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Abstract—In recent years, the implementation of the demand
response (DR) programs in the power system’s scheduling and
operation is increased. DR is used to improve the consumers' and
power providers’ economic condition. That said, optimal power
flow is a fundamental concept in the power system operation and
control. The impact of exploiting DR programs in the power
management of the systems is of significant importance. In this
paper, the effect of time-based DR programs on the cost of 24-hour
operation of a power system is presented. The effect of the time of
use and real-time pricing programs with different participation
factors are investigated. In addition, the system’s operation cost is
studied to analyze the DR programs' role in the current power
grids. For this aim, the 14-bus IEEE test system is used to properly
implement and simulate the proposed approach.

Keywords—Demand response, optimization, participation
factor, power flow.

NOMENCLATURE

Indices and Sets

tj, i Index of the time

nb, mb System’s buses index
Nius, Qs Set of buses

Parameters and Constants

a b Coefficients for linear load

Lo Initial price of electricity

p(i ) Maximum price of electricity

pei )™ Minimum price of electricity
Pa Initial demand load

Py Demand load

El(i,i) Self-elasticity
El(ij) Cross-elasticity
B Charging susceptance

Bibmb Branch nbmb susceptance

Gruomp Branch nbmb conductance

ac, be, cc Coefficient of operation cost function
Smax Power flow limitations

Ocmax Power generation unit maximum limitation
Ocmin Power generation unit minimum limitation
[V max Maximum voltage magnitudes

14 Minimum voltage magnitudes
Functions and Variables
p Electricity price
Pc Power generation

Oc Reactive power generation
Poiomp Active power flow of branch nbmb
Oybmb Reactive power flow of branch nbmb
P Bus nb active demand

Qunp Bus nb reactive demand

[ Vs Bus nb voltage magnitude
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Branch nbmb admittance angle

nbmb
Opcost System operation cost function
I. INTRODUCTION

NVIRONMENTAL issues are one of the significant

problems of the current era. Considering the governments
obligation to use renewable resources, numerous uncertain
parameters are added to the operation of the power system.
Thus, operation problems become more challenging. With the
restructuring of power systems and the advancement of
telecommunication technology, the use of demand response
(DR) programs is considered a trustable way to manage the
power system appropriately [1]. One of the main concepts of
the operation in the power system is to have the optimal power
flow (OPF). By solving the OPF problem, the status of the
whole system is determined. Some types of OPF are as follows:
dynamic OPF, static OPF, security-constrained OPF,
deterministic OPF, transient stability-constrained OPF,
stochastic OPF, AC OPF, probabilistic OPF, DC OPF, and
mixed AC/DC OPF [2]. Regarding the current situation of the
power system, it is impossible to ignore the DR programs effect
in the scheduling and operation of systems.

Demand-side management (DSM) was initially proposed
with the aim of reducing energy consumption, but after the
privatization and restructuration of the power systems, several
other objectives are considered in the DSM projects. After the
restructuring of the power systems and the creation of the
electricity market, the DSM was re-created in the form of
bilateral contracts, which is known as DR.

The ability of household, commercial, and industrial
subscribers to improve their electricity consumption patterns to
improve the grid reliability and to achieve reasonable prices is
called DR [3]. DR program’s goals are divided into short and
long-term ones. The long-term goals of DR programs are to
defer the need to develop generation capacity and install new
power lines, and the short-term goals are to increase network
reliability and prevent price spikes. The major advantages of
using the DR programs are the competitiveness of the electricity
market, risk reduction, proper interaction between supply and
demand, the connection between retail and wholesale energy
markets, creation of a new tool for customer load management,
and the existence of environmental benefits due to reduced
usage of the fossil resources.

Both consumers and operators should spend money and
invest to take advantage of the DR programs. Consumers’ pays
could include the installation of new technologies to control
energy consumption, installation of distributed generation
sources, fuel costs, repair, maintenance, and network
connection equipment to distributed generation sources. The
costs of the implementers of these programs include the
installation of advanced two-way metering equipment for
measuring, exchanging, and storing information. Also, when
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the incentive-based DR program is implemented the system
operator should pay incentives to customers.

DR programs can be divided into two main categories:
incentive-based and time-based programs. In the incentive-
based programs, customers change the amount of their
demanded load by considering the contracts, rewards, and
penalties. Moreover, the incentive-based programs are divided
into six categories: interruptible/curtailable (I/C) service, direct
load control (DLC), demand bidding/buy back (DB), ancillary
service (A/S) markets, emergency dr program (EDRP), and
capacity market program (CAP). On the other side, the time-
based programs have no penalty or incentive for their
customers, and energy prices are charged to customers at
different time intervals. Time- based programs can be divided
into three groups: critical peak pricing (CPP), time of use
programs (TOU), and real-time pricing (RTP). Fig. 1 shows the
general scheme of DR programs [4].

Direct Load Control

Interruptible/
Time of Use Curtailable Service

programs

Demand Bidding/
Buy Back

I e

Incentive -
Base

Critical Peak
Pricing Emergency Demand

Response Program

Capacity Market
Program

Ancillary Service
Markets

1T

Fig. 1. DR classification.

A. Literature Review

Many studies and researches have been done in the field of
power system’s scheduling and operation. But, several
challenges and issues have remained that need to be addressed.
For instance, the management of a distribution system with
distributed generation resources is investigated in [5]. The
objective of the [5] is to minimize the previous day’s operating
cost which is done by optimally controlling the active elements
of the network, distributed generation sources, and responsive
loads. Also, both incentive and time-based programs have been
mathematically modeled [6]. Reference [7] introduces a priority
indicator for consumers that participate in the electricity
market. This index is determined based on the number and
amount of applications to participate in the DR program. Low
priority customers with smart energy management permission
can use electricity when energy prices are cheap. The results
show that the intelligent energy management system is
successful in decreasing peak load. Additionally, the load
reduction during peak times depends on the amount of
participation in the DR program during peak hours.

In [8], a time-based DR program that includes TOU, actual
pricing, and peak time pricing is modeled and implemented.
Also, these programs have been compared with different
participation factors. In [4], the focus is on two types of
incentive-based DR programs. In this reference, several
scenarios with different rewards and penalties are introduced

and the simulation results of these scenarios are analyzed and
compared [4]. In [9], DR programs have been used to reduce
the operating cost of the energy hub. In [10], optimal
microgrid’s  scheduling has been studied with the
implementation of the incentive-based DR program considering
the uncertainty of renewable energy sources and load. The
performance and efficiency of renewable energy sources and
storages have been studied from the uncertainty point of view
in [11]. In [12] time-based DR program for commercial,
residential, academia, and industrial load curves is
implemented.

In this paper, the effect of RTP and TOU DR Programs on
the power system 24 hours operating cost is investigated. The
effect of various participation factors on the OPF problem has
also been studied. And, the obtained results for all scenarios are
presented and discussed.

B. Paper Organization

In this work, section II presents the load modeling with the
time-based DR program. In section III, 24-hour OPF problem
formulation is explained. Information needed to solve the
problem and simulation results are presented in section IV.
Section V expresses the conclusion of the proposed approach.

II. LOAD MODELING

A. Elasticity

Load’s elasticity is the load sensitivity with respect to the
price of the power. The mathematical model of the elasticity is
shown by (1). The load elasticity parameter is divided into two
parts: self-elasticity and cross-elasticity. Self-elasticity is
always negative and cross-elasticity is positive [4]. Equations
(2) and (3) represents the mathematical model of the self-
elasticity and cross-elasticity, respectively. In this paper, the
linear load model is considered and (4) shows the utilized
mentioned linear model. Equation (5) is obtained by
considering the load’s elasticity definition and linear load
model [4]. The relationship between load, price, and elasticity
is shown by (6). For the daily operation, the desired relation can
be represented as a 24-by-24 matrix, which is presented in (7).
In this matrix, the elements of the principal diameter are the
self-elasticity, and the other elements of the matrix are the cross
elasticity [13].
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B. Responsive Loads Modeling

Responsive loads can be divided into two categories: multi-
period and single-period loads. The single period load model is
not able to be transmitted at other time intervals. This type of
load can only be turned on or off. In this type of load, it is
impossible to change the time period of the demanded load.
Thus, in the i period of the operation, the amount of changes
in the consumer's load is obtained from (8) and the profit is
obtained from (9). Equation (10) is used to maximize the
customer’s profitability. After simplification of (10); the final
formula is shown in (11). However, multi-period loads can be
transferred at different time intervals and can be used at
different times of the day. The model of this type of load is
calculated based on cross elasticity by (12). The final load
model for a responsive load is obtained from (13) which is
achieved by combining two single-period and multi-period
models [13].
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III. PROBLEM FORMULATION
A. Objective Function

As mentioned, it is impossible to operate power networks
without solving the OPF problem. The OPF problem is an
optimization problem for minimizing the power grid’s
operating costs. Equation (14) shows the operating cost of the
conventional generation resources, which is modeled as a
quadratic function with respect to fuel consumption.

Opcost, = aCPC’t2 +bCPC’, + CC,t (14)

B. Constraints

The constraints of the optimization problem are related to the
network and power generation resources limits. Equations (15)
and (16) show the typical AC power flow equations. Equations
(17) and (18) present the balance constraints between
consumption and generation for active power and reactive
power, respectively. By combining (17) and (13), the new
active power balance constraint is shown in (19). The line
constraints for power transmission are presented in (20).
Constraints for bus voltage are shown in (21)-(23). Power
generation resources also have their own limitations; Equations
(24) and (25) indicate the electricity generation resources’
active and reactive power constraints, respectively.
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IV. TEST SYSTEM AND SIMULATION RESULTS

The IEEE standard 14-bus network, shown in Fig. 2, is used
to perform the simulations [14]. For all cases in the considered
system, the 24-hour load profile is used which is indicated in
Fig. 3 [8]. The required coefficients of the system’s operating
cost for (14) are demonstrated in Table I [14].

Not all customers are willing to participate in DR programs.
The value of the participation factor should be used as a
parameter to show the amount of the customers' participation
factor and related loads. To study the effect of this parameter,
the value of the participation coefficient is considered as 10%,
20%, and 50%. Also, the assumed self-elasticity and cross
elasticity are shown in Table II [13]. The TOU program prices
are 30, 70, and 120 $/MWh for the valley period, off-peak, and
peak hours, respectively. In addition, 30, 50, 70, 100, and 120
$/MWh are considered in the RTP program.

.z_tu;iﬁ

Fig. 2. The IEEE standard 14-bus system.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 10,2022 at 16:28:39 UTC from IEEE Xplore. Restrictions apply.



Load Factor
)
o
—~

Time(h)
Fig. 3. 24-hour load profile.

TABLE I
COEFFICIENTS OF OPERATING COST
Bus a b c
1 0.043 20 0
2 0.25 20 0
3 0.01 40 0
6 0.01 40 0
8 0.01 40 0
TABLE II
CROSS-ELASTICITY AND SELF-ELASTICITY
# Peak period  Off-peak period Valley period
Peak period -0.1 0.016 0.012
Off-peak period 0.016 -0.1 0.01
Valley period 0.012 0.01 -0.1

Implementation of the DR program is performed in the
MATLAB software. The effect of RTP and TOU programs on
the considered load curve can be seen in Figs. 4 and 5,
respectively. In each figure, the participation factors are 10%,
20%, and 50%. As Figs. 4 and 5 show, by increasing the
participation factor the peak of the load profile is disappear and
shaved. Regarding the fact that which DR programs are utilized,
different profiles are obtained. Indeed, the output and impact of
these two considered programs vary by changing the
participation factor. Also, the OPF problem’s objective is the
minimization of the operation cost. The network operator must
perform AC OPF calculations, which is a nonlinear
optimization problem. The MATPOWER toolbox in MATLAB
has been used to simulate and solve the proposed optimization
problem [15].
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Fig. 4. The impact of the RTP program on the considered load profile with
participation factor of (a) 10%; (b) 20%; (c) 50%.
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Fig. 5. The effect of the TOU program on the considered load profile with
participation factor of (a) 10%; (b) 20%; (c) 50%.

Fig. 6 shows the system’s daily operation cost before the
implementation of the DR programs. Moreover, Figs. 7 and 8
illustrate the network operation cost in the 24 hours after the
implementation of the RTP and TOU programs. To show the
effect of participation factors on the operating cost, DR
programs with different participation factors of 10% (Fig. 7a
and Fig. 8a), 20% (Fig. 7b and Fig. 8b), and 50% (Fig. 7 c and
Fig. 8c) are considered. By considering the Figs. 7 and 8, it is
proved that by DR program implementation the operating cost
of the system is dramatically reduced. In addition, when the
operator and consumer increase the participation factor, the
operating cost is significantly decreased. Moreover, each of the
used DR programs has a different impact on the operating cost
of the system which is dependent on the participation factor of
the consumers.
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Fig. 6. The network operation cost in the 24 hours before the implementation

of the RTP and TOU programs.
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Fig. 7. The network operation cost in the 24 hours after the implementation of
the RTP program with participation factor of (a) 10%; (b) 20%; (c) 50%.

T I I T I T I T T T ToT E
\

19 20 21 22 23 24 25

Operation Cost ($/hr)

1000)

T 2 3 4 5 6 7 8 9 1011 15 16 17 18

8

5

2000]

1000

5 10 11 12 13 14 15 16 17 18
Time(h)

()

After DR

000

4000] =

z
S 4000
g

£ 3000{—
S 2000

1000

T 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time(h)

©

Fig. 8. The network operation cost in the 24 hours after the implementation of
the TOU program with participation factor of (a) 10%; (b) 20%; (c) 50%.

16 17 18 19 20 21 22 23 24 25

66

V. CONCLUSION

In this study, RTP and TOU DR programs are implemented
on the IEEE standard 14-bus system. The effect of these DR
programs on the load profile is investigated. In addition, the
operation cost of the system is calculated considering different
cases. According to the simulation results, DR programs make
the 24-hour load profile smoother. In the peak periods, the
network operator will have to turn on its pricy units. Thus,
reducing the consumption in peak hours and transferring the
demand to the valley and off-peak intervals dramatically
decrease the operating costs of the network in 24 hours.
Furthermore, various participation factors will also have a large
impact on reducing operating costs and smoothing the load
profile, especially during peak hours. In future work, the
reliability and robustness of the power system could be
analyzed under the same considered cases.
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