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Abstract: Understanding patterns of aboveground carbon storage across forest types is increasingly important as managers 

adapt to threats of global change. We combined field measures of aboveground biomass with lidar to model fine-scale biomass 
in deciduous forests located in two watersheds; one watershed was underlain by sandstone and the other by shale. We measured 
tree and shrub biomass across three topographic positions for both watersheds and analyzed biomass using mixed models. The 
watershed underlain by shale had 60% more aboveground biomass than the sandstone watershed. Although spatial patterns of 
biomass were different across watersheds, both had higher (between about 40% and 55%) biomass values at the toe-slope position 
than at the ridge-top position. To model fine-scale spatial patterns of biomass, we tested the effectiveness of leaf-on and leaf-off 
lidar combined with topographic metrics to develop a spatially explicit random forest model of tree and shrub biomass across 
both watersheds. Leaf-on variables were more important for modeling shrub biomass, while leaf-off variables were more 
effective at modeling tree biomass. Our model of tree and shrub biomass reflects the distribution of biomass across both 
watersheds at a fine scale and highlights the potential of abiotic factors such as topography and bedrock to affect carbon storage. 

Key words: biomass, lidar, understory, carbon, shrub. 

Résumé : Il est de plus en plus important de comprendre les profils de séquestration aérienne du carbone qui caractérisent les 

différents types de forêt alors que les gestionnaires s’adaptent aux menaces associées au changement global. Nous avons 
combiné des mesures de biomasse aérienne prises sur le terrain avec le lidar pour modéliser la biomasse à petite échelle dans des 
forêts décidues situées dans deux bassins versants : un des bassins reposait sur du grès et l’autre sur du schiste. Nous avons 
mesuré la biomasse des arbres et des arbustes dans trois positions topographiques dans les deux bassins et analysé la biomasse 
à l’aide de modèles mixtes. Le bassin qui reposait sur le schiste avait 60 % plus de biomasse aérienne que le bassin reposant sur 
le grès. Bien que la répartition spatiale de leur biomasse diffère, les deux bassins avaient des valeurs de biomasse plus élevées 
(environ 40 à 55 %) au pied qu’au sommet de la pente. Pour modéliser la répartition spatiale à petite échelle, nous avons testé 
l’efficacité du lidar en présence et en l’absence du feuillage jumelé à des données topographiques pour élaborer un modèle 
forestier aléatoire, spatialement explicite, de la biomasse arborescente et arbustive dans les deux bassins. Les variables mesurées 
en présence du feuillage étaient plus importantes pour modéliser la biomasse des arbustes tandis que les variables mesurées en 
l’absence du feuillage étaient plus efficaces pour modéliser la biomasse des arbres. Notre modèle de biomasse arbustive et 
arborescente reflète la répartition de la biomasse à petite échelle dans les deux bassins et met en évidence l’influence potentielle 
des facteurs abiotiques, tels que la topographie et le substrat rocheux, sur la séquestration du carbone. [Traduit par la Rédaction] 

Mots-clés : biomasse, lidar, sous-bois, carbone, arbuste. 
 

1. Introduction 

Understanding patterns of carbon storage across forest types is 
increasingly important as managers adapt to the diverse threats 

of global change. Forests are vital components of the global car- 

bon cycle and actively store and release carbon depending on 
many biotic and abiotic factors. Carbon stored in aboveground 

live and standing dead tree biomass can account for as much as 
60% of the total terrestrial carbon sequestration in the Northern 

Hemisphere; however, this is highly variable across forests 
(Woodbury et al. 2007; Curtis 2008). Understanding the interac- 

tion and variation of biomass pools across space could allow forest 

managers to optimize carbon storage. Many factors are known to 
influence patterns and distribution of biomass pools, including 

vegetation community (Ruiz-Benito et al. 2014), forest structure 
(Duncanson et al. 2015), topography (Xu et al. 2015; Zald et al. 

2016), climate (Iverson et al. 2008), and soil and parent material 
(de Castilho et al. 2006). On a local scale, total biomass, as well as 
the way that biomass is partitioned in an ecosystem, can differ 
significantly according to terrain (Smith et al. 2017; Bolstad et al. 
2018) and soil characteristics (Tateno et al. 2004). Biomass at land- 
scape and broader scales (regional to national) has been modeled 
from forest inventory plots (Birdsey 1992; Brown et al. 1999), as 
well as fine-scale budgets on the order of one watershed (Smith 
et al. 2017), but spatial patterns of biomass pools across abiotic 
gradients are not well understood. 

Topographic position and bedrock affect vegetation commu- 
nity composition and productivity through several different 
mechanisms. For example, trees tend to grow taller and contain 
more biomass in toe-slope positions, but it is not clear if this is due 
to water availability, nutrient availability, or an interaction of the 
two (McNab 1989; Bolstad et al. 1998; Tateno et al. 2004). Topo- 
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graphic factors that influence vegetation include hillslope po- 
sition, slope, curvature (concavity or convexity of the site), 
hydrology, and aspect, among others (Swetnam et al. 2015). Bed- 
rock also impacts vegetation communities through soil texture, 
nutrient holding capacity, and drainage rates (Hahm et al. 2014; 
Brantley et al. 2017). In the area of this study (northeastern United 
States), sandstone-derived soils tend to be excessively drained of 
both water and nutrients, which can limit plant growth, while 
shale-derived soils tend to be more productive (Ciolkosz et al. 
1989). Spatial heterogeneity in forest biomass driven by topogra- 
phy and bedrock may require fine-scale (100 m2 to 1 ha), spatially 
explicit models that take into account site-specific variables such 
as terrain. 

Lidar has been used extensively to model landscape-scale tree 
biomass, ecosystem carbon values, and carbon fluxes (Hudak et al. 
2012; Asner et al. 2012; Zolkos et al. 2013). Researchers have used a 
range of methods to model biomass, from individual-tree calcula- 
tion and measurement (Zhao et al. 2009) to plot-level (Popescu and 
Wynne 2004; Hudak et al. 2008) and landscape-level (Wulder et al. 
2012) assessments. Different statistical modeling techniques have 
been used, including parametric models (Lefsky et al. 1999), ma- 
chine learning approaches including random forests (Gleason and 
Im 2012; Hudak et al. 2012), object-based classification (van Aardt 
et al. 2006), and single-tree detection algorithms (Popescu 2007; 
Brandtberg et al. 2003). Methods for lidar-based estimates of forest 
biomass are quickly advancing but inherently miss biomass pools 
beneath the canopy. 

Shrub biomass may play an important role in terrestrial carbon 
budgets (Greaves et al. 2015; Li et al. 2015; Kristensen et al. 2015). 
Modelling shrub biomass in forested ecosystem, however, is diffi- 
cult due to the presence of overstory tree canopies, which obscure 
the signal from the understory for both passive (Defibaugh y 
Chávez and Tullis 2013) and active (Hill and Broughton 2009) re- 
mote sensing techniques. Lidar has been used to model shrubs for 
habitat suitability (Vierling et al. 2008; Martinuzzi et al. 2009; 
Barber et al. 2016) and to model shrub presence or absence with up 
to 83% accuracy (Martinuzzi et al. 2009). Shrub presence or ab- 
sence has also been modeled using lidar to determine invasive 
shrub presence in urban areas (Asner et al. 2008; Singh et al. 2015; 
Chance et al. 2016); however, few studies have modeled abun- 
dance or biomass of shrubs across the landscape (Gopalakrishnan 
et al. 2018). Also, many of the studies using lidar to model under- 
stories have been focused on more open coniferous or eucalypt 
forests (Wing et al. 2012; Barber et al. 2016; Hudak et al. 2016; 
Fedrigo et al. 2018) versus closed deciduous forests. 

The purpose of this study is to further our understanding of 
how aboveground biomass pools differ across mixed deciduous 
forests and how to model these pools with lidar. Our objectives 
were to (i) calculate relative biomass pools for trees and shrubs in 
mixed deciduous forests, (ii) determine how leaf-on or leaf-off 
lidar data can be used to model tree and shrub biomass indepen- 
dently, and (iii) explore how abiotic factors such as bedrock and 
terrain can influence spatial patterns of tree and shrub biomass. 
For our lidar-based analysis, we chose a machine learning model- 
ing approach with random forest because of its relatively robust 
ability to work with correlated variables and variables with non- 
normal distributions (Breiman 2001; Cutler et al. 2007; Olden et al. 
2008). Using fine-scale maps (10 m resolution) of tree and shrub 
biomass, we identified trends in biomass across varying land- 
forms in watersheds with different bedrock types. The diversity of 
topographic and bedrock positions provides a range of abiotic and 
biotic conditions needed to capture spatial variability in aboveg- 
round biomass. We completed our study at the Susquehanna 
Shale Hills Critical Zone Observatory (CZO), which is an interdis- 
ciplinary observatory designed to study the creation and function 
of the critical zone, the region where bedrock intersects with the 
biosphere. 

2. Materials and methods 

2.1. Study area 
This study took place in a mixed deciduous forest in the Susque- 

hanna Shale Hills CZO in central Pennsylvania, USA, part of the 
National Critical Zone Observatory Network (Fig. 1). The National 
Critical Zone Observatory network includes nine environmental 
observatories designed to improve our understanding of how var- 
ious aspects of the surface of the Earth interact. We collected data 
for two subwatersheds within the broader Shaver’s Creek water- 
shed described in detail by Brantley et al. (2016). Both watersheds 
were cleared of timber during the late 1800s to early 1900s, but 
there is no known recent timber harvesting in our study areas. 
Forests in both watersheds are about 100 years old, with those at 
Shale Hills potentially being slightly older (Brantley et al. 2016; 
Smith et al. 2017). 

The first watershed, Shale Hills, is approximately 9 ha and con- 
tains a deciduous forest dominated by Quercus rubra L., Quercus 
prinus L. syn Quercus montana Willd., Quercus alba L., Carya spp., and 
Acer saccharum Marsh. The vegetation community type is oak– 
mixed hardwood, which is a diverse forest that tends to be found 
on relatively mesic, rich soils in the region. It is characterized by a 
sparse understory. This watershed is underlain by shale bedrock 
of the Clinton group, and the soil types are Berks–Weikert associ- 
ations. Elevation in the watershed ranges from 260 m to 300 m 
above sea level, and the watershed has both northern and south- 
ern aspects. Slopes in the midslope section of both northern and 
southern aspects of the watershed average about 32%, with a 
range between 18% and 45%. 

The second watershed, Garner Run, is approximately 125 ha. It 
also contains relatively undisturbed second-growth forest on 
northern and southern aspects, with some tree harvesting having 
occurred on the southern aspect in an area excluded from our 
study. The watershed is underlain by sandstone of the Tuscarora 
formation. The forest type in this watershed is primarily a dry 
oak–heath type characterized by a less diverse overstory of Quercus 
montana, Acer rubrum L., Betula lenta L., and Nyssa sylvatica Marsh. 
The understory tends to have an abundance of both deciduous 
and evergreen shrubs, including Vaccinium spp. and Gaylussacia 
spp., and other members of the Ericaceous family such as Kalmia 
latifolia L. and Rhododendron maximum L. Elevation in the watershed 
ranges from 470 m to approximately 650 m above sea level. Slopes 
on the southern aspect at mid-slope average 35%, with a range 
between 10% and 60%, while slopes on the northern aspect at 
mid-slope average about 25%, with a range between 6% and 48%. 

2.2. Methods overview 
We used several methods to further our understanding of bio- 

mass pools and patterns of biomass across our watersheds, partic- 
ularly with respect to topographic position and bedrock. Each 
method is described below in more detail. We used 10 m wide belt 
transects located parallel to slope contour at each topographic 
position in both watersheds to sample tree biomass. We sampled 
shrub biomass in smaller shrub plots along the belt transects. 
Using mean biomass values from each topographic position, as 
well as the relative area of the topographic positions in each wa- 
tershed, average tree biomass and shrub biomass were estimated 
for each watershed. We then used linear mixed models to test the 
significance of watershed and topographic position on tree and 
shrub biomass. We finally used leaf-on and leaf-off lidar to build a 
spatial model of shrub and tree biomass across both watersheds. 
We used random forest regression to determine which leaf-on and 
leaf-off lidar variables were important for modeling tree and 
shrub biomass. Once we determined which model explained the 
maximum amount of variance for tree biomass and shrub bio- 
mass, we applied these models to our study area, allowing us to 
model biomass pools across topographic positions and water- 
sheds. 
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Fig. 1. The location of the Susquehanna Shale Hills Critical Zone Observatory in Central Pennsylvania, USA, with the location and relative 
size of the Garner Run and Shale Hills watersheds and the approximate transect locations. [Colour online.] 

 

 

2.3. Data sources 
Lidar and field data were collected and used for this analysis. 

Field data were collected primarily during the summers of 2014 
(trees, both watersheds) and 2015 (shrubs, both watersheds), and 
lidar data were collected in 2010. The earlier date of the lidar 
survey compared with the field measurements should not bias 
our results because  the  structure  of  these  mature  forests 
(>100 years old) is slow to change through time and light condi- 
tions for the understory are consistently low. Shrub biomass 
estimates only included understory species and not young regen- 
erating trees. The shrub biomass was primarily from Kalmia 
latifolia, which is extremely slow growing in the region (Brose 
2016). Tree biomass increased by ~3% per year across the Shale 
Hills Watershed during this time (Smith et al. 2017). 

A stratified sampling plan was used to measure forest composi- 
tion and structure at the two watersheds. We were particularly 
interested in understanding the role of abiotic factors and topo- 
graphic position on patterns of biomass, so permanent transects 
were established as part of the CZO and marked to allow monitor- 
ing of vegetation at different topographic positions. Earlier lidar- 
based studies (Brubaker et al. 2014) have shown that tree height 
varies with respect to topographic position at our study locations, 
so we stratified our sampling scheme to ensure similar numbers 

of plots across the range of biomass values in the watershed 
(Hawbaker et al. 2009). Linear transects were placed in the field in 
50 m or 100 m segments, depending on the watershed. The start- 
ing point was established based on observed patterns of curvature 
in the field, and the transect was marked off following a compass 
reading that approximately paralleled the slope. At the end of 
each segment, the next segment was placed to again parallel the 
slope, so that each segment could have a different azimuth to 
follow the approximate terrain. Linear transects were sampled at 
toe-slope, mid-slope, and ridge-top positions to capture the diver- 
sity of topography in the watersheds and the variable terrain at 
each of the topographic positions (Fig. 1). We designed our sam- 
pling scheme to ensure that we were capturing adequate data 
across the range of biomass values in each watershed and also so 
that we could repeat our measures of the same trees to capture 
carbon fluxes in future studies. 

In the Shale Hills watershed, six transects were measured: one 
transect for each topographic position (toe-slope, mid-slope, and 
ridge-top) on both the northern and southern aspects of the wa- 
tershed (Fig. 1). Transects were 10 m wide and sampled in 50 m 
segments that followed the topographic position. The length of 
transects sampled ranged from 200 m to 250 m, and a total of 
1.35 ha were sampled (15% of the watershed). The start points 
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Fig. 2. Schematic showing layout of tree (circles) and shrub (within squares) measurements measured at each 100 m segment of sampling 
transect for Garner Run. [Colour online.] 

 

 
of transects were placed at the western and downstream end of 
the watershed where there is more space to avoid convergence of 
transects as we sampled in an eastward direction up the narrow- 
ing watershed. Estimated tree biomass in the watershed does not 
show a clear east–west trend (Smith et al. 2017) so sampling at 
multiple topographic positions in the western portion of the wa- 
tershed captures the variability in biomass across the area. 

Because Garner Run is a much larger watershed (125 ha), a 
slightly different sampling strategy was used (Brantley et al. 2016). 
The southern aspect at Garner Run tends to be steeper, with a 
greater range of elevation (Brantley et al. 2016) and shorter trees 
(Brubaker et al. 2014). Additionally, there had been recent timber 
harvesting on the lower slope position on the southern aspect of 
the watershed. Therefore, we set up four transects: toe-slope, mid- 
slope, and ridge-top transects on the northern aspect of the wa- 
tershed and a mid-slope transect on the southern aspect of the 
watershed. These transects were 10 m wide and sampled in 100 m 
segment lengths, and the total length of transects ranged from 
about 800 m to over 1 km. A total of 4.1 ha was sampled (3.25% of 
the watershed area). In both watersheds, each transect segment 
end was georeferenced using a Trimble GeoXT with differential 
correction during leaf-off periods. Distances within transects 
were measured with a tape measuring from a permanent marker 
at each transect segment end. 

All trees greater than 10 cm diameter at breast height (dbh) that 
were within 5 m of the transect center line were included in the 
sample (Fig. 2) and permanently tagged with a unique number. 
For each tree, species and dbh were determined. The location of 
each tree was mapped by recording its distance along and distance 
from the transect line. To assess shrub composition and biomass, 
a shrub plot was placed along transects every 10 m in the Shale 
Hills watershed and every 20 m in the Garner Run watershed. 
Each shrub plot wa s2m×2 m  (4 m2) and centered on the transect. 
A smaller plot was used for measuring shrubs than for measuring 
trees because of the high number of shrub stems in each plot and 
because a microplot approach is both objective and more accurate 
than cover-based methods (Chojnacky and Milton 2008). A total of 
318 shrub plots were used in the analysis (201 plots at Garner Run 
and 116 plots at Shale Hills). Within each shrub plot, all shrub 
stems with a diameter at root collar (DRC) between 3 mm and 
10 cm were measured. For each stem, we measured DRC and iden- 
tified each stem to species or genus (in the case of Vaccinium spp.). 
Only shrub species were used in biomass calculations, and young 
trees were excluded from the analysis (Table 1). 

High-resolution lidar data were collected by the National Center 
for Airborne Laser Mapping (NCALM) during the leaf-on (July 2010) 
and leaf-off (December 2010) periods of 2010. Small footprint dis- 
crete return airborne data were acquired using an Optech Gemini 
ALTM 06SEN/CON195 sensor, with a scan angle of ±15° and an 
average flying height of 600 m (Lu et al. 2014). The point density 
was approximately 10 points·m–2 (all returns), with a vertical ac- 
curacy of 2–4 cm. A 0.5 m resolution DEM was generated from the 
leaf-off flight. Root mean square error (RMSE) was not calculated 
on this DEM, but the average vertical error as measured from 

Table 1. List of shrub species, along with citation for 
each species-specific equation. 

 
 

Species Author 
 

 

Acer pensylvanicum Smith and Brand 1983 
Amlanchier spp. Smith and Brand 1983 
Cornus florida Boring and Swank 1986 
Crataegus spp. Dickinson and Zenner 2010 
Hamamelis virginiana Smith and Brand 1983 
Kalmia latifolia Boring and Swank 1986 
Ostrya virginiana Means et al. 1994 
Rhododendron nudiflorum   Means et al. 1994 
Vaccinium spp. Dickinson and Zenner 2010 
Viburnum spp. Dickinson and Zenner 2010 

 
 

Note: References were selected based on their proximity to 

the study site. 

 
flight edge matches was less than 0.05 m (NCALM 2010). Indepen- 
dent accuracy assessment was provided by the vendor. 

2.4. Biomass calculations 
At the individual-tree level, biomass was calculated using the 

equations of Chojnacky et al. (2014) derived for each species group 
(determined by taxonomic groups and the specific gravity of wood 
for various species). We calculated shrub biomass using species- 
specific or species-group-specific allometric equations that relate 
DRC to biomass (Table 1; Dickinson and Zenner 2010; Smith and 
Brand 1983; Means et al. 1994; Boring and Swank 1986) using meth- 
ods described in Chojnacky and Milton (2008). 

Tree biomass was calculated for every 10 m × 10 m segment of 
the transect in both Shale Hills and Garner Run watersheds. For 
shrubs, the biomass of each stem within the 4 m2 plot was calcu- 
lated and summed (in tonnes (t) per hectare). Using GIS (Arc- 
GIS 10.3, Environmental Systems Research Institute (ESRI) 2011), 
the watershed was divided into toe-slope, mid-slope, and ridge-top 
positions to use in up-scaling the plot estimates into a watershed- 
scale biomass estimate for each watershed. These topographic 
positions were identified in GIS using patterns of curvature to 
determine ridge-top, mid-slope, and toe-slope areas (Fig. 3). Ridge- 
top positions were dominated by patterns of convex curvature, 
mid-slope positions were areas that were dominated by planar 
curvature patterns, and toe-slopes dominated by concave curva- 
ture. Using the relative area of each topographic position in each 
watershed, a weighted mean approach was used to generate a 
watershed-scale tree and shrub biomass estimate for each water- 
shed. 

2.5. Effect of watershed– bedrock and topographic position 
on aboveground biomass in trees and shrubs 

Linear mixed models were used to analyze the effect of watershed– 
bedrock and topographic position on aboveground biomass in 
trees and shrubs. Models were fitted using the “lme4” package 
(Bates et al. 2015) in R (R Core Team 2016). The response variable 
was biomass per plot for both trees and shrubs. We used a “Gaussian” 
error distribution for biomass. Plots nested within transect nested 
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Fig. 3. Ridge-top, mid-slope, and toe-slope topographic positions delineated using GIS for both (A) Garner Run and (B) Shale Hills watersheds. 
Percent slope at each watershed is also shown. Watersheds are not shown at the same scale. [Colour online.] 

 

 

within topographic positions were included as a random effect for 
trees and shrubs to account for non-independence in biomass 
along transects. 

We analyzed five models with different combinations of explan- 
atory variables including watershed–bedrock and topographic po- 
sition. Separate models were conducted for trees and shrubs. The 
models included a null model (intercept only), single explanatory 
variable models, an additive combination of the two explanatory 
variables, and a model with a single interaction effect. We com- 
pared the relative support of models with Akaike’s information 
criterion (AIC; Burnham and Anderson 2002). Models were consid- 
ered to have competitive support when the difference between 
the AIC of each model and the most supported model was <2.0 
(Burnham and Anderson 2002). 

2.6. Lidar analysis and processing 
Lidar height metrics were calculated for both leaf-on and leaf- 

off lidar using the grid metrics program of FUSION (McGaughey 
2009). Heights were normalized using the 0.5 m resolution lidar- 
derived digital elevation model (DEM) generated from the leaf-off 
flight. The cell size used in the grid was 10 m to correspond to the 
width of our vegetation sampling transects. Percent cover was 
calculated as the total number of first returns over a height break 
of 3 m, divided by the total number of first returns in the cell. We 

also calculated percent cover between 0.5 m and 3 m using the 
cover program of FUSION (percentage of all returns occurring 
between heights of 0.5 m and 3 m), and the density of points that 
occurred between 0.5 m and 3 m using the density metrics pro- 
gram. These additional variables were only used as predictive vari- 
ables in our shrub model. 

The 1 m lidar-derived DEM was resampled using bilinear inter- 
polation to a 10 m cell using ArcGIS 10.3 Spatial Analyst to gener- 
ate terrain variables at the same scale as the vegetation data. We 
used the 10 m resolution DEM to generate percent slope and total 
curvature using the Slope and Curvature tools, respectively, in 
ArcGIS 10.3 Spatial Analysis extension. 

2.7. Spatial model of shrub and tree biomass from leaf-on 
and leaf-off lidar 

We used random forest regression to create a spatial model of 
shrub and tree biomass from leaf-on and leaf-off lidar. Random 
forest is an ensemble learning method used for either classifica- 
tion or regression. Random forest works by generating a “forest” 
of regression trees and randomly selects predictor variables to use 
in each tree. This technique has been successful with lidar data or 
other large datasets with many candidate variables (Cutler et al. 
2007; Hudak et al. 2008; Martinuzzi et al. 2009). We chose random 
forest specifically because it can handle non-normally distributed 
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data and because it does not overfit the data, removing the need 
for an independent validation dataset (Breiman 2001). Because we 
were modeling fine-scale (10 m resolution) patterns of biomass for 
trees and shrubs, we chose to use a 10 m cell size for our raster- 
based biomass models. This is a smaller cell size than has shown to 
be optimal in previous lidar studies (Gobakken and Naesset 2008; 
Frazer et al. 2011), but because our objectives were to quantify 
spatial patterns of biomass across relatively small watersheds 
with rapidly changing terrain, we wanted to model as small of a 
cell size as possible. We also explored using a smaller cell size for 
our shrub model to match our smaller field plots but chose not to 
because with a smaller cell size, there were not enough lidar 
points getting through to the understory to get meaningful data. 

Using the randomForest package (Liaw and Wiener 2002) in R 
(version 3.2.3, R Core Team 2016) we created a random forest 
regression model to predict shrub and tree biomass separately. 
We modeled both watersheds simultaneously in the same model. 
Variables for leaf-on and leaf-off height grid metrics, as well as 
previously described terrain variables, were assessed for impor- 
tance to initially build  models  for  tree  and  shrub  biomass 
(Table 2). We included UTM eastings and northings to assess 
whether adding spatial data would improve model performance 
(Mascaro et al. 2014). Additionally, a variable measuring the dis- 
tance between the center of the measured plot on the ground and 
the center of the grid cell was included to determine if this dis- 
tance had an effect on the model results. Leaf-on and leaf-off lidar 
variables were modeled separately and then combined to fully 
explore the effectiveness of leaf-on and leaf-off lidar in our study 
site. In randomForest, the importance of variables is assessed us- 
ing %IncMSE, which shows the percent increase of mean squared 
error (MSE) if the variable was randomly shuffled in the model. To 
determine which variables were important and to ensure a parsi- 
monious model, variables in the final model were chosen using an 
iterative process whereby variables that had low importance val- 
ues (%IncMSE) were removed systematically until we were able to 
build a model that maximized the amount of variance explained 
(Díaz-Uriarte and Alvarez de Andrés 2006). Additionally, in the 
case of highly intercorrelated variables (Pearson > 0.75), the vari- 
able that was less important (from %IncMSE) was removed from 
consideration. We assessed the accuracy of our final model by 
analyzing the percent variance explained, which is a pseudo R2. 
We also validated the model by applying the model to a separate 
set of plots that were not used to generate the model. We calcu- 
lated RMSE and relative RMSE using the independent validation 
dataset, based on modeled versus actual biomass values for the 
validation plots. 

Along each 100 m segment of the transect, three 200 m2 plots 
(20m× 10 m) were identified and used as ground plots on which to 
fit our tree biomass model, and one 200 m2 plot was used as a 
validation plot. We spaced these along each segment to avoid 
overlap within single lidar grid cells and used a 20 m length (vs. 
10 m length used for biomass calculations from field data) to 
account for possible location errors associated with either GPS or 
a misalignment of cells between the raster and the ground plot. 
Both Frazer et al. (2011) and Gobakken and Naesset (2008) note 
that with a larger ground plot size, there is less of an effect from 
GPS positioning errors. Also, using a slightly larger ground plot 
reduces error caused by edge effect (trees with stems outside of 
the plot and portions of their canopy inside the plot) (Frazer et al. 
2011). Although it has previously been suggested that raster cell 
size should match the size of the ground plots used to calibrate 
the model (White et al. 2013), optimal ground plot size does not 
necessarily align with the cell size from lidar-based metrics 
(Hayashi et al. 2015) Additionally, it may be beneficial to map 
forest attributes at a higher precision than the plot size, particu- 
larly with a high-density lidar dataset (Silva et al. 2017). A total of 
167 plots were used to fit the model, and 54 plots were used for 
validation. 

To build the model for shrub biomass, the same process was 
used, with the addition of the percent low cover and 3 m density 
variables for both leaf-on and leaf-off lidar. Two-hundred and fifty- 
three shrub plots were used to fit the model, and 63 randomly 
chosen plots were used during the model validation process. 

Once random forest models were created that explained the 
maximum amount of variance for both tree biomass and shrub 
biomass, these models were applied to the rest of the watershed 
using a 10 m  × 10 m grid. Mean biomass values from the raster 
model for trees and shrubs were compared with mean measured 
biomass values for each topographic position. 

3. Results 

3.1. Biomass values across topographic position and 
watershed 

For both watersheds, the toe-slope position had the greatest 
biomass (Table 3). At Shale Hills, the ridge-top position had the 
lowest biomass, while at Garner Run, the mid-slope position on 
the southern aspect had the lowest biomass (Table 3). Using 
weighted means for each topographic position, excluding the re- 
cently harvested area, the average biomass of trees was 247.43 t·ha–1 

with a standard deviation of 73.6 t·ha–1 in Shale Hills and 
155.20 t·ha–1 with a standard deviation of 41.5 t·ha–1 at Garner Run. 
The greatest proportion of biomass in trees was stored in Quercus 
spp. at both Shale Hills and Garner Run. 

Shrub biomass was considerably less than tree biomass (<1% at 
most locations) (Table 3). The shrub biomass at Shale Hills was less 
than 20% of the mean shrub biomass at Garner Run. Biomass of 
the understory vegetation was highest at the ridge-top position 
at both watersheds. Understory vegetation at Garner Run, domi- 
nated by Kalmia latifolia and Vaccinium spp., was denser and repre- 
sented a greater proportion of the total aboveground biomass 
than Shale Hills. 

3.2. Mixed models results of biomass per watershed and 
topographic position 

The most supported model for aboveground biomass in trees 
and shrubs included watershed–bedrock and topographic posi- 
tion and the interaction between these two variables (Table 4). 
Additive models without the interaction term also explained 
shrub biomass variation (LAIC = 0.50), but they did not perform as 
well for tree biomass variation (LAIC = 33.91). 

3.3. Random forest model for tree and shrub biomass using 
leaf-on and leaf-off lidar 

We tested 30 leaf-on and 30 leaf-off lidar variables, five terrain 
variables, and three location variables for our random forest 
model of tree biomass (Table 2). Results of best performing leaf- 
on, leaf-off, and combined models are shown in Table 5. Leaf-off 
data on its own explained more variance in biomass than leaf-on 
data, and by using combined leaf-on and leaf-off data, we devel- 
oped a model with six variables that explained 48% of the variance 
(pseudo R2) of tree biomass, with the most important variables 
being 60th percentile height and elevation (Fig. 4). Using the in- 
dependent validation dataset, RMSE of the tree biomass model 
was 87.9 t·ha–1, and relative RMSE was 0.44. Patterns of error show 
that, generally, the model is smoothing out variability of the bio- 
mass values, and for lower biomass values, the random forest 
model is overpredicting biomass, while at higher biomass values, 
the model is underpredicting biomass (Fig. 5). In general, modeled 
biomass values are closer to the mean than measured biomass 
values. 

We tested 32 leaf-on and 32 leaf-off lidar variables, five terrain 
variables, and three location variables in our model of shrub bio- 
mass (Table 2). Results of best performing leaf-on, leaf-off, and 
combined models are shown in Table 5. Unlike our lidar-based 
tree model, leaf-on data explained much more variance than leaf- 
off data in our shrub biomass model. Using combined leaf-on and 
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Table 2. Candidate and selected variables used in the random forest models for shrub and tree biomass using both leaf-on and leaf-off variables 

separately and combined. 

 Tree biomass  Shrub biomass  

Variable     Tree biomass Shrub biomass 

name Variable description Leaf-on Leaf-off  Leaf-on Leaf-off combined combined 

Lidar elevation 
lon_returnct 

 
Leaf-on total return count 

     

loff_returnct 
lon_min 
loff_min 
lon_max 
loff_max 
lon_mean 

Leaf-off total return count 
Leaf-on elevation minimum (m) 
Leaf-off elevation minimum (m) 
Leaf-on elevation maximum (m) 
Leaf-off elevation maximum (m) 
Leaf-on elevation mean (m) 

 
 
 

 
× 

  
 

× 

  

loff_mean 
lon_mode 
loff_mode 
lon_stdev 
loff_stdev 
lon_var 
loff_var 
lon_cv 
loff_cv 
lon_iq 
loff_iq 
lon_skewn 
loff_skewn 

Leaf-off elevation mean (m) 
Leaf-on elevation mode (m) 
Leaf-off elevation mode (m) 
Leaf-on elevation standard deviation 
Leaf-off elevation standard deviation 
Leaf-on elevation variance 
Leaf-off elevation variance 
Leaf-on coefficient of variation 
Leaf-off coefficient of variation 
Leaf-on elevation interquartile 
Leaf-off elevation interquartile 
Leaf-on elevation skewness 
Leaf-off elevation skewness 

×   
× 

 
 
 
 
 
 
 
 
 

× 

×  
× 

lon_kurto 
loff_kurto 
lon_ADD 
loff_ADD 
lon_p01 
loff_p01 
lon_p05 
loff_p05 
lon_p10 
loff_p10 
lon_p20 
loff_p20 
lon_p25 
loff_p25 
lon_p30 
loff_p30 

Leaf-on elevation kurtosis 
Leaf-off elevation kurtosis 
Leaf-on average absolute deviation 
Leaf-off average absolute deviation 
Leaf-on 1st percentile height 
Leaf-off 1st percentile height 
Leaf-on 5th percentile height 
Leaf-off 5th percentile height 
Leaf-on 10th percentile height 
Leaf-off 10th percentile height 
Leaf-on 20th percentile height 
Leaf-off 20th percentile height 
Leaf-on 25th percentile height 
Leaf-off 25th percentile height 
Leaf-on 30th percentile height 
Leaf-off 30th percentile height 

 
 
 
 
 
 
 
 
 
 
 
 

 
× 

 × 
× 

 
 
 
 

 
× 

 
 

× 

 
 

× 

 
 
 
 
 
 
 
 
 
 
 
 

× 

× 

 
 
 
 
 

 
× 

 
 

× 

lon_p40 
loff_p40 
lon_p50 
loff_p50 
lon_p60 
loff_p60 
lon_p70 
loff_p70 
lon_p75 
loff_p75 
lon_p80 
loff_p80 
lon_p90 
loff_p90 
lon_p95 
loff_p95 
lon_p99 

Leaf-on 40th percentile height 
Leaf-off 40th percentile height 
Leaf-on 50th percentile height 
Leaf-off 50th percentile height 
Leaf-on 60th percentile height 
Leaf-off 60th percentile height 
Leaf-on 70th percentile height 
Leaf-off 70th percentile height 
Leaf-on 75th percentile height 
Leaf-off 75th percentile height 
Leaf-on 80th percentile height 
Leaf-off 80th percentile height 
Leaf-on 90th percentile height 
Leaf-off 90th percentile height 
Leaf-on 95th percentile height 
Leaf-off 95th percentile height 
Leaf-on 99th percentile height 

× 

 
 

× 

 
 
 
 
 
 

 
× 

 
 
× 

  
 
 
 
 
 
 
 
 
 
 
 
 

 
× 

 
 
 

× 

 
 
 
 
 
 

 
× 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
× 

loff_p99 
lon_cover 
loff_cover 

Leaf-off 99th percentile height 
Leaf-on cover height break of 3 m 
Leaf-off cover height break of 3 m 

×  × 
 

× 

  

lon_cover1 
loff_cover1 
lon_can_rel 
loff_can_rel 
lon_dens3 
loff_dens3 

Leaf-on cover first return only 
Leaf-off cover first return only 
Leaf-on canopy relief ratio 
Leaf-off canopy relief ratio 
Leaf-on density between 0.25 and 3 m 
Leaf-off density between 0.25 and 3 m 

 
× 

 × 

 
 

× 

 
× 

× 
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Table 2 (concluded). 

Tree biomass Shrub biomass 

Variable 
name 

 
Variable description 

 
Leaf-on 

 
Leaf-off 

  
Leaf-on 

 
Leaf-off 

Tree biomass 
combined 

Shrub biomass 
combined 

lon_cover3 
loff_cover3 

Leaf-on cover between 0.25 and 3 m 
Leaf-off cover between 0.25 and 3 m 

       

Terrain 
perc_slope 

 
Percent slope at 10 m resolution 

    
× 

   
× 

elev 
curv 
aspdeg 
watershed 
x_coor 
y_coord 

Elevation (m) 
Combined curvature at 10 m cell 
Aspect in degrees 
Sandstone or shale watershed 
UTM easting 
UTM northing 

 ×  × × × × 

 

Table 3. Mean values for field-measured and random forest modeled shrub and tree biomass values for each topographic position 
in Shale Hills and Garner Run watersheds. 

 
Topographic position 

Field-measured 
tree biomass (t·ha–1) 

Random forest modeled 
tree biomass (t·ha–1) 

Field-measured 
shrub biomass (t·ha–1) 

Random forest modeled 
shrub biomass (t·ha–1) 

Shale Hills 
Ridge-top 

 
174.2 (55.8)a 

 
198.9 

 
0.6 (0.6)a 

 
1.0 

Mid-slope 284.6 (54.7) 244.5 0.3 (0.6) 0.6 

Toe-slope 305.1 (40.5) 310.2 0.1 (0.1) 0.3 

Garner Run 
Ridge-top 

 
160.3 (24.1) 

 
151.4 

 
3.3 (3.9) 

 
2.3 

Mid-slope northern aspect 172.6 (32.0) 162.4 1.7 (2.6) 1.4 
Mid-slope southern aspect 121.1 (39.2) 126.0 1.4 (2.2) 2.0 

Toe-slope 191.4 (45.2) 210.2 1.3 (1.3) 1.5 
aStandard deviation in parentheses. 

 

Table 4. Model selection statistics for tree and shrub bio- 
mass mixed models. 

 

Model LAIC wi l K 

Tree biomass 
T + W + T × W  

 
0.00 

 
1.00 

 
–5812.46 

 
9 

T + W 33.91 0.00 –5831.42 7 
W 36.68 0.00 –5834.80 5 
T 124.06 0.00 –5877.49 6 

I 231.03 0.00 –5932.98 4 

Shrub biomass 
T + W + T × W  

 
0.00 

 
0.54 

 
–2280.05 

 
9 

T + W 0.50 0.34 –2282.30 7 
W 5.79 0.03 –2286.94 5 
T 29.64 0.00 –2297.87 6 

I 31.75 0.00 –2300.92 4 

Note: Main effects include topographic position (T) and watershed– 

bedrock (W). The null model is represented by I (intercept only). 
Summary includes relative difference between model AIC and AIC 

for the best model (LAIC), Akaike weights (wi), log-likelihood (l), and 

number of parameters (K). 

 
 

leaf-off data, we developed a model with eight variables that ex- 
plained 24% of the variance (pseudo R2). Using the independent 
validation dataset, RMSE of the shrub biomass model was 1.3 t·ha–1, 
and relative RMSE was 1.2. All of the important variables were 
leaf-on or terrain variables, with the two most important variables 
being elevation and 10th percentile height (Fig. 4). The patterns of 
errors for shrub biomass are similar to those of trees, with lower 
biomass values being overpredicted and higher biomass values 
being underpredicted. In particular, there are a lot of plots with a 
measured shrub biomass of zero and not many modeled plots 
with a value of zero (Fig. 5). Again, the model is smoothing the 
biomass values, and predicted values are consistently closer to the 
average biomass than measured biomass plots. 

 

3.4. Spatial patterns of random forest modeled tree and 
shrub biomass 

Random forest modeled tree biomass values were higher on the 
Shale Hills watershed than on the Garner Run watershed (Figs. 6A 
and 6B). In both watersheds, higher biomass was found along the 
valley bottom, with lower values for the ridge-top (Table 3). At 
Shale Hills, higher biomass values occur up to the midpoint of the 
hillslope and on the north-facing slope of the watershed (Fig. 6B). 
At Garner Run, biomass is lower and there is more variability 
within adjacent pixels at all topographic positions (Fig. 6A). Al- 
though modeled biomass values are higher in the valley bottom 
and lower in the mid-slope and ridge-top, the values decrease 
quickly above the toe-slope on the northern aspect. 

Random forest modeled shrub biomass was higher on Garner 
Run than on Shale Hills, and the spatial patterns of  modeled 
shrub biomass were different for each watershed (Figs. 6C and 
6D). At Shale Hills, biomass values for shrubs were low across the 
entire watershed but were slightly higher on the ridge-top. Near 
the stream and across much of the watershed, the values were 
either zero or close to zero. There is a clear ring around the top 
edge of the watershed boundary with higher biomass values and a 
moderate amount of variability (Fig. 6D). 

At the Garner Run watershed, a different pattern emerged in 
which high biomass values were found at the ridge-top but with a 
secondary peak found adjacent to the stream in the toe-slope 
position, likely due to the presence of Rhododendron maximum 
(Fig. 6C). In general, shrub biomass was variable across the water- 
shed, but the ridge-tops, as well as the southern aspect mid-slope 
and the upstream end of the watershed, had consistently high 
values. The mid-slope positions were highly variable but tended to 
have lower biomass values overall. Even though the model for 
shrub biomass had a lot of unexplained variation, the trends of 
shrub biomass match those observed in the field measurements 
(Table 3). 
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Table 5. Number of variables and percent variance explained (pseudo R2) of random forest models of biomass 
derived from leaf-off lidar only, leaf-on lidar only, and combined leaf-off and leaf-on lidar. 

Tree biomass Shrub biomass 

 
Model component 

 
Leaf-on 

 
Leaf-off 

  
Leaf-on 

 
Leaf-off 

Tree biomass 
combined 

Shrub biomass 
combined 

No. of variables 4 6  8 8 6 8 

% Variance explained 40 45  24 8 48 24 

 

Fig. 4. Percent increase of mean standard error (MSE) for each variable 

in the final random forest model for (A) trees and (B) shrubs. %IncMSE 
shows the percent increase of MSE if the variable was randomly shuffled 
in the model. 

 

 

4. Discussion 

This study highlights the range of variability of biomass and 
forest structure within similar forest communities. Both modeled 
and field-measured estimates of biomass showed ~60% greater 
biomass in Shale Hills compared with Garner Run, despite their 
relative proximity and similar oak-dominated deciduous forest 
cover. Within watersheds, forest biomass was generally highest at 
the toe-slope position and decreased moving to the mid-slope and 
then to the ridge-top. The greatest proportion of forest biomass is 
found in trees (~99%), but the relatively small amount of shrub 
biomass (remaining ~1%) can provide important ecosystem ser- 
vices such as wildlife habitat, therefore accurate models of shrub 
biomass can be equally useful for managers. 

We also improved our understanding as to how leaf-on and 
leaf-off lidar can be used for modeling patterns of tree and shrub 
biomass across broad scales. Collecting field data for biomass es- 
timates is time consuming and costly and usually includes only a 
fraction of the landscape. Both leaf-on and leaf-off lidar data were 
essential for characterizing biomass from trees and shrubs in a 
deciduous forest. Leaf-off lidar was more effective at characteriz- 
ing tree biomass, while leaf-on lidar was more effective at charac- 
terizing shrub biomass. 

4.1. Biomass values across watersheds and topographic 
position 

Topographic position, watershed, and the interaction of those 
variables influenced the biomass of both trees and shrubs. The 
interaction effect, in particular, suggests that the biomass may 
not be responding to the same factors in each watershed. Differ- 
ences in bedrock, soil, and elevation in watersheds contribute to 
vegetation changes and forest height, which can directly influ- 
ence biomass (Wolf et al. 2016; Bolstad et al. 2018). This could be 
due in part to the influence of bedrock on landscape evolution. 
For example, hillslope length at Garner Run is much longer than 

Shale Hills due perhaps to slower erosion for sandstone than shale 
(Brantley et al. 2016). At the Shale Hills watershed, in addition to 
the concave area near the stream and toe-slope, there are also 
dominant swale features that intersect the mid-slope area. Swales 
host higher forest productivity than planar slopes in Shale Hills 
(Smith et al. 2017) and may contribute to higher biomass in the 
overall watershed compared with Garner Run. Swales and a 
stream basin are not present in the Garner Run watershed, and 
the hillslope is more planar. The difference that we see in biomass 
distributions between topographic positions and watersheds 
could be caused by topography-driven patterns in soil depth and 
water availability, as well as differences in nutrient availability 
between bedrock (Hahm et al. 2014). 

4.2. Leaf-on and leaf-off lidar models 
One of the advances made in this study is understanding how 

leaf-on and leaf-off data can be used together to represent forest 
structure, particularly with a complex canopy structure and the 
presence of important understory species. Although others (Hill 
and Broughton 2009) have suggested that leaf-off data could be 
more effective at identifying understory or complex canopies, we 
did not find that to be the case for understory biomass. In our 
shrub biomass model, leaf-on variables were much more impor- 
tant than leaf-off variables, which contradicts the idea that in leaf-
off conditions, more lidar points would penetrate the canopy and 
reach the shrub layer. With fewer leaves on the shrubs, there 
were not enough lidar points from the understory to accurately 
reflect shrub biomass. Our results are consistent with studies 
done in tropical forests in which leaf-on data were found to be 
more effective at modeling biomass and biodiversity (García et al. 
2010). 

Our results investigating the role of leaf-on and leaf-off lidar 
data to model tree biomass showed that leaf-off lidar data mod- 
eled tree biomass slightly more effectively than leaf-on data. In 
this closed deciduous forest ecosystem, the leaf-on lidar percent 
cover seems to be oversaturated with respect to biomass, meaning 
that there is not much variability in leaf-on percent cover (most 
values are close to 100%), although there is variability in biomass. 
There is less two-dimensional variability in canopy cover than in 
biomass. This may be because when a tree dies, the trees around it 
will spread their canopy to fill in the gap, with potentially little 
influence on biomass estimates based on tree diameter. With leaf- 
off lidar data, differences in percent cover are slightly more pro- 
nounced, as evidenced by the leaf-off first return cover being 
included in the final leaf-off lidar tree biomass model. Therefore, 
leaf-off lidar is slightly better at detecting subtle differences in 
forest density that relates to biomass than leaf-on lidar in this 
deciduous forest. 

Our models of tree biomass did not predict biomass as well as 
other lidar studies investigating deciduous or mixed forests 
(Gleason and Im 2012; Wolf et al. 2016), perhaps in part because of 
our small plot and raster cell size. Optimal plot and cell size has 
been extensively researched with respect to lidar-based measure- 
ments (Gobakken and Naesset 2008; Frazer et al. 2011; White et al. 
2013; Ruiz-Benito et al. 2014; Hayashi et al. 2016; Silva et al. 2017), 
but results vary based on lidar pulse density and forest structure. 
Hayashi et al. (2016) and Silva et al. (2017) both found that a 10 m 
resolution raster-based model may effectively model biomass, but 
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Fig. 5. The measured versus modeled biomass values for (A) trees and (B) shrubs using the random forest model for the validation points. 

The total variance (pseudo R2) explained by the random forest models for tree and shrub biomass were 48% and 24%, respectively. Patterns of 
residuals with respect to measured biomass are shown in (C) trees and (D) shrubs. 

 

 

in our case, this cell size seems to have been smaller than optimal. 
Our objective was to develop a model that would highlight fine- 
scale patterns, but in increasing the spatial resolution of our mod- 
els, we probably also increased the amount of unexplained 
variability in our model. With a small plot size, the presence or 
absence of one tree can have a significant impact on the total 
biomass value for the plot. Also, a tree that has its canopy inside 
the plot, as measured by the lidar, may have a stem outside of the 
plot; therefore, its biomass would not be included in our field 
measurement. 

In a model of shrub abundance, Barber et al. (2016) used a vari- 
able measuring the percentage of returns higher than 1.37 m, as 
well as a variable measuring the percentage of first returns be- 
tween 0.15 m and 1.37 m. Using models with only lidar data, they 
were able to explain between about 14% and 24% of the variability 
in abundance for two different shrub species, which compares 
with our models, which explained about 24% of the shrub biomass 
variability. In modeling understory biomass, we considered the 
approach of Hudak et al. (2016) that used only lidar returns be- 
tween 0 and 3 m to calculate shrub biomass and then used over- 

story canopy cover as a correction factor. Unfortunately, we found 
that in many cases, we did not have enough returns in the under- 
story layer, particularly in the leaf-off lidar dataset, to generate 
accurate models of shrubs. Hill and Broughton (2009) calculated 
height of understory using leaf-off and leaf-on lidar by measuring 
the height of the highest return below the canopy. We were inter- 
ested in the biomass from shrubs, which is affected more by stem 
density than height, so we chose to use the entire point cloud for 
our models. 

We found similar lidar metrics to be important for modeling 
tree biomass, as in other studies (e.g., Wolf et al. 2016; Gleason and 
Im 2012; Hudak et al. 2012). In our tree biomass model, leaf-on 60% 
percentile height was the most important metric. Also, elevation 
was the only important terrain metric for the tree biomass model. 
Other terrain metrics may not have been important because the 
different watersheds have different bedrock and, subsequently, 
their patterns of landscape evolution are different. 

4.3. Spatial patterns of biomass 
Across topographic positions, shrub biomass was consistently 

higher in the Garner Run watershed than in the Shale Hills water- 
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Fig. 6. Random forest modeled values of tree and shrub biomass (in t·ha–1) for both (A, C) Garner Run and (B, D) Shale Hills watersheds: 
(A and B) tree biomass models; (C and D) shrub biomass models. [Colour online.] 

 

 

shed. Because we analyzed only two watersheds for this study, we 
are unable to predict why this may be occurring, but in other 
areas, forest structure varies with bedrock type (Butler et al. 2003; 
Hahm et al. 2014). In this region, sandstone frequently underlays 
dry oak–heath forests, which are characterized by an ericaceous 
shrub understory (Fike 1999). The developed shrub understory 
may be the result of higher soil acidity and (or) lower water 
availability associated with sandstone-derived soils. Future work 
will expand the scope of this study to determine if this is a 
consistent pattern for eastern deciduous forests across bedrock 
types. 

The patterns of shrub biomass and tree biomass across the wa- 
tersheds tend to be opposite to one another, with shrub biomass 
values being higher on ridge-tops and tree biomass values being 
higher in toe-slope positions, with some exceptions. Previous li- 
dar research has shown that shrub biomass tends to vary inversely 

with tree canopy cover (Martinuzzi et al. 2009; Bolstad et al. 2018). 
Although our overall biomass results for trees and shrubs by top- 
ographic position support this idea, the lidar-derived percent tree 
cover metric was not one of the important variables in our shrub 
biomass models, showing that there is not a direct inverse rela- 
tionship between percent tree cover and shrub biomass. This may 
be because in this ecosystem, the lidar signal for percent cover 
may be saturated at a relatively low level of tree biomass, thereby 
making it a less effective predictor of light availability for under- 
story than it may be in other forest  types.  Another  contradic- 
tion is that at the toe-slope of the Garner Run watershed, the 
shrub biomass values are actually relatively  high,  despite  the 
fact that tree biomass is also high. We think that this may be 
because of some large understory species (e.g., Rhododendron 
maximum and Hamamelis virginiana L.) that primarily occur along 
the stream in this watershed. 
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4.4. Study limitations and sources of error 
There are several limitations of our sampling scheme for an- 

swering questions about patterns of biomass. First, we did not 
have replicates for each watershed; therefore, it is unclear if the 
patterns in tree and shrub biomass across watersheds would be 
consistent based on bedrock. Second, our field plot size is small 
compared with other studies, particularly our shrub plots, which 
could lead to increased error in the lidar-based biomass models. 
We were also relying on current GPS technology, which makes it 
difficult to perfectly line up high-resolution lidar to relatively 
small plots on the ground. 

Another source of error in our study is the allometric equations 
used to relate diameter to tree biomass. Smith et al. (2017) esti- 
mated 10% uncertainty in their biomass calculations from tree 
diameters for Shale Hills due to field measurement and model 
selection uncertainty. Lidar-based metrics are often based on tree 
height, while the allometric equations used to calculate biomass 
from field measurements are based on tree diameter. Trees of the 
same species and diameter were consistently taller in Shale Hills 
than in Garner Run, and trees were taller at the toe-slope position 
than at the ridge-top position. Although our biomass values, both 
measured and modeled, were consistently higher at the toe-slope 
position and at the Shale Hills watershed, these differences are 
probably underestimated because biomass estimates do not take 
into account tree height and, therefore, cannot capture the effects 
of topographic position and watershed on tree biomass via tree 
height. 

5. Conclusions 

The major objective of this study was to understand how 
aboveground biomass varies with changing terrain at a fine-scale 
(10 m) resolution. We found a much higher amount of shrub bio- 
mass in the Garner Run watershed than in the Shale Hills water- 
shed at all topographic positions. Within each watershed, there 
was higher tree biomass at the toe-slope position, and shrub bio- 
mass values varied across topographic position for each water- 
shed. This suggests that there are other abiotic factors in addition 
to topography that influence the distribution of biomass across 
the landscape. 

We also used leaf-on and leaf-off lidar for modeling shrub and 
tree biomass. We were able to model broad-scale patterns of bio- 
mass using both leaf-on and leaf-off lidar, but our most accurate 
model is not capturing the full range of variability on a fine scale. 
Because shrub biomass in particular is difficult to measure in the 
field, a stratified sampling method could be employed in the fu- 
ture to capture more of the variability in high shrub areas such as 
in ridge-top topographic positions, which could lead to improved 
spatial models. Overall, by understanding how biomass varies spa- 
tially at a fine scale, we can begin to link ecosystem processes to 
abiotic factors and optimize ecosystem services at a landscape 
scale. 
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