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Abstract

We present a method for learning multi-stage tasks from demonstrations by learning the logical structure and atomic propo-
sitions of a consistent linear temporal logic (LTL) formula. The learner is given successful but potentially suboptimal
demonstrations, where the demonstrator is optimizing a cost function while satisfying the LTL formula, and the cost function
is uncertain to the learner. Our algorithm uses the Karush-Kuhn-Tucker (KKT) optimality conditions of the demonstrations
together with a counterexample-guided falsification strategy to learn the atomic proposition parameters and logical structure of
the LTL formula, respectively. We provide theoretical guarantees on the conservativeness of the recovered atomic proposition
sets, as well as completeness in the search for finding an LTL formula consistent with the demonstrations. We evaluate our
method on high-dimensional nonlinear systems by learning LTL formulas explaining multi-stage tasks on a simulated 7-DOF
arm and a quadrotor, and show that it outperforms competing methods for learning LTL formulas from positive examples.
Finally, we demonstrate that our approach can learn a real-world multi-stage tabletop manipulation task on a physical 7-DOF
Kuka iiwa arm.

Keywords Learning from demonstration - Linear temporal logic - Motion planning

1 Introduction Due to this representation, IRL works well on short-horizon

goal-directed tasks, but can struggle to scale to multi-stage,

Imagine demonstrating a multi-stage task to a robot arm
delivery worker, such as finding and delivering a set of objects
from a storage area to some customers (Fig. 1). How should
the robot understand and generalize the demonstration? One
popular method is inverse reinforcement learning (IRL),
which assumes a level of optimality on the demonstrations,
and aims to learn a reward function that replicates the demon-
strator’s behavior when optimized (Ratliff et al. 2006; Abbeel
and Ng 2004; Argall et al. 2009; Ng and Russell 2000).
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constrained tasks (Krishnan et al. 2019; Vazquez-Chanlatte
et al. 2018; Chou et al. 2018). Transferring reward functions
across environments (e.g. from one storage area to another)
can also be difficult, as IRL may overfit to aspects of the
training environment. It may instead be fruitful to decouple
the high- and low-level task structure, learning a logic-based
temporal abstraction of the task that is valid for different
environments which can combine low-level, environment-
dependent skills. Linear temporal logic (LTL) is well-suited
for representing this abstraction, since it can unambiguously
specify high-level temporally-extended constraints (Baier
and Katoen 2008) as a function of atomic propositions (APs),
which can be used to describe salient low-level state-space
regions. To this end, a growing community in controls and
anomaly detection has focused on learning linear temporal
logic (LTL) formulas to explain trajectory data. However,
the vast majority of these methods require both positive and
negative examples in order to regularize the learning prob-
lem. While this is acceptable in anomaly detection, where
one expects to observe formula-violating trajectories, in the
context of robotics, it can be unsafe to ask a demonstrator
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Fig.1 Multi-stage delivery task: place the soup in an open-top box and deliver it, then deliver the Cheez-Its to a second delivery location. To avoid
spills, a pose constraint is enforced while the soup is being delivered in the open-top box

to execute formula-violating behavior, such as dropping a
fragile object or crashing into obstacles.

In this paper, our insight is that by assuming that demon-
strators are goal-directed (i.e. that they approximately opti-
mize an objective function that may be uncertain to the
learner), we can regularize the LTL learning problem without
being provided any formula-violating behavior. In particu-
lar, we learn LTL formulas which are parameterized by their
high-level logical structure and low-level AP regions, and we
show that to do so, it is important to consider demonstration
optimality both in terms of the quality of the discrete high-
level logical decisions and the continuous low-level control
actions. We use the Karush-Kuhn-Tucker (KKT) optimality
conditions from continuous optimization to learn the shape of
the low-level APs, along with notions of discrete optimality
to learn the high-level task structure. We solve a mixed inte-
ger linear program (MILP) to jointly recover LTL and cost
function parameters which are consistent with the demon-
strations. We make the following contributions:

1. We develop a method for time-varying, constrained
inverse optimal control, where the demonstrator opti-
mizes a cost function while respecting an LTL formula,
where the parameters of the atomic propositions, formula
structure, and an uncertain cost function are to be learned.
We require only positive demonstrations, can handle
demonstration suboptimality, and for fixed formula struc-
ture, can extract guaranteed conservative estimates of the
AP regions.

2. We develop conditions on demonstrator optimality
needed to learn high- and low-level task structure: AP
regions can be learned with discrete feasibility, while
logical structure requires various levels of discrete opti-
mality. We develop variants of our method under these
different assumptions.

3. We provide theoretical analysis of our method, showing
that under mild assumptions, it is guaranteed to return the
shortest LTL formula which is consistent with the demon-
strations, if one exists. We also prove various results on
our method’s conservativeness and on formula learnabil-

ity.

@ Springer

4. We evaluate our method on learning complex LTL
formulas demonstrated on nonlinear, high-dimensional
systems, show that we can use demonstrations of the same
task on different environments to learn shared high-level
task structure, and show that we outperform previous
approaches.

Components of this work were first presented in our
Robotics: Science and Systems conference paper (Chou et al.
2020a). The primary contributions specific to this journal
paper include a hardware demonstration of our approach on
areal-world 7-DOF manipulation task, an overview of exten-
sions and variants of the method in Chou et al. (2020a),
expanded theoretical analysis, including proofs that were
omitted from Chou et al. (2020a), and expanded discussion.

2 Related work

There is extensive literature on inferring temporal logic for-
mulas from data via decision trees (Bombara et al. 2016),
genetic algorithms (Bufo et al. 2014), and Bayesian inference
(Vazquez-Chanlatte et al. 2018; Shah et al. 2018). However,
most of these methods require positive and negative exam-
ples as input (Camacho and Mcllraith 2019; Kong et al.
2014, 2017; Neider and Gavran 2018), while our method
is designed to only use positive examples. Other methods
require a space-discretization (Vaidyanathan et al. 2017;
Araki et al. 2019; Vazquez-Chanlatte et al. 2018), while
our approach learns LTL formulas in the original continu-
ous space. Some methods learn AP parameters, but do not
learn logical structure or perform an incomplete search, rely-
ing on formula templates (Leung et al. 2019; Bakhirkin et al.
2018; Xu et al. 2019), while other methods learn structure
but not AP parameters (Shah et al. 2018). Perhaps the method
most similar to ours is Jha et al. (2019), which learns para-
metric signal temporal logic (pSTL) formulas from positive
examples by fitting formulas that the data tightly satisfies.
However, the search over logical structure in Jha et al. (2019)
is incomplete, and tightness may not be the most informa-
tive metric given goal-directed demonstrations (cf. Sect. 9).
To our knowledge, this is the first method for learning LTL
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formula structure and parameters in continuous spaces on
high-dimensional systems from only positive examples.

IRL (Ratliff et al. 2006; Abbeel and Ng 2004; Keshavarz
et al. 2011; Englert et al. 2017; Johnson et al. 2013; Sadigh
et al. 2017) searches for a reward function that replicates
a demonstrator’s behavior when optimized, but these meth-
ods can struggle to represent multi-stage, long-horizon tasks
(Krishnan et al. 2019). To alleviate this, Krishnan et al.
(2019), Ranchod et al. (2015) learn sequences of reward func-
tions, but in contrast to temporal logic, these methods are
restricted to learning tasks which can be described by a sin-
gle fixed sequence. Temporal logic (Baier and Katoen 2008;
Kress-Gazit et al. 2009) generalizes this, being able to rep-
resent tasks that involve more choices and can be completed
with multiple different sequences. Some work (Papusha et al.
2018; Zhou and Li 2018) aims to learn a reward function
given that the demonstrator satisfies a known temporal logic
formula; we will learn both jointly.

Finally, there is relevant work in constraint learning. These
methods generally focus on learning time-invariant con-
straints (Chou et al. 2018, 2019, 2020c; Calinon and Billard
2008) or a fixed sequence of task constraints (Pais et al. 2013),
which our method subsumes by learning time-dependent
constraints that can be satisfied by different sequences.

3 Preliminaries and problem statement

We consider discrete-time nonlinear systems

X1 = f(xr,ug, 1),

with state x € X and control u € U, where we denote
state/control trajectories of the system as &, = (&4, &,).

We use linear temporal logic (LTL) (Baier and Katoen
2008), which augments standard propositional logic to
express properties holding on trajectories over (potentially
infinite) periods of time. In this paper, we will be given finite-
length trajectories demonstrating tasks that can be completed
in finite time. To ensure that the formulas we learn can be
evaluated on finite trajectories, we focus on learning formu-
las, given in positive normal form, which are described in a
parametric temporal logic similar to bounded LTL (Jha et al.
2009), and which can be written with the grammar

pu=pl=pleiVverlei A | Upynie |

@1 Uy 192, (H
where p € P = { pi}fv:*“lp are atomic propositions (APs)
and Nap is known to the learner. #{ < f, are nonnegative
integers. Here, —p denotes the negation of atomic propo-
sition p, the “or” operator ¢; V ¢ denotes the disjunction

of formulas ¢ and ¢, the “and” operator ¢; A ¢, denotes
the conjunction of formulas ¢; and ¢;, the “bounded-time
always” operator [, ;,)¢ denotes that ¢ “always” has to
hold over the interval [#1, t2], and the “bounded-time until”
operator @1 Uy, 1] ¢2 denotes that ¢, must eventually hold
during the interval [#1, 7], and ¢ must hold for all timesteps
prior to that. Due to the positive normal form structure, nega-
tion can only appear directly before APs. Let the size of
the grammar be Ny = Nap + N,, where N, is the num-
ber of temporal/boolean operators in the grammar. A useful
derived operator is “bounded-time eventually” O, ;19 =
T U1y ,1n) @, which denotes that a formula ¢ eventually has
to hold during the interval [#1, 2].

In this paper, we will consider LTL formulas ¢ (6, 67)
that are parameterized by 6° € ®*, which encode the logical
and temporal structure of the formula, and by 67 = {Gi” }fV:AlP s
where 67 € © defines the shape of the region where p;
holds. Furthermore, we will consider APs of the form: x &=
pi € giMi(x),0) <0, where ;(-) : X — C is a known
nonlinear function, g;(-, ) = [gi1(, ), ..., gi’aneq(', T
is a vector-valued parametric function, and C is the space in
which the AP constraint is evaluated, elements of which are
denoted constraint states k € C.

To show how this notation maps onto a concrete robotics
example, consider a 7-DOF arm. We can define the state x as
the joint angles, the control u as the joint velocities, the con-
straint state « as the end effector pose, and the mapping from
the state to constraint state space n : X — C C R3 as the
forward kinematics, mapping from joint space to workspace.
One possible atomic propositionis x = p < g(n(x), 607) =
An(x)—0P <0, where A = [3x3, —I3x3]" and I, is the
n x n identity matrix. This atomic proposition p is satisfied
if the end effector position is contained within an axis-
aligned rectangle in the workspace with extents described
by 0 =[x, y,z, —x, —y, —z], where x, y, and z denote the
upper extents in the x-, )_f—, and z-dimensions, and x, y, and
z denote the lower extents in the x-, y-, and z-dimensions.
Finally, we can write an LTL formula Oy, 1,1 p to enforce that
all trajectories must satisfy this workspace constraint at some
point between time ¢ and .

We formalize the discussion above by defining the seman-
tics, which describe the satisfaction of an LTL formula ¢ by
a trajectory &,,. Specifically, we denote the satisfaction of a
formula ¢ on a finite-duration trajectory &,,, of total duration
T,evaluatedattimet € {1,2,..., T},as (§x4,t) = ¢. Then,
the formula satisfaction is defined recursively in the formal
semantics (2):

G 1) = pi & 8 i(x).67) <0
Exus 1) = —pi & —(Exus 1) = pi)
Exu ) Eo1 Voo < G, 1) E @1V Exus ) E 2
Exus ) E i A2 & Gxu, 1) E @1 A Exus 1) E 2
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Exus ) EU e & 1+ <T)
ANEE[t+t,min(t + 12, T)], Exu, 1) = @)
G ) Eotlinmp2 & @+t <T)
AQ@felt+t,min(t + 1, T)]s.t. Exus 1) = ¢2)
ANV e[t T =11, G D) = 1)
Exus ) EOmme & t+11 <T)
A@f e[t +t, min(t + 12, T)] s.t. (xus ) = @) ()

We will write ¢ = &, as shorthand for (§,,, 1) &= ¢. We
emphasize that since we consider discrete-time trajectories, a
time interval [71, 7;] is evaluated only on integer time instants
{t1,t1 + 1, ..., tr}; this is made concrete in (2).

We consider tasks that involve optimizing a parametric
cost function (encoding efficiency concerns, etc.), while sat-
isfying an LTL formula ¢(8°, 67) (encoding constraints for
task completion):

Problem 1 (Demonstrator’s forward problem)

minimize  c¢(&xy, 6°)
subject to &, = (0%, 0P)

néw) €S <C

where c(-,0¢) is a potentially non-convex cost function,
parameterized by 6¢ € ®@°. Any a priori known constraints
are encoded in S, where n(-) is known. In this paper, we
encode in S the system dynamics, start state, and if needed,
a goal state separate from the APs.

Next, to ease notation, we will define G;(«k, Gip ) =
max, i (8i,m(k, 6])). Define the subset of C where

Di holds/does not hold, as

Si®) = {k | Gi(k,6) < 0} 3
Ai(0F) = cl(fk | Gi(k, 6) > 0}) = cl(S;(6])°) “

To ensure that Problem 1 admits an optimum, we have defined
A; (in ) to be closed; that is, states on the boundary of an AP
can be considered either inside or outside. For these bound-
ary states, our learning algorithm can automatically detect
if the demonstrator intended to visit or avoid the AP (cf.
Sect. 4.2).

We are given Ny demonstrations {Sfem}?’;l of duration T';,
which approximately solve Problem 1, in that they are fea-
sible (satisfy the LTL formula and known constraints) and
achieve a possibly suboptimal cost. Note that Problem 1
can be modeled with continuous (£y,) and boolean deci-
sion variables (referred to collectively as Z) (Wolff et al.
2014); the boolean variables determine the high-level plan,
constraining the trajectory to obey boolean decisions that
satisfy ¢(6°, 67), while the continuous component synthe-
sizes a low-level trajectory implementing the plan. We will
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use different assumptions of demonstrator optimality on the
continuous/boolean parts of the problem, depending on if 67
(Sect. 4), 6° (Sect. 5), or 8¢ (Sect. 6) are being learned, dis-
cuss extensions and variants of these methods (Sect. 7), and
discuss how these different degrees of optimality can affect
the learnability of LTL formulas (Sect. 8).

Our goal is to learn the unknown structure 6° and AP
parameters 67 of the LTL formula ¢(6°, 67), as well as
unknown cost function parameters 6, given demonstrations
{éfcm}y; , and the a priori known safe set S.

4 Learning atomic proposition parameters
(6P)

We develop methods for learning unknown AP parameters
67 when the cost function parameters 6¢ and formula struc-
ture 0% are known. We first review recent results (Chou et al.
2020c) on learning time-invariant constraints via the KKT
conditions (Sect. 4.1). Then, we show how the framework can
be extended to learn 67 (Sect. 4.2), and develop a method for
extracting states which are guaranteed to satisfy or to violate
pi (Sect. 4.3). In all of Sect. 4, we will assume that demon-
strations are locally-optimal for the continuous component
and feasible for the discrete component.

4.1 Learning time-invariant constraints via KKT

Consider a simplified variant of Problem 1 that only involves

always satisfying a single AP; this reduces Problem 1 to a

standard trajectory optimization problem:

minimize c(&yy)

subject to  g((x),07) <0, Vx € £, ©)
nExw) €S SC

To ease notation, ¢ is assumed known in Sects. 4-5 and rein-
troduced in Sect. 6. Suppose we rewrite the constraints of (5)
as b ((€2u)) = 0, g ((6xu)) < 0, and g7 ((6xu), 67) <
0, where k and —k group together the known and unknown
constraints, respectively. Then, with Lagrange multipliers A
and v, the KKT conditions (first-order necessary conditions
for local optimality (Boyd and Vandenberghe 2004)) of the
jth demonstration S;iem, denoted KKT(SJ‘.iem) are as written
in (6),

KKT(&{):

Primal feasibility:
W (/) =0, 1=1,....T (6a)
g <0, 1=1,...,T; (6b)
g, 07 <0, 1=1,...,T; (6¢)
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Lagrange multiplier nonnegativity:

AMEso0 =11 (6d)

M0, =11 (6¢)
Complementary slackness:

Miogmaly=0 =11 (6f)

M ogFmed).en =0, t=1,....T; (62)
Stationarity:

',k
Vi c(%m) + 01" v, g (1))
T
Vg K (1(x)). 07)

vV R ) =0, 1=1,....T; (6h)

a7k

where © denotes elementwise multiplication. Intuitively, pri-
mal feasibility ensures that the demonstrations satisfy the
learned constraint, complementary slackness encodes that a
Lagrange multiplier for some constraint can only be nonzero
if that constraint is active, and stationarity encodes that the
cost cannot be locally improved without violating a con-
straint.

ineq -
We Vectorlze the multlphers RS ]RN C AR e
ineq

RN, and v, c RV ,i.e. k{ -k [Xt e )J }]i]k 17,

ineq

We drop (6a)-(6b), as they involve no decision variables.
Then, we can find a constraint which makes the Ny demon-
strations locally-optimal by finding a 67 that satisfies the
KKT conditions for each demonstration:

Problem 2 (Inverse KKT problem, exact)

find 67, (A5 A7 TE W/ =N,
subject to {KKT(S}iem)}?’;l

If the demonstrations are only approximately locally-optimal,
Problem 2 may become infeasible. In this case, we can relax
stationarity and complementary slackness to cost penalties:

Problem 3 (Inverse KKT problem, suboptimal)

N.
minimize ",
or, l’k k’ k ./<k J=

subject to

(Istat(€¢e™) 11 + llcomp(&§™ 1)

(6¢) — (60). VEE™, j=1,... N,

where stat (S}‘.jem) denotes the left hand side (LHS) of Eq. (6h)

and comp(éj‘flem) denotes the concatenated LHSs of Egs.
(6f) and (6g). Please see Sect. 7.4 for more discussion on
the effect of demonstration suboptimality on learning 67.
Note that while we have written Problems 2-3 for gen-
eral constraint parameterizations, not all parameterizations
admit computationally-tractable inverse KKT problems. For
some constraint parameterizations (e.g. unions of boxes or

ellipsoids Chou et al. 2020c), Problems 2-3 are MILP-
representable1 and can be efficiently solved; we consider
such parameterizations in further detail in Sect. 4.2. In the
experiments of this paper, we focus on constraints which are
parameterized as axis-aligned boxes in the constraint space
C C R%ie gnx),0”) <0 & An(x) — 0P < 0, where
A = [Uese, —Iexe]" and 07 = [Xy, ... %o, xpy .o, x 1T
contains the upper extents xi,...,XxX. and lower extents
Xy, ..., X, of the box in each coordinate.

4.2 Modifying KKT for multiple atomic propositions

Having built intuition with the single AP case, we return to
Problem 1 and discuss how the KKT conditions change in the
multiple-AP setting. We first adjust the primal feasibility con-
dition (6¢). Recall from Sect. 3 that we can solve Problem 1
by finding a continuous trajectory &, and a set of boolean
variables Z enforcing that &, = ¢(6°, 67). For each édem

let Z/ (6]) € {0, 1}Var*Tj and let the (i, ¢)th index zf t(ep)
indicate if on S]‘?lem, constraint state x; = p; for parameters
6/; that i,

zl,6)) =16« €S0,
z!,(0F) =0 & Kk € Ai0)). )

Since LTL operators have equivalent boolean encodings
(Wolff et al. 2014), the truth value of ¢ (6°, 67) can be evalu-
ated as a function of Z/, 07, and 6%, denoted as & (Z/, 67, 6°)
(we suppress 6%, as it is assumed known for now). For exam-
ple, consider the LTL formula ¢ (6%, 67) = (<>[0,T_,~71]Pl) A
(O[O»Tj*]] p2), which enforces that the system must eventu-
ally satisfy p; and eventually satisfy p,. Two trajectories
which satisfy this formula are shown in Fig. 3. We can
evaluate the truth value of ¢(6%,67) on S}lem by calculat-
ing @(27.67) = (2, Z{ 00 A V[, Z3,600)) (ct.
Fig. 2). Boolean encodings of common temporal and logi-
cal operators can be found in Biere et al. (2006). Enforcing
that ZJ (Op ) satisfies (7) can be done With a big-M formu-

lation and binary variables s , €10, l}N (Bertsimas and

Tsitsiklis 1997):
gl (Kt . 9[7) < M(l meq — i],t)
T j ineq J
1 meqzt_Ni S1‘421',1_1‘/[e
gi(k/ . 67) = —Ms],
s = N> —m1 -7/ ) 8)

mcq l .t

! This problem can also be represented and solved with satisfiability

modulo theories (SMT) solvers.

@ Springer
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Fig. 2 A directed acyclic graph (DAG) model of the LTL formula
¢ = (<>[0,Tj,1]p1) A (O[O,ijllpz) (eventually satisty p; and even-
tually satisfy py). The DAG representation can be interpreted as a parse
tree for ¢ (cf. Sect. 5.1). The T boolean values for each node represent
the truth value of the formula associated with the DAG subtree when
evaluated on S;iem, starting at times # = 1, ..., T}, respectively. Each

?;ﬂem = o iff the first entry at the root node, (\/[.Til Z{_i) /\(\/lT;l Zé-’[),
is true

where 1; is a d-dimensional vector of ones, M is a large
positive number, and M, € (0, 1). In practice, M and M,
canbe carefully chosen to improve the solver’s performance.
Note that s/, the mth component of s/ , encodes if k; sat-

lm[’ lt’
1 or O, then

isfies a negated g,',m(/ct ,Oi ), i.e. if si’m’t =
ki satisfies g m(k/,0) < or > 0. We can more com-
pactly rewrite the constralnt enforced on the demonstrations

as g; (/ct , p) ® (251 . N;neq) < 0 foreach i, t; we use this

form to adapt the remalnm;g KKT conditions. While enforc-
ing (8)is hard in general, if g; (x, 9,.”) isaffinein Qip for fixed «,
(8) is MILP-representable; henceforth, we assume g; (, in )
is of this form. Note that this can still describe non-convex
regions in the constraint space, as the dependency on « can
be nonlinear.

As a concrete example, for the blue trajectory in Fig. 3,

= [0,1,0,0,0] and Z, = [0,0, 0, 1, 0]. Consider the

first AP p;. Here, since p; is a box in the state space,
gl.m (s, 01) < 0 can be written as x; , — 6/, < 0, where
Qp defines the offset for the mth hyperplane that defines the
boundary of the box for AP py. Then, 51, ; determines if the
polarity of halfspace constraint m is flipped at time ¢ on the
blue trajectory.

To modify complementary slackness (6g) for the multi-
AP case, we note that the elementwise product in (6g) is
MILP-representable:

- . . |
(M7 el 6 0 @], — 1y | = MQ,

Q/ 12 < 1 ins ©)

where Ql’ . € {0, 1}Nimeq><2. Intuitively, (9) enforces that
either 1) the Lagrange multiplier is zero and the constraint
is inactive, i.e. g; (K, 0 ) e [—M,O0] ]fstmt = 1 or
gim(k,0) € [0, M] if 5]

tiplier is nonzero and g; ,, (k;, 9[ ) = 0, or both; the value of
Q toggles between these options. The stationarity condition

= 0, 2) the Lagrange mul-

i,m,t
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O(p1V=p1)Vpe

VZ \/Q(p2 \/7}2

P SO
, © 1)1)//\ (Op) P b p

Fig. 3 Left: Two demonstrations which satisfy the LTL formula ¢ =
(—=p2 Z/{[o T;—1] P A ()[0 T;—-11P2 (first satisfy pi, then satisfy p,). The
demonqtratlon% satisfy klnemanc constraints and are minimizing path
length while satisfying input constraints and start/goal constraints. The
blue and yellow demonstrations begin at the corresponding x; states and
end at x5 and xo, respectively. Right: Some example formulas that are
consistent with ¢, for various levels of discrete optimality (¢ 7: discrete
feasibility, ¢,: spec-optimality, ¢,: discrete global optimality)

(6h) must also be modified to consider whether a particu-
lar constraint is negated; this can be done by modifying the
second line of (6h) to terms of the form ()J NG (25{ =

1)) X gﬁk (n(x;), 67). The KKT conditions for the multi-AP
case, denoted KKTy . (Sj‘.iem), then can be written as in (10).

KK T (£0°™):
Primal feasibility:
Equations (6a)-(6b), t=1,...,T; (10a)
Equation 8), i=1,...,Nap, t=1,...,T; (10b)
Lagrange multiplier nonnegativity:
Equation (6d), r=1,...,T; (10c)
>0, i=1,... Nap,t=1,...,Tj (10d)
Complementary slackness:
Equation (6f), r=1,...,T; (10e)
Equation (9), i=1,...,Nap, t=1,...,T; (10f)

Stationarity:

,kT .
Vi @™ + A" Vg ()

meq

[

i=1

o R ) =0, =1, T

© (25, = 1) Vu g (1), 1))

(10g)

As mentioned in Sect. 3, if /{,j lies on the boundary of
AP i, the KKT conditions will automatically determine if

K,J e S (Gp ) or K,/ € A (Gp ) based on whichever option

enables s , to take values that satisfy (10). To summarize,
our approach is to (A) find Z/, which determlnes the feasi-
bility of E dem for (6%, 67), (B) find sl .+ Which link the
value of Z/ from the AP-containment level (i.e. K,j e S (Qi” )

to the single-constraint level (i.e. g; (Kt', 67y < 0), and (C)
enforce that Edem satisfies the KKT condltlons for the con-
tinuous optlmlzatlon problem defined by 67 and fixed values
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of s{’t. Finally, we can write the problem of recovering 67
for a fixed 0° as:

Problem 4 (Learning 67, for fixed template)

find 67, /K AR ik ST Qf 7 i g
. | Ny ’
subject to {KKTLTL(Sfem)} =1

We can also encode prior knowledge in Problem 4, e.g.
known AP labels or a prior on Gip , which we discuss in
Sect. 7.1.

4.3 Extraction of guaranteed learned AP

As with the constraint learning problem, the LTL learn-
ing problem is also ill-posed: there can be many 67 which
explain the demonstrations. Despite this, we can measure
our confidence in the learned APs by checking if a con-
straint state « is guaranteed to satisfy/not satisfy p; for a
given AP parameterization. This check is particularly use-
ful when planning trajectories which satisfy the learned LTL
formula, as we discuss shortly. Denote F; as the feasible set
of Problem 4, projected onto ®/ (feasible set of §;”). Then,
we say k is learned to be guaranteed contained in S; (Gip )
if for all Gip € Fi, Gi(k) < 0 (i.e. « &= p;, for all fea-
sible 9ip ). Similarly, we say « is learned to be guaranteed
excluded from S; (Gip ) if for all 6‘1.[’ € Fi, Gi(k) > 0. Denote
by:

Gi = [ {c1Gi,0) <0} (11
0eF;

G = () e | Gik,6) = 0} (12)
0eF;

as the sets of k¥ which are guaranteed to satisfy/not satisfy p;.
Having the ability to check if a constraint state lies within G
or Qis is useful when planning with the learned LTL formula,
as we can design our plans to be robust to any uncertainty in
the learned APs. For instance, if some constraint state x on
a candidate plan must satisfy/not satisfy AP i for the plan to
satisfy the learned LTL formula, we can instead force « to be
contained in g;' or G- <> respectively. Then, plans generated
in this fashion are guaranteed to satisfy the LTL formulas
corresponding to any consistent 87.

Concretely, to query if « is guaranteed to satisfy/not satisfy
pi, we can check the feasibility of the following problem:

Problem 5 (Query containment of k in/outside of S; (7))

Jk o ydmkjk j
find 07,1 ’)‘i.t ViS5 Qi

subject to {KKTprL (E;lem)}j»v; 1
Gi(k,0/) > 0OR G;(k,67) <0

7, Vi, j,t

If forcing « to (not) satisfy p; renders Problem 5 infeasible,
we can deduce that to be consistent with the KKT conditions,
« must (not) satisfy p;. Similarly, continuous volumes of «
which must (not) satisfy p; can be extracted by solving:

Problem 6 (AP volume extraction)

minimize e
£.knear. 07 A E AT
] 7

subjectto  {KKTyqp (é}iem) }?’; |
Il €near — Kquery”oo )
G (knears el_p) > 0 OR G (knear, eip) <0

Problem 6 searches for the largest box centered around «query
contained in G!/G' . An explicit approximation of G /G
can then be obtained by solving Problem 6 for many different
Kquery -

Finally, we note that another avenue to handle the ambi-
guity in the learned 07 is to directly recover the set of all
07 which are consistent with the demonstration, and plan-
ning to satisfy the LTL formulas associated with as many
consistent 87 as possible. This method is described in detail
in Chou et al. (2020b) for time-invariant constraints, and a
detailed investigation in applying this approach to temporal
logic constraints is the subject of future work.

5 Learning temporal logic structure (6P, 6°)

We will discuss how to frame the search over LTL structures
0% (Sect. 5.1), the learnability of 6° based on demonstration
optimality (Sect. 5.2), and how we combine notions of dis-
crete and continuous optimality to learn 0 and 6 (Sect. 5.3).

5.1 Representing LTL structure

We adapt (Neider and Gavran 2018) to search for a directed
acyclic graph (DAG), D, that encodes the structure of a para-
metric LTL formula and is equivalent to its parse tree, with
identical subtrees merged. Hence, each node still has at most
two children, but can have multiple parents. This framework
enables both a complete search over length-bounded LTL
formulas and encoding of specific formula templates through
constraints on D (Neider and Gavran 2018).

Each node in D is labeled with an AP or operator from
(1) and has at most two children; binary operators like A and
Vv have two, unary operators like O, ;] have one, and APs
have none (see Fig. 2). Formally, a DAG with Npag nodes,
D = (X, L, R), can be represented as: X € {0, l}NDAGXNE,
where X, , = 1 if node u is labeled with element v of the
grammar and O else, and L, R € {0, 1}NPAGXNDAG | where
L,,=1/R,, = lif node v is the left/right child of node
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u and O else. The DAG is enforced to be well-formed (i.e.
there is one root node, no isolated nodes, etc.) with further
constraints; see Neider and Gavran (2018) for more details.
Since D defines a parametric LTL formula, we set 6° = D.

As a concrete example, consider the DAG in Fig. 2. Let
the grammar be ¢::=pi | p2 | @1V 2 | @1 Aga | Op | Og,
with DAG nodes labeled by {p1, p2, V, A, [0, O}. We refer to
element 1 of the grammar as pj, element 2 as p,, element 3
as Vv, and so on. The DAG in Fig. 2, encoding (O p1) A (O p2),
can be represented with:

100000 00000
010000 00000
X=[0 00 1 0 0, L=[0 0 0 1 0
00000 1 10000
0 00 0 0 1 0100 0
0 0 0 0 0

00000
R=[0 0 0 0 1

00000

0 00 0 0

where pi, pa2, A, the left §, and the right {, are labeled as
nodes 1, 2, 3, 4, and 5 respectively. As convention, the unary
operators are defined to have only left children.

To ensure that demonstration j satisfies the LTL formula
encoded by D, we introduce a satisfaction matrix S?em €
{0, 1}Vpa6xTj | where S‘]j.f’rz,t encodes the truth value of the
subformula for the subgraph with root node u at time ¢ (i.e.,
S‘}?{‘;J = 1 iff the suffix of E;lem starting at time 7 satisfies
the subformula). This can be encoded with constraints:

| dem

Ji(u,t) T ¢IZU| <M - Xu,v) (13)

where @/ is the truth value of the subformula for the sub-
graph rooted at u if labeled with v, evaluated on the suffix
of f;‘]‘.iem starting at time 7. The truth values are recursively
generated, and the leaf nodes, each labeled with some AP i,
have truth values set to Z; (). Next, we can enforce that the
demonstrations satisfy the formula encoded in D by enforc-
ing:

d .
;{foou) =1, j=1,..., N (14)

Continuing our example, consider again the blue trajectory
in Fig. 3, which satisfies the aforementioned LTL formula
(O p1) A (O p2). For this trajectory, Sdem jg.

01000
00010
=|11000
11000
11110

Sdem

@ Springer

Note that S‘(ifo‘gt=3 y = 1, which reflects that the trajec-
tory satisfies the formula. Furthermore, our method will

also use synthetically-generated invalid trajectories {£ }3.\/:1
(Sect. 5.3). To ensure {§7° }?/;"1 do not satisfy the formula,

we add more satisfaction matrices S;‘s and enforce:
s _ .
Sj’(root’l) =0,j=1,..., No. (15)

After discussing learnability, we will show how D can be inte-
grated into the KKT-based learning framework in Sect. 5.3.

5.2 A detour on learnability

When learning only the AP parameters 07 (Sect. 4), we
assumed that the demonstrator chooses any feasible assign-
ment of Z consistent with the specification, then finds a
locally-optimal trajectory for those fixed Z. Feasibility is
enough if the structure 8° of ¢ (8¢, 87) is known: to recover
07, we just need to find some Z which is feasible with respect
to the known 6° (i.e. ®(Z/, 67, 6°) = 1) and makes S}lem
locally-optimal; that is, the demonstrator can choose an arbi-
trarily suboptimal high-level plan as long as its low-level
plan is locally-optimal for the chosen high-level plan. How-
ever, if % is also unknown, only using boolean feasibility is
not enough to recover meaningful logical structure, as this
makes any formula ¢ for which @(Z/,0”,6%) = 1 con-
sistent with the demonstration, including trivially feasible
formulas always evaluating to T. Formally, we will refer to
the set of formulas for which the demonstrations are feasible
in the discrete variables and locally-optimal in the continuous
variables as ¢ 7.

On the other end of the spectrum, we can assume the
demonstrator is globally-optimal in solving Problem 1, i.e.
there does not exist any trajectory with lower cost than the
demonstration which satisfies both the specification and the
known constraints. Let the set of all formulas which make
the demonstrations globally-optimal be denoted ¢,. Assum-
ing global optimality invalidates many structures in ¢, as
any formula which accepts a trajectory with a lower cost than
the demonstration cannot belong in .

To make things concrete, consider again the example in
Fig. 3. Assume for now that 6,05 are known. Assuming
boolean feasibility, we cannot distinguish between formulas
in @y, a subset of which are written in the Venn diagram
in Fig. 3. ¢y contains trivial formulas like T or ¢ =
(Or.1;-11,1) vV (O10,1,-11p2), Assuming global optimal-
ity, on the other hand, invalidates many structures in @,
i.e. the blue trajectory should not visit both &1 and S if
¢ = (Q[O,Tj_l]pl) \Y (O[Q,Tj_l]pz); we achieve a lower cost
by only visiting one. Using global optimality, we can dis-
tinguish between all but the formulas with globally-optimal
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trajectories of equal cost (formulas in ¢,), i.e. we cannot
learn the ordering constraint (—p2 Ujo,1;—1) p1) from only
the blue trajectory, as it coincides with the globally-optimal
trajectory for ¢ = (O0,7;—-11P1) A (Or0,7,-11p2); we need
the yellow trajectory to distinguish the two.

From this discussion, we see that imposing global optimal-
ity of the demonstrations in the learning problem can be quite
powerful for reducing the set of consistent LTL formulas
(provided that the demonstrations are actually globally-
optimal). Unfortunately, enforcing global optimality of the
demonstrations in the learning problem is challenging, as it
requires an exhaustive verification that there are no feasible
trajectories with lower cost than the demonstrations. To over-
come this challenge, we define an optimality condition that
is more restrictive than feasibility and less restrictive than
global optimality, and which crucially is easier to impose in
learning:

Definition 1 (Spec-optimality) A demonstration (E;.iem is -
spec-optimal (j1-SO), where u € Z., if for every index set
L i {(i11 tl)v eeey (i;,L? tpL)} inI i {L | im € {1» ERRX] NAP}? tm €
{1,...T;},m =1, ..., u}, atleast one of the following holds:

- S;.‘em is locally-optimal after removing the constraints

associated with p;,, on 7 , for all (iy,, t) € t.
— For each index (i,,, t,;) € t, the formula is not satis-
fied for a perturbed Z, denoted Z, where Z;_ ;_ (051 ) =

=Zi i (61{)"), forallm = 1,...,u, and Zgﬂ(@f?) =
Zyp O forall (', 1) ¢ ¢.
— £9°™ is infeasible with respect to Z.

Spec-optimality enforces a level of logical optimality,
evaluated locally around a demonstration: if a state «;
on demonstration S;lem lies inside/outside of AP i (i.e.

Gi(ki,6") <0/ > 0), and the cost c(é}jem) can be lowered
if that AP constraint is relaxed, then the constraint must hold
to satisfy the specification. Intuitively, this means that the
demonstrator does not visit/avoid APs which will needlessly
increase the cost and are not needed to complete the task.
Note that the conditions in Definition 1 are essentially check-
ing how the local optimality of a demonstration changes as
a result of local perturbations to the assignments of the dis-
crete variables Z. The three conditions in Definition 1 capture
the three possibilities upon perturbing Z: the demonstration
could become infeasible if Z is perturbed (this is what the
third condition checks), the demonstration could remain fea-
sible but local optimality may not change (this is what the
first condition checks), or the demonstration could remain
feasible and no longer be locally-optimal (this is what the
second condition checks). By enforcing that a demonstration
is spec-optimal with respect to the formula being satisfied,
we enforce that this last possibility (feasible but not locally-

optimal) never occurs. We would want to enforce this, for
instance, if the demonstration is assumed to be globally-
optimal for the true LTL formula, because there should be no
alternative assignment of Z which admits a feasible direction
in which the demonstration cost can be improved.

Returning to the discussion on the example in Fig. 3,
we will show how spec-optimality can be used to distin-
guish between ¢ = (—=p2 Ujo,1;-11 p1) A Op0.7;,-11p2 and
(ﬁ = <>[0,T/-—1]P1 \% Q[O’Tj_l]pz using only the blue demon-
stration. Specifically, we show the demonstration is 1-SO
with respect to ¢ but not for ¢. For both formulas ¢ and ¢,
we can see that Z = {(1, 1),...,(1,5), (2, 1), ..., (2,5)}.
Let’s consider ¢ first. In this case, for values of ¢ €
{(1, 1), (1,3),(1,4), (1,5), (2, 1), (2,2), (2,3), (2,5)}, the
third condition in Definition 1 will hold, since for these time-
AP pairs, the demonstration is not on the boundary of the
paired AP. For ¢ € {(1, 2), (2,4)}, the second condition in
Definition 1 will hold, since perturbing Z at either of these
time-AP pairs (from Z1,2(91p) = 1to0or from 22’4(6?;) =1
to 0) will cause ¢ to be not satisfied. Thus, the demonstration
is spec-optimal with respect to ¢. On the other hand, for ¢,
again for values of ¢ € {(1, 1), (1, 3), (1,4), (1,5), (2, 1),
(2,2),(2,3),(2,5)}, the third condition in Definition 1 will
hold. However, none of the three conditions will hold for
t € {(1,2),(2,4)}, since the demonstration will not be
locally-optimal upon relaxing the constraints for either p
or py, and since ¢ only enforces that either one of Sy or S
are visited, ¢ is still satisfied if either Z; 2(61) or Z» 4(65)
is flipped to 0. Hence, the demonstration is not spec-optimal
with respect to ¢.

In contrast, we can show that it is not possible to use
spec-optimality to distinguish between the formulas ¢ =
(=p2 Uo.7,-11 P1) A Qpo.1j—11p2 and ¢ = Opo.7,-11P1 A
O[o,Tj_l] p> using the yellow demonstration in Fig. 3. This
follows from noting that perturbing any combination of
Z1,.407), Z2,6(67) from their values of 1 to 0 will cause both
¢ and ¢ to be not satisfied. Hence, the yellow demonstration
is spec-optimal with respect to both ¢ and ¢; however, it is
not globally-optimal for ¢, as the demonstrator can achieve
a lower cost by first satisfying p»> and then satisfying pg.

We will conclude this subsection with some theoretical
results which motivate how demonstration spec-optimality
can be used to help the learning of LTL formulas. We first
show that all globally-optimal demonstrations must also be
u-spec-optimal for the true specification, for any positive
integer L.

Lemma 1 All globally-optimal trajectories are -SO.

Proof We show that it is not possible for a demonstration
S;iem to be globally-optimal while failing to satisfy (a),

(b), and (c). If the constraints corresponding to p;, at Ktj,.,,
are relaxed, for some {(i,,, tm)}rl:;:v then é;k’m can either
remain locally-optimal (which means (a) is satisfied, and
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happens if all the constraints are inactive or redundant) or
become not locally-optimal. If S;‘em becomes not locally-
optimal for the relaxed problem (i.e. (a) is not satisfied), then
at least one of the original constraints is active, implying

r 1 (Gi (/c,{n ) = 0). In this case, one of the following

holds: either (1) each K,{n lies on its constraint boundary:

L1 (Gi, (K,Jm) = 0), or (2) at least one k;, does not lie on

its constraint boundary. If (2) holds, then g;iem must be infea-
sible for Z, so (c) must be satisfied. If (1) holds, then g;lem

is both feasible for Z and not locally-optimal with respect
to the relaxed constraints. Then, there exists some trajectory
&xu such that c(&y,) < c(éjc.‘em), and for at least one m in

J

Im

L...,u, G;, (/Qt]m) > 0, where k; 1is the constraint state at
time f,,, on é - é;‘ +u cannot be feasible with respect to the true
specification, since it makes Ej‘.lem not globally-optimal, so in

this case (b) must hold. O

Given this result, we can use spec-optimality to vastly
reduce the search space when searching for formulas which
make the demonstrations globally-optimal (Sect. 5.3). To for-
malize this search space reduction, we prove that the set of
consistent formulas shrinks as u increases, approaching ¢ s
with lower values of u and approaching ¢, with higher values
of .

Theorem 1 (Distinguishability) For the consistent formula
sets defined in Sect. 5.2, we have 9, C 9550 S ¢p-s0 S @,
for it > [1.

Proof ¢, C ¢;.s0, since per Lemma 1, all globally-optimal
trajectories are (1-SO. Thus, restricting Problem 8 to enforce
global optimality requires more constraints than restricting
Problem 8 to enforce [i-SO. With more constraints, the fea-
sible set of consistent formulas cannot be larger for global
optimality. Similarly, as enforcing j1-SO requires more con-
straints than enforcing [i-SO, the feasible set of consistent
formulas cannot be larger for fi-SO than for (i-SO. ¢,.s0 <
@, since enforcing u-SO also enforces feasibility. Thus,
restricting Problem 8 to enforce ©-SO requires more con-
straints than the standard Problem 8. With more constraints,
the feasible set of consistent formulas cannot be larger for
1u-SO. m]

5.3 Counterexample-guided framework

In this section, we will assume that the demonstrator returns
a solution to Problem 1 which is boundedly-suboptimal with
respect to the globally optimal solution, in that c(gj‘em) <
1+ 8)0(57), for a known suboptimality slack parameter §,
where c(é}k) is the cost of the optimal solution. This is rea-
sonable as the demonstration should be feasible (completes
the task), but may be suboptimal in terms of cost (e.g. path
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Algorithm 1: Falsification

1 Input: {Ej‘.iem}y;l, S, Output: 6%, 67

2 Npag < 0, {77} < {}
3 while — consistent do

4 | Npag < Npag + 1

5 | while Problem 8 is feasible do

6 6%, 6P <« Problem 8({sjem};";l &™), Npag)

7 for j = 11t0o N do

8 £], < Problem 7(Edem™)

9 if Problem 7 is feasible then {£7°} < {£€7°} U f)zu
10 if Problem 7 infeasible, forall j =1, ..., N; then

1 | consistent < T break

length, etc.), and § can be estimated from repeated demon-
strations. We sketch one way § can be estimated in Sect. 7.4.

Under the bounded-suboptimality assumption, any trajec-
tory &, satisfying the known constraints 1n(&y,) € S at
a cost lower than the suboptimality bound, i.e. c(&yy) <
c(éfem)/(l + 8), must violate p(6*, 67) (Chou et al. 2018,

2019). We can use this to reject candidate structures 6% and
parameters 67. If we can find a counterexample trajectory
that satisfies the candidate LTL formula go(é‘, 6P) at a lower
cost by solving Problem 7,

Problem 7 (Counterexample search)

find &xu
subjectto &, = go(és, ép)
(6) € SEF™ < C
() < c(EF™)/(1+6)

then (p(éy, 6 P) cannot be consistent with the demonstration.
Thus, we can search for a consistent 6 and 67 by iteratively
proposing candidate 6% 1 6r by solving Problem 8 (a modi-
fied version of Problem 4, which we will discuss shortly) and
searching for counterexamples that can prove the parameters
are invalid/valid; this is summarized in Algorithm 1. Heuris-
tics on the falsification loop are discussed in Sect. 7.3.

We note that the structure of the falsification loop in Algo-
rithm 1 is crucial for enforcing that the returned LTL formula
makes the demonstrations globally-optimal (or boundedly-
suboptimal), since as discussed in Sect. 5.2, it is challenging
to encode global optimality directly. As a result, we will rely
on encoding conditions that are weaker than global optimality
but which can be efficiently enforced, proposing LTL formu-
las which make the demonstration feasible or spec-optimal
(see Problem 8). Thus, the loop is needed to reject formulas
which make the demonstrations feasible or spec-optimal but
not globally-optimal, in order to ensure that the formula that
is eventually returned makes the demonstrations globally-
optimal. We now discuss in detail the core components of
Algorithm 1: counterexample generation, addressed in Prob-
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lem 7, and a combined search for 7 and 6%, addressed in
Problem 8).

Counterexample generation: We propose different meth-
ods to solve Problem 7 based on the dynamics. For piecewise
affine systems, Problem 7 can be solved directly as a MILP
(Wolff et al. 2014). However, the LTL planning problem for
general nonlinear systems is challenging (Li and Fu 2017,
Fu et al. 2017). Probabilistically-complete sampling-based
methods (Li and Fu 2017; Fu et al. 2017) or falsification
tools (Annpureddy et al. 2011) can be applied, but can be
slow on high-dimensional systems. For simplicity and speed,
we solve Problem 7 by finding a trajectory Ecu = @(6°,67)
and boolean assignment Z for a kinematic approximation of
the dynamics via solving a MILP, then warm-start the nonlin-
ear optimizer with é . and constrain it to be consistent with
Z, returning some &,,,. We use IPOPT (Wichter and Biegler
2006) and TrajOpt (Schulman et al. 2014) to solve these non-
linear optimization problems for the simulation and hardware
experiments, respectively. If ¢(&,,) < c(é?em) /(14 38), then

we return, otherwise, we generate a new éxu. Whether this
method returns a valid counterexample depends on if the non-
linear optimizer converges to a feasible solution; hence, this
approach is not complete. However, we show that it works
well in practice (see Sects. 9-10); moreover, the optimal
sampling-based planning approaches (e.g. Li and Fu 2017)
can always be used as a complete alternative, at the expense
of higher computation time.

Unifying parameter and structure search: When both 67
and 0° are unknown, they must be jointly learned due to
their interdependence: learning the structure involves finding
an unknown boolean function of 67, parameterized by 0°,
while learning the AP parameters 7 requires knowing which
APs were selected or negated, determined by 6°. This can be
done by combining the KKT (10) and DAG constraints (13)—
(15) into a single MILP, which can then be integrated into
Algorithm 1:

Problem 8 (Combined search for 67, 0°)

dem Q—s pgp /K /“k ', j
DS S LOP AT AT ’zt’ta’ )

Vi, j,t

find

s.t. {KKTpr (8m)2
topology constraints (except single root) for D
Equation (13), j =1, ..., Ns
Equation (14), j =1,..., N
Equation (15), j=1,..., N=

In Problem 8, since (1) the Zij (in ) at the leaf nodes of D
are constrained via (8) to be consistent with 7 and £9°™ and
(2) the formula defined by D is constrained to be satisfied
for the Z via (13), the low-level demonstration éd"m must be
feasible for the overall LTL formula defined by the DAG,i.e.

(6%, 67), where 0° = D. KKTirL(§°™) then chooses AP
parameters 07 to make S;lem locally-optimal for the contin-
uous optimization induced by a fixed realization of boolean
variables. Overall, Problem 8 finds a pair of 67 and 6° which
makes E;‘em locally-optimal for a fixed Z/ which is feasi-
ble for ¢(6°,07),i.e. ®(Z/,0P,0%) = 1, for all j. To also
impose the spec-optimality conditions (Definition 1), we can
add these constraints to Problem 8:

dem,Z,{ 1
Sj (root, 1) = b (1621)
"
g X,g,kw(x!) D)l =M —by)),
m=1, .1 (16b)
g7 (), 07) = —M(1 —elp), m=1, i (160)
1., el > ilfm O))—by;, m=1,....u (16d)
ineq
gy, 00y <Mz, +b3) (16¢)
baj + by b1y < 1. buy € (01,
el € {0, 1) Vi (16f)

dem,Z! . . . .
forn =1,...,|Z|, where Sjem " is the satisfaction matrix

for S;lem where the leaf nodes are perturbed to take the val-
ues of 25, where n indexes an ¢ € Z. (16a) models the case
when the formula is not satisfied, (16b) models when Ej‘em
remains locally-optimal upon relaxing the constraint (zero
stationarity contribution), and (16¢)—(16e) model the infeasi-
ble case. Generally, without spec-optimality, the falsification
loop in Algorithm 1 will need to eliminate more formulas on
the way to finding a formula which makes the demonstra-
tions globally-optimal. We conclude this section with some
remarks on spec-optimality and the falsification loop:

Remark1 If n = 1, the infeasibility constraints (16c)—
(16e) can be ignored (since together with (16a), they are
redundant), and we can modify (16f) to b1 + b2 <1,

b, € {0, 1}%.

Remark 2 1t is only useful to enforce spec- optimality on
index pairs (i1, t1), ..., (iy, ty) where G;, (K,m, i Py =0
forallm =1, ..., u; otherw1se the infeasibility case auto-
matically holds. If 67 is unknown, we won’t know a priori
when this holds, but if 67 are (approximately) known, we
can pre-process so that spec-optimality is only enforced for
salient: € 7.

Remark 3 We can interpret 1 as a tuning knob for shifting the
computation between the falsification loop and Problem 8;
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imposing a larger u can potentially rule out more formu-
las at the cost of adding additional constraints and decision
variables to Problem 8.

Remark 4 Problem 8 with spec-optimality constraints (16)
can be used to directly search for a (p(és, ép) which can
be satisfied by visiting a set of APs in any order (e.g.
surveillance-type tasks) without using the loop in Algo-
rithm 1, since (16) directly enforces that any AP (1-SO) or
a set of APs (1-SO) which were visited and which prevent
the trajectory cost from being lowered must be visited for any
candidate

@65, 67).

6 Learning cost function parameters (67, 6°,
o)

If 6¢ is unknown, it can be learned by modifying KKTr1r to
also consider 8¢ in the stationarity condition: all terms con-
taining ngc(g;iem) should be modified to ngc(;?em, 0°).
When c(-, -) is affine in 6¢ for fixed S;iem, the stationarity
condition is representable with a MILP constraint. However,
the falsification loop in Algorithm 1 requires a fixed cost
function in order to judge if a trajectory is a counterexample.
Thus, one valid approach is to first solve Problem 8, search-
ing also for 6¢, then fixing ¢, and running Algorithm 1 for
the fixed 6¢. Specifically, the approach is the same as Algo-
rithm 1, apart from an additional outer while loop, where
candidate 6¢ are selected. We formally write this procedure
in Algorithm 2, where we refer to the Problem 8 variant that
searches over 6¢ as Problem &', and to the Problem 7 variant
that takes in 6¢ as input as Problem 7’. Upon the failure of a
0¢ to yield a consistent 67 and 6°, the 6¢ is added into a set of
cost parameters for Problem 8 to avoid, @, . The avoidance
condition can be implemented with integer constraints, i.e.
10F — 671 = £ay — (1 = 2h), Yy zhy = Lfori =1, |6c|
and for binary variables z},. Here, &,y is a hyperparameter
that defines the size of an infinity-norm ball around 6; which
should be avoided in future iterations. One can also achieve
a similar effect without this hyperparameter by adding an
objective function maxge [|0€ — GA,.CHC><> to Problem 8’, which
is MILP-representable.

Note that this procedure either eventually returns an LTL
formula consistent with the fixed 8¢, or Algorithm 1 becomes
infeasible, and a new 6¢ must be generated and Algorithm 1
rerun. This is guaranteed to eventually return a set of 6¢, 6%,
and 67 which make each deem globally-optimal with respect
to c(&xy, 0€) under ¢ (6°, 67). However, it may require iter-
ating through an infinite number of candidate 6¢ and hence
is not guaranteed to terminate in finite time (Corollary 3).
Nonetheless, we note that for a certain class of formulas
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Algorithm 2: Falsification, unknown cost function

1 Input: {Sj‘.iem}y;l, S, Output: 6%, 07, 6°

2 Npag < 0, {7} < {}, 05 < {}

3 while true do

4 | 6°,07,6°Problem 8 ({g%™} |, {£7°), Npag, OF)

5 while — consistent do

6 Npag < Npag + 1

7 while Problem 8 is feasible do

8 4%, 6P < Problem 8({5}16"1}7;1, {75}, Npag, 6)
9 for j = 1to N5 do

10 5){.“ < Problem 7’(&1‘.16“‘, 6°)

11 if Problem 7' is feasible then

12 I I Ca U7

13 if Problem 7' infeasible, forall j =1, ..., Ny then
14 ‘ consistent <— T ; break

15 if consistent then return;

16 | else ©F, < OF U 6¢; break;

(Remark 4), a consistent set of ¢, 6%, and 67 can be recovered
in one shot.

7 Method extensions, variants, and
discussion

In this section, we discuss some extensions and variants of our
approach which can improve learning (Sect. 7.1) and compu-
tational performance (Sects. 7.2, 7.3). Finally, we discuss the
effect of suboptimality on the learning procedure and how the
suboptimality slack parameter § can be estimated (Sect. 7.4).

7.1 Encoding prior knowledge

In some situations, we may have some a priori knowledge
on the atomic propositions, e.g. which labels correspond to
which atomic proposition regions, or a rough estimate of the
AP parameters 6”. We describe how this knowledge can be
integrated into our method.

Known labels: We have assumed that the demonstrations
only include state/control trajectories and not the AP labels;
this can lead to ambiguity as to which S should be assigned
to which proposition p;. For example, consider the exam-
ple in Fig. 3 (left), where the aim is to recover ¢(6”) =
081(6)) Vv 0S>2(8). The KKT conditions will imply that the
demonstrator had to visit two boxes and their locations, but
not whether the left box should be labeled S or S,. However,
in some settings it may be reasonable that the labels for each
AP are provided, e.g. for an AP which requires a robot arm
to grasp an object, we might have sensor data determining if
the object has been grasped. In this case, we can incorporate
this by simply constraining Z; (6;) to be the labels; this then
removes the ambiguity mentioned earlier.
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Prior knowledge on 67: In some settings, we may have
a rough idea of 67, e.g. as noisy bounding boxes from a
vision system. We might then want to avoid deviating from
these nominal parameters, denoted Ok ., or restrict 67 to
some region around Ofom ,denoted ®; nom, subject to the KKT

conditions holding. This can be done by adding YA 167 —

Jj=l1
91.{7 nom |1 @8 an objective or 95 nom € ®i.nom as a constraint to
Problem 4 instead of simply solving Problem 4 as a feasibility

problem.

7.2 Faster reformulations for the falsification loop

A shortcoming of Algorithm 1 is that it can be computation-
ally intensive. This is primarily due to Problem 8, which is
a mixed-integer program that contains many binary decision
variables, including the DAG structure variables (X, L, R)
and variables Q and Z which are needed to learn the con-
tinuous parameters 6”. While Problem 8 can still be solved
for examples of moderate size (see the results in Sect. 9), we
observe that its computation time can become unrealistic for
examples with very long LTL formulas (i.e. a large search
space for (X, L, R)). Intuitively, increasing the dimension-
ality of (X, L, R) combinatorially increases the number of
possible assignments, which can cause the optimizer to strug-
gle to find a feasible solution in a reasonable timeframe.

To address these computational challenges, we propose a
reformulation for Problem 8 which is better suited for large-
scale problems. Instead of fixing the number of nodes Npag
in the DAG D and searching over grammar element types
X,y for which to populate the nodes, we can fix X to contain
a number of instances of each grammar element, and relax
the constraint that there is only one root node, and enforce
the constraints of Problem 8 on the LTL formula defined by
the subgraph of a particular root node; that is, we enforce
the constraints on one tree in the forest of an expanded DAG
where AP nodes with common labels are not merged. Addi-
tionally, instead of incrementing the fotal DAG size Npag
in the outer loop of Algorithm 1, we should increment the
number of instances of each grammar element by one. As
a concrete example, instead of searching for a DAG with
5 nodes, where each node can be labeled with any element
in the grammar {p1, p2, A, ¢, [}, one possibility under this
reformulation would be to fix X to contain 11 nodes, with one
instance each of p| and p, and three instances each of A, O,
and [J. The optimizer would then choose a subset of these
nodes to include in the candidate LTL formula by choosing
aroot node and (L, R) accordingly.

More concretely, this reformulated problem can be written
as a modification of Problem 8, where X is dropped as a deci-
sion variable and an additional binary vector r € {0, 1}VPAG
is added. The purpose of r is to encode that at least one node
in the DAG is a root node, and that conditions (14), (15), and

(16) hold for each root node; concretely, if r; = 1, node i
is a root node, and if r; = 0, then node i is not a root node.
This adjustment can be performed by taking constraints (14),
(15), and (16) and relaxing them depending on the value of
r, using a big-M formulation. As a concrete example, (14)
would be modified to

1—83??;.1“1) < M(l _ri)’ I = l,...,NDAG?
j=17"‘7NS' (17)

By holding X constant instead of considering it as a
decision variable, we dramatically reduce the computational
cost of solving Problem 8, by combinatorially reducing the
search space size compared to searching over the entirety of
(X, L, R). Furthermore, this does not overly restrict the LTL
formula search, since we can still represent different formu-
las by searching over L and R, and by allowing for multiple
root nodes, we can still find different formulas involving a
different number of nodes (i.e. the method can return for-
mula defined by a subtree containing only a subset of the
nodes in X). For instance, consider representing the formula
@ = Op1 A O pa using either formulation. Using the original
formulation, one can represent ¢ by searching for a DAG
with 5 nodes, resulting in the structure in Fig. 2. Using the
reformulation, we can represent ¢ even when selecting one
instance each of p| and p, and three instances each of A, ¢,
and [, as long as some subgraph in the resulting DAG repli-
cates the structure in Fig. 2, and the root of that subgraph (say
node i) is marked as a root node (r; = 1). However, these
computational gains can come at the cost of easily finding
the shortest LTL formula consistent with the demonstrations,
as we discuss in Corollary 1 (see Remark 5 for more discus-
sion). Thus, this formulation should be used for large-scale
learning problems with many APs and LTL grammar ele-
ments, while it should be avoided when the primary priority
is to return the simplest possible LTL formula.

7.3 Prioritized variants on the falsification loop

Depending on the desired application, it may be useful to
impose an ordering in which candidate structures 6° are
returned in line 4 of Algorithm 1. For example, the user may
want to return the most restrictive formulas first (i.e. formulas
with the smallest language), since more restrictive formulas
are less likely to admit counterexamples (and hence the fal-
sification should terminate in fewer iterations). On the other
hand, the user may want to return the least restrictive formulas
first, generating many invalid formulas in order to explicitly
know what formulas do not satisfy the demonstrator’s wishes.

However, imposing an entailment-based ordering on the
returned formulas is computationally challenging, as in gen-
eral this will involve pairwise LTL entailment checks over
a large set of possible LTL formulas, and each check is in
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PSPACE (Demri and Schnoebelen 2002). Despite this, we
can heuristically approximate this by assigning weights to
each node type in the DAG based on their logical “strength”,
such that each DAG with the same set of nodes has an
overall weight w = 251:)’1‘0 vNi1 wy.vXy,y- For exam-
ple, Vv should be assigned a lower weight than A, since Vs
can never restrict language size, while A can never grow
it. Then, stronger/weaker formulas can be returned first by
adding constraint w > Whresh/W < Wihresh, Where Winresh 18
reduced/increased until a consistent formula is found.

Note that multiple consistent formula structures can be
also generated by adding a constraint for Problem 8§ to not
return the same formula structure and continuing the falsifi-
cation loop after the first consistent formula is found.

7.4 Demonstration suboptimality

We conclude this section by describing a method for esti-
mating the suboptimality slack parameter §, which is crucial
for maintaining the correctness of Algorithm 1, and by
discussing how demonstrator suboptimality can affect the
performance of our algorithm.

We first describe how § can be estimated. Assume that
the cost function parameters 6¢ are fixed. Suppose that
the demonstrator repeats task j R times, generating sub-
optimal demonstrations {Efﬁm}le with corresponding costs
{c(él?frm)}le, where c(éj,r)dem > 6(57)’ for all r, where
c(é;.“) is the cost of a globally-optimal solution for task j,
which we assume is finite. Using these repeated demonstra-
tions, we would like to estimate the suboptimality bound §.
Assuming the demonstration costs are independent and iden-
tically distributed realizations of a random variable, we can
estimate c(g;‘) using the location parameter of a Weibull dis-
tribution that is fit to the observed costs (Weng et al. 2018;
De Haan and Ferreira 2007; Knuth et al. 2021). This follows
from the Fisher-Tippett—-Gnedenko Theorem from extreme
value theory (De Haan and Ferreira 2007), which states that
if the limiting distribution of the minimum of a set of real-
izations of a random variable converges to a finite value, the
limit distribution is Weibull. Then, the location parameter
of the Weibull distribution can be used to estimate the min-
imum c(:;?;‘); let this estimate be denoted ¢*. One can also
compute a confidence interval around E;f (Knuth et al. 2021),
which can be used to determine if the demonstration needs
to be further repeated (i.e. if the confidence interval is large).
Finally, we can recover an estimate of § by taking the lowest-
cost trajectory (which will be selected as the demonstration
used in learning®) with cost c(E}iem) = minj<,<g c(éj‘.ifrm)
and setting

2 Provided that the remaining higher-cost demonstrations are feasible,
they can still be used in the learning process; we can enforce that these
demonstrations should still be feasible for any candidate LTL formula.

@ Springer

5 c(§f™) — &

A%
ct
J

(18)

We demonstrate this procedure on a simulated example in
Sect. 9.2.

This § estimation procedure can also be altered to work
for the case of unknown 6¢. Since Algorithm 2 fixes a single
consistent 8¢ in an outer loop and then runs the falsification
loop of Algorithm 1 for that fixed ¢, we can estimate §
for each 8¢ which comes up in the outer loop directly using
the procedure described previously for a fixed 6. Thus, §
changes based on the current candidate 6€.

We now discuss the overall effect of suboptimality on
our method. Recall that our approach relies on a contin-
uous notion of optimality to learn 67 and 6¢ (the KKT
conditions) and discrete notions of optimality in a falsifi-
cation loop to learn the LTL structure 6°. We first discuss
the effect of suboptimality on learning 87 and 6¢; in these
cases, any demonstrator suboptimality is reflected by the
KKT conditions failing to hold exactly on the demonstra-
tions (i.e. with an error in the stationarity or complementary
slackness terms). This can be dealt with by solving Prob-
lem 3, which relaxes the KKT conditions to a penalty, so
the optimization problem remains feasible despite the sub-
optimality. In essence, Problem 3 finds the cost function/AP
parameters which make the demonstrations as close to satis-
fying the KKT conditions as possible. Unfortunately, these
parameters may not reflect the true parameters if the demon-
strations are extremely suboptimal; as a result, the accuracy
of the recovered parameters can be sensitive to suboptimality.
Quantifying uncertainty in the learned parameters as a func-
tion of the demonstrator’s suboptimality may help mitigate
any performance degradation, and is an interesting direction
for future work.

Learning the LTL structure 6° is in general less sensi-
tive to suboptimality. To understand this, let us return to the
two-AP setting of Fig. 3. In this setting, we first sort the
possible LTL structures on a number line by the optimal tra-
jectory cost that they admit (see Fig. 4 for a depiction of this
idea). There are finitely many possible LTL structures 6°, and
many different 6° may be semantically identical (for exam-
ple, many 6° have corresponding formulas which are just
permutations of each other), thus admitting optimal trajecto-
ries of the same cost. Thus, while there may be exponentially
many possible 6%, there tends to only be a small number of
groups of cost-distinguishable formulas (i.e. each such group
contains formulas with equal optimal cost). Recall that in run-
ning Algorithm 1 using the given demonstrations to learn 6%,
the falsification loop terminates when the optimal cost of a
trajectory satisfying the current candidate LTL formula and
the known constraints exceeds the 5-adjusted demonstration
cost c(éjdem) /(1 + ). As an example, consider a suboptimal
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Fig.4 Consider the two-AP setting first shown in Fig. 3. We visualize
here sets of LTL formulas which can be distinguished based on cost.
Formulas within group (-) have an optimal cost ¢*. The formulas listed
in each group (A), (B), (C), and (D) are just a small subset of a much
larger set of cost-indistinguishable formulas. For instance, if a demon-
stration has a §-adjusted cost c(éj‘.jem) /(14 6) falling in the green range,
Algorithm 1 will return some LTL formula structure in group (D), each
of which would have an optimal cost of ¢}, (Color figure online)

demonstration of ¢ = (—p2 U p1) A O pa which belongs to
group (D) in Fig. 4 and has a §-adjusted cost c(é}iem)/(l +6).
As long as this adjusted cost lies anywhere within the green
interval in Fig. 4, some formula from group (D) is returned,
which will be a formula consistent with the bounded subopti-
mality of the demonstration. Note that the estimate of § must
be an overestimate of the true § in order for the adjusted cost
to lie in the green region in Fig. 4; this can be encouraged
by setting the confidence interval described earlier in this
section to be large, and selecting § as the fit Weibull location
parameter padded by the confidence interval. In Sect. 9.2, we
show that we can obtain an overestimate of the true § using
this approach.

8 Theoretical analysis

In this section, we prove some theoretical guarantees of our
method: that it is complete under some assumptions, with-
out (Theorem 2) or with (Corollary 2) spec-optimality, that it
returns the shortest LTL formula consistent with the demon-
strations (Corollary 1), and that we can compute guaranteed
conservative estimates of S;/A; (Theorem 3).

Assumption 1 Problem 7 is solved with a complete planner.

Assumption 2 Each demonstration is locally-optimal (i.e.
satisfies the KKT conditions) for fixed boolean variables.

Assumption 3 The true parameters 67, 6%, and 6¢ are in the
hypothesis space of Problem 8: 67 € &7,0° € ®°,0¢ € O°.

We will use these assumptions to show that when the cost
function parameters 67 are known, our falsification loop in
Algorithm 1 is guaranteed to return a consistent formula; that
is, it makes the demonstrations globally-optimal.

Theorem 2 (Completeness and consistency, unknown 6°,
0P) Under Assumptions 1-3, Algorithm 1 is guaranteed to
return a formula ¢ (6°, 67) such that (1) Efem = @6°,67)

and (2) S}iem is globally-optimal under ¢ (6°, 0P), for all j,
(3) if such a formula exists and is representable by the pro-
vided grammar.

Proof To see the first point—that Algorithm 1 returns
¢(és, 6P) such that éj‘.iem = (p(és, 6P) for all Jj, note that
in Problem 8, the constraints (13)—(15) on the satisfaction
matrices S4™ encode that each demonstration is feasible for
the choice of 87 and 6°; hence, the output of Problem 8 will
return a feasible ¢(A°, 67). As Algorithm 1 will eventually
return some go(é“, él’) which is an output of Problem 8, the
cp(és, op ) that is ultimately returned is feasible.

Next, to see the second point - that the ultimately returned
@(0%, 9P) makes each ch.lem globally-optimal. Note that at
some iteration of the inner loop, if Problem 7 is feasible and
its solution algorithm is complete (Assumption 1), it will
return a trajectory which is lower-cost than the demonstration
and satisfies (p(és, 7). Note that disregarding the lower-cost
constraint, Problem 7 will always be feasible, since Prob-
lem 8 returns 67, 0% for which the demonstration is feasible,
and the feasible set of Problem 7 contains the demonstration.
The falsification loop will continue until Problem 7 cannot
produce a trajectory of strictly lower cost for each demonstra-
tion; this is equivalent to ensuring that each demonstration is
globally optimal for the ¢ (6%, 67).

To see the last point, we note that if there exists a formula
¢(és, or ) which satisfies the demonstrations, it is among the
feasible set of possible outputs of Algorithm 1; that is, the
representation of LTL formulas, D, is complete (cf. Lemma
1 in Neider and Gavran (2018)). O

We will further show that the formula returned by Algo-
rithm 1 is the shortest formula which is consistent with the
demonstrations; this is due to Npag only being incremented
upon infeasibility of a smaller Npag to explain the demon-
strations.

Corollary 1 (Shortest formula) Let N* be the size of a min-
imal DAG for which there exists (67, 60%) such that & ?em =
@(0%,0P) for all j. Under Assumptions 1-3, Algorithm 1 is
guaranteed to return a DAG of size N*.

Proof The result follows since Algorithm 1 increases Npag
incrementally (in the outer loop) until some <p(és, él’) is
returned which makes all of the demonstrations feasible and
globally-optimal, and each inner iteration of Algorithm 1 is
guaranteed to find a consistent (p(és, 6P) if one exists (cf.
Theorem 2). O

Remark5 A similar shortest formula guarantee can be
obtained for the reformulation of Algorithm 1 described in
Sect. 7.2 only if it is tractable to perform an exhaustive search
over the number of nodes allocated to each grammar element,
in order to find the shortest-length combination. This can be
computationally intensive, and is in contrast to the simple
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“line-search” over a single complexity variable, Npag, that
the original Algorithm 1 enjoys.

Using Lemma 1, we can show that modifying Algo-
rithm 1 to additionally impose the spec-optimality conditions
in Problem 8 still enjoys the completeness properties dis-
cussed in Theorem 2, while also in general reducing the
number of falsification iterations needed as a result of the
reduced search space.

Corollary 2 (Algorithm 1 with spec-optimality) By modi-
fying Algorithm 1 so that Problem 8§ uses constraints (16),
Algorithm 1 still returns a consistent solution (p(és, 67) if
one exists, i.e. each E}iem is feasible and globally optimal for

each (p(éx, ép).

Proof The result follows from completeness of Algorithm 1
(cf. Theorem 2) and Lemma 1: adding (16a)—(16c) enforces
that E;lem are spec-optimal, and viaLemma 1, é;iem, whichisa
globally-optimal demonstration, must also be spec-optimal.
Hence, imposing constraints (16a)—(16¢) is consistent with
the demonstration. O

Next, we show how the consistency properties extend to
the case of unknown cost function, if Algorithm 2 returns a
solution, which it is not guaranteed to do in finite time.

Corollary 3 (Consistency, unknown 6¢) Under Assump-
tions 1-3, if Algorithm 2 terminates in finite time, it returns
a formula (0%, 0P) such that (1) S}iem E @(0°,07) and (2)
é;lem is globally-optimal with respect to 6 under the con-
straints of (0%, 0P), for all j, (3) if such a formula exists
and is representable by the provided grammar.

Proof Note that Algorithm 2 is simply Algorithm 1 with an
outer loop where potential cost parameters 6¢ are chosen.
From Theorem 2, we know that under Assumptions 1-2,
for the true cost parameter 6¢, Algorithm 1 is guaranteed to
return 67 and 6° which make the demonstrations globally-
optimal under 6¢. From Assumption 3 and the fact that the
true parameters 67, 6¢, and 6¢ will make the demonstrations
globally-optimal, we know there exists at least one consistent
set of parameters (the true parameters). Then, Algorithm 2
will eventually find a consistent solution (possibly the true
parameters), as it iteratively runs Algorithm 1 for all consis-
tent €. O

Finally, we show that for fixed LTL structure and cost
function, querying and volume extraction (Problems 5 and
6) are guaranteed to return conservative estimates of the true
S,' or .Ai.

Theorem 3 (Conservativeness for unknown 67) Suppose
that 6% and 6¢ are known, and 0P is unknown. Then, extract-
ing G' and G' ., as defined in (11)~(12), from the feasible

set of Problem 4 projected onto @ip (denoted F;), returns
Qj: CSiand Gl C A;, foralli e (1,..., Nap}.
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Proof We first prove that QLS C A;. Suppose that there exists
« € G suchthatk ¢ A;.Thenby definition, forall6! e F;,
Gk, Gl.p ) > 0. However, we know that all locally-optimal
demonstrations satisfy the KKT conditions with respect to the
true parameter Gl.p’*; hence, Gip’* € F.Then, x € A(Gip’*).
Contradiction. Similar logic holds for proving that G, C S;.
Suppose that there exists x € G such that x ¢ S;. Then
by definition, for all 6 € F;, G;(k,6”) < 0. However, we
know that all locally-optimal demonstrations satisfy the KKT
conditions with respect to the true parameter 91.’7 . hence,
0" € F;. Then, k € S;(6/"). Contradiction. o

9 Simulation experiments

We show that our algorithm outperforms a competing
method (Sect. 9.1), can be robust to suboptimality in the
demonstrations (Sect. 9.2), can learn shared task struc-
ture from demonstrations across environments (Sect. 9.3),
and can learn LTL formulas 67, 6% and uncertain cost
functions 6¢ on high-dimensional problems. Specifically,
we demonstrate Algorithm 1 on a simulated manipulation
example (Sect. 9.4) and the one-shot learning described in
Remark 4 on a quadrotor surveillance task (Sect. 9.5). Please
refer to the supplementary video for visualizations of the
results.

9.1 Baseline comparison

Likely the closest method to ours is Jha et al. (2019), which
learns a pSTL formula that is tightly satisfied by the demon-
strations via solving a nonconvex problem to local optimality:
arg maxgp min; T(67, é;lem), where (67, éfem) measures
how tightly S;‘em fits the learned formula. We run the authors’
code [26] on a toy problem (see Fig. 5), where the demon-
strator has kinematic constraints, minimizes path length,
and satisfies start/goal constraints and ¢ = Opo,81p1, where
X p1 & by —la] Tx < [3.2.-1,2]T = 3,61
We assume the structure 8° is known, and we aim to learn
0P to explain why the demonstrator deviated from an opti-
mal straight-line path to the goal. Solving Problem 6 returns
gsl = &1 (Fig. 5, right). On the other hand, we run TeLEx
multiple times, converging to different local optima, each
corresponding to a “tight” 67 (Fig. 5, center): TeLEx can-
not distinguish between multiple different “tight” 67, which
makes sense, as the method tries to find any “tight” solution.
This example suggests that if the demonstrations are goal-
directed, a method that leverages their optimality is likely to
better explain them.
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Fig. 5 Toy example for baseline comparison (Jha et al. 2019). The
baseline is unable to disambiguate between possible APs as it does not
consider the demonstrator’s objective
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Fig. 6 Left: We are given 25 suboptimal demonstrations of the same
task, with each demonstration starting at [—1, 1], ending at [3, 4], and
satisfying Opo,8)p1. The globally-optimal cost is 3.25, while the best
cost observed within the 25 demonstrations is 3.274. Right: We fit a
Weibull distribution (orange) to the demonstration costs (right). The
fitted location parameter, adjusted by its 95% confidence interval, is
3.248 < 3.25, which leads to a valid overestimate of §

9.2 H-estimation for suboptimal demonstrations

In this example, we demonstrate the suboptimality estimation
method described in Sect. 7.4. In this example, we consider
the same problem setting as in Sect. 9.1, but instead use sub-
optimal versions of the blue demonstration in Fig. 5. We are
given 25 such demonstrations (Fig. 6, left), and we are inter-
ested in estimating the suboptimality slack parameter §. To
do so, we follow the method in Sect. 7.4, fitting a Weibull
distribution (Fig. 6, right, orange) to the demonstration costs
(Fig. 6, right, blue histogram). The fitted Weibull distribution
has a location parameter of 3.248 after being adjusted by its
95% confidence interval, which is smaller than the optimal
cost of 3.25. Using the suboptimal demonstration with the
lowest cost (in this case, 3.274), we can estimate 6 = 0.008
using (18), which overestimates the true § = 0.007. Per the
discussion in Sect. 7.4, it is important to be able to obtain an
estimate of § which is a tight overestimate of the true §, which
this example achieves. Overall, this example suggests that our
§-estimation technique can effectively estimate the subopti-
mality bound, which is important for learning consistent LTL
formulas in spite of suboptimality in the demonstrations.

9.3 Learning shared task structure

In this example, we show that our method can extract logical
structure shared between demonstrations that complete the
same high-level task, but in different environments (Fig. 7).
A point robot must first go to the mug (p1), then go to the
coffee machine (p3), and then go to goal (p3) while avoiding

obstacles (p4, ps). As the floor maps differ, 67 also differ,
and are assumed known. We add two relevant primitives to
the grammar, sequence:

@1 Q@2 = —p2 Ujo,1,-1] ¢1,

enforcing that ¢, cannot occur until after ¢; has occurred for
the first time, and avoid: V¢ = Ujo,1;—117¢, enforcing ¢
never holds over [1, T;]. Then, the true formula is:

¢* =Vpa AVps A(p1 Q p2) A (p2 Q p3) A Qpo,1;-11P3-

Suppose first that we are given the blue demonstration in
Environment 2. Running Algorithm 1 with 1-SO constraints
(16) terminates in one iteration at Nppog = 14 with

@0 = Vpa AVps A Qpo,1;-11p2 A Qpo,1,-11p3 A (p1 Q p2).

That is, always avoid obstacles 1 and 2, eventually reach
coffee and goal, and visit mug before coffee. This formula is
insufficient to complete the true task (the ordering constraint
between coffee and goal is not learned). This is because the
optimal trajectories satisfying ¢ and ¢* are the same cost,
i.e. both ¢ and ¢* are consistent with the demonstration
and could have been returned, and ¢g, ¢* € @, (cf. Sect. 8).
Now, we also use the blue demonstration from Environment
1 (two examples total). Running Algorithm 1 terminates in
two iterations at Npag = 14 with the formulas

1=V paAVps A Qpo,1;-11P1 A Qpo,1,-112 A O[0,1;-11P3

(which enforces that the mug, coffee, and goal must be even-
tually visited, but in any order, while avoiding obstacles) and
@2 = ¢™*. Since the demonstration in Environment 1 dou-
bles back to the coffee before going to goal, increasing its
cost over first going to goal and then to coffee, the order-
ing constraint between the two is learnable. We also plot the
generated counterexample (Fig. 7, yellow), which achieves
a lower cost, as ¢ involves no ordering constraints. We can
use the learned formula to plan a path completing the task
in a new environment (with different AP parameters 67) in
Fig. 8.

Overall, this example suggests we can use demonstrations
from different environments to learn common task structure
and disambiguate between potential explanations.

9.4 Multi-stage manipulation task

We consider the setup in Figs. 9 and 10 of teaching a 7-
DOF Kuka iiwa robot arm to prepare a drink: first move the
end effector to the button on the faucet (p), then grasp the
cup (p2), then move the cup to the customer (p3), all while
avoiding obstacles. After grasping the cup, an end-effector
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Environment 2

Environment 1
te YN \

y te o .
T | Coffee '
. Obs. 1 Mug Obs. 2 ) .
Goal ;
| Mug ¢

x

Fig.7 We learn a common LTL formula from demonstrations in dif-
ferent environments (different 67) with shared task (same 6°)

New environment, planned

Fig. 8 Trajectory planned with the learned LTL formula on the
environment-transfer example

Fig.9 Multi-stage simulated manipulation task: first fill the cup, then
grasp it, and then deliver it. To avoid spills, a pose constraint is enforced
after the cup is grasped

pose constraint (¢, 8, y) € 84(6?‘{J ) (p4) must be obeyed. We
add two “distractor” APs: a different cup (ps) and a region
(ps) where the robot can hand off the cup. We also modify
the grammar to include the sequence operator Q, (defined as
before), and add an “after” operator

@1 T @2 = Ujo,7;,-11(92 = Ujo, 15— 11901,

that is, ¢; must hold after and including the first timestep
where ¢, holds. The true formula is:

9" = (p1 Q p2) A (p2 Q p3) AO.1;-1103 A (pa T pa2).

@ Springer

Demonstrations

Fig. 10 Demonstrations and counterexamples for the simulated manip-
ulation task

We use a kinematic arm model: ji | = jl+ul,i=1,...,7,
where ||ut||% < 1 for all . Two suboptimal human demon-
strations (§ = 0.7) optimizing c(&y,) = ZtT:_ll ljr+1 — j,||%
are recorded in a Unity virtual reality (VR) environment.
We assume we have nominal estimates of the AP regions
S; (Qip nom) (€.g. from a vision system), and we want to learn
the 6% and 67 of ¢*. We use IPOPT (Wichter and Biegler
2006) to solve the nonlinear optimization problems needed
to compute counterexamples.

We run Algorithm 1 with the 1-SO constraints (16), and
encode the nominal 6 by enforcing that ©/ = {6/ | |6 —
Gi’fnom||1 < 0.05}. At Npag = 11, the inner loop runs for 3
iterations (each taking 30 minutes on ani7-7700K processor),
returning candidates

@1 = (P19p3) A (p29p3) A (Opo,1;-11P3) A (paT p3),
@2 = (P19p3) A (p29p3) A (Oro,1,-1173) A (paT pa2),

and @3 = @*. @1 says that before going to the customer,
the robot has to visit the button and cup in any order, and
then must satisfy the pose constraint after visiting the cup.
@2 has the meaning of ¢*, except the robot can go to the
button or cup in any order. Note that ¢3 is a stronger for-
mula than ¢y, and ¢; than ¢y; this is a natural result of the
falsification loop, which returns incomparable or stronger
formulas with more iterations, as the counterexamples rule
out weaker or equivalent formulas. Also note that the distrac-
tor APs don’t feature in the learned formulas, even though
both demonstrations pass through pg. This happens for two
reasons: we increase Npag incrementally and there was no
room to include distractor objects in the formula (since spec-
optimality may enforce that pi-p3 appear in the formula),
and even if Npag were not minimal, pg would not be guar-
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Fig. 11 Trajectories planned using the learned LTL formula, for the
simulated 7-DOF arm

anteed to show up, since visiting pe does not increase the
trajectory cost.

We plot the counterexamples in Fig. 10: blue/purple are
from iteration 1; orange is from iteration 2. They save cost
by violating the ordering and pose constraints: from the left
start state, the robot can save cost if it visits the cup before
the button (blue, orange trajectories), and loosening the pose
constraint can reduce joint space cost (orange, purple trajec-
tories). The right demonstration produces no counterexample
in iteration 2, as it is optimal for this formula (changing the
order does not lower the optimal cost). For the learned 67,
07 =6 om except for pa, p3, where the box shrinks slightly
from the nominal; this is because by tightening the box, a
Lagrange multiplier can be increased to reduce the KKT
residual. We use the learned 67 and 6° to plan trajectories
which complete the task from new initial conditions in the
environment (Fig. 11).

Overall, this example suggests that Algorithm 1 can
recover 87 and 6° on a high-dimensional problem and ignore
distractor APs, despite demonstration suboptimality.

9.5 Multi-stage quadrotor surveillance

We demonstrate that we can jointly learn 67, 6%, and 6 in
one shot on a 12D nonlinear quadrotor system. The system
dynamics for the quadrotor (Sabatino 2015) are:

Coverage(Gs) Coverage(G-s)

& Vol(gy) . Volg,)
E — Volis) \\//011%1)
805 o __Voligd|g 5 — Yol@t)
= Vol(s,) Vol
8 Vol(g?) \‘;011(9&)
Vol(sy) Vol (th)
__Volig) __ Yolds,)
0 Vol(s,) o Vol(a,)
1 2 3 1 2 3
Demonstrations Demonstrations

Fig. 12 Quadrotor surveillance demonstrations (top) and learning
curves (bottom) (Color figure online)

. %
b
Z
5 sin(y) - cos(y)
Bostey TV costp)
~ Bcos(y) —ysin(y)
a + Bsin(y)tan(B) + y cos(y) tan(B)
— 1. . .
—-.[sin(y) sin(a) + cos(y) cos(@) sin(B)]u; | >
—%[cos(a) sin(y) — cos(y) sin(«) sin(B)]Ju
g— I%[f;oso/) cos(B)]ui
oY+
Izl—ylxo-”} n %M
7 Ll 4 g

R T R = X R T R e e X

(19)

with control constraints ||us|[2 < 10. We time-discretize
the dynamics by performing forward Euler integration with
discretization time 8¢ = 1.2 seconds. The 12D state is
x = [x.y.z 0,8, y. %, 9,2, & B,7]", and the relevant
constants are g = —9.81m/52, m = lkg, I, = 0.5kg - m?2,
I, =0.1kg - m?, and I, = 0.3kg - m?.

We are given four demonstrations of a quadrotor surveilling
a building (Fig. 12): it needs to visit three regions of interest
(Fig. 12, green) while not colliding with the building. All
visitation constraints can be learned directly with 1-SO (see
Remark 4) and collision-avoidance can also be learned with
1-SO, with enough demonstrations. The true formula is

¢* = Op.1;-1171 A Q. 1;-1192 A Qp0.7,-11 3
AU, 7,-117pa,

where pp-p3 represent the regions of interest and ps is
the building. We aim to learn gil’ for the parameteriza-
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Fig. 13 Trajectories planned using the learned LTL formula, for the
quadrotor system

tion §;(6/) = {[I3x3, —I3x31"[x, y,2]" < 6]}, assuming
9£ ¢ = 0 (the building is not hovering). The demonstrations
minimize c(&yy, Qc) =D ,cr Zth_ll v (rip1 — r1)?, where
R ={x,y,z,a&, B, y}and y, = 1,i.e. equal penalties to path
length and angular acceleration. We assume y;- € [0.1, 1]and
is unknown: we want to learn the cost weights for each state.

Solving Problem 8 with 1-SO conditions (at Npag = 12)
takes 44 minutes and recovers 87, 0%, and 6¢ in one shot. To
evaluate the learned 67, we show in Fig. 12 that the cover-
age of the G and gLS for each p; (computed by fixing the
learned 6° and running Problem 6) monotonically increases
with more data. In terms of recovered 0%, with one demon-
stration, we return

@1 = QOro.1,-11p2 A Q10.1;-11P3 A Q[0.7,—11 P4
ADo,7j-117p1-

This highlights the fact that since we are not provided labels,
there is an inherent ambiguity of how to label the regions
of interest (i.e. p;, i = 1,..., 3 can be associated with any
of the green boxes in Fig. 12 and be consistent). Also, one
of the regions of interest in ¢ gets labeled as the obstacle
(i.e. p1 and p4 are swapped), since one demonstration is not
enough to disambiguate which of the four p; should touch
the ground. Note that this ambiguity can be eliminated if
labels are provided (see Sect. 7.1) or if more demonstrations
are provided: for two and more demonstrations, we learn
wi = ¢*, i =2,...,4. When using all four demonstrations,
we recover the cost parameters 0¢ and structure 6° exactly,
ie. <p(és, é") = ¢, and fixing the learned 6° and running
Problem 6 returns g;' = §; and QLS = A;, for all i. The
learned 6¢, 6¢, and 67 are used to plan trajectories that effi-
ciently complete the task for different initial and goal states.

@ Springer

Fig. 14 We build a Unity virtual reality environment to collect demon-
strations for the real-world object delivery manipulation task

Furthermore, assuming that the parameterization is correct,
these plans are guaranteed to satisfy the true LTL formula;
these trajectories are presented in Fig. 13.

Overall, this example suggests that our method can jointly
recover a consistent set of 67, 0°, and ¢ for high-dimensional
systems.

10 Physical experiments

To demonstrate that our method can scale to handle the
challenges of real hardware, we use our method to learn
a real-world multi-stage manipulation task. A video of our
physical experiment can be found in the supplementary mate-
rial.

10.1 Environment and task description

Consider a tabletop manipulation task where the arm needs to
retrieve several objects, put them in boxes, and deliver them
in a particular order (see Fig. 14). Specifically, the task of
interest is to first place a can of soup into a box (Fig. 15b, ¢),
to then deliver that box to a blue delivery region (Fig. 15d).
Next, the robot must move a Cheez-It box into a box located
at a green delivery region (Fig. 15e, f). Finally, while the box
containing the soup is grasped by the robot, the robot must
keep its end effector upright so that the soup does not fall out
of the box. The robot should also avoid colliding with the
furniture as well as any other objects in the scene. There are
a total of 11 objects in the scene, not including the delivery
boxes or the furniture, which are taken from the YCB dataset
(Calli et al. 2017).

To describe the aforementioned task concisely in LTL, we
define another new grammar element:

o1 M g2 =Uo,7;—11((02 = @1)) A Op0,7;- 1192,
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(d)

Fig. 15 One demonstration is recorded in the Unity virtual reality
environment for the object delivery task, seen here from a first-person
perspective. a Initial state. b First, grasp the soup. ¢ Next, place the soup
in the blue box, avoiding the mustard bottle which is in the way. d Place

i.e. if ¢ holds, then ¢ must also hold, and ¢> must eventually
hold. We define the following atomic propositions:

— ps: The soup is grasped

— pp: The movable box is grasped

— pg1: The end effector is inside the blue delivery region

— pc: The Cheez-It box is grasped

— pc2: The end effector is inside the green delivery region

— pp: The end effector is pointed upwards

— pp1: End effector is within 0.05 distance of the gelatin

— pp2: End effector is within 0.05 distance of the bowl

— pp3: End effector is within 0.05 distance of the Master
Chef coffee can

— pp4: End effector is within 0.05 distance of the sugar

— pps: End effector is within 0.05 distance of the mustard
bottle

— ppe: End effector is within 0.05 distance of the banana

— pp7: End effector is within 0.05 distance of the Pringles

— ppsg: End effector is within 0.05 distance of the pitcher

— ppo: End effector is within 0.05 distance of the mug

We can then write an LTL formula which enforces the task
as

¢* =(ps M pp) A (pg M pG1) A (pc M ps2)
A (pG1 @ pc) A (pp M pp).

The first through fourth clauses enforce that the soup, moving
box, blue goal region, Cheez-It, and green delivery region are
visited in the correct order, while the fifth clause enforces

®

the box with the soup in the blue delivery region while satisfying a pose
constraint. e Move to grasp the Cheez-It box. f Place the Cheez-It box
in the green delivery box

that the pose constraint is satisfied when the moving box
is grasped. This is not overly restrictive, since per the first
clause, it is not possible for the moving box to be grasped
without the soup also being grasped. Note that we assume
the demonstrator performs collision avoidance by avoiding
contact with any object which is not the current grasp target.

10.2 LTL formula learning

For this experiment, we seek to learn the LTL formula
structure 0° while the AP parameters 67 and cost function
parameters y are assumed known. This is reasonable for this
example, since the APs detailed in Sect. 10.1 can be readily
measured and the suboptimality parameter § can be used to
handle an imprecisely-known cost function. Specifically, we
assume the cost function is

T—-1 T
c€y) =D ljrr1 = qill3 + carasp D, Y Zaspie
=1

0eO t=1

where j; denotes the arm joint values at time 7, zg.,, €
{0, 1} evaluates to 1 if object o is grasped at time ¢ and 0
otherwise, O is the set of all manipulable objects, and cgrasp =
0.01 is a small penalty which discourages the unnecessary
grasping of objects. Note that the learning is relatively robust
to the specific value of cgpasp, as long as cgrasp is kept small
enough such that the grasp cost term does not outweigh the
path length term (in our experiments, this holds if cgragp <
0.115). Mapping back to the notation of Problem 1, the state
x; contains the joint values j; and the grasp status of each
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object z7, while the control input contains the joint velocities
and a binary variable for each object to model grasping and
releasing. The dynamics are constructed such that the grasp
input for a given object is nullified if the end effector is far
from that object.

We obtain one demonstration of this task which is recorded
in a Unity VR environment (see Figs. 14 and 15). The demon-
stration consists of the state-control trajectory of the arm, as
well as a binary trajectory for each object, evaluating to 0
or 1 at a given timestep depending on if that object is cur-
rently grasped. Furthermore, the initial configurations of all
of the objects are given. Note that this information is suffi-
cient to reconstruct the value of every atomic propositions.
We also note that the VR environment does not simulate the
grasp physics, and simply allows the demonstrator to attach
an object to the grippers when it is close by. To learn 6°, we
run Algorithm 1, where Problem 8 uses the variant described
in Sect. 7.2. We elect to use this variant instead of the orig-
inal Problem 8 as in the simulated manipulation example
(Sect. 9.4) since there are many more APs in this example
(15 compared to 6 in Sect. 9.4), causing the original Prob-
lem 8 to be slow. We allocate one node for each AP, four
“A” nodes, four “M” nodes, one “Q” node, and one “{”
node. We use a suboptimality parameter § = 0.1. Running
Algorithm 1 generates 13 falsified candidate LTL formulas,
including the following:

- @2 = (pc M pG2) A (ps M pp) A (ps Q pG1) A
(pp M pp) A (Opps). This formula does not capture
that the Cheez-Its should only be grasped after the soup
has been grasped.

- @3 = (pg M pp) A (pp M pp) A (pG1 Q pc) A
(pc M pg2) A (ps M pgr). This formula does not
capture that the soup should be contained in the box upon
delivery.

- 98 = (pc M pG2) A (ps M pp) A (pg M pG1) A
(pp Q pc) A (O pps)- This formula does not capture that
the Cheez-Its should only be grasped after the movable
box has been grasped.

- @13 = (pp M pG1) A (pc M pG2) A (pp M pp) A
(ps M pp)A(pc1 Q pc)- This formula does not enforce
the pose constraint at the correct timesteps.

The candidate LTL formulas are falsified by the coun-
terexample generation, for which we employ TrajOpt (Schul-
man et al. 2014) as the nonlinear trajectory optimizer (see
Sect. 5.3). We visualize the counterexamples for ¢;, @3, ¢3,
and @13 in Fig. 16. One can observe that the missing con-
straints in these candidate LTL formulas accept lower-cost
trajectories (achieved for example by not delivering the goods
in the desired order, or by not picking up particular objects)
which contradict the optimality of the demonstration. We
emphasize that our method can ignore the large number of
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Fig. 16 Counterexample visualization on the object delivery task. The
red, green blue, and cyan trajectories correspond to ¢z, @3, @3, and ¢13,
respectively, as described in Sect. 10.2 (Color figure online)

L) o
) I

oniinal

Fig. 17 Setup of the object delivery task in the real world. The small
brown box corresponds to the small blue box in the VR environment,
while the large brown box corresponds to the green box in the VR
environment (Color figure online)

distractor objects. Limiting the expressibility of the DAG by
limiting the number of nodes encourages the learned formula
to be parsimonious, since the free nodes will be needed to
explain demonstrator optimality rather than involving the dis-
tractor objects. In the 14th iteration, our method terminates
after a total of 5 minutes, returning the true formula ¢*.

10.3 Real-world planning and execution

Now that an LTL formula describing the desired task has
been learned, we seek to use the learned formula to plan in
the real world. We work with the real-world setup in Fig. 17.
This setup has different furniture and object configurations
compared to the VR demonstration environment. However,
recall that since the learned LTL formula is parameterized
by the APs, the learned LTL formula is not hardcoded to
specific configurations and can handle changes in the object
locations.

To reflect the realistic situation where the robot may be
tasked to find and deliver a set of objects scattered across the
workspace with a priori unknown locations, we assume that
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Fig. 18 Object segmentation. a RGBD data provided by the Kinect sensor. b Segmented image. ¢ Segmented point cloud, which is used to infer

object poses

the locations of the delivery regions and the movable box are
known, while the YCB objects have unknown location. The
movable blue box in the VR environment corresponds to the
small brown box on the left in Fig. 17, while the green box
in the VR environment corresponds to the big brown box on
the right in Fig. 17.

To apply our learned LTL formula, we first estimate the
poses of the YCB objects using RGBD (image and point
cloud) data provided by a Kinect sensor mounted above the
base of the arm. We do so by leveraging the deep learning-
based object segmentation framework in Zhou et al. (2019)
and train it on the YCB object dataset. The trained network
takes the Kinect RGBD data as input and returns a segmented
point cloud (Fig. 18). We use the iterative closest point (ICP)
algorithm (Rusu and Cousins 2011) with 1000 random ini-
tializations to estimate the object poses from the segmented
point cloud by fitting them to the source point clouds. We
visualize the objects at their estimated poses in an Open-
rave environment, which we also use for trajectory planning
(Fig. 19). We note that due to occlusions and sensor noise
present in the point cloud data, the poses recovered for the
objects further from the Kinect can suffer from rotational
inaccuracies (e.g. the mustard bottle is upside down and the
pitcher is rotated around 90 degrees). While this degree of
pose accuracy is sufficient to complete our task, we also note
that more sophisticated methods can be employed (e.g. Deng
et al. 2019, which provides good pose recovery on the YCB
dataset in the presence of occlusions and object symmetry).

Now that the object poses have been determined (and thus
so have the APs), we can employ the learned LTL formula to
plan in the real environment. To do so, we solve Problem 1
for ¢ (6°, ) using the approach detailed in Sect. 5.3. Specif-
ically, we construct a high-level plan Z by solving a MILP,
and then find a low-level joint trajectory which is consistent
with Z with the trajectory optimization algorithm TrajOpt
(Schulman et al. 2014). Like for the counterexample gen-
eration, we choose TrajOpt instead of IPOPT as it is better
tuned for manipulation in cluttered environments. Snapshots

Fig. 19 Planning environment used. Object poses are recovered from
the segmented depth cloud by running ICP

of the executed plan are presented in Fig. 20. Please see the
supplementary video for a full visualization.

Overall, this experiment suggests that our learned LTL
formulas can be used to transfer complex long-horizon task
specifications across environments, and that the method is
applicable to high-dimensional robotic systems acting in the
real world.

11 Conclusion

This paper presents a method that learns LTL formulas with
unknown atomic propositions and logical structure from only
positive demonstrations, assuming the demonstrator is opti-
mizing an uncertain cost function. We leverage both implicit
and explicit optimality conditions on the demonstrations,
namely the KKT conditions and algorithmically-generated
lower-cost counterexample trajectories, respectively, in order
to reduce the hypothesis space of LTL specifications con-
sistent with the demonstrations. The generated lower-cost
counterexample trajectories, together with the rejected can-
didate LTL formulas which admitted them, are concrete
examples of the alternative behaviors and task specifications
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(d)

Fig.20 Executed trajectory on the real robot. The robot first grasps the
tomato soup a, moves to place it inside the movable box b, drops the
soup into the box and grasps the loaded box ¢, and moves the loaded

rejected by our method, which can make our approach more
explainable for an end user. We also derive theoretical guar-
antees for our method and demonstrate its applicability across
a wide range of experiments in simulation and hardware.
Specifically, we show that our method outperforms base-
line approaches (Sect. 9.1), can learn abstract high-level task
structure shared across demonstrations, which can transfer
to tasks in different environments (Sects. 9.3 and 10), and
scales to high-dimensional systems in simulation (Sects. 9.4
and 9.5) and in the real world (Sect. 10).

In future work, we aim to robustify our method to mis-
labeled demonstrations, explicitly consider demonstration
suboptimality arising from risk, and reduce our method’s
computation time. We are also interested in integrating the
methods presented in this paper with our recent results on
uncertainty-aware constraint learning (Chou et al. 2020b) in
order to plan with uncertain LTL formulas.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-021-10004-
X.
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the box to the blue delivery region d. The robot then moves to grasp
the Cheez-It box e, and finally places it in the box located at the green
delivery region
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