocities, the con-
straint state κ as the end effector pose, and the mapping from
the state to constraint state space η : X → C ⊆ R

3 as the
forward kinematics, mapping from joint space to workspace.
One possible atomic proposition is x |� p ⇔ g(η(x), θ p) =
Aη(x)−θ p ≤ 0, where A = [I3×3,−I3×3]� and In×n is the
n × n identity matrix. This atomic proposition p is satisfied
if the end effector position is contained within an axis-
aligned rectangle in the workspace with extents described
by θ p = [x̄, ȳ, z̄,−x,−y,−z], where x̄ , ȳ, and z̄ denote the
upper extents in the x-, y-, and z-dimensions, and x , y, and
z denote the lower extents in the x-, y-, and z-dimensions.
Finally, we can write an LTL formula♦[t1,t2] p to enforce that
all trajectories must satisfy this workspace constraint at some
point between time t1 and t2.

We formalize the discussion above by defining the seman-
tics, which describe the satisfaction of an LTL formula ϕ by
a trajectory ξxu . Specifically, we denote the satisfaction of a
formula ϕ on a finite-duration trajectory ξxu of total duration
T , evaluated at time t ∈ {1, 2, . . . , T }, as (ξxu, t) |� ϕ. Then,
the formula satisfaction is defined recursively in the formal
semantics (2):

(ξxu, t) |� pi ⇔ gi (ηi (xt ), θ
p
i ) ≤ 0

(ξxu, t) |� ¬pi ⇔ ¬((ξxu, t) |� pi )

(ξxu, t) |� ϕ1 ∨ ϕ2 ⇔ (ξxu, t) |� ϕ1 ∨ (ξxu, t) |� ϕ2

(ξxu, t) |� ϕ1 ∧ ϕ2 ⇔ (ξxu, t) |� ϕ1 ∧ (ξxu, t) |� ϕ2
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(ξxu, t) |� �[t1,t2]ϕ ⇔ (t + t1 ≤ T )

∧ (∀t̃ ∈ [t + t1,min(t + t2, T )], (ξxu, t̃) |� ϕ)

(ξxu, t) |� ϕ1U[t1,t2]ϕ2 ⇔ (t + t1 ≤ T )

∧ (∃t̃ ∈ [t + t1,min(t + t2, T )] s.t. (ξxu, t̃) |� ϕ2)

∧ (∀ť ∈ [t, t̃ − 1], (ξxu, ť) |� ϕ1)

(ξxu, t) |� ♦[t1,t2]ϕ ⇔ (t + t1 ≤ T )

∧ (∃t̃ ∈ [t + t1,min(t + t2, T )] s.t. (ξxu, t̃) |� ϕ) (2)

We will write ϕ |� ξxu as shorthand for (ξxu, 1) |� ϕ. We
emphasize that sincewe consider discrete-time trajectories, a
time interval [t1, t2] is evaluated only on integer time instants
{t1, t1 + 1, . . . , t2}; this is made concrete in (2).

We consider tasks that involve optimizing a parametric
cost function (encoding efficiency concerns, etc.), while sat-
isfying an LTL formula ϕ(θ s, θ p) (encoding constraints for
task completion):

Problem 1 (Demonstrator’s forward problem)

minimize
ξxu

c(ξxu, θc)

subject to ξxu |� ϕ(θ s, θ p)

η̄(ξxu) ∈ S̄ ⊆ C

where c(·, θc) is a potentially non-convex cost function,
parameterized by θc ∈ Θc. Any a priori known constraints
are encoded in S̄ , where η̄(·) is known. In this paper, we
encode in S̄ the system dynamics, start state, and if needed,
a goal state separate from the APs.

Next, to ease notation, we will define Gi (κ, θ
p
i )

.=
max

m∈{1,...,N ineq
i }

(
gi,m(κ, θ

p
i )

)
. Define the subset of C where

pi holds/does not hold, as

Si (θ p
i )

.= {κ | Gi (κ, θ
p
i ) ≤ 0} (3)

Ai (θ
p
i )

.= cl({κ | Gi (κ, θ
p
i ) > 0}) = cl(Si (θ p

i )c) (4)

To ensure that Problem1admits anoptimum,wehavedefined
Ai (θ

p
i ) to be closed; that is, states on the boundary of an AP

can be considered either inside or outside. For these bound-
ary states, our learning algorithm can automatically detect
if the demonstrator intended to visit or avoid the AP (cf.
Sect. 4.2).

We are given Ns demonstrations {ξdemj }Ns
j=1 of duration Tj ,

which approximately solve Problem 1, in that they are fea-
sible (satisfy the LTL formula and known constraints) and
achieve a possibly suboptimal cost. Note that Problem 1
can be modeled with continuous (ξxu) and boolean deci-
sion variables (referred to collectively as Z) (Wolff et al.
2014); the boolean variables determine the high-level plan,
constraining the trajectory to obey boolean decisions that
satisfy ϕ(θ s, θ p), while the continuous component synthe-
sizes a low-level trajectory implementing the plan. We will

use different assumptions of demonstrator optimality on the
continuous/boolean parts of the problem, depending on if θ p

(Sect. 4), θ s (Sect. 5), or θc (Sect. 6) are being learned, dis-
cuss extensions and variants of these methods (Sect. 7), and
discuss how these different degrees of optimality can affect
the learnability of LTL formulas (Sect. 8).

Our goal is to learn the unknown structure θ s and AP
parameters θ p of the LTL formula ϕ(θ s, θ p), as well as
unknown cost function parameters θc, given demonstrations
{ξdemj }Ns

j=1 and the a priori known safe set S̄.

4 Learning atomic proposition parameters
(�p)

We develop methods for learning unknown AP parameters
θ p when the cost function parameters θc and formula struc-
ture θ s are known. We first review recent results (Chou et al.
2020c) on learning time-invariant constraints via the KKT
conditions (Sect. 4.1). Then,we showhow the framework can
be extended to learn θ p (Sect. 4.2), and develop a method for
extracting states which are guaranteed to satisfy or to violate
pi (Sect. 4.3). In all of Sect. 4, we will assume that demon-
strations are locally-optimal for the continuous component
and feasible for the discrete component.

4.1 Learning time-invariant constraints via KKT

Consider a simplified variant of Problem 1 that only involves
always satisfying a single AP; this reduces Problem 1 to a
standard trajectory optimization problem:

minimize
ξxu

c(ξxu)

subject to g(η(x), θ p) ≤ 0, ∀x ∈ ξxu
η̄(ξxu) ∈ S̄ ⊆ C

(5)

To ease notation, θc is assumed known in Sects. 4–5 and rein-
troduced in Sect. 6. Suppose we rewrite the constraints of (5)
as hk(η(ξxu)) = 0, gk(η(ξxu)) ≤ 0, and g¬k(η(ξxu), θ

p) ≤
0, where k and ¬k group together the known and unknown
constraints, respectively. Then, with Lagrange multipliers λ

and ν, the KKT conditions (first-order necessary conditions
for local optimality (Boyd and Vandenberghe 2004)) of the
j th demonstration ξdemj , denoted KKT(ξdemj ) are as written
in (6),

KKT(ξdemj ):
Primal feasibility:

hk(η(x j
t )) = 0, t = 1, . . . , Tj (6a)

gk(η(x j
t )) ≤ 0, t = 1, . . . , Tj (6b)

g¬k(η(x j
t ), θ p) ≤ 0, t = 1, . . . , Tj (6c)
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Lagrange multiplier nonnegativity:

λ
j,k
t ≥ 0, t = 1, . . . , Tj (6d)

λ
j,¬k
t ≥ 0, t = 1, . . . , Tj (6e)

Complementary slackness:

λ
j,k
t � gk(η(x j

t )) = 0, t = 1, . . . , Tj (6f)

λ
j,¬k
t � g¬k(η(x j

t ), θ p) = 0, t = 1, . . . , Tj (6g)

Stationarity:

∇xt c(ξ
dem
j ) + λ

j,k
t

�∇xt g
k(η(x j

t ))

+ λ
j,¬k
t

�∇xt g
¬k(η(x j

t ), θ p)

+ ν
j,k
t

�∇xt h
k(η(x j

t )) = 0, t = 1, . . . , Tj (6h)

where� denotes elementwisemultiplication. Intuitively, pri-
mal feasibility ensures that the demonstrations satisfy the
learned constraint, complementary slackness encodes that a
Lagrange multiplier for some constraint can only be nonzero
if that constraint is active, and stationarity encodes that the
cost cannot be locally improved without violating a con-
straint.

We vectorize the multipliers λ
j,k
t ∈ R

N ineq
k , λ

j,¬k
t ∈

R
N ineq

¬k , and ν
j,k
t ∈ R

N ineq
k , i.e. λ

j,k
t = [λ j,k

t,1 , . . . , λ
j,k
t,Nk

ineq
]�.

We drop (6a)–(6b), as they involve no decision variables.
Then, we can find a constraint which makes the Ns demon-
strations locally-optimal by finding a θ p that satisfies the
KKT conditions for each demonstration:

Problem 2 (Inverse KKT problem, exact)

find θ p, {λ j,k
t ,λ

j,¬k
t , ν

j,k
t }Tj

t=1, j = 1, ..., Ns

subject to {KKT(ξdemj )}Ns
j=1

If the demonstrations are only approximately locally-optimal,
Problem 2 may become infeasible. In this case, we can relax
stationarity and complementary slackness to cost penalties:

Problem 3 (Inverse KKT problem, suboptimal)

minimize
θ p,λ

j,k
t ,λ

j,¬k
t ,ν

j,k
t

∑Ns
j=1

(‖stat(ξdemj )‖1 + ‖comp(ξdemj )‖1
)

subject to (6c) − (6e), ∀ξdemj , j = 1, . . . , Ns

where stat(ξdemj ) denotes the left hand side (LHS) of Eq. (6h)

and comp(ξdemj ) denotes the concatenated LHSs of Eqs.
(6f) and (6g). Please see Sect. 7.4 for more discussion on
the effect of demonstration suboptimality on learning θ p.
Note that while we have written Problems 2–3 for gen-
eral constraint parameterizations, not all parameterizations
admit computationally-tractable inverse KKT problems. For
some constraint parameterizations (e.g. unions of boxes or

ellipsoids Chou et al. 2020c), Problems 2–3 are MILP-
representable1 and can be efficiently solved; we consider
such parameterizations in further detail in Sect. 4.2. In the
experiments of this paper, we focus on constraints which are
parameterized as axis-aligned boxes in the constraint space
C ⊆ R

c, i.e. g(η(x), θ p) ≤ 0 ⇔ Aη(x) − θ p ≤ 0, where
A = [Ic×c,−Ic×c]� and θ p = [x̄1, . . . , x̄c, x1, . . . , xc]�
contains the upper extents x̄1, . . . , x̄c and lower extents
x1, . . . , xc of the box in each coordinate.

4.2 Modifying KKT for multiple atomic propositions

Having built intuition with the single AP case, we return to
Problem 1 and discuss how theKKT conditions change in the
multiple-AP setting.Wefirst adjust the primal feasibility con-
dition (6c). Recall from Sect. 3 that we can solve Problem 1
by finding a continuous trajectory ξxu and a set of boolean
variables Z enforcing that ξxu |� ϕ(θ s, θ p). For each ξdemj ,

let Z j (θ
p
i ) ∈ {0, 1}NAP×Tj , and let the (i, t)th index Z j

i,t (θ
p
i )

indicate if on ξdemj , constraint state κt |� pi for parameters

θ
p
i ; that is,

Z j
i,t (θ

p
i ) = 1 ⇔ κt ∈ Si (θ p

i ),

Z j
i,t (θ

p
i ) = 0 ⇔ κt ∈ Ai (θ

p
i ). (7)

Since LTL operators have equivalent boolean encodings
(Wolff et al. 2014), the truth value of ϕ(θ s, θ p) can be evalu-
ated as a function ofZ j , θ p, and θ s , denoted asΦ(Z j , θ p, θ s)

(we suppress θ s , as it is assumed known for now). For exam-
ple, consider the LTL formula ϕ(θ s, θ p) = (♦[0,Tj−1] p1) ∧
(♦[0,Tj−1] p2), which enforces that the system must eventu-
ally satisfy p1 and eventually satisfy p2. Two trajectories
which satisfy this formula are shown in Fig. 3. We can
evaluate the truth value of ϕ(θ s, θ p) on ξdemj by calculat-

ing Φ(Z j , θ p) = (
∨Tj

t=1 Z
j
1,t (θ

p
1 )) ∧ (

∨Tj
t=1 Z

j
2,t (θ

p
2 )) (cf.

Fig. 2). Boolean encodings of common temporal and logi-
cal operators can be found in Biere et al. (2006). Enforcing
that Z j

i,t (θ
p
i ) satisfies (7) can be done with a big-M formu-

lation and binary variables s ji,t ∈ {0, 1}N ineq
i (Bertsimas and

Tsitsiklis 1997):

gi (κ
j
t , θ

p
i ) ≤ M(1

N ineq
i

− s ji,t )

1�
N ineq
i

s ji,t − N ineq
i ≤ MZ j

i,t − Mε

gi (κ
j
t , θ

p
i ) ≥ −Ms ji,t

1�
N ineq
i

s ji,t − N ineq
i ≥ −M(1 − Z j

i,t ) (8)

1 This problem can also be represented and solved with satisfiability
modulo theories (SMT) solvers.
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Fig. 2 A directed acyclic graph (DAG) model of the LTL formula
ϕ = (♦[0,Tj−1] p1) ∧ (♦[0,Tj−1] p2) (eventually satisfy p1 and even-
tually satisfy p2). The DAG representation can be interpreted as a parse
tree for ϕ (cf. Sect. 5.1). The Tj boolean values for each node represent
the truth value of the formula associated with the DAG subtree when
evaluated on ξdemj , starting at times t = 1, . . . , Tj , respectively. Each

ξdemj |� ϕ iff the first entry at the root node, (
∨Tj

i=1 Z
j
1,i )

∧
(
∨Tj

i=1 Z
j
2,i ),

is true

where 1d is a d-dimensional vector of ones, M is a large
positive number, and Mε ∈ (0, 1). In practice, M and Mε

can be carefully chosen to improve the solver’s performance.
Note that s ji,m,t , themth component of s ji,t , encodes if κ

j
t sat-

isfies a negated gi,m(κ
j
t , θ

p
i ), i.e. if s ji,m,t = 1 or 0, then

κ
j
t satisfies gi,m(κ

j
t , θ

p
i ) ≤ or ≥ 0. We can more com-

pactly rewrite the constraint enforced on the demonstrations
as gi (κ

j
t , θ

p
i ) � (2s ji,t − 1

N ineq
i

) ≤ 0 for each i , t ; we use this

form to adapt the remaining KKT conditions. While enforc-
ing (8) is hard in general, ifgi (κ, θ

p
i ) is affine in θ

p
i for fixedκ ,

(8) is MILP-representable; henceforth, we assume gi (κ, θ
p
i )

is of this form. Note that this can still describe non-convex
regions in the constraint space, as the dependency on κ can
be nonlinear.

As a concrete example, for the blue trajectory in Fig. 3,
Z1 = [0, 1, 0, 0, 0] and Z2 = [0, 0, 0, 1, 0]. Consider the
first AP p1. Here, since p1 is a box in the state space,
g1,m(κt , θ

p
1 ) ≤ 0 can be written as xt,m − θ

p
1,m ≤ 0, where

θ
p
1,m defines the offset for themth hyperplane that defines the
boundary of the box for AP p1. Then, s1,m,t determines if the
polarity of halfspace constraint m is flipped at time t on the
blue trajectory.

To modify complementary slackness (6g) for the multi-
AP case, we note that the elementwise product in (6g) is
MILP-representable:

[
λ
j,¬k
i,t , −gi (κ

j
t , θ

p
i ) � (2s ji,t − 1

N ineq
i

)
]

≤ MQ j
i,t

Q j
i,t12 ≤ 1

N ineq
i

(9)

where Q j
i,t ∈ {0, 1}N ineq

i ×2. Intuitively, (9) enforces that
either 1) the Lagrange multiplier is zero and the constraint
is inactive, i.e. gi,m(κ, θ

p
i ) ∈ [−M, 0] if s ji,m,t = 1 or

gi,m(κ, θ
p
i ) ∈ [0, M] if s ji,m,t = 0, 2) the Lagrange mul-

tiplier is nonzero and gi,m(κt , θ
p
i ) = 0, or both; the value of

Q toggles between these options. The stationarity condition

Fig. 3 Left: Two demonstrations which satisfy the LTL formula ϕ =
(¬p2 U[0,Tj−1] p1)∧♦[0,Tj−1] p2 (first satisfy p1, then satisfy p2). The
demonstrations satisfy kinematic constraints and are minimizing path
length while satisfying input constraints and start/goal constraints. The
blue and yellow demonstrations begin at the corresponding x1 states and
end at x5 and x9, respectively. Right: Some example formulas that are
consistent with ϕ, for various levels of discrete optimality (ϕ f : discrete
feasibility, ϕs : spec-optimality, ϕg : discrete global optimality)

(6h) must also be modified to consider whether a particu-
lar constraint is negated; this can be done by modifying the

second line of (6h) to terms of the form
(
λ
j,¬k
i,t

� � (2s ji,t −
1)

)∇xt g
¬k
i (η(xt ), θ p). The KKT conditions for the multi-AP

case, denoted KKTLTL(ξdemj ), then can be written as in (10).

KKTLTL(ξdemj ):
Primal feasibility:

Equations (6a)-(6b), t = 1, . . . , Tj (10a)

Equation (8), i = 1, . . . , NAP, t = 1, . . . , Tj (10b)

Lagrange multiplier nonnegativity:

Equation (6d), t = 1, . . . , Tj (10c)

λ
j,¬k
i,t ≥ 0, i = 1, . . . , NAP, t = 1, . . . , Tj (10d)

Complementary slackness:

Equation (6f), t = 1, . . . , Tj (10e)

Equation (9), i = 1, . . . , NAP, t = 1, . . . , Tj (10f)

Stationarity:

∇xt c(ξ
dem
j ) + λ

j,k
t

�∇xt g
k(η(x j

t ))

+
Nineq∑

i=1

[(
λ
j,¬k
i,t

� � (2s ji,t − 1)
)∇xt g

¬k
i (η(x j

t ), θ
p
i )

]

+ ν
j,k
t

�∇xt h
k(η(x j

t )) = 0, t = 1, . . . , Tj (10g)

As mentioned in Sect. 3, if κ
j
t lies on the boundary of

AP i , the KKT conditions will automatically determine if
κ
j
t ∈ Si (θ p

i ) or κ
j
t ∈ Ai (θ

p
i ) based on whichever option

enables s ji,t to take values that satisfy (10). To summarize,

our approach is to (A) find Z j , which determines the feasi-
bility of ξdemj for ϕ(θ s, θ p), (B) find s ji,m,t , which link the

value ofZ j from theAP-containment level (i.e. κ j
t ∈ Si (θ p

i ))

to the single-constraint level (i.e. gi,m(κ
j
t , θ

p
i ) ≤ 0), and (C)

enforce that ξdemj satisfies the KKT conditions for the con-
tinuous optimization problem defined by θ p and fixed values
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of s ji,t . Finally, we can write the problem of recovering θ p

for a fixed θ s as:

Problem 4 (Learning θ p, for fixed template)

find θ p,λ
j,k
t ,λ

j,¬k
i,t , ν

j,k
t , s ji,t , Q j

i,t , Z j , ∀i, j, t
subject to {KKTLTL(ξdemj )}Ns

j=1

We can also encode prior knowledge in Problem 4, e.g.
known AP labels or a prior on θ

p
i , which we discuss in

Sect. 7.1.

4.3 Extraction of guaranteed learned AP

As with the constraint learning problem, the LTL learn-
ing problem is also ill-posed: there can be many θ p which
explain the demonstrations. Despite this, we can measure
our confidence in the learned APs by checking if a con-
straint state κ is guaranteed to satisfy/not satisfy pi for a
given AP parameterization. This check is particularly use-
ful when planning trajectories which satisfy the learned LTL
formula, as we discuss shortly. Denote Fi as the feasible set
of Problem 4, projected onto Θ

p
i (feasible set of θ

p
i ). Then,

we say κ is learned to be guaranteed contained in Si (θ p
i )

if for all θ
p
i ∈ Fi , Gi (κ) ≤ 0 (i.e. κ |� pi , for all fea-

sible θ
p
i ). Similarly, we say κ is learned to be guaranteed

excluded from Si (θ p
i ) if for all θ p

i ∈ Fi , Gi (κ) ≥ 0. Denote
by:

Gi
s

.=
⋂

θ∈Fi

{κ | Gi (κ, θ) ≤ 0} (11)

Gi¬s
.=

⋂

θ∈Fi

{κ | Gi (κ, θ) ≥ 0} (12)

as the sets of κ which are guaranteed to satisfy/not satisfy pi .
Having the ability to check if a constraint state lies within Gi

s
orGi¬s is useful when planningwith the learned LTL formula,
as we can design our plans to be robust to any uncertainty in
the learned APs. For instance, if some constraint state κ on
a candidate plan must satisfy/not satisfy AP i for the plan to
satisfy the learned LTL formula, we can instead force κ to be
contained in Gi

s or Gi¬s , respectively. Then, plans generated
in this fashion are guaranteed to satisfy the LTL formulas
corresponding to any consistent θ p.

Concretely, to query if κ is guaranteed to satisfy/not satisfy
pi , we can check the feasibility of the following problem:

Problem 5 (Query containment ofκκκ in/outside ofSSS i (θ
pθ pθ p
i ))

find θ p,λ
j,k
t ,λ

j,¬k
i,t , ν

j,k
t , s ji,t , Q j

i,t , Z j , ∀i, j, t
subject to {KKTLTL(ξdemj )}Ns

j=1
Gi (κ, θ

p
i ) ≥ 0 OR Gi (κ, θ

p
i ) ≤ 0

If forcing κ to (not) satisfy pi renders Problem 5 infeasible,
we can deduce that to be consistent with the KKT conditions,
κ must (not) satisfy pi . Similarly, continuous volumes of κ

which must (not) satisfy pi can be extracted by solving:

Problem 6 (AP volume extraction)

minimize
ε,κnear,θ

p,λ
j,k
t ,λ

j,¬k
i,t ,

ν
j,k
t ,s ji,t ,Q

j
i,t ,Z

j

ε

subject to {KKTLTL(ξdemj )}Ns
j=1

‖κnear − κquery‖∞ ≤ ε

Gi (κnear, θ
p
i ) > 0 OR Gi (κnear, θ

p
i ) ≤ 0

Problem 6 searches for the largest box centered around κquery
contained in Gi

s/Gi¬s . An explicit approximation of Gi
s/Gi¬s

can then be obtained by solving Problem 6 for many different
κquery.

Finally, we note that another avenue to handle the ambi-
guity in the learned θ p is to directly recover the set of all
θ p which are consistent with the demonstration, and plan-
ning to satisfy the LTL formulas associated with as many
consistent θ p as possible. This method is described in detail
in Chou et al. (2020b) for time-invariant constraints, and a
detailed investigation in applying this approach to temporal
logic constraints is the subject of future work.

5 Learning temporal logic structure (�p, �s)

We will discuss how to frame the search over LTL structures
θ s (Sect. 5.1), the learnability of θ s based on demonstration
optimality (Sect. 5.2), and how we combine notions of dis-
crete and continuous optimality to learn θ s and θ p (Sect. 5.3).

5.1 Representing LTL structure

We adapt (Neider and Gavran 2018) to search for a directed
acyclic graph (DAG),D, that encodes the structure of a para-
metric LTL formula and is equivalent to its parse tree, with
identical subtrees merged. Hence, each node still has at most
two children, but can have multiple parents. This framework
enables both a complete search over length-bounded LTL
formulas and encoding of specific formula templates through
constraints on D (Neider and Gavran 2018).

Each node in D is labeled with an AP or operator from
(1) and has at most two children; binary operators like ∧ and
∨ have two, unary operators like ♦[t1,t2] have one, and APs
have none (see Fig. 2). Formally, a DAG with NDAG nodes,
D = (X, L, R), can be represented as: X ∈ {0, 1}NDAG×Ng ,
where Xu,v = 1 if node u is labeled with element v of the
grammar and 0 else, and L, R ∈ {0, 1}NDAG×NDAG , where
Lu,v = 1 / Ru,v = 1 if node v is the left/right child of node
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u and 0 else. The DAG is enforced to be well-formed (i.e.
there is one root node, no isolated nodes, etc.) with further
constraints; see Neider and Gavran (2018) for more details.
Since D defines a parametric LTL formula, we set θ s = D.

As a concrete example, consider the DAG in Fig. 2. Let
the grammar be ϕ::=p1 | p2 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | �ϕ | ♦ϕ,
with DAG nodes labeled by {p1, p2,∨,∧,�,♦}. We refer to
element 1 of the grammar as p1, element 2 as p2, element 3
as∨, and so on. The DAG in Fig. 2, encoding (♦p1)∧(♦p2),
can be represented with:

X =

⎡

⎢⎢
⎢⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 1

⎤

⎥⎥
⎥⎥
⎦

, L =

⎡

⎢⎢
⎢⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

⎤

⎥⎥
⎥⎥
⎦

,

R =

⎡

⎢
⎢⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥⎥
⎥
⎦

where p1, p2, ∧, the left ♦, and the right ♦, are labeled as
nodes 1, 2, 3, 4, and 5 respectively. As convention, the unary
operators are defined to have only left children.

To ensure that demonstration j satisfies the LTL formula
encoded by D, we introduce a satisfaction matrix Sdem

j ∈
{0, 1}NDAG×Tj , where Sdem

j,(u,t) encodes the truth value of the
subformula for the subgraph with root node u at time t (i.e.,
Sdem
j,(u,t) = 1 iff the suffix of ξdemj starting at time t satisfies

the subformula). This can be encoded with constraints:

|Sdem
j,(u,t) − Φ t

uv| ≤ M(1 − Xu,v) (13)

where Φ t
uv is the truth value of the subformula for the sub-

graph rooted at u if labeled with v, evaluated on the suffix
of ξdemj starting at time t . The truth values are recursively
generated, and the leaf nodes, each labeled with some AP i ,
have truth values set to Z j

i (θ
p
i ). Next, we can enforce that the

demonstrations satisfy the formula encoded in D by enforc-
ing:

Sdem
j,(root,1) = 1, j = 1, . . . , Ns (14)

Continuingour example, consider again theblue trajectory
in Fig. 3, which satisfies the aforementioned LTL formula
(♦p1) ∧ (♦p2). For this trajectory, Sdem is:

Sdem =

⎡

⎢⎢⎢⎢
⎣

0 1 0 0 0
0 0 0 1 0
1 1 0 0 0
1 1 0 0 0
1 1 1 1 0

⎤

⎥⎥⎥⎥
⎦

Note that Sdem
(root=3,1) = 1, which reflects that the trajec-

tory satisfies the formula. Furthermore, our method will
also use synthetically-generated invalid trajectories {ξ¬s}N¬s

j=1

(Sect. 5.3). To ensure {ξ¬s}N¬s
j=1 do not satisfy the formula,

we add more satisfaction matrices S¬s
j and enforce:

S¬s
j,(root,1) = 0, j = 1, . . . , N¬s . (15)

After discussing learnability,wewill showhowD canbe inte-
grated into the KKT-based learning framework in Sect. 5.3.

5.2 A detour on learnability

When learning only the AP parameters θ p (Sect. 4), we
assumed that the demonstrator chooses any feasible assign-
ment of Z consistent with the specification, then finds a
locally-optimal trajectory for those fixed Z. Feasibility is
enough if the structure θ s of ϕ(θ s, θ p) is known: to recover
θ p, we just need to find someZwhich is feasible with respect
to the known θ s (i.e. Φ(Z j , θ p, θ s) = 1) and makes ξdemj
locally-optimal; that is, the demonstrator can choose an arbi-
trarily suboptimal high-level plan as long as its low-level
plan is locally-optimal for the chosen high-level plan. How-
ever, if θ s is also unknown, only using boolean feasibility is
not enough to recover meaningful logical structure, as this
makes any formula ϕ for which Φ(Z j , θ p, θ s) = 1 con-
sistent with the demonstration, including trivially feasible
formulas always evaluating to �. Formally, we will refer to
the set of formulas for which the demonstrations are feasible
in the discrete variables and locally-optimal in the continuous
variables as ϕ f .

On the other end of the spectrum, we can assume the
demonstrator is globally-optimal in solving Problem 1, i.e.
there does not exist any trajectory with lower cost than the
demonstration which satisfies both the specification and the
known constraints. Let the set of all formulas which make
the demonstrations globally-optimal be denoted ϕg . Assum-
ing global optimality invalidates many structures in ϕ f , as
any formula which accepts a trajectory with a lower cost than
the demonstration cannot belong in ϕg .

To make things concrete, consider again the example in
Fig. 3. Assume for now that θ

p
1 , θ

p
2 are known. Assuming

boolean feasibility, we cannot distinguish between formulas
in ϕ f , a subset of which are written in the Venn diagram
in Fig. 3. ϕ f contains trivial formulas like � or ϕ =
(♦[0,Tj−1] p1) ∨ (♦[0,Tj−1] p2), Assuming global optimal-
ity, on the other hand, invalidates many structures in ϕ f ,
i.e. the blue trajectory should not visit both S1 and S2 if
ϕ = (♦[0,Tj−1] p1) ∨ (♦[0,Tj−1] p2); we achieve a lower cost
by only visiting one. Using global optimality, we can dis-
tinguish between all but the formulas with globally-optimal
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trajectories of equal cost (formulas in ϕg), i.e. we cannot
learn the ordering constraint (¬p2 U[0,Tj−1] p1) from only
the blue trajectory, as it coincides with the globally-optimal
trajectory for ϕ = (♦[0,Tj−1] p1) ∧ (♦[0,Tj−1] p2); we need
the yellow trajectory to distinguish the two.

From this discussion,we see that imposing global optimal-
ity of the demonstrations in the learning problem can be quite
powerful for reducing the set of consistent LTL formulas
(provided that the demonstrations are actually globally-
optimal). Unfortunately, enforcing global optimality of the
demonstrations in the learning problem is challenging, as it
requires an exhaustive verification that there are no feasible
trajectories with lower cost than the demonstrations. To over-
come this challenge, we define an optimality condition that
is more restrictive than feasibility and less restrictive than
global optimality, and which crucially is easier to impose in
learning:

Definition 1 (Spec-optimality) A demonstration ξdemj is μ-
spec-optimal (μ-SO), where μ ∈ Z+, if for every index set
ι

.= {(i1, t1), ..., (iμ, tμ)} in I .= {ι | im ∈ {1, ..., NAP}, tm ∈
{1, ..., Tj },m = 1, ..., μ}, at least one of the following holds:

– ξdemj is locally-optimal after removing the constraints

associated with pim on κ
j
tm , for all (im, tm) ∈ ι.

– For each index (im, tm) ∈ ι, the formula is not satis-
fied for a perturbed Z, denoted Ẑ, where Ẑim ,tm (θ

p
im

) =
¬Zim ,tm (θ

p
im

), for all m = 1, . . . , μ, and Ẑi ′,t ′(θ
p
i ′ ) =

Zi ′,t ′(θ
p
i ′ ) for all (i

′, t ′) /∈ ι.

– ξdemj is infeasible with respect to Ẑ.

Spec-optimality enforces a level of logical optimality,
evaluated locally around a demonstration: if a state κ

j
t

on demonstration ξdemj lies inside/outside of AP i (i.e.

Gi (κ
j
t , θ

p
i ) ≤ 0/ ≥ 0), and the cost c(ξdemj ) can be lowered

if that AP constraint is relaxed, then the constraint must hold
to satisfy the specification. Intuitively, this means that the
demonstrator does not visit/avoid APs which will needlessly
increase the cost and are not needed to complete the task.
Note that the conditions in Definition 1 are essentially check-
ing how the local optimality of a demonstration changes as
a result of local perturbations to the assignments of the dis-
crete variablesZ. The three conditions inDefinition 1 capture
the three possibilities upon perturbing Z: the demonstration
could become infeasible if Z is perturbed (this is what the
third condition checks), the demonstration could remain fea-
sible but local optimality may not change (this is what the
first condition checks), or the demonstration could remain
feasible and no longer be locally-optimal (this is what the
second condition checks). By enforcing that a demonstration
is spec-optimal with respect to the formula being satisfied,
we enforce that this last possibility (feasible but not locally-

optimal) never occurs. We would want to enforce this, for
instance, if the demonstration is assumed to be globally-
optimal for the true LTL formula, because there should be no
alternative assignment of Z which admits a feasible direction
in which the demonstration cost can be improved.

Returning to the discussion on the example in Fig. 3,
we will show how spec-optimality can be used to distin-
guish between ϕ = (¬p2 U[0,Tj−1] p1) ∧ ♦[0,Tj−1] p2 and
ϕ̂ = ♦[0,Tj−1] p1 ∨ ♦[0,Tj−1] p2 using only the blue demon-
stration. Specifically, we show the demonstration is 1-SO
with respect to ϕ but not for ϕ̂. For both formulas ϕ and ϕ̂,
we can see that I = {(1, 1), . . . , (1, 5), (2, 1), . . . , (2, 5)}.
Let’s consider ϕ first. In this case, for values of ι ∈
{(1, 1), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 5)}, the
third condition in Definition 1 will hold, since for these time-
AP pairs, the demonstration is not on the boundary of the
paired AP. For ι ∈ {(1, 2), (2, 4)}, the second condition in
Definition 1 will hold, since perturbing Z at either of these
time-AP pairs (from Z1,2(θ

p
1 ) = 1 to 0 or from Z2,4(θ

p
2 ) = 1

to 0) will cause ϕ to be not satisfied. Thus, the demonstration
is spec-optimal with respect to ϕ. On the other hand, for ϕ̂,
again for values of ι ∈ {(1, 1), (1, 3), (1, 4), (1, 5), (2, 1),
(2, 2), (2, 3), (2, 5)}, the third condition in Definition 1 will
hold. However, none of the three conditions will hold for
ι ∈ {(1, 2), (2, 4)}, since the demonstration will not be
locally-optimal upon relaxing the constraints for either p1
or p2, and since ϕ̂ only enforces that either one of S1 or S2

are visited, ϕ̂ is still satisfied if either Z1,2(θ
p
1 ) or Z2,4(θ

p
2 )

is flipped to 0. Hence, the demonstration is not spec-optimal
with respect to ϕ̂.

In contrast, we can show that it is not possible to use
spec-optimality to distinguish between the formulas ϕ =
(¬p2 U[0,Tj−1] p1) ∧ ♦[0,Tj−1] p2 and ϕ̂ = ♦[0,Tj−1] p1 ∧
♦[0,Tj−1] p2 using the yellow demonstration in Fig. 3. This
follows from noting that perturbing any combination of
Z1,4(θ

p
1 ), Z2,6(θ

p
2 ) from their values of 1 to 0 will cause both

ϕ and ϕ̂ to be not satisfied. Hence, the yellow demonstration
is spec-optimal with respect to both ϕ and ϕ̂; however, it is
not globally-optimal for ϕ̂, as the demonstrator can achieve
a lower cost by first satisfying p2 and then satisfying p1.

We will conclude this subsection with some theoretical
results which motivate how demonstration spec-optimality
can be used to help the learning of LTL formulas. We first
show that all globally-optimal demonstrations must also be
μ-spec-optimal for the true specification, for any positive
integer μ.

Lemma 1 All globally-optimal trajectories are μ-SO.

Proof We show that it is not possible for a demonstration
ξdemj to be globally-optimal while failing to satisfy (a),

(b), and (c). If the constraints corresponding to pim at κ
j
tm

are relaxed, for some {(im, tm)}μm=1, then ξdemj can either
remain locally-optimal (which means (a) is satisfied, and
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happens if all the constraints are inactive or redundant) or
become not locally-optimal. If ξdemj becomes not locally-
optimal for the relaxed problem (i.e. (a) is not satisfied), then
at least one of the original constraints is active, implying∨μ

m=1

(
Gim (κ

j
tm ) = 0

)
. In this case, one of the following

holds: either (1) each κ
j
tm lies on its constraint boundary:

∧μ
m=1

(
Gim (κ

j
tm ) = 0

)
, or (2) at least one κtm does not lie on

its constraint boundary. If (2) holds, then ξdemj must be infea-

sible for Ẑ, so (c) must be satisfied. If (1) holds, then ξdemj

is both feasible for Ẑ and not locally-optimal with respect
to the relaxed constraints. Then, there exists some trajectory
ξ̂xu such that c(ξ̂xu) < c(ξdemj ), and for at least one m in

1, . . . , μ, Gim (κ̂
j
tm ) > 0, where κ̂

j
tm is the constraint state at

time tm on ξ̂xu . ξ̂xu cannot be feasible with respect to the true
specification, since it makes ξdemj not globally-optimal, so in
this case (b) must hold. ��

Given this result, we can use spec-optimality to vastly
reduce the search space when searching for formulas which
make the demonstrations globally-optimal (Sect. 5.3). To for-
malize this search space reduction, we prove that the set of
consistent formulas shrinks as μ increases, approaching ϕ f

with lower values ofμ and approachingϕg with higher values
of μ.

Theorem 1 (Distinguishability) For the consistent formula
sets defined in Sect. 5.2, we haveϕg ⊆ ϕμ̃-SO ⊆ ϕμ̂-SO ⊆ ϕ f ,
for μ̃ > μ̂.

Proof ϕg ⊆ ϕμ̃-SO, since per Lemma 1, all globally-optimal
trajectories are μ̃-SO. Thus, restricting Problem 8 to enforce
global optimality requires more constraints than restricting
Problem 8 to enforce μ̃-SO. With more constraints, the fea-
sible set of consistent formulas cannot be larger for global
optimality. Similarly, as enforcing μ̃-SO requires more con-
straints than enforcing μ̂-SO, the feasible set of consistent
formulas cannot be larger for μ̃-SO than for μ̂-SO. ϕμ-SO ⊆
ϕ f , since enforcing μ-SO also enforces feasibility. Thus,
restricting Problem 8 to enforce μ-SO requires more con-
straints than the standard Problem 8. With more constraints,
the feasible set of consistent formulas cannot be larger for
μ-SO. ��

5.3 Counterexample-guided framework

In this section, we will assume that the demonstrator returns
a solution to Problem 1 which is boundedly-suboptimal with
respect to the globally optimal solution, in that c(ξdemj ) ≤
(1 + δ)c(ξ∗

j ), for a known suboptimality slack parameter δ,
where c(ξ∗

j ) is the cost of the optimal solution. This is rea-
sonable as the demonstration should be feasible (completes
the task), but may be suboptimal in terms of cost (e.g. path

Algorithm 1: Falsification

1 Input: {ξdemj }Ns
j=1, S̄, Output: θ̂ s , θ̂ p

2 NDAG ← 0, {ξ¬s} ← {}
3 while ¬ consistent do
4 NDAG ← NDAG + 1
5 while Problem 8 is feasible do
6 θ̂ s , θ̂ p ← Problem 8({ξdemj }Ns

j=1, {ξ¬s}, NDAG)

7 for j = 1 to Ns do
8 ξ

j
xu ← Problem 7(ξdemj )

9 if Problem 7 is feasible then {ξ¬s} ← {ξ¬s} ∪ ξ
j
xu

10 if Problem 7 infeasible, for all j = 1, . . . , Ns then
11 consistent ← �; break

length, etc.), and δ can be estimated from repeated demon-
strations. We sketch one way δ can be estimated in Sect. 7.4.

Under the bounded-suboptimality assumption, any trajec-
tory ξxu satisfying the known constraints η̄(ξxu) ∈ S̄ at
a cost lower than the suboptimality bound, i.e. c(ξxu) ≤
c(ξdemj )/(1 + δ), must violate ϕ(θ s, θ p) (Chou et al. 2018,

2019). We can use this to reject candidate structures θ̂ s and
parameters θ̂ p. If we can find a counterexample trajectory
that satisfies the candidate LTL formula ϕ(θ̂ s, θ̂ p) at a lower
cost by solving Problem 7,

Problem 7 (Counterexample search)

find ξxu

subject to ξxu |� ϕ(θ̂ s, θ̂ p)

η̄(ξxu) ∈ S̄(ξdemj ) ⊆ C
c(ξxu) < c(ξdemj )/(1 + δ)

then ϕ(θ̂ s, θ̂ p) cannot be consistent with the demonstration.
Thus, we can search for a consistent θ̂ s and θ̂ p by iteratively
proposing candidate θ̂ s / θ̂ p by solving Problem 8 (a modi-
fied version of Problem 4, which we will discuss shortly) and
searching for counterexamples that can prove the parameters
are invalid/valid; this is summarized in Algorithm 1. Heuris-
tics on the falsification loop are discussed in Sect. 7.3.

We note that the structure of the falsification loop in Algo-
rithm 1 is crucial for enforcing that the returned LTL formula
makes the demonstrations globally-optimal (or boundedly-
suboptimal), since as discussed in Sect. 5.2, it is challenging
to encode global optimality directly. As a result, we will rely
on encoding conditions that areweaker thanglobal optimality
but which can be efficiently enforced, proposing LTL formu-
las which make the demonstration feasible or spec-optimal
(see Problem 8). Thus, the loop is needed to reject formulas
which make the demonstrations feasible or spec-optimal but
not globally-optimal, in order to ensure that the formula that
is eventually returned makes the demonstrations globally-
optimal. We now discuss in detail the core components of
Algorithm 1: counterexample generation, addressed in Prob-
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lem 7, and a combined search for θ p and θ s , addressed in
Problem 8).
Counterexample generation: We propose different meth-
ods to solve Problem 7 based on the dynamics. For piecewise
affine systems, Problem 7 can be solved directly as a MILP
(Wolff et al. 2014). However, the LTL planning problem for
general nonlinear systems is challenging (Li and Fu 2017;
Fu et al. 2017). Probabilistically-complete sampling-based
methods (Li and Fu 2017; Fu et al. 2017) or falsification
tools (Annpureddy et al. 2011) can be applied, but can be
slow on high-dimensional systems. For simplicity and speed,
we solve Problem 7 by finding a trajectory ξ̂xu |� ϕ(θ̂ s, θ̂ p)

and boolean assignment Z for a kinematic approximation of
the dynamics via solving aMILP, thenwarm-start the nonlin-
ear optimizer with ξ̂xu and constrain it to be consistent with
Z, returning some ξxu . We use IPOPT (Wächter and Biegler
2006) and TrajOpt (Schulman et al. 2014) to solve these non-
linear optimization problems for the simulation and hardware
experiments, respectively. If c(ξxu) < c(ξdemj )/(1+ δ), then

we return, otherwise, we generate a new ξ̂xu . Whether this
method returns a valid counterexample depends on if the non-
linear optimizer converges to a feasible solution; hence, this
approach is not complete. However, we show that it works
well in practice (see Sects. 9–10); moreover, the optimal
sampling-based planning approaches (e.g. Li and Fu 2017)
can always be used as a complete alternative, at the expense
of higher computation time.
Unifying parameter and structure search: When both θ p

and θ s are unknown, they must be jointly learned due to
their interdependence: learning the structure involves finding
an unknown boolean function of θ p, parameterized by θ s ,
while learning theAP parameters θ p requires knowingwhich
APs were selected or negated, determined by θ s . This can be
done by combining the KKT (10) and DAG constraints (13)–
(15) into a single MILP, which can then be integrated into
Algorithm 1:

Problem 8 (Combined search for θ p, θ s)

find
D, Sdem

j , S¬s
j , θ p,λ

j,k
t ,λ

j,¬k
i,t , ν

j,k
t , s ji,t , Q j

i,t , Z j ,

∀i, j, t
s.t. {KKTLTL(ξdemj )}Ns

j=1
topology constraints (except single root) for D
Equation (13), j = 1, . . . , Ns

Equation (14), j = 1, . . . , Ns

Equation (15), j = 1, . . . , N¬s

In Problem 8, since (1) the Z j
i (θ

p
i ) at the leaf nodes of D

are constrained via (8) to be consistent with θ p and ξdemj and
(2) the formula defined by D is constrained to be satisfied
for the Z via (13), the low-level demonstration ξdemj must be
feasible for the overall LTL formula defined by the DAG, i.e.

ϕ(θ s, θ p), where θ s = D. KKTLTL(ξdemj ) then chooses AP

parameters θ p to make ξdemj locally-optimal for the contin-
uous optimization induced by a fixed realization of boolean
variables. Overall, Problem 8 finds a pair of θ p and θ s which
makes ξdemj locally-optimal for a fixed Z j which is feasi-

ble for ϕ(θ s, θ p), i.e. Φ(Z j , θ p, θ s) = 1, for all j . To also
impose the spec-optimality conditions (Definition 1), we can
add these constraints to Problem 8:

Sdem,Ẑ j
n

j,(root,1) ≤ b1nj (16a)

‖λ j,¬k
im ,tm

�∇xt g
¬k
im (η(x j

t ), θ
p
im

)‖ ≤ M(1 − b2nj ),

m = 1, ..., μ (16b)

g¬k
im (η(x j

t ), θ
p
im

) ≥ −M(1 − e j
nm), m = 1, ..., μ (16c)

1�
Nim
ineq

e j
nm ≥ Ẑ j

im tm
(θ

p
im

) − b3nj , m = 1, ..., μ (16d)

g¬k
im (η(x j

t ), θ
p
im

) ≤ M(Ẑ j
im ,tm

+ b3nj ) (16e)

b1nj + b2nj + b3nj ≤ 1, bnj ∈ {0, 1}3,
e j
nm ∈ {0, 1}Nim

ineq (16f)

for n = 1, . . . , |I|, where Sdem,Ẑ j
n

j is the satisfaction matrix

for ξdemj where the leaf nodes are perturbed to take the val-

ues of Ẑ j
n , where n indexes an ι ∈ I. (16a) models the case

when the formula is not satisfied, (16b) models when ξdemj
remains locally-optimal upon relaxing the constraint (zero
stationarity contribution), and (16c)–(16e) model the infeasi-
ble case. Generally, without spec-optimality, the falsification
loop in Algorithm 1 will need to eliminate more formulas on
the way to finding a formula which makes the demonstra-
tions globally-optimal. We conclude this section with some
remarks on spec-optimality and the falsification loop:

Remark 1 If μ = 1, the infeasibility constraints (16c)–
(16e) can be ignored (since together with (16a), they are
redundant), and we can modify (16f) to b1nj + b2nj ≤ 1,

bnj ∈ {0, 1}2.

Remark 2 It is only useful to enforce spec-optimality on
index pairs (i1, t1), . . . , (iμ, tμ) where Gim (κ

j
tm , θ

p
im

) = 0
for all m = 1, ..., μ; otherwise the infeasibility case auto-
matically holds. If θ p is unknown, we won’t know a priori
when this holds, but if θ p are (approximately) known, we
can pre-process so that spec-optimality is only enforced for
salient ι ∈ I.

Remark 3 Wecan interpretμ as a tuning knob for shifting the
computation between the falsification loop and Problem 8;
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imposing a larger μ can potentially rule out more formu-
las at the cost of adding additional constraints and decision
variables to Problem 8.

Remark 4 Problem 8 with spec-optimality constraints (16)
can be used to directly search for a ϕ(θ̂ s, θ̂ p) which can
be satisfied by visiting a set of APs in any order (e.g.
surveillance-type tasks) without using the loop in Algo-
rithm 1, since (16) directly enforces that any AP (1-SO) or
a set of APs (μ-SO) which were visited and which prevent
the trajectory cost from being loweredmust be visited for any
candidate
ϕ(θ̂ s, θ̂ p).

6 Learning cost function parameters (�p, �s,
�c)

If θc is unknown, it can be learned by modifying KKTLTL to
also consider θc in the stationarity condition: all terms con-
taining ∇ξxu c(ξ

dem
j ) should be modified to ∇ξxu c(ξ

dem
j , θc).

When c(·, ·) is affine in θc for fixed ξdemj , the stationarity
condition is representable with a MILP constraint. However,
the falsification loop in Algorithm 1 requires a fixed cost
function in order to judge if a trajectory is a counterexample.
Thus, one valid approach is to first solve Problem 8, search-
ing also for θc, then fixing θc, and running Algorithm 1 for
the fixed θc. Specifically, the approach is the same as Algo-
rithm 1, apart from an additional outer while loop, where
candidate θc are selected. We formally write this procedure
in Algorithm 2, where we refer to the Problem 8 variant that
searches over θc as Problem 8′, and to the Problem 7 variant
that takes in θc as input as Problem 7′. Upon the failure of a
θc to yield a consistent θ p and θ s , the θc is added into a set of
cost parameters for Problem 8 to avoid, Θc

av. The avoidance
condition can be implemented with integer constraints, i.e.
|θci − θ̂ci | ≥ εav − (1− ziav),

∑
i z

i
av ≥ 1, for i = 1, . . . , |θc|

and for binary variables ziav. Here, εav is a hyperparameter
that defines the size of an infinity-norm ball around θ̂i which
should be avoided in future iterations. One can also achieve
a similar effect without this hyperparameter by adding an
objective function maxθc ‖θc − θ̂ci ‖∞ to Problem 8′, which
is MILP-representable.

Note that this procedure either eventually returns an LTL
formula consistent with the fixed θc, or Algorithm 1 becomes
infeasible, and a new θc must be generated and Algorithm 1
rerun. This is guaranteed to eventually return a set of θc, θ s ,
and θ p which make each ξdemj globally-optimal with respect
to c(ξxu, θc) under ϕ(θ s, θ p). However, it may require iter-
ating through an infinite number of candidate θc and hence
is not guaranteed to terminate in finite time (Corollary 3).
Nonetheless, we note that for a certain class of formulas

Algorithm 2: Falsification, unknown cost function

1 Input: {ξdemj }Ns
j=1, S̄, Output: θ̂ s , θ̂ p, θ̂c

2 NDAG ← 0, {ξ¬s} ← {}, Θc
av ← {}

3 while true do
4 θ̂ s , θ̂ p , θ̂c←Problem 8′({ξdemj }Ns

j=1, {ξ¬s}, NDAG,Θc
av)

5 while ¬ consistent do
6 NDAG ← NDAG + 1
7 while Problem 8 is feasible do
8 θ̂ s , θ̂ p ← Problem 8({ξdemj }Ns

j=1, {ξ¬s}, NDAG, θ̂c)

9 for j = 1 to Ns do
10 ξ

j
xu ← Problem 7′(ξdemj , θ̂c)

11 if Problem 7′ is feasible then
12 {ξ¬s} ← {ξ¬s} ∪ ξxu

13 if Problem 7′ infeasible, for all j = 1, . . . , Ns then
14 consistent ← �; break
15 if consistent then return;

16 else Θc
av ← Θc

av ∪ θ̂c; break;

(Remark 4), a consistent set of θc, θ s , and θ p can be recovered
in one shot.

7 Method extensions, variants, and
discussion

In this section,wediscuss someextensions andvariants of our
approach which can improve learning (Sect. 7.1) and compu-
tational performance (Sects. 7.2, 7.3). Finally, we discuss the
effect of suboptimality on the learning procedure and how the
suboptimality slack parameter δ can be estimated (Sect. 7.4).

7.1 Encoding prior knowledge

In some situations, we may have some a priori knowledge
on the atomic propositions, e.g. which labels correspond to
which atomic proposition regions, or a rough estimate of the
AP parameters θ p. We describe how this knowledge can be
integrated into our method.
Known labels: We have assumed that the demonstrations
only include state/control trajectories and not the AP labels;
this can lead to ambiguity as to which S should be assigned
to which proposition pi . For example, consider the exam-
ple in Fig. 3 (left), where the aim is to recover ϕ(θ p) =
♦S1(θ

p
1 )∨♦S2(θ

p
2 ). The KKT conditions will imply that the

demonstrator had to visit two boxes and their locations, but
not whether the left box should be labeledS1 orS2. However,
in some settings it may be reasonable that the labels for each
AP are provided, e.g. for an AP which requires a robot arm
to grasp an object, we might have sensor data determining if
the object has been grasped. In this case, we can incorporate
this by simply constraining Z j

i (θ
p
i ) to be the labels; this then

removes the ambiguity mentioned earlier.
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Prior knowledge on θ p: In some settings, we may have
a rough idea of θ p, e.g. as noisy bounding boxes from a
vision system. We might then want to avoid deviating from
these nominal parameters, denoted θ

p
nom, or restrict θ p to

some region around θ
p
nom, denotedΘi,nom, subject to theKKT

conditions holding. This can be done by adding
∑NAP

j=1 ‖θ p
i −

θ
p
i,nom‖1 as an objective or θ

p
i,nom ∈ Θi,nom as a constraint to

Problem4 instead of simply solvingProblem4 as a feasibility
problem.

7.2 Faster reformulations for the falsification loop

A shortcoming of Algorithm 1 is that it can be computation-
ally intensive. This is primarily due to Problem 8, which is
a mixed-integer program that contains many binary decision
variables, including the DAG structure variables (X, L, R)

and variables Q and Z which are needed to learn the con-
tinuous parameters θ p. While Problem 8 can still be solved
for examples of moderate size (see the results in Sect. 9), we
observe that its computation time can become unrealistic for
examples with very long LTL formulas (i.e. a large search
space for (X, L, R)). Intuitively, increasing the dimension-
ality of (X, L, R) combinatorially increases the number of
possible assignments, which can cause the optimizer to strug-
gle to find a feasible solution in a reasonable timeframe.

To address these computational challenges, we propose a
reformulation for Problem 8 which is better suited for large-
scale problems. Instead of fixing the number of nodes NDAG

in the DAG D and searching over grammar element types
Xuv for which to populate the nodes, we can fix X to contain
a number of instances of each grammar element, and relax
the constraint that there is only one root node, and enforce
the constraints of Problem 8 on the LTL formula defined by
the subgraph of a particular root node; that is, we enforce
the constraints on one tree in the forest of an expanded DAG
where AP nodes with common labels are not merged. Addi-
tionally, instead of incrementing the total DAG size NDAG

in the outer loop of Algorithm 1, we should increment the
number of instances of each grammar element by one. As
a concrete example, instead of searching for a DAG with
5 nodes, where each node can be labeled with any element
in the grammar {p1, p2,∧,♦,�}, one possibility under this
reformulationwould be to fixX to contain 11 nodes, with one
instance each of p1 and p2 and three instances each of ∧, ♦,
and �. The optimizer would then choose a subset of these
nodes to include in the candidate LTL formula by choosing
a root node and (L, R) accordingly.

More concretely, this reformulated problem can bewritten
as a modification of Problem 8, whereX is dropped as a deci-
sion variable and an additional binary vector r ∈ {0, 1}NDAG

is added. The purpose of r is to encode that at least one node
in the DAG is a root node, and that conditions (14), (15), and

(16) hold for each root node; concretely, if ri = 1, node i
is a root node, and if ri = 0, then node i is not a root node.
This adjustment can be performed by taking constraints (14),
(15), and (16) and relaxing them depending on the value of
r, using a big-M formulation. As a concrete example, (14)
would be modified to

1 − Sdem
j,(ri ,1) ≤ M(1 − ri ), i = 1, . . . , NDAG,

j = 1, . . . , Ns . (17)

By holding X constant instead of considering it as a
decision variable, we dramatically reduce the computational
cost of solving Problem 8, by combinatorially reducing the
search space size compared to searching over the entirety of
(X, L, R). Furthermore, this does not overly restrict the LTL
formula search, since we can still represent different formu-
las by searching over L and R, and by allowing for multiple
root nodes, we can still find different formulas involving a
different number of nodes (i.e. the method can return for-
mula defined by a subtree containing only a subset of the
nodes in X). For instance, consider representing the formula
ϕ = ♦p1 ∧ ♦p2 using either formulation. Using the original
formulation, one can represent ϕ by searching for a DAG
with 5 nodes, resulting in the structure in Fig. 2. Using the
reformulation, we can represent ϕ even when selecting one
instance each of p1 and p2 and three instances each of ∧, ♦,
and �, as long as some subgraph in the resulting DAG repli-
cates the structure in Fig. 2, and the root of that subgraph (say
node i) is marked as a root node (ri = 1). However, these
computational gains can come at the cost of easily finding
the shortest LTL formula consistent with the demonstrations,
as we discuss in Corollary 1 (see Remark 5 for more discus-
sion). Thus, this formulation should be used for large-scale
learning problems with many APs and LTL grammar ele-
ments, while it should be avoided when the primary priority
is to return the simplest possible LTL formula.

7.3 Prioritized variants on the falsification loop

Depending on the desired application, it may be useful to
impose an ordering in which candidate structures θ s are
returned in line 4 of Algorithm 1. For example, the user may
want to return themost restrictive formulas first (i.e. formulas
with the smallest language), since more restrictive formulas
are less likely to admit counterexamples (and hence the fal-
sification should terminate in fewer iterations). On the other
hand, the usermaywant to return the least restrictive formulas
first, generating many invalid formulas in order to explicitly
knowwhat formulas do not satisfy the demonstrator’swishes.

However, imposing an entailment-based ordering on the
returned formulas is computationally challenging, as in gen-
eral this will involve pairwise LTL entailment checks over
a large set of possible LTL formulas, and each check is in
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PSPACE (Demri and Schnoebelen 2002). Despite this, we
can heuristically approximate this by assigning weights to
each node type in the DAG based on their logical “strength”,
such that each DAG with the same set of nodes has an
overall weight w = ∑NDAG

u=1

∑Ng
v=1 wu,vXu,v . For exam-

ple, ∨ should be assigned a lower weight than ∧, since ∨s
can never restrict language size, while ∧ can never grow
it. Then, stronger/weaker formulas can be returned first by
adding constraint w ≥ wthresh/w ≤ wthresh, where wthresh is
reduced/increased until a consistent formula is found.

Note that multiple consistent formula structures can be
also generated by adding a constraint for Problem 8 to not
return the same formula structure and continuing the falsifi-
cation loop after the first consistent formula is found.

7.4 Demonstration suboptimality

We conclude this section by describing a method for esti-
mating the suboptimality slack parameter δ, which is crucial
for maintaining the correctness of Algorithm 1, and by
discussing how demonstrator suboptimality can affect the
performance of our algorithm.

We first describe how δ can be estimated. Assume that
the cost function parameters θc are fixed. Suppose that
the demonstrator repeats task j R times, generating sub-
optimal demonstrations {ξdemj,r }Rr=1 with corresponding costs

{c(ξdemj,r )}Rr=1, where c(ξ j,r )dem ≥ c(ξ∗
j ), for all r , where

c(ξ∗
j ) is the cost of a globally-optimal solution for task j ,

which we assume is finite. Using these repeated demonstra-
tions, we would like to estimate the suboptimality bound δ.
Assuming the demonstration costs are independent and iden-
tically distributed realizations of a random variable, we can
estimate c(ξ∗

j ) using the location parameter of a Weibull dis-
tribution that is fit to the observed costs (Weng et al. 2018;
De Haan and Ferreira 2007; Knuth et al. 2021). This follows
from the Fisher–Tippett–Gnedenko Theorem from extreme
value theory (De Haan and Ferreira 2007), which states that
if the limiting distribution of the minimum of a set of real-
izations of a random variable converges to a finite value, the
limit distribution is Weibull. Then, the location parameter
of the Weibull distribution can be used to estimate the min-
imum c(ξ∗

j ); let this estimate be denoted ĉ∗
j . One can also

compute a confidence interval around ĉ∗
j (Knuth et al. 2021),

which can be used to determine if the demonstration needs
to be further repeated (i.e. if the confidence interval is large).
Finally, we can recover an estimate of δ by taking the lowest-
cost trajectory (which will be selected as the demonstration
used in learning2) with cost c(ξdemj )

.= min1≤r≤R c(ξdemj,r )

and setting

2 Provided that the remaining higher-cost demonstrations are feasible,
they can still be used in the learning process; we can enforce that these
demonstrations should still be feasible for any candidate LTL formula.

δ = c(ξdemj ) − ĉ∗
j

ĉ∗
j

. (18)

We demonstrate this procedure on a simulated example in
Sect. 9.2.

This δ estimation procedure can also be altered to work
for the case of unknown θc. Since Algorithm 2 fixes a single
consistent θc in an outer loop and then runs the falsification
loop of Algorithm 1 for that fixed θc, we can estimate δ

for each θc which comes up in the outer loop directly using
the procedure described previously for a fixed θc. Thus, δ

changes based on the current candidate θc.
We now discuss the overall effect of suboptimality on

our method. Recall that our approach relies on a contin-
uous notion of optimality to learn θ p and θc (the KKT
conditions) and discrete notions of optimality in a falsifi-
cation loop to learn the LTL structure θ s . We first discuss
the effect of suboptimality on learning θ p and θc; in these
cases, any demonstrator suboptimality is reflected by the
KKT conditions failing to hold exactly on the demonstra-
tions (i.e. with an error in the stationarity or complementary
slackness terms). This can be dealt with by solving Prob-
lem 3, which relaxes the KKT conditions to a penalty, so
the optimization problem remains feasible despite the sub-
optimality. In essence, Problem 3 finds the cost function/AP
parameters which make the demonstrations as close to satis-
fying the KKT conditions as possible. Unfortunately, these
parameters may not reflect the true parameters if the demon-
strations are extremely suboptimal; as a result, the accuracy
of the recovered parameters can be sensitive to suboptimality.
Quantifying uncertainty in the learned parameters as a func-
tion of the demonstrator’s suboptimality may help mitigate
any performance degradation, and is an interesting direction
for future work.

Learning the LTL structure θ s is in general less sensi-
tive to suboptimality. To understand this, let us return to the
two-AP setting of Fig. 3. In this setting, we first sort the
possible LTL structures on a number line by the optimal tra-
jectory cost that they admit (see Fig. 4 for a depiction of this
idea). There are finitelymany possible LTL structures θ s , and
many different θ s may be semantically identical (for exam-
ple, many θ s have corresponding formulas which are just
permutations of each other), thus admitting optimal trajecto-
ries of the same cost. Thus, while there may be exponentially
many possible θ s , there tends to only be a small number of
groups of cost-distinguishable formulas (i.e. each such group
contains formulaswith equal optimal cost). Recall that in run-
ning Algorithm 1 using the given demonstrations to learn θ s ,
the falsification loop terminates when the optimal cost of a
trajectory satisfying the current candidate LTL formula and
the known constraints exceeds the δ-adjusted demonstration
cost c(ξdemj )/(1+ δ). As an example, consider a suboptimal
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Fig. 4 Consider the two-AP setting first shown in Fig. 3. We visualize
here sets of LTL formulas which can be distinguished based on cost.
Formulas within group (·) have an optimal cost c∗· . The formulas listed
in each group (A), (B), (C), and (D) are just a small subset of a much
larger set of cost-indistinguishable formulas. For instance, if a demon-
stration has a δ-adjusted cost c(ξdemj )/(1+δ) falling in the green range,
Algorithm 1 will return some LTL formula structure in group (D), each
of which would have an optimal cost of c∗

D (Color figure online)

demonstration of ϕ = (¬p2 U p1) ∧ ♦p2 which belongs to
group (D) in Fig. 4 and has a δ-adjusted cost c(ξdemj )/(1+δ).
As long as this adjusted cost lies anywhere within the green
interval in Fig. 4, some formula from group (D) is returned,
which will be a formula consistent with the bounded subopti-
mality of the demonstration. Note that the estimate of δ must
be an overestimate of the true δ in order for the adjusted cost
to lie in the green region in Fig. 4; this can be encouraged
by setting the confidence interval described earlier in this
section to be large, and selecting δ as the fit Weibull location
parameter padded by the confidence interval. In Sect. 9.2, we
show that we can obtain an overestimate of the true δ using
this approach.

8 Theoretical analysis

In this section, we prove some theoretical guarantees of our
method: that it is complete under some assumptions, with-
out (Theorem 2) or with (Corollary 2) spec-optimality, that it
returns the shortest LTL formula consistent with the demon-
strations (Corollary 1), and that we can compute guaranteed
conservative estimates of Si /Ai (Theorem 3).

Assumption 1 Problem 7 is solved with a complete planner.

Assumption 2 Each demonstration is locally-optimal (i.e.
satisfies the KKT conditions) for fixed boolean variables.

Assumption 3 The true parameters θ p, θ s , and θc are in the
hypothesis space of Problem 8: θ p ∈ Θ p, θ s ∈ Θs , θc ∈ Θc.

We will use these assumptions to show that when the cost
function parameters θ p are known, our falsification loop in
Algorithm 1 is guaranteed to return a consistent formula; that
is, it makes the demonstrations globally-optimal.

Theorem 2 (Completeness and consistency, unknown θ s ,
θ p) Under Assumptions 1–3, Algorithm 1 is guaranteed to
return a formula ϕ(θ s, θ p) such that (1) ξdemj |� ϕ(θ s, θ p)

and (2) ξdemj is globally-optimal under ϕ(θ s, θ p), for all j ,
(3) if such a formula exists and is representable by the pro-
vided grammar.

Proof To see the first point—that Algorithm 1 returns
ϕ(θ̂ s, θ̂ p) such that ξdemj |� ϕ(θ̂ s, θ̂ p) for all j , note that
in Problem 8, the constraints (13)–(15) on the satisfaction
matrices Sdem

j encode that each demonstration is feasible for
the choice of θ p and θ s ; hence, the output of Problem 8 will
return a feasible ϕ(θ̂ s, θ̂ p). As Algorithm 1 will eventually
return some ϕ(θ̂ s, θ̂ p) which is an output of Problem 8, the
ϕ(θ̂ s, θ̂ p) that is ultimately returned is feasible.

Next, to see the second point - that the ultimately returned
ϕ(θ̂ s, θ̂ p) makes each ξdemj globally-optimal. Note that at
some iteration of the inner loop, if Problem 7 is feasible and
its solution algorithm is complete (Assumption 1), it will
return a trajectorywhich is lower-cost than the demonstration
and satisfies ϕ(θ̂ s, θ̂ p). Note that disregarding the lower-cost
constraint, Problem 7 will always be feasible, since Prob-
lem 8 returns θ p, θ s for which the demonstration is feasible,
and the feasible set of Problem 7 contains the demonstration.
The falsification loop will continue until Problem 7 cannot
produce a trajectory of strictly lower cost for each demonstra-
tion; this is equivalent to ensuring that each demonstration is
globally optimal for the ϕ(θ̂ s, θ̂ p).

To see the last point, we note that if there exists a formula
ϕ(θ̂ s, θ̂ p) which satisfies the demonstrations, it is among the
feasible set of possible outputs of Algorithm 1; that is, the
representation of LTL formulas, D, is complete (cf. Lemma
1 in Neider and Gavran (2018)). ��

We will further show that the formula returned by Algo-
rithm 1 is the shortest formula which is consistent with the
demonstrations; this is due to NDAG only being incremented
upon infeasibility of a smaller NDAG to explain the demon-
strations.

Corollary 1 (Shortest formula) Let N∗ be the size of a min-
imal DAG for which there exists (θ p, θ s) such that ξdemj |�
ϕ(θ s, θ p) for all j . Under Assumptions 1–3, Algorithm 1 is
guaranteed to return a DAG of size N∗.

Proof The result follows since Algorithm 1 increases NDAG

incrementally (in the outer loop) until some ϕ(θ̂ s, θ̂ p) is
returned which makes all of the demonstrations feasible and
globally-optimal, and each inner iteration of Algorithm 1 is
guaranteed to find a consistent ϕ(θ̂ s, θ̂ p) if one exists (cf.
Theorem 2). ��
Remark 5 A similar shortest formula guarantee can be
obtained for the reformulation of Algorithm 1 described in
Sect. 7.2 only if it is tractable to perform an exhaustive search
over the number of nodes allocated to each grammar element,
in order to find the shortest-length combination. This can be
computationally intensive, and is in contrast to the simple
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“line-search” over a single complexity variable, NDAG, that
the original Algorithm 1 enjoys.

Using Lemma 1, we can show that modifying Algo-
rithm 1 to additionally impose the spec-optimality conditions
in Problem 8 still enjoys the completeness properties dis-
cussed in Theorem 2, while also in general reducing the
number of falsification iterations needed as a result of the
reduced search space.

Corollary 2 (Algorithm 1 with spec-optimality) By modi-
fying Algorithm 1 so that Problem 8 uses constraints (16),
Algorithm 1 still returns a consistent solution ϕ(θ̂ s, θ̂ p) if
one exists, i.e. each ξdemj is feasible and globally optimal for

each ϕ(θ̂ s, θ̂ p).

Proof The result follows from completeness of Algorithm 1
(cf. Theorem 2) and Lemma 1: adding (16a)–(16c) enforces
that ξdemj are spec-optimal, and viaLemma1, ξdemj , which is a
globally-optimal demonstration, must also be spec-optimal.
Hence, imposing constraints (16a)–(16c) is consistent with
the demonstration. ��

Next, we show how the consistency properties extend to
the case of unknown cost function, if Algorithm 2 returns a
solution, which it is not guaranteed to do in finite time.

Corollary 3 (Consistency, unknown θc) Under Assump-
tions 1–3, if Algorithm 2 terminates in finite time, it returns
a formula ϕ(θ s, θ p) such that (1) ξdemj |� ϕ(θ s, θ p) and (2)

ξdemj is globally-optimal with respect to θc under the con-
straints of ϕ(θ s, θ p), for all j , (3) if such a formula exists
and is representable by the provided grammar.

Proof Note that Algorithm 2 is simply Algorithm 1 with an
outer loop where potential cost parameters θc are chosen.
From Theorem 2, we know that under Assumptions 1–2,
for the true cost parameter θc, Algorithm 1 is guaranteed to
return θ p and θ s which make the demonstrations globally-
optimal under θc. From Assumption 3 and the fact that the
true parameters θ p, θ s , and θc will make the demonstrations
globally-optimal, we know there exists at least one consistent
set of parameters (the true parameters). Then, Algorithm 2
will eventually find a consistent solution (possibly the true
parameters), as it iteratively runs Algorithm 1 for all consis-
tent θc. ��

Finally, we show that for fixed LTL structure and cost
function, querying and volume extraction (Problems 5 and
6) are guaranteed to return conservative estimates of the true
Si or Ai .

Theorem 3 (Conservativeness for unknown θ p) Suppose
that θ s and θc are known, and θ p is unknown. Then, extract-
ing Gi

s and Gi¬s , as defined in (11)–(12), from the feasible
set of Problem 4 projected onto Θ

p
i (denoted Fi ), returns

Gi
s ⊆ Si and Gi¬s ⊆ Ai , for all i ∈ {1, . . . , NAP}.

Proof Wefirst prove thatGi¬s ⊆ Ai . Suppose that there exists
κ ∈ Gi¬s such thatκ /∈ Ai . Thenbydefinition, for all θ

p
i ∈ Fi ,

Gi (κ, θ
p
i ) ≥ 0. However, we know that all locally-optimal

demonstrations satisfy theKKTconditionswith respect to the
true parameter θ

p,∗
i ; hence, θ

p,∗
i ∈ F . Then, x ∈ A(θ

p,∗
i ).

Contradiction. Similar logic holds for proving that Gi
s ⊆ Si .

Suppose that there exists x ∈ Gi
s such that x /∈ Si . Then

by definition, for all θ
p
i ∈ Fi , Gi (κ, θ

p
i ) ≤ 0. However, we

know that all locally-optimal demonstrations satisfy theKKT
conditions with respect to the true parameter θ

p,∗
i ; hence,

θ
p,∗
i ∈ Fi . Then, κ ∈ Si (θ p,∗

i ). Contradiction. ��

9 Simulation experiments

We show that our algorithm outperforms a competing
method (Sect. 9.1), can be robust to suboptimality in the
demonstrations (Sect. 9.2), can learn shared task struc-
ture from demonstrations across environments (Sect. 9.3),
and can learn LTL formulas θ p, θ s and uncertain cost
functions θc on high-dimensional problems. Specifically,
we demonstrate Algorithm 1 on a simulated manipulation
example (Sect. 9.4) and the one-shot learning described in
Remark 4 on a quadrotor surveillance task (Sect. 9.5). Please
refer to the supplementary video for visualizations of the
results.

9.1 Baseline comparison

Likely the closest method to ours is Jha et al. (2019), which
learns a pSTL formula that is tightly satisfied by the demon-
strations via solving anonconvexproblem to local optimality:
argmaxθ p min j τ(θ p, ξdemj ), where τ(θ p, ξdemj ) measures

how tightly ξdemj fits the learned formula.We run the authors’
code [26] on a toy problem (see Fig. 5), where the demon-
strator has kinematic constraints, minimizes path length,
and satisfies start/goal constraints and ϕ = ♦[0,8] p1, where
x |� p1 ⇔ [I2×2,−I2×2]�x ≤ [3, 2,−1, 2]� = [3, θ p

1 ]�.
We assume the structure θ s is known, and we aim to learn
θ p to explain why the demonstrator deviated from an opti-
mal straight-line path to the goal. Solving Problem 6 returns
G1
s = S1 (Fig. 5, right). On the other hand, we run TeLEx

multiple times, converging to different local optima, each
corresponding to a “tight” θ p (Fig. 5, center): TeLEx can-
not distinguish between multiple different “tight” θ p, which
makes sense, as the method tries to find any “tight” solution.
This example suggests that if the demonstrations are goal-
directed, a method that leverages their optimality is likely to
better explain them.
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Fig. 5 Toy example for baseline comparison (Jha et al. 2019). The
baseline is unable to disambiguate between possible APs as it does not
consider the demonstrator’s objective

Fig. 6 Left: We are given 25 suboptimal demonstrations of the same
task, with each demonstration starting at [−1, 1], ending at [3, 4], and
satisfying ♦[0,8] p1. The globally-optimal cost is 3.25, while the best
cost observed within the 25 demonstrations is 3.274. Right: We fit a
Weibull distribution (orange) to the demonstration costs (right). The
fitted location parameter, adjusted by its 95% confidence interval, is
3.248 < 3.25, which leads to a valid overestimate of δ

9.2 ı-estimation for suboptimal demonstrations

In this example,we demonstrate the suboptimality estimation
method described in Sect. 7.4. In this example, we consider
the same problem setting as in Sect. 9.1, but instead use sub-
optimal versions of the blue demonstration in Fig. 5. We are
given 25 such demonstrations (Fig. 6, left), and we are inter-
ested in estimating the suboptimality slack parameter δ. To
do so, we follow the method in Sect. 7.4, fitting a Weibull
distribution (Fig. 6, right, orange) to the demonstration costs
(Fig. 6, right, blue histogram). The fittedWeibull distribution
has a location parameter of 3.248 after being adjusted by its
95% confidence interval, which is smaller than the optimal
cost of 3.25. Using the suboptimal demonstration with the
lowest cost (in this case, 3.274), we can estimate δ = 0.008
using (18), which overestimates the true δ = 0.007. Per the
discussion in Sect. 7.4, it is important to be able to obtain an
estimate of δ which is a tight overestimate of the true δ, which
this example achieves.Overall, this example suggests that our
δ-estimation technique can effectively estimate the subopti-
mality bound, which is important for learning consistent LTL
formulas in spite of suboptimality in the demonstrations.

9.3 Learning shared task structure

In this example, we show that our method can extract logical
structure shared between demonstrations that complete the
same high-level task, but in different environments (Fig. 7).
A point robot must first go to the mug (p1), then go to the
coffee machine (p2), and then go to goal (p3) while avoiding

obstacles (p4, p5). As the floor maps differ, θ p also differ,
and are assumed known. We add two relevant primitives to
the grammar, sequence:

ϕ1 Q ϕ2
.= ¬ϕ2 U[0,Tj−1] ϕ1,

enforcing that ϕ2 cannot occur until after ϕ1 has occurred for
the first time, and avoid: Vϕ

.= �[0,Tj−1]¬ϕ, enforcing ϕ

never holds over [1, Tj ]. Then, the true formula is:

ϕ∗ = V p4 ∧ V p5 ∧ (p1 Q p2) ∧ (p2 Q p3) ∧ ♦[0,Tj−1] p3.

Suppose first that we are given the blue demonstration in
Environment 2. Running Algorithm 1 with 1-SO constraints
(16) terminates in one iteration at NDAG = 14 with

ϕ0 = V p4 ∧ V p5 ∧ ♦[0,Tj−1] p2 ∧ ♦[0,Tj−1] p3 ∧ (p1 Q p2).

That is, always avoid obstacles 1 and 2, eventually reach
coffee and goal, and visit mug before coffee. This formula is
insufficient to complete the true task (the ordering constraint
between coffee and goal is not learned). This is because the
optimal trajectories satisfying ϕ0 and ϕ∗ are the same cost,
i.e. both ϕ0 and ϕ∗ are consistent with the demonstration
and could have been returned, and ϕ0, ϕ

∗ ∈ ϕg (cf. Sect. 8).
Now, we also use the blue demonstration from Environment
1 (two examples total). Running Algorithm 1 terminates in
two iterations at NDAG = 14 with the formulas

ϕ1=V p4∧V p5 ∧ ♦[0,Tj−1] p1 ∧ ♦[0,Tj−1] p2 ∧ ♦[0,Tj−1] p3

(which enforces that the mug, coffee, and goal must be even-
tually visited, but in any order, while avoiding obstacles) and
ϕ2 = ϕ∗. Since the demonstration in Environment 1 dou-
bles back to the coffee before going to goal, increasing its
cost over first going to goal and then to coffee, the order-
ing constraint between the two is learnable. We also plot the
generated counterexample (Fig. 7, yellow), which achieves
a lower cost, as ϕ1 involves no ordering constraints. We can
use the learned formula to plan a path completing the task
in a new environment (with different AP parameters θ p) in
Fig. 8.

Overall, this example suggests we can use demonstrations
from different environments to learn common task structure
and disambiguate between potential explanations.

9.4 Multi-stagemanipulation task

We consider the setup in Figs. 9 and 10 of teaching a 7-
DOF Kuka iiwa robot arm to prepare a drink: first move the
end effector to the button on the faucet (p1), then grasp the
cup (p2), then move the cup to the customer (p3), all while
avoiding obstacles. After grasping the cup, an end-effector
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Fig. 7 We learn a common LTL formula from demonstrations in dif-
ferent environments (different θ p) with shared task (same θ s )

Fig. 8 Trajectory planned with the learned LTL formula on the
environment-transfer example

Fig. 9 Multi-stage simulated manipulation task: first fill the cup, then
grasp it, and then deliver it. To avoid spills, a pose constraint is enforced
after the cup is grasped

pose constraint (α, β, γ ) ∈ S4(θ
p
4 ) (p4) must be obeyed. We

add two “distractor” APs: a different cup (p5) and a region
(p6) where the robot can hand off the cup. We also modify
the grammar to include the sequence operatorQ, (defined as
before), and add an “after” operator

ϕ1 T ϕ2
.= �[0,Tj−1](ϕ2 → �[0,Tj−1]ϕ1),

that is, ϕ1 must hold after and including the first timestep
where ϕ2 holds. The true formula is:

ϕ∗ = (p1 Q p2) ∧ (p2 Q p3) ∧ ♦[0,Tj−1] p3 ∧ (p4 T p2).

Fig. 10 Demonstrations and counterexamples for the simulatedmanip-
ulation task

We use a kinematic armmodel: j it+1 = j it +uit , i = 1, . . . , 7,
where ‖ut‖22 ≤ 1 for all t . Two suboptimal human demon-
strations (δ = 0.7) optimizing c(ξxu) = ∑T−1

t=1 ‖ jt+1 − jt‖22
are recorded in a Unity virtual reality (VR) environment.
We assume we have nominal estimates of the AP regions
Si (θ p

i,nom) (e.g. from a vision system), and we want to learn
the θ s and θ p of ϕ∗. We use IPOPT (Wächter and Biegler
2006) to solve the nonlinear optimization problems needed
to compute counterexamples.

We run Algorithm 1 with the 1-SO constraints (16), and
encode the nominal θ p

i by enforcing that Θ p
i = {θ p

i | ‖θ p
i −

θ
p
i,nom‖1 ≤ 0.05}. At NDAG = 11, the inner loop runs for 3
iterations (each taking30minutes on an i7-7700Kprocessor),
returning candidates

ϕ1 = (p1Qp3) ∧ (p2Qp3) ∧ (♦[0,Tj−1] p3) ∧ (p4T p3),

ϕ2 = (p1Qp3) ∧ (p2Qp3) ∧ (♦[0,Tj−1] p3) ∧ (p4T p2),

and ϕ3 = ϕ∗. ϕ1 says that before going to the customer,
the robot has to visit the button and cup in any order, and
then must satisfy the pose constraint after visiting the cup.
ϕ2 has the meaning of ϕ∗, except the robot can go to the
button or cup in any order. Note that ϕ3 is a stronger for-
mula than ϕ2, and ϕ2 than ϕ1; this is a natural result of the
falsification loop, which returns incomparable or stronger
formulas with more iterations, as the counterexamples rule
out weaker or equivalent formulas. Also note that the distrac-
tor APs don’t feature in the learned formulas, even though
both demonstrations pass through p6. This happens for two
reasons: we increase NDAG incrementally and there was no
room to include distractor objects in the formula (since spec-
optimality may enforce that p1-p3 appear in the formula),
and even if NDAG were not minimal, p6 would not be guar-
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Fig. 11 Trajectories planned using the learned LTL formula, for the
simulated 7-DOF arm

anteed to show up, since visiting p6 does not increase the
trajectory cost.

We plot the counterexamples in Fig. 10: blue/purple are
from iteration 1; orange is from iteration 2. They save cost
by violating the ordering and pose constraints: from the left
start state, the robot can save cost if it visits the cup before
the button (blue, orange trajectories), and loosening the pose
constraint can reduce joint space cost (orange, purple trajec-
tories). The right demonstration produces no counterexample
in iteration 2, as it is optimal for this formula (changing the
order does not lower the optimal cost). For the learned θ p,
θ
p
i = θ

p
i,nom except for p2, p3, where the box shrinks slightly

from the nominal; this is because by tightening the box, a
Lagrange multiplier can be increased to reduce the KKT
residual. We use the learned θ p and θ s to plan trajectories
which complete the task from new initial conditions in the
environment (Fig. 11).

Overall, this example suggests that Algorithm 1 can
recover θ p and θ s on a high-dimensional problem and ignore
distractor APs, despite demonstration suboptimality.

9.5 Multi-stage quadrotor surveillance

We demonstrate that we can jointly learn θ p, θ s , and θc in
one shot on a 12D nonlinear quadrotor system. The system
dynamics for the quadrotor (Sabatino 2015) are:

Fig. 12 Quadrotor surveillance demonstrations (top) and learning
curves (bottom) (Color figure online)

⎡

⎢⎢⎢⎢⎢⎢
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− 1
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− 1
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g − 1
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⎥⎥⎥
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,

(19)

with control constraints ‖ut‖2 ≤ 10. We time-discretize
the dynamics by performing forward Euler integration with
discretization time δt = 1.2 seconds. The 12D state is
x = [χ, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇ ]�, and the relevant
constants are g = −9.81m/s2, m = 1kg, Ix = 0.5kg · m2,
Iy = 0.1kg · m2, and Iz = 0.3kg · m2.

Wearegiven four demonstrations of a quadrotor surveilling
a building (Fig. 12): it needs to visit three regions of interest
(Fig. 12, green) while not colliding with the building. All
visitation constraints can be learned directly with 1-SO (see
Remark 4) and collision-avoidance can also be learned with
1-SO, with enough demonstrations. The true formula is

ϕ∗ = ♦[0,Tj−1] p1 ∧ ♦[0,Tj−1] p2 ∧ ♦[0,Tj−1] p3
∧�[0,Tj−1]¬p4,

where p1-p3 represent the regions of interest and p4 is
the building. We aim to learn θ

p
i for the parameteriza-
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Fig. 13 Trajectories planned using the learned LTL formula, for the
quadrotor system

tion Si (θ p
i ) = {[I3×3,−I3×3]�[x, y, z]� ≤ θ

p
i }, assuming

θ
p
4,6 = 0 (the building is not hovering). The demonstrations

minimize c(ξxu, θc) = ∑
r∈R

∑T−1
t=1 γr (rt+1 − rt )2, where

R = {x, y, z, α̇, β̇, γ̇ } and γr = 1, i.e. equal penalties to path
length and angular acceleration.We assume γr ∈ [0.1, 1] and
is unknown: we want to learn the cost weights for each state.

Solving Problem 8 with 1-SO conditions (at NDAG = 12)
takes 44 minutes and recovers θ p, θ s , and θc in one shot. To
evaluate the learned θ p, we show in Fig. 12 that the cover-
age of the Gi

s and Gi¬s for each pi (computed by fixing the
learned θ s and running Problem 6) monotonically increases
with more data. In terms of recovered θ s , with one demon-
stration, we return

ϕ1 = ♦[0,Tj−1] p2 ∧ ♦[0,Tj−1] p3 ∧ ♦[0,Tj−1] p4
∧�[0,Tj−1]¬p1.

This highlights the fact that since we are not provided labels,
there is an inherent ambiguity of how to label the regions
of interest (i.e. pi , i = 1, . . . , 3 can be associated with any
of the green boxes in Fig. 12 and be consistent). Also, one
of the regions of interest in ϕ gets labeled as the obstacle
(i.e. p1 and p4 are swapped), since one demonstration is not
enough to disambiguate which of the four pi should touch
the ground. Note that this ambiguity can be eliminated if
labels are provided (see Sect. 7.1) or if more demonstrations
are provided: for two and more demonstrations, we learn
ϕi = ϕ∗, i = 2, . . . , 4. When using all four demonstrations,
we recover the cost parameters θc and structure θ s exactly,
i.e. ϕ(θ̂ s, θ̂ p) = ϕ∗, and fixing the learned θ s and running
Problem 6 returns Gi

s = Si and Gi¬s = Ai , for all i . The
learned θc, θ s , and θ p are used to plan trajectories that effi-
ciently complete the task for different initial and goal states.

Fig. 14 We build a Unity virtual reality environment to collect demon-
strations for the real-world object delivery manipulation task

Furthermore, assuming that the parameterization is correct,
these plans are guaranteed to satisfy the true LTL formula;
these trajectories are presented in Fig. 13.

Overall, this example suggests that our method can jointly
recover a consistent set of θ p , θ s , and θc for high-dimensional
systems.

10 Physical experiments

To demonstrate that our method can scale to handle the
challenges of real hardware, we use our method to learn
a real-world multi-stage manipulation task. A video of our
physical experiment can be found in the supplementarymate-
rial.

10.1 Environment and task description

Consider a tabletopmanipulation taskwhere the armneeds to
retrieve several objects, put them in boxes, and deliver them
in a particular order (see Fig. 14). Specifically, the task of
interest is to first place a can of soup into a box (Fig. 15b, c),
to then deliver that box to a blue delivery region (Fig. 15d).
Next, the robot must move a Cheez-It box into a box located
at a green delivery region (Fig. 15e, f). Finally, while the box
containing the soup is grasped by the robot, the robot must
keep its end effector upright so that the soup does not fall out
of the box. The robot should also avoid colliding with the
furniture as well as any other objects in the scene. There are
a total of 11 objects in the scene, not including the delivery
boxes or the furniture, which are taken from the YCB dataset
(Çalli et al. 2017).

To describe the aforementioned task concisely in LTL, we
define another new grammar element:

ϕ1 M ϕ2
.= �[0,Tj−1]((ϕ2 → ϕ1)) ∧ ♦[0,Tj−1]ϕ2,

123



Autonomous Robots (2022) 46:149–174 169

Fig. 15 One demonstration is recorded in the Unity virtual reality
environment for the object delivery task, seen here from a first-person
perspective. a Initial state. b First, grasp the soup. cNext, place the soup
in the blue box, avoiding the mustard bottle which is in the way. d Place

the box with the soup in the blue delivery region while satisfying a pose
constraint. e Move to grasp the Cheez-It box. f Place the Cheez-It box
in the green delivery box

i.e. ifϕ2 holds, thenϕ1 must also hold, andϕ2 must eventually
hold. We define the following atomic propositions:

– pS : The soup is grasped
– pB : The movable box is grasped
– pG1: The end effector is inside the blue delivery region
– pC : The Cheez-It box is grasped
– pG2: The end effector is inside the green delivery region
– pP : The end effector is pointed upwards
– pD1: End effector is within 0.05 distance of the gelatin
– pD2: End effector is within 0.05 distance of the bowl
– pD3: End effector is within 0.05 distance of the Master
Chef coffee can

– pD4: End effector is within 0.05 distance of the sugar
– pD5: End effector is within 0.05 distance of the mustard
bottle

– pD6: End effector is within 0.05 distance of the banana
– pD7: End effector is within 0.05 distance of the Pringles
– pD8: End effector is within 0.05 distance of the pitcher
– pD9: End effector is within 0.05 distance of the mug

We can then write an LTL formula which enforces the task
as

ϕ∗ = (pS M pB) ∧ (pB M pG1) ∧ (pC M pG2)

∧ (pG1 Q pC ) ∧ (pP M pB).

The first through fourth clauses enforce that the soup,moving
box, blue goal region, Cheez-It, and green delivery region are
visited in the correct order, while the fifth clause enforces

that the pose constraint is satisfied when the moving box
is grasped. This is not overly restrictive, since per the first
clause, it is not possible for the moving box to be grasped
without the soup also being grasped. Note that we assume
the demonstrator performs collision avoidance by avoiding
contact with any object which is not the current grasp target.

10.2 LTL formula learning

For this experiment, we seek to learn the LTL formula
structure θ s while the AP parameters θ p and cost function
parameters γ are assumed known. This is reasonable for this
example, since the APs detailed in Sect. 10.1 can be readily
measured and the suboptimality parameter δ can be used to
handle an imprecisely-known cost function. Specifically, we
assume the cost function is

c(ξ, γ ) =
T−1∑

t=1

‖ jt+1 − jt‖22 + cgrasp
∑

o∈O

T∑

t=1

zograsp,t,

where jt denotes the arm joint values at time t , zograsp,t ∈
{0, 1} evaluates to 1 if object o is grasped at time t and 0
otherwise,O is the set of allmanipulable objects, and cgrasp =
0.01 is a small penalty which discourages the unnecessary
grasping of objects. Note that the learning is relatively robust
to the specific value of cgrasp, as long as cgrasp is kept small
enough such that the grasp cost term does not outweigh the
path length term (in our experiments, this holds if cgrasp ≤
0.115). Mapping back to the notation of Problem 1, the state
xt contains the joint values jt and the grasp status of each
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object zot , while the control input contains the joint velocities
and a binary variable for each object to model grasping and
releasing. The dynamics are constructed such that the grasp
input for a given object is nullified if the end effector is far
from that object.

Weobtain onedemonstration of this taskwhich is recorded
in aUnityVR environment (see Figs. 14 and 15). The demon-
stration consists of the state-control trajectory of the arm, as
well as a binary trajectory for each object, evaluating to 0
or 1 at a given timestep depending on if that object is cur-
rently grasped. Furthermore, the initial configurations of all
of the objects are given. Note that this information is suffi-
cient to reconstruct the value of every atomic propositions.
We also note that the VR environment does not simulate the
grasp physics, and simply allows the demonstrator to attach
an object to the grippers when it is close by. To learn θ s , we
run Algorithm 1, where Problem 8 uses the variant described
in Sect. 7.2. We elect to use this variant instead of the orig-
inal Problem 8 as in the simulated manipulation example
(Sect. 9.4) since there are many more APs in this example
(15 compared to 6 in Sect. 9.4), causing the original Prob-
lem 8 to be slow. We allocate one node for each AP, four
“∧” nodes, four “M” nodes, one “Q” node, and one “♦”
node. We use a suboptimality parameter δ = 0.1. Running
Algorithm 1 generates 13 falsified candidate LTL formulas,
including the following:

– ϕ2 = (pC M pG2) ∧ (pS M pP ) ∧ (pB Q pG1) ∧
(pP M pB) ∧ (♦pD5). This formula does not capture
that the Cheez-Its should only be grasped after the soup
has been grasped.

– ϕ3 = (pB M pP ) ∧ (pP M pB) ∧ (pG1 Q pC ) ∧
(pC M pG2) ∧ (pS M pG1). This formula does not
capture that the soup should be contained in the box upon
delivery.

– ϕ8 = (pC M pG2) ∧ (pS M pP ) ∧ (pB M pG1) ∧
(pP Q pC )∧(♦ pD5). This formula does not capture that
the Cheez-Its should only be grasped after the movable
box has been grasped.

– ϕ13 = (pP M pG1) ∧ (pC M pG2) ∧ (pB M pP ) ∧
(pS M pP )∧(pG1Q pC ). This formula does not enforce
the pose constraint at the correct timesteps.

The candidate LTL formulas are falsified by the coun-
terexample generation, for whichwe employ TrajOpt (Schul-
man et al. 2014) as the nonlinear trajectory optimizer (see
Sect. 5.3). We visualize the counterexamples for ϕ2, ϕ3, ϕ8,
and ϕ13 in Fig. 16. One can observe that the missing con-
straints in these candidate LTL formulas accept lower-cost
trajectories (achieved for example bynot delivering the goods
in the desired order, or by not picking up particular objects)
which contradict the optimality of the demonstration. We
emphasize that our method can ignore the large number of

Fig. 16 Counterexample visualization on the object delivery task. The
red, green blue, and cyan trajectories correspond to ϕ2, ϕ3, ϕ8, and ϕ13,
respectively, as described in Sect. 10.2 (Color figure online)

Fig. 17 Setup of the object delivery task in the real world. The small
brown box corresponds to the small blue box in the VR environment,
while the large brown box corresponds to the green box in the VR
environment (Color figure online)

distractor objects. Limiting the expressibility of the DAG by
limiting the number of nodes encourages the learned formula
to be parsimonious, since the free nodes will be needed to
explain demonstrator optimality rather than involving the dis-
tractor objects. In the 14th iteration, our method terminates
after a total of 5 minutes, returning the true formula ϕ∗.

10.3 Real-world planning and execution

Now that an LTL formula describing the desired task has
been learned, we seek to use the learned formula to plan in
the real world. We work with the real-world setup in Fig. 17.
This setup has different furniture and object configurations
compared to the VR demonstration environment. However,
recall that since the learned LTL formula is parameterized
by the APs, the learned LTL formula is not hardcoded to
specific configurations and can handle changes in the object
locations.

To reflect the realistic situation where the robot may be
tasked to find and deliver a set of objects scattered across the
workspace with a priori unknown locations, we assume that
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Fig. 18 Object segmentation. a RGBD data provided by the Kinect sensor. b Segmented image. c Segmented point cloud, which is used to infer
object poses

the locations of the delivery regions and the movable box are
known, while the YCB objects have unknown location. The
movable blue box in the VR environment corresponds to the
small brown box on the left in Fig. 17, while the green box
in the VR environment corresponds to the big brown box on
the right in Fig. 17.

To apply our learned LTL formula, we first estimate the
poses of the YCB objects using RGBD (image and point
cloud) data provided by a Kinect sensor mounted above the
base of the arm. We do so by leveraging the deep learning-
based object segmentation framework in Zhou et al. (2019)
and train it on the YCB object dataset. The trained network
takes theKinect RGBDdata as input and returns a segmented
point cloud (Fig. 18). We use the iterative closest point (ICP)
algorithm (Rusu and Cousins 2011) with 1000 random ini-
tializations to estimate the object poses from the segmented
point cloud by fitting them to the source point clouds. We
visualize the objects at their estimated poses in an Open-
rave environment, which we also use for trajectory planning
(Fig. 19). We note that due to occlusions and sensor noise
present in the point cloud data, the poses recovered for the
objects further from the Kinect can suffer from rotational
inaccuracies (e.g. the mustard bottle is upside down and the
pitcher is rotated around 90 degrees). While this degree of
pose accuracy is sufficient to complete our task, we also note
that more sophisticated methods can be employed (e.g. Deng
et al. 2019, which provides good pose recovery on the YCB
dataset in the presence of occlusions and object symmetry).

Now that the object poses have been determined (and thus
so have the APs), we can employ the learned LTL formula to
plan in the real environment. To do so, we solve Problem 1
forϕ(θ s, θ̂ p) using the approach detailed in Sect. 5.3. Specif-
ically, we construct a high-level plan Z by solving a MILP,
and then find a low-level joint trajectory which is consistent
with Z with the trajectory optimization algorithm TrajOpt
(Schulman et al. 2014). Like for the counterexample gen-
eration, we choose TrajOpt instead of IPOPT as it is better
tuned for manipulation in cluttered environments. Snapshots

Fig. 19 Planning environment used. Object poses are recovered from
the segmented depth cloud by running ICP

of the executed plan are presented in Fig. 20. Please see the
supplementary video for a full visualization.

Overall, this experiment suggests that our learned LTL
formulas can be used to transfer complex long-horizon task
specifications across environments, and that the method is
applicable to high-dimensional robotic systems acting in the
real world.

11 Conclusion

This paper presents a method that learns LTL formulas with
unknown atomic propositions and logical structure fromonly
positive demonstrations, assuming the demonstrator is opti-
mizing an uncertain cost function. We leverage both implicit
and explicit optimality conditions on the demonstrations,
namely the KKT conditions and algorithmically-generated
lower-cost counterexample trajectories, respectively, in order
to reduce the hypothesis space of LTL specifications con-
sistent with the demonstrations. The generated lower-cost
counterexample trajectories, together with the rejected can-
didate LTL formulas which admitted them, are concrete
examples of the alternative behaviors and task specifications
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Fig. 20 Executed trajectory on the real robot. The robot first grasps the
tomato soup a, moves to place it inside the movable box b, drops the
soup into the box and grasps the loaded box c, and moves the loaded

the box to the blue delivery region d. The robot then moves to grasp
the Cheez-It box e, and finally places it in the box located at the green
delivery region

rejected by our method, which can make our approach more
explainable for an end user. We also derive theoretical guar-
antees for ourmethod anddemonstrate its applicability across
a wide range of experiments in simulation and hardware.
Specifically, we show that our method outperforms base-
line approaches (Sect. 9.1), can learn abstract high-level task
structure shared across demonstrations, which can transfer
to tasks in different environments (Sects. 9.3 and 10), and
scales to high-dimensional systems in simulation (Sects. 9.4
and 9.5) and in the real world (Sect. 10).

In future work, we aim to robustify our method to mis-
labeled demonstrations, explicitly consider demonstration
suboptimality arising from risk, and reduce our method’s
computation time. We are also interested in integrating the
methods presented in this paper with our recent results on
uncertainty-aware constraint learning (Chou et al. 2020b) in
order to plan with uncertain LTL formulas.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-021-10004-
x.
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