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Spatial patterns of tree and shrub biomass in a deciduous
forest using leaf-off and leaf-on lidar
Kristen M. Brubaker, Quincey K. Johnson, and Margot W. Kaye

Abstract: Understanding patterns of aboveground carbon storage across forest types is increasingly important as managers
adapt to threats of global change. We combined field measures of aboveground biomass with lidar to model fine-scale biomass
in deciduous forests located in two watersheds; one watershed was underlain by sandstone and the other by shale. We measured
tree and shrub biomass across three topographic positions for both watersheds and analyzed biomass using mixed models. The
watershed underlain by shale had 60% more aboveground biomass than the sandstone watershed. Although spatial patterns of
biomass were different across watersheds, both had higher (between about 40% and 55%) biomass values at the toe-slope position
than at the ridge-top position. To model fine-scale spatial patterns of biomass, we tested the effectiveness of leaf-on and leaf-off
lidar combined with topographic metrics to develop a spatially explicit random forest model of tree and shrub biomass across
both watersheds. Leaf-on variables were more important for modeling shrub biomass, while leaf-off variables were more
effective at modeling tree biomass. Our model of tree and shrub biomass reflects the distribution of biomass across both
watersheds at a fine scale and highlights the potential of abiotic factors such as topography and bedrock to affect carbon storage.
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Résumé : Il est de plus en plus important de comprendre les profils de séquestration aérienne du carbone qui caractérisent les
différents types de forét alors que les gestionnaires s’adaptent aux menaces associées au changement global. Nous avons
combiné des mesures de biomasse aérienne prises sur le terrain avec le lidar pour modéliser la biomasse a petite échelle dans des
foréts décidues situées dans deux bassins versants : un des bassins reposait sur du gres et I'autre sur du schiste. Nous avons
mesuré la biomasse des arbres et des arbustes dans trois positions topographiques dans les deux bassins et analysé la biomasse
al'aide de modéles mixtes. Le bassin qui reposait sur le schiste avait 60 % plus de biomasse aérienne que le bassin reposant sur
le gres. Bien que la répartition spatiale de leur biomasse différe, les deux bassins avaient des valeurs de biomasse plus élevées
(environ 40 a 55 %) au pied qu’au sommet de la pente. Pour modéliser la répartition spatiale a petite échelle, nous avons testé
l'efficacité du lidar en présence et en I'absence du feuillage jumelé a des données topographiques pour élaborer un modele
forestier aléatoire, spatialement explicite, de la biomasse arborescente et arbustive dans les deux bassins. Les variables mesurées
en présence du feuillage étaient plus importantes pour modéliser la biomasse des arbustes tandis que les variables mesurées en
I'absence du feuillage étaient plus efficaces pour modéliser la biomasse des arbres. Notre modéle de biomasse arbustive et
arborescente reflete la répartition de la biomasse a petite échelle dans les deux bassins et met en évidence I'influence potentielle
des facteurs abiotiques, tels que la topographie et le substrat rocheux, sur la séquestration du carbone. [Traduit par la Rédaction]

Mots-clés : biomasse, lidar, sous-bois, carbone, arbuste.

2016), climate (Iverson et al. 2008), and soil and parent material
(de Castilho et al. 2006). On a local scale, total biomass, as well as
the way that biomass is partitioned in an ecosystem, can differ
significantly according to terrain (Smith et al. 2017; Bolstad et al.
2018) and soil characteristics (Tateno et al. 2004). Biomass at land-
scape and broader scales (regional to national) has been modeled

1. Introduction

Understanding patterns of carbon storage across forest types is
increasingly important as managers adapt to the diverse threats
of global change. Forests are vital components of the global car-
bon cycle and actively store and release carbon depending on

many biotic and abiotic factors. Carbon stored in aboveground
live and standing dead tree biomass can account for as much as
60% of the total terrestrial carbon sequestration in the Northern
Hemisphere; however, this is highly variable across forests
(Woodbury et al. 2007; Curtis 2008). Understanding the interac-
tion and variation of biomass pools across space could allow forest
managers to optimize carbon storage. Many factors are known to
influence patterns and distribution of biomass pools, including
vegetation community (Ruiz-Benito et al. 2014), forest structure
(Duncanson et al. 2015), topography (Xu et al. 2015; Zald et al.

from forest inventory plots (Birdsey 1992; Brown et al. 1999), as
well as fine-scale budgets on the order of one watershed (Smith
et al. 2017), but spatial patterns of biomass pools across abiotic
gradients are not well understood.

Topographic position and bedrock affect vegetation commu-
nity composition and productivity through several different
mechanisms. For example, trees tend to grow taller and contain
more biomass in toe-slope positions, but it is not clear if this is due
to water availability, nutrient availability, or an interaction of the
two (McNab 1989; Bolstad et al. 1998; Tateno et al. 2004). Topo-
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graphic factors that influence vegetation include hillslope po-
sition, slope, curvature (concavity or convexity of the site),
hydrology, and aspect, among others (Swetnam et al. 2015). Bed-
rock also impacts vegetation communities through soil texture,
nutrient holding capacity, and drainage rates (Hahm et al. 2014;
Brantley etal. 2017). In the area of this study (northeastern United
States), sandstone-derived soils tend to be excessively drained of
both water and nutrients, which can limit plant growth, while
shale-derived soils tend to be more productive (Ciolkosz et al.
1989). Spatial heterogeneity in forest biomass driven by topogra-
phy and bedrock may require fine-scale (100 m?to 1 ha), spatially
explicit models that take into account site-specific variables such
as terrain.

Lidar has been used extensively to model landscape-scale tree
biomass, ecosystem carbon values, and carbon fluxes (Hudak et al.
2012; Asner et al. 2012; Zolkos et al. 2013). Researchers have used a
range of methods to model biomass, from individual-tree calcula-
tion and measurement (Zhao et al. 2009) to plot-level (Popescu and
Wynne 2004; Hudak et al. 2008) and landscape-level (Wulder etal.
2012) assessments. Different statistical modeling techniques have
been used, including parametric models (Lefsky et al. 1999), ma-
chine learning approaches including random forests (Gleason and
Im 2012; Hudak et al. 2012), object-based classification (van Aardt
et al. 2006), and single-tree detection algorithms (Popescu 2007;
Brandtberg et al. 2003). Methods for lidar-based estimates of forest
biomass are quickly advancing but inherently miss biomass pools
beneath the canopy.

Shrub biomass may play an important role in terrestrial carbon
budgets (Greaves etal. 2015; Lietal. 2015; Kristensen et al. 2015).
Modelling shrub biomass in forested ecosystem, however, is diffi-
cult due to the presence of overstory tree canopies, which obscure
the signal from the understory for both passive (Defibaugh y
Chavez and Tullis 2013) and active (Hill and Broughton 2009) re-
mote sensing techniques. Lidar has been used to model shrubs for
habitat suitability (Vierling et al. 2008; Martinuzzi et al. 2009;
Barber et al. 2016) and to model shrub presence or absence with up
to 83% accuracy (Martinuzzi et al. 2009). Shrub presence or ab-
sence has also been modeled using lidar to determine invasive
shrub presence in urban areas (Asner et al. 2008; Singh et al. 2015;
Chance et al. 2016); however, few studies have modeled abun-
dance or biomass of shrubs across the landscape (Gopalakrishnan
et al. 2018). Also, many of the studies using lidar to model under-
stories have been focused on more open coniferous or eucalypt
forests (Wing et al. 2012; Barber et al. 2016; Hudak et al. 2016;
Fedrigo et al. 2018) versus closed deciduous forests.

The purpose of this study is to further our understanding of
how aboveground biomass pools differ across mixed deciduous
forests and how to model these pools with lidar. Our objectives
were to (i) calculate relative biomass pools for trees and shrubs in
mixed deciduous forests, (ii) determine how leaf-on or leaf-off
lidar data can be used to model tree and shrub biomass indepen-
dently, and (iii) explore how abiotic factors such as bedrock and
terrain can influence spatial patterns of tree and shrub biomass.
For our lidar-based analysis, we chose a machine learning model-
ing approach with random forest because of its relatively robust
ability to work with correlated variables and variables with non-
normal distributions (Breiman 2001; Cutler etal. 2007; Olden etal.
2008). Using fine-scale maps (10 m resolution) of tree and shrub
biomass, we identified trends in biomass across varying land-
forms in watersheds with different bedrock types. The diversity of
topographic and bedrock positions provides a range of abiotic and
biotic conditions needed to capture spatial variability in aboveg-
round biomass. We completed our study at the Susquehanna
Shale Hills Critical Zone Observatory (CZO), which is an interdis-
ciplinary observatory designed to study the creation and function
of the critical zone, the region where bedrock intersects with the
biosphere.

1021

2. Materials and methods

2.1. Study area

This study took place in a mixed deciduous forest in the Susque-
hanna Shale Hills CZO in central Pennsylvania, USA, part of the
National Critical Zone Observatory Network (Fig. 1). The National
Critical Zone Observatory network includes nine environmental
observatories designed to improve our understanding of how var-
ious aspects of the surface of the Earth interact. We collected data
for two subwatersheds within the broader Shaver’s Creek water-
shed described in detail by Brantley et al. (2016). Both watersheds
were cleared of timber during the late 1800s to early 1900s, but
there is no known recent timber harvesting in our study areas.
Forests in both watersheds are about 100 years old, with those at
Shale Hills potentially being slightly older (Brantley et al. 2016;
Smith et al. 2017).

The first watershed, Shale Hills, is approximately 9 ha and con-
tains a deciduous forest dominated by Quercus rubra L., Quercus
prinus L. syn Quercus montana Willd., Quercus alba L., Carya spp., and
Acer saccharum Marsh. The vegetation community type is oak-
mixed hardwood, which is a diverse forest that tends to be found
on relatively mesic, rich soils in the region. It is characterized by a
sparse understory. This watershed is underlain by shale bedrock
of the Clinton group, and the soil types are Berks-Weikert associ-
ations. Elevation in the watershed ranges from 260 m to 300 m
above sea level, and the watershed has both northern and south-
ern aspects. Slopes in the midslope section of both northern and
southern aspects of the watershed average about 32%, with a
range between 18% and 45%.

The second watershed, Garner Run, is approximately 125 ha. It
also contains relatively undisturbed second-growth forest on
northern and southern aspects, with some tree harvesting having
occurred on the southern aspect in an area excluded from our
study. The watershed is underlain by sandstone of the Tuscarora
formation. The forest type in this watershed is primarily a dry
oak-heath type characterized by a less diverse overstory of Quercus
montana, Acer rubrum L., Betula lenta L., and Nyssa sylvatica Marsh.
The understory tends to have an abundance of both deciduous
and evergreen shrubs, including Vaccinium spp. and Gaylussacia
spp., and other members of the Ericaceous family such as Kalmia
latifolia L. and Rhododendron maximum L. Elevation in the watershed
ranges from 470 m to approximately 650 m above sea level. Slopes
on the southern aspect at mid-slope average 35%, with a range
between 10% and 60%, while slopes on the northern aspect at
mid-slope average about 25%, with a range between 6% and 48%.

2.2. Methods overview

We used several methods to further our understanding of bio-
mass pools and patterns of biomass across our watersheds, partic-
ularly with respect to topographic position and bedrock. Each
method is described below in more detail. We used 10 m wide belt
transects located parallel to slope contour at each topographic
position in both watersheds to sample tree biomass. We sampled
shrub biomass in smaller shrub plots along the belt transects.
Using mean biomass values from each topographic position, as
well as the relative area of the topographic positions in each wa-
tershed, average tree biomass and shrub biomass were estimated
for each watershed. We then used linear mixed models to test the
significance of watershed and topographic position on tree and
shrub biomass. We finally used leaf-on and leaf-off lidar to build a
spatial model of shrub and tree biomass across both watersheds.
We used random forest regression to determine which leaf-on and
leaf-off lidar variables were important for modeling tree and
shrub biomass. Once we determined which model explained the
maximum amount of variance for tree biomass and shrub bio-
mass, we applied these models to our study area, allowing us to
model biomass pools across topographic positions and water-
sheds.
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Fig. 1. The location of the Susquehanna Shale Hills Critical Zone Observatory in Central Pennsylvania, USA, with the location and relative
size of the Garner Run and Shale Hills watersheds and the approximate transect locations. [Colour online.]
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2.3. Data sources

Lidar and field data were collected and used for this analysis.
Field data were collected primarily during the summers of 2014
(trees, both watersheds) and 2015 (shrubs, both watersheds), and
lidar data were collected in 2010. The earlier date of the lidar
survey compared with the field measurements should not bias
our results because the structure of these mature forests
(>100 years old) is slow to change through time and light condi-
tions for the understory are consistently low. Shrub biomass
estimates only included understory species and not young regen-
erating trees. The shrub biomass was primarily from Kalmia
latifolia, which is extremely slow growing in the region (Brose
2016). Tree biomass increased by ~3% per year across the Shale
Hills Watershed during this time (Smith et al. 2017).

A stratified sampling plan was used to measure forest composi-
tion and structure at the two watersheds. We were particularly
interested in understanding the role of abiotic factors and topo-
graphic position on patterns of biomass, so permanent transects
were established as part of the CZO and marked to allow monitor-
ing of vegetation at different topographic positions. Earlier lidar-
based studies (Brubaker et al. 2014) have shown that tree height
varies with respect to topographic position at our study locations,
so we stratified our sampling scheme to ensure similar numbers

Transects
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of plots across the range of biomass values in the watershed
(Hawbaker et al. 2009). Linear transects were placed in the field in
50 m or 100 m segments, depending on the watershed. The start-
ing point was established based on observed patterns of curvature
in the field, and the transect was marked off following a compass
reading that approximately paralleled the slope. At the end of
each segment, the next segment was placed to again parallel the
slope, so that each segment could have a different azimuth to
follow the approximate terrain. Linear transects were sampled at
toe-slope, mid-slope, and ridge-top positions to capture the diver-
sity of topography in the watersheds and the variable terrain at
each of the topographic positions (Fig. 1). We designed our sam-
pling scheme to ensure that we were capturing adequate data
across the range of biomass values in each watershed and also so
that we could repeat our measures of the same trees to capture
carbon fluxes in future studies.

In the Shale Hills watershed, six transects were measured: one
transect for each topographic position (toe-slope, mid-slope, and
ridge-top) on both the northern and southern aspects of the wa-
tershed (Fig. 1). Transects were 10 m wide and sampled in 50 m
segments that followed the topographic position. The length of
transects sampled ranged from 200 m to 250 m, and a total of
1.35 ha were sampled (15% of the watershed). The start points
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Fig. 2. Schematic showing layout of tree (circles) and shrub (within squares) measurements measured at each 100 m segment of sampling

transect for Garner Run. [Colour online.]
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of transects were placed at the western and downstream end of
the watershed where there is more space to avoid convergence of
transects as we sampled in an eastward direction up the narrow-
ing watershed. Estimated tree biomass in the watershed does not
show a clear east-west trend (Smith et al. 2017) so sampling at
multiple topographic positions in the western portion of the wa-
tershed captures the variability in biomass across the area.

Because Garner Run is a much larger watershed (125 ha), a
slightly different sampling strategy was used (Brantley et al. 2016).
The southern aspect at Garner Run tends to be steeper, with a
greater range of elevation (Brantley et al. 2016) and shorter trees
(Brubaker et al. 2014). Additionally, there had been recent timber
harvesting on the lower slope position on the southern aspect of
the watershed. Therefore, we set up four transects: toe-slope, mid-
slope, and ridge-top transects on the northern aspect of the wa-
tershed and a mid-slope transect on the southern aspect of the
watershed. These transects were 10 m wide and sampled in 100 m
segment lengths, and the total length of transects ranged from
about 800 m to over 1 km. A total of 4.1 ha was sampled (3.25% of
the watershed area). In both watersheds, each transect segment
end was georeferenced using a Trimble GeoXT with differential
correction during leaf-off periods. Distances within transects
were measured with a tape measuring from a permanent marker
at each transect segment end.

All trees greater than 10 cm diameter at breast height (dbh) that
were within 5 m of the transect center line were included in the
sample (Fig. 2) and permanently tagged with a unique number.
For each tree, species and dbh were determined. The location of
each tree was mapped by recording its distance along and distance
from the transect line. To assess shrub composition and biomass,
a shrub plot was placed along transects every 10 m in the Shale
Hills watershed and every 20 m in the Garner Run watershed.
Each shrub plotwas2mx2m (4 m?) and centered on the transect.
A smaller plot was used for measuring shrubs than for measuring
trees because of the high number of shrub stems in each plot and
because a microplot approach is both objective and more accurate
than cover-based methods (Chojnacky and Milton 2008). A total of
318 shrub plots were used in the analysis (201 plots at Garner Run
and 116 plots at Shale Hills). Within each shrub plot, all shrub
stems with a diameter at root collar (DRC) between 3 mm and
10 cm were measured. For each stem, we measured DRC and iden-
tified each stem to species or genus (in the case of Vaccinium spp.).
Only shrub species were used in biomass calculations, and young
trees were excluded from the analysis (Table 1).

High-resolution lidar data were collected by the National Center
for Airborne Laser Mapping (NCALM) during the leaf-on (July 2010)
and leaf-off (December 2010) periods of 2010. Small footprint dis-
crete return airborne data were acquired using an Optech Gemini
ALTM 06SEN/CON195 sensor, with a scan angle of +15° and an
average flying height of 600 m (Lu et al. 2014). The point density
was approximately 10 points-m-2 (all returns), with a vertical ac-
curacy of 2-4 cm. A 0.5 m resolution DEM was generated from the
leaf-off flight. Root mean square error (RMSE) was not calculated
on this DEM, but the average vertical error as measured from

Table 1. List of shrub species, along with citation for
each species-specific equation.

Author

Smith and Brand 1983
Smith and Brand 1983
Boring and Swank 1986
Dickinson and Zenner 2010
Smith and Brand 1983
Kalmia latifolia Boring and Swank 1986
Ostrya virginiana Means et al. 1994
Rhododendron nudiflorum Means et al. 1994
Vaccinium spp. Dickinson and Zenner 2010
Viburnum spp. Dickinson and Zenner 2010

Species

Acer pensylvanicum
Amlanchier spp.
Cornus florida
Crataegus spp.
Hamamelis virginiana

Note: References were selected based on their proximity to
the study site.

flight edge matches was less than 0.05 m (NCALM 2010). Indepen-
dent accuracy assessment was provided by the vendor.

2.4. Biomass calculations

At the individual-tree level, biomass was calculated using the
equations of Chojnacky et al. (2014) derived for each species group
(determined by taxonomic groups and the specific gravity of wood
for various species). We calculated shrub biomass using species-
specific or species-group-specific allometric equations that relate
DRC to biomass (Table 1; Dickinson and Zenner 2010; Smith and
Brand 1983; Means et al. 1994; Boring and Swank 1986) using meth-
ods described in Chojnacky and Milton (2008).

Tree biomass was calculated for every 10 m x 10 m segment of
the transect in both Shale Hills and Garner Run watersheds. For
shrubs, the biomass of each stem within the 4 m? plot was calcu-
lated and summed (in tonnes (t) per hectare). Using GIS (Arc-
GIS 10.3, Environmental Systems Research Institute (ESRI) 2011),
the watershed was divided into toe-slope, mid-slope, and ridge-top
positions to use in up-scaling the plot estimates into a watershed-
scale biomass estimate for each watershed. These topographic
positions were identified in GIS using patterns of curvature to
determine ridge-top, mid-slope, and toe-slope areas (Fig. 3). Ridge-
top positions were dominated by patterns of convex curvature,
mid-slope positions were areas that were dominated by planar
curvature patterns, and toe-slopes dominated by concave curva-
ture. Using the relative area of each topographic position in each
watershed, a weighted mean approach was used to generate a
watershed-scale tree and shrub biomass estimate for each water-
shed.

2.5. Effect of watershed-bedrock and topographic position
on aboveground biomass in trees and shrubs

Linear mixed models were used to analyze the effect of watershed-
bedrock and topographic position on aboveground biomass in
trees and shrubs. Models were fitted using the “Ime4” package
(Bates et al. 2015) in R (R Core Team 2016). The response variable
was biomass per plot for both trees and shrubs. We used a “Gaussian”
error distribution for biomass. Plots nested within transect nested

< Published by NRC Research Press



Can. J. For. Res. Downloaded from cdnscienceipub.com by PENNSYLVANIA STATE UNIVERSITY on 02/10/22
or personal use only.

1024

Can. ]. For. Res. Vol. 48, 2018

Fig. 3. Ridge-top, mid-slope, and toe-slope topographic positions delineated using GIS for both (A) Garner Run and (B) Shale Hills watersheds.
Percent slope at each watershed is also shown. Watersheds are not shown at the same scale. [Colour online.]
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within topographic positions were included as a random effect for
trees and shrubs to account for non-independence in biomass
along transects.

We analyzed five models with different combinations of explan-
atory variables including watershed-bedrock and topographic po-
sition. Separate models were conducted for trees and shrubs. The
models included a null model (intercept only), single explanatory
variable models, an additive combination of the two explanatory
variables, and a model with a single interaction effect. We com-
pared the relative support of models with Akaike’s information
criterion (AIC; Burnham and Anderson 2002). Models were consid-
ered to have competitive support when the difference between
the AIC of each model and the most supported model was <2.0
(Burnham and Anderson 2002).

2.6. Lidar analysis and processing

Lidar height metrics were calculated for both leaf-on and leaf-
off lidar using the grid metrics program of FUSION (McGaughey
2009). Heights were normalized using the 0.5 m resolution lidar-
derived digital elevation model (DEM) generated from the leaf-off
flight. The cell size used in the grid was 10 m to correspond to the
width of our vegetation sampling transects. Percent cover was
calculated as the total number of first returns over a height break
of 3 m, divided by the total number of first returns in the cell. We

Topographic Positions
and Slope
; D Garner Run
[ shale Hills
Topographic Positions
| area excluded
' Percent slope
[ Jo-10
[ J11-20
] 21-30
-4
B 41 -59

also calculated percent cover between 0.5 m and 3 m using the
cover program of FUSION (percentage of all returns occurring
between heights of 0.5 m and 3 m), and the density of points that
occurred between 0.5 m and 3 m using the density metrics pro-
gram. These additional variables were only used as predictive vari-
ables in our shrub model.

The 1 m lidar-derived DEM was resampled using bilinear inter-
polation to a 10 m cell using ArcGIS 10.3 Spatial Analyst to gener-
ate terrain variables at the same scale as the vegetation data. We
used the 10 m resolution DEM to generate percent slope and total
curvature using the Slope and Curvature tools, respectively, in
ArcGIS 10.3 Spatial Analysis extension.

2.7. Spatial model of shrub and tree biomass from leaf-on
and leaf-off lidar

We used random forest regression to create a spatial model of
shrub and tree biomass from leaf-on and leaf-off lidar. Random
forest is an ensemble learning method used for either classifica-
tion or regression. Random forest works by generating a “forest”
of regression trees and randomly selects predictor variables to use
in each tree. This technique has been successful with lidar data or
other large datasets with many candidate variables (Cutler et al.
2007; Hudak etal. 2008; Martinuzzi et al. 2009). We chose random
forest specifically because it can handle non-normally distributed
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data and because it does not overfit the data, removing the need
for an independent validation dataset (Breiman 2001). Because we
were modeling fine-scale (10 m resolution) patterns of biomass for
trees and shrubs, we chose to use a 10 m cell size for our raster-
based biomass models. This is a smaller cell size than has shown to
be optimal in previous lidar studies (Gobakken and Naesset 2008;
Frazer et al. 2011), but because our objectives were to quantify
spatial patterns of biomass across relatively small watersheds
with rapidly changing terrain, we wanted to model as small of a
cell size as possible. We also explored using a smaller cell size for
our shrub model to match our smaller field plots but chose not to
because with a smaller cell size, there were not enough lidar
points getting through to the understory to get meaningful data.

Using the randomForest package (Liaw and Wiener 2002) in R
(version 3.2.3, R Core Team 2016) we created a random forest
regression model to predict shrub and tree biomass separately.
We modeled both watersheds simultaneously in the same model.
Variables for leaf-on and leaf-off height grid metrics, as well as
previously described terrain variables, were assessed for impor-
tance to initially build models for tree and shrub biomass
(Table 2). We included UTM eastings and northings to assess
whether adding spatial data would improve model performance
(Mascaro et al. 2014). Additionally, a variable measuring the dis-
tance between the center of the measured plot on the ground and
the center of the grid cell was included to determine if this dis-
tance had an effect on the model results. Leaf-on and leaf-off lidar
variables were modeled separately and then combined to fully
explore the effectiveness of leaf-on and leaf-off lidar in our study
site. In randomForest, the importance of variables is assessed us-
ing %IncMSE, which shows the percent increase of mean squared
error (MSE) if the variable was randomly shuffled in the model. To
determine which variables were important and to ensure a parsi-
monious model, variables in the final model were chosen using an
iterative process whereby variables that had low importance val-
ues (%IncMSE) were removed systematically until we were able to
build a model that maximized the amount of variance explained
(Diaz-Uriarte and Alvarez de Andrés 2006). Additionally, in the
case of highly intercorrelated variables (Pearson > 0.75), the vari-
able that was less important (from %IncMSE) was removed from
consideration. We assessed the accuracy of our final model by
analyzing the percent variance explained, which is a pseudo R?.
We also validated the model by applying the model to a separate
set of plots that were not used to generate the model. We calcu-
lated RMSE and relative RMSE using the independent validation
dataset, based on modeled versus actual biomass values for the
validation plots.

Along each 100 m segment of the transect, three 200 m? plots
(20mx 10 m) were identified and used as ground plots on which to
fit our tree biomass model, and one 200 m?plot was used as a
validation plot. We spaced these along each segment to avoid
overlap within single lidar grid cells and used a 20 m length (vs.
10 m length used for biomass calculations from field data) to
account for possible location errors associated with either GPS or
a misalignment of cells between the raster and the ground plot.
Both Frazer et al. (2011) and Gobakken and Naesset (2008) note
that with a larger ground plot size, there is less of an effect from
GPS positioning errors. Also, using a slightly larger ground plot
reduces error caused by edge effect (trees with stems outside of
the plot and portions of their canopy inside the plot) (Frazer et al.
2011). Although it has previously been suggested that raster cell
size should match the size of the ground plots used to calibrate
the model (White et al. 2013), optimal ground plot size does not
necessarily align with the cell size from lidar-based metrics
(Hayashi et al. 2015) Additionally, it may be beneficial to map
forest attributes at a higher precision than the plot size, particu-
larly with a high-density lidar dataset (Silva et al. 2017). A total of
167 plots were used to fit the model, and 54 plots were used for
validation.
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To build the model for shrub biomass, the same process was
used, with the addition of the percent low cover and 3 m density
variables for both leaf-on and leaf-off lidar. Two-hundred and fifty-
three shrub plots were used to fit the model, and 63 randomly
chosen plots were used during the model validation process.

Once random forest models were created that explained the
maximum amount of variance for both tree biomass and shrub
biomass, these models were applied to the rest of the watershed
usinga 10 m x 10 m grid. Mean biomass values from the raster
model for trees and shrubs were compared with mean measured
biomass values for each topographic position.

3. Results

3.1. Biomass values across topographic position and
watershed

For both watersheds, the toe-slope position had the greatest
biomass (Table 3). At Shale Hills, the ridge-top position had the
lowest biomass, while at Garner Run, the mid-slope position on
the southern aspect had the lowest biomass (Table 3). Using
weighted means for each topographic position, excluding the re-
cently harvested area, the average biomass of trees was 247.43 t-ha™!
with a standard deviation of 73.6 t-ha'in Shale Hills and
155.20 t-ha!with a standard deviation of 41.5 t-ha-*at Garner Run.
The greatest proportion of biomass in trees was stored in Quercus
spp. at both Shale Hills and Garner Run.

Shrub biomass was considerably less than tree biomass (<1% at
most locations) (Table 3). The shrub biomass at Shale Hills was less
than 20% of the mean shrub biomass at Garner Run. Biomass of
the understory vegetation was highest at the ridge-top position
at both watersheds. Understory vegetation at Garner Run, domi-
nated by Kalmia latifolia and Vaccinium spp., was denser and repre-
sented a greater proportion of the total aboveground biomass
than Shale Hills.

3.2. Mixed models results of biomass per watershed and
topographic position

The most supported model for aboveground biomass in trees
and shrubs included watershed-bedrock and topographic posi-
tion and the interaction between these two variables (Table 4).
Additive models without the interaction term also explained
shrub biomass variation (LAIC = 0.50), but they did not perform as
well for tree biomass variation (LAIC = 33.91).

3.3. Random forest model for tree and shrub biomass using
leaf-on and leaf-off lidar

We tested 30 leaf-on and 30 leaf-off lidar variables, five terrain
variables, and three location variables for our random forest
model of tree biomass (Table 2). Results of best performing leaf-
on, leaf-off, and combined models are shown in Table 5. Leaf-off
data on its own explained more variance in biomass than leaf-on
data, and by using combined leaf-on and leaf-off data, we devel-
oped a model with six variables that explained 48% of the variance
(pseudo R?) of tree biomass, with the most important variables
being 60th percentile height and elevation (Fig. 4). Using the in-
dependent validation dataset, RMSE of the tree biomass model
was 87.9 t-ha™!, and relative RMSE was 0.44. Patterns of error show
that, generally, the model is smoothing out variability of the bio-
mass values, and for lower biomass values, the random forest
model is overpredicting biomass, while at higher biomass values,
the model is underpredicting biomass (Fig. 5). In general, modeled
biomass values are closer to the mean than measured biomass
values.

We tested 32 leaf-on and 32 leaf-off lidar variables, five terrain
variables, and three location variables in our model of shrub bio-
mass (Table 2). Results of best performing leaf-on, leaf-off, and
combined models are shown in Table 5. Unlike our lidar-based
tree model, leaf-on data explained much more variance than leaf-
off data in our shrub biomass model. Using combined leaf-on and
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Table 2. Candidate and selected variables used in the random forest models for shrub and tree biomass using both leaf-on and leaf-off variables
separately and combined.

Variable
name

Variable description

Shrub biomass

Tree biomass Shrub biomass
combined combined

Lidar elevation
lon_returnct
loff_returnct
lon_min
loff_min
lon_max
loff_max
lon_mean
loff mean
lon_mode
loff mode
lon_stdev
loff_stdev
lon_var
loff var
lon_cv
loff_cv
lon_iq
loff_iq
lon_skewn
loff_skewn
lon_kurto
loff_kurto
lon_ADD
loff ADD
lon_p01
loff_ p01
lon_p05
loff_p05
lon_p10
loff p10
lon_p20
loff p20
lon_p25
loff p25
lon_p30
loff_p30
lon_p40
loff_p40
lon_p50
loff_p50
lon_p60
loff_p60
lon_p70
loff_ p70
lon_p75
loff p75
lon_p80
loff_p80
lon_p90
loff p90
lon_p95
loff_p95
lon_p99
loff p99
lon_cover
loff_cover
lon_cover1l
loff_coverl
lon_can_rel
loff_can_rel
lon_dens3
loff_dens3

Leaf-on total return count
Leaf-off total return count
Leaf-on elevation minimum (m)
Leaf-off elevation minimum (m)
Leaf-on elevation maximum (m)
Leaf-off elevation maximum (m)
Leaf-on elevation mean (m)
Leaf-off elevation mean (m)
Leaf-on elevation mode (m)
Leaf-off elevation mode (m)

Leaf-on elevation standard deviation
Leaf-off elevation standard deviation

Leaf-on elevation variance
Leaf-off elevation variance
Leaf-on coefficient of variation
Leaf-off coefficient of variation
Leaf-on elevation interquartile
Leaf-off elevation interquartile
Leaf-on elevation skewness
Leaf-off elevation skewness
Leaf-on elevation kurtosis
Leaf-off elevation kurtosis

Leaf-on average absolute deviation
Leaf-off average absolute deviation

Leaf-on 1st percentile height

Leaf-off 1st percentile height

Leaf-on 5th percentile height

Leaf-off 5th percentile height

Leaf-on 10th percentile height
Leaf-off 10th percentile height
Leaf-on 20th percentile height
Leaf-off 20th percentile height
Leaf-on 25th percentile height
Leaf-off 25th percentile height
Leaf-on 30th percentile height
Leaf-off 30th percentile height
Leaf-on 40th percentile height
Leaf-off 40th percentile height
Leaf-on 50th percentile height
Leaf-off 50th percentile height
Leaf-on 60th percentile height
Leaf-off 60th percentile height
Leaf-on 70th percentile height
Leaf-off 70th percentile height
Leaf-on 75th percentile height
Leaf-off 75th percentile height
Leaf-on 80th percentile height
Leaf-off 80th percentile height
Leaf-on 90th percentile height
Leaf-off 90th percentile height
Leaf-on 95th percentile height
Leaf-off 95th percentile height
Leaf-on 99th percentile height
Leaf-off 99th percentile height

Leaf-on cover height break of 3 m
Leaf-off cover height break of 3 m

Leaf-on cover first return only
Leaf-off cover first return only
Leaf-on canopy relief ratio
Leaf-off canopy relief ratio

Leaf-on density between 0.25 and 3 m
Leaf-off density between 0.25 and 3 m
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Tree biomass

Shrub biomass

Variable Tree biomass Shrub biomass
name Variable description Leaf-on Leaf-off Leaf-on Leaf-off combined combined
lon_cover3 Leaf-on cover between 0.25 and 3 m

loff_cover3 Leaf-off cover between 0.25 and 3 m

Terrain

perc_slope Percent slope at 10 m resolution x x

elev Elevation (m) x x x x

curv Combined curvature at 10 m cell

aspdeg Aspect in degrees

watershed Sandstone or shale watershed

X_coor UTM easting

y_coord UTM northing

Table 3. Mean values for field-measured and random forest modeled shrub and tree biomass values for each topographic position

in Shale Hills and Garner Run watersheds.

Field-measured

Topographic position tree biomass (t-ha!)

Random forest modeled
tree biomass (t-ha!)

Random forest modeled
shrub biomass (t-ha™!)

Field-measured
shrub biomass (t-ha™)

Shale Hills

Ridge-top 174.2 (55.8)° 198.9
Mid-slope 284.6 (54.7) 244.5
Toe-slope 305.1 (40.5) 310.2
Garner Run

Ridge-top 160.3 (24.1) 151.4
Mid-slope northern aspect  172.6 (32.0) 162.4
Mid-slope southern aspect 121.1(39.2) 126.0
Toe-slope 191.4 (45.2) 210.2

0.6 (0.6) 1.0
0.3 (0.6) 0.6
0.1(0.1) 03
3.3(3.9) 23
1.7(2.6) 1.4
1.4(2.2) 2.0
1.3(13) 15

aStandard deviation in parentheses.

Table 4. Model selection statistics for tree and shrub bio-
mass mixed models.

Model LAIC w; 1 K
Tree biomass

T+W+TxW 0.00 1.00 -5812.46 9
T+W 33.91 0.00 -5831.42 7
w 36.68 0.00 -5834.80 5
T 124.06 0.00 -5877.49 6
I 231.03 0.00 -5932.98 4
Shrub biomass

T+W+TxW 0.00 0.54 -2280.05 9
T+W 0.50 0.34 -2282.30 7
w 5.79 0.03 -2286.94 5
T 29.64 0.00 -2297.87 6
I 31.75 0.00 -2300.92 4

Note: Main effects include topographic position (T) and watershed-
bedrock (W). The null model is represented by I (intercept only).
Summary includes relative difference between model AIC and AIC
for the best model (LAIC), Akaike weights (w;), log-likelihood (1), and
number of parameters (K).

leaf-off data, we developed a model with eight variables that ex-
plained 24% of the variance (pseudo R?). Using the independent
validation dataset, RMSE of the shrub biomass model was 1.3 t-ha™!,
and relative RMSE was 1.2. All of the important variables were
leaf-on or terrain variables, with the two most important variables
being elevation and 10th percentile height (Fig. 4). The patterns of
errors for shrub biomass are similar to those of trees, with lower
biomass values being overpredicted and higher biomass values
being underpredicted. In particular, there are a lot of plots with a
measured shrub biomass of zero and not many modeled plots
with a value of zero (Fig. 5). Again, the model is smoothing the
biomass values, and predicted values are consistently closer to the
average biomass than measured biomass plots.

3.4. Spatial patterns of random forest modeled tree and
shrub biomass

Random forest modeled tree biomass values were higher on the
Shale Hills watershed than on the Garner Run watershed (Figs. 6A
and 6B). In both watersheds, higher biomass was found along the
valley bottom, with lower values for the ridge-top (Table 3). At
Shale Hills, higher biomass values occur up to the midpoint of the
hillslope and on the north-facing slope of the watershed (Fig. 6B).
At Garner Run, biomass is lower and there is more variability
within adjacent pixels at all topographic positions (Fig. 6A). Al-
though modeled biomass values are higher in the valley bottom
and lower in the mid-slope and ridge-top, the values decrease
quickly above the toe-slope on the northern aspect.

Random forest modeled shrub biomass was higher on Garner
Run than on Shale Hills, and the spatial patterns of modeled
shrub biomass were different for each watershed (Figs. 6C and
6D). At Shale Hills, biomass values for shrubs were low across the
entire watershed but were slightly higher on the ridge-top. Near
the stream and across much of the watershed, the values were
either zero or close to zero. There is a clear ring around the top
edge of the watershed boundary with higher biomass values and a
moderate amount of variability (Fig. 6D).

At the Garner Run watershed, a different pattern emerged in
which high biomass values were found at the ridge-top but with a
secondary peak found adjacent to the stream in the toe-slope
position, likely due to the presence of Rhododendron maximum
(Fig. 6C). In general, shrub biomass was variable across the water-
shed, but the ridge-tops, as well as the southern aspect mid-slope
and the upstream end of the watershed, had consistently high
values. The mid-slope positions were highly variable but tended to
have lower biomass values overall. Even though the model for
shrub biomass had a lot of unexplained variation, the trends of
shrub biomass match those observed in the field measurements
(Table 3).
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Table 5. Number of variables and percent variance explained (pseudo R?) of random forest models of biomass
derived from leaf-off lidar only, leaf-on lidar only, and combined leaf-off and leaf-on lidar.

Tree biomass

Shrub biomass

Tree biomass Shrub biomass

Model component Leaf-on Leaf-off Leaf-on Leaf-off combined combined
No. of variables 4 6 8 6 8
% Variance explained 40 45 24 8 48 24

Fig. 4. Percent increase of mean standard error (MSE) for each variable
in the final random forest model for (A) trees and (B) shrubs. %IncMSE
shows the percent increase of MSE if the variable was randomly shuffled
in the model.

A B
Leaf on 60% d Elevation q
(o]
Elevation o Leaf on 10%
Leaf on mode o
Leaf off 90% ° Leaf on 1%t cover o
Leaf off mean o Leaf on kurtosis o
Leaf off 30% | Leaf on 25% °
Leaf on 99% o
Leaf off 1** cover |,
Slope [°
T T T T 1 T T 1
12 14 16 8 9 10
%IncMSE %IncMSE

4. Discussion

This study highlights the range of variability of biomass and
forest structure within similar forest communities. Both modeled
and field-measured estimates of biomass showed ~60% greater
biomass in Shale Hills compared with Garner Run, despite their
relative proximity and similar oak-dominated deciduous forest
cover. Within watersheds, forest biomass was generally highest at
the toe-slope position and decreased moving to the mid-slope and
then to the ridge-top. The greatest proportion of forest biomass is
found in trees (~99%), but the relatively small amount of shrub
biomass (remaining ~1%) can provide important ecosystem ser-
vices such as wildlife habitat, therefore accurate models of shrub
biomass can be equally useful for managers.

We also improved our understanding as to how leaf-on and
leaf-off lidar can be used for modeling patterns of tree and shrub
biomass across broad scales. Collecting field data for biomass es-
timates is time consuming and costly and usually includes only a
fraction of the landscape. Both leaf-on and leaf-off lidar data were
essential for characterizing biomass from trees and shrubs in a
deciduous forest. Leaf-off lidar was more effective at characteriz-
ing tree biomass, while leaf-on lidar was more effective at charac-
terizing shrub biomass.

4.1. Biomass values across watersheds and topographic
position

Topographic position, watershed, and the interaction of those
variables influenced the biomass of both trees and shrubs. The
interaction effect, in particular, suggests that the biomass may
not be responding to the same factors in each watershed. Differ-
ences in bedrock, soil, and elevation in watersheds contribute to
vegetation changes and forest height, which can directly influ-
ence biomass (Wolf et al. 2016; Bolstad et al. 2018). This could be
due in part to the influence of bedrock on landscape evolution.
For example, hillslope length at Garner Run is much longer than

Shale Hills due perhaps to slower erosion for sandstone than shale
(Brantley et al. 2016). At the Shale Hills watershed, in addition to
the concave area near the stream and toe-slope, there are also
dominant swale features that intersect the mid-slope area. Swales
host higher forest productivity than planar slopes in Shale Hills
(Smith et al. 2017) and may contribute to higher biomass in the
overall watershed compared with Garner Run. Swales and a
stream basin are not present in the Garner Run watershed, and
the hillslope is more planar. The difference that we see in biomass
distributions between topographic positions and watersheds
could be caused by topography-driven patterns in soil depth and
water availability, as well as differences in nutrient availability
between bedrock (Hahm et al. 2014).

4.2. Leaf-on and leaf-off lidar models

One of the advances made in this study is understanding how
leaf-on and leaf-off data can be used together to represent forest
structure, particularly with a complex canopy structure and the
presence of important understory species. Although others (Hill
and Broughton 2009) have suggested that leaf-off data could be
more effective at identifying understory or complex canopies, we
did not find that to be the case for understory biomass. In our
shrub biomass model, leaf-on variables were much more impor-
tant than leaf-off variables, which contradicts the idea that inleaf-
off conditions, more lidar points would penetrate the canopy and
reach the shrub layer. With fewer leaves on the shrubs, there
were not enough lidar points from the understory to accurately
reflect shrub biomass. Our results are consistent with studies
done in tropical forests in which leaf-on data were found to be
more effective at modeling biomass and biodiversity (Garcia et al.
2010).

Our results investigating the role of leaf-on and leaf-off lidar
data to model tree biomass showed that leaf-off lidar data mod-
eled tree biomass slightly more effectively than leaf-on data. In
this closed deciduous forest ecosystem, the leaf-on lidar percent
cover seems to be oversaturated with respect to biomass, meaning
that there is not much variability in leaf-on percent cover (most
values are close to 100%), although there is variability in biomass.
There is less two-dimensional variability in canopy cover than in
biomass. This may be because when a tree dies, the trees around it
will spread their canopy to fill in the gap, with potentially little
influence on biomass estimates based on tree diameter. With leaf-
off lidar data, differences in percent cover are slightly more pro-
nounced, as evidenced by the leaf-off first return cover being
included in the final leaf-off lidar tree biomass model. Therefore,
leaf-off lidar is slightly better at detecting subtle differences in
forest density that relates to biomass than leaf-on lidar in this
deciduous forest.

Our models of tree biomass did not predict biomass as well as
other lidar studies investigating deciduous or mixed forests
(Gleasonand Im 2012; Wolfetal. 2016), perhaps in part because of
our small plot and raster cell size. Optimal plot and cell size has
been extensively researched with respect to lidar-based measure-
ments (Gobakken and Naesset 2008; Frazer etal. 2011; White etal.
2013; Ruiz-Benito et al. 2014; Hayashi et al. 2016; Silva et al. 2017),
but results vary based on lidar pulse density and forest structure.
Hayashi etal. (2016) and Silva et al. (2017) both found thata 10 m
resolution raster-based model may effectively model biomass, but
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Fig. 5. The measured versus modeled biomass values for (A) trees and (B) shrubs using the random forest model for the validation points.
The total variance (pseudo R?) explained by the random forest models for tree and shrub biomass were 48% and 24%, respectively. Patterns of
residuals with respect to measured biomass are shown in (C) trees and (D) shrubs.
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in our case, this cell size seems to have been smaller than optimal.
Our objective was to develop a model that would highlight fine-
scale patterns, but in increasing the spatial resolution of our mod-
els, we probably also increased the amount of unexplained
variability in our model. With a small plot size, the presence or
absence of one tree can have a significant impact on the total
biomass value for the plot. Also, a tree that has its canopy inside
the plot, as measured by the lidar, may have a stem outside of the
plot; therefore, its biomass would not be included in our field
measurement.

In a model of shrub abundance, Barber et al. (2016) used a vari-
able measuring the percentage of returns higher than 1.37 m, as
well as a variable measuring the percentage of first returns be-
tween 0.15 m and 1.37 m. Using models with only lidar data, they
were able to explain between about 14% and 24% of the variability
in abundance for two different shrub species, which compares
with our models, which explained about 24% of the shrub biomass
variability. In modeling understory biomass, we considered the
approach of Hudak et al. (2016) that used only lidar returns be-
tween 0 and 3 m to calculate shrub biomass and then used over-
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story canopy cover as a correction factor. Unfortunately, we found
that in many cases, we did not have enough returns in the under-
story layer, particularly in the leaf-off lidar dataset, to generate
accurate models of shrubs. Hill and Broughton (2009) calculated
height of understory using leaf-off and leaf-on lidar by measuring
the height of the highest return below the canopy. We were inter-
ested in the biomass from shrubs, which is affected more by stem
density than height, so we chose to use the entire point cloud for
our models.

We found similar lidar metrics to be important for modeling
tree biomass, as in other studies (e.g.,, Wolf etal. 2016; Gleason and
Im 2012; Hudak et al. 2012). In our tree biomass model, leaf-on 60%
percentile height was the most important metric. Also, elevation
was the only important terrain metric for the tree biomass model.
Other terrain metrics may not have been important because the
different watersheds have different bedrock and, subsequently,
their patterns of landscape evolution are different.

4.3. Spatial patterns of biomass

Across topographic positions, shrub biomass was consistently
higher in the Garner Run watershed than in the Shale Hills water-
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Fig. 6. Random forest modeled values of tree and shrub biomass (in t-ha™) for both (A, C) Garner Run and (B, D) Shale Hills watersheds:
(A and B) tree biomass models; (C and D) shrub biomass models. [Colour online.]
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shed. Because we analyzed only two watersheds for this study, we
are unable to predict why this may be occurring, but in other
areas, forest structure varies with bedrock type (Butler etal. 2003;
Hahm et al. 2014). In this region, sandstone frequently underlays
dry oak-heath forests, which are characterized by an ericaceous
shrub understory (Fike 1999). The developed shrub understory
may be the result of higher soil acidity and (or) lower water
availability associated with sandstone-derived soils. Future work
will expand the scope of this study to determine if this is a
consistent pattern for eastern deciduous forests across bedrock
types.

The patterns of shrub biomass and tree biomass across the wa-
tersheds tend to be opposite to one another, with shrub biomass
values being higher on ridge-tops and tree biomass values being
higher in toe-slope positions, with some exceptions. Previous li-
dar research has shown that shrub biomass tends to vary inversely

with tree canopy cover (Martinuzzi et al. 2009; Bolstad et al. 2018).
Although our overall biomass results for trees and shrubs by top-
ographic position support this idea, the lidar-derived percent tree
cover metric was not one of the important variables in our shrub
biomass models, showing that there is not a direct inverse rela-
tionship between percent tree cover and shrub biomass. This may
be because in this ecosystem, the lidar signal for percent cover
may be saturated at a relatively low level of tree biomass, thereby
making it a less effective predictor of light availability for under-
story than it may be in other forest types. Another contradic-
tion is that at the toe-slope of the Garner Run watershed, the
shrub biomass values are actually relatively high, despite the
fact that tree biomass is also high. We think that this may be
because of some large understory species (e.g., Rhododendron
maximum and Hamamelis virginiana L.) that primarily occur along
the stream in this watershed.
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4.4. Study limitations and sources of error

There are several limitations of our sampling scheme for an-
swering questions about patterns of biomass. First, we did not
have replicates for each watershed; therefore, it is unclear if the
patterns in tree and shrub biomass across watersheds would be
consistent based on bedrock. Second, our field plot size is small
compared with other studies, particularly our shrub plots, which
could lead to increased error in the lidar-based biomass models.
We were also relying on current GPS technology, which makes it
difficult to perfectly line up high-resolution lidar to relatively
small plots on the ground.

Another source of error in our study is the allometric equations
used to relate diameter to tree biomass. Smith et al. (2017) esti-
mated 10% uncertainty in their biomass calculations from tree
diameters for Shale Hills due to field measurement and model
selection uncertainty. Lidar-based metrics are often based on tree
height, while the allometric equations used to calculate biomass
from field measurements are based on tree diameter. Trees of the
same species and diameter were consistently taller in Shale Hills
than in Garner Run, and trees were taller at the toe-slope position
than at the ridge-top position. Although our biomass values, both
measured and modeled, were consistently higher at the toe-slope
position and at the Shale Hills watershed, these differences are
probably underestimated because biomass estimates do not take
into account tree height and, therefore, cannot capture the effects
of topographic position and watershed on tree biomass via tree
height.

5. Conclusions

The major objective of this study was to understand how
aboveground biomass varies with changing terrain at a fine-scale
(10 m) resolution. We found a much higher amount of shrub bio-
mass in the Garner Run watershed than in the Shale Hills water-
shed at all topographic positions. Within each watershed, there
was higher tree biomass at the toe-slope position, and shrub bio-
mass values varied across topographic position for each water-
shed. This suggests that there are other abiotic factors in addition
to topography that influence the distribution of biomass across
the landscape.

We also used leaf-on and leaf-off lidar for modeling shrub and
tree biomass. We were able to model broad-scale patterns of bio-
mass using both leaf-on and leaf-off lidar, but our most accurate
model is not capturing the full range of variability on a fine scale.
Because shrub biomass in particular is difficult to measure in the
field, a stratified sampling method could be employed in the fu-
ture to capture more of the variability in high shrub areas such as
in ridge-top topographic positions, which could lead to improved
spatial models. Overall, by understanding how biomass varies spa-
tially at a fine scale, we can begin to link ecosystem processes to
abiotic factors and optimize ecosystem services at a landscape
scale.
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