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Abstract—In this paper, we introduce two new methods of mit-
igating decoder error propagation for low-latency sliding window
decoding (SWD) of spatially coupled low-density parity-check (SC-
LDPC) codes. Building on the recently introduced idea of check
node (CN) doping of regular SC-LDPC codes, here we employ
variable node (VN) doping to fix (set to a known value) a subset
of variable nodes in the coupling chain. Both of these doping
methods have the effect of allowing SWD to recover from error
propagation, at a cost of a slight rate loss. Experimental results
show that, similar to CN doping, VN doping improves performance
by up to two orders of magnitude compared to un-doped SC-LDPC
codes in the typical signal-to-noise ratio operating range. Further,
compared to CN doping, VN doping has the advantage of not
requiring any changes to the decoding process. In addition, a log-
likelihood-ratio based window extension algorithm is proposed to
reduce the effect of error propagation. Using this approach, we
show that decoding latency can be reduced by up to a significant
fraction without suffering any loss in performance.

I. INTRODUCTION

Spatially coupled low-density parity-check (SC-LDPC) codes,
a type of LDPC convolutional code [1], have been shown to
achieve threshold saturation, i.e., the suboptimal belief propaga-
tion (BP) iterative decoding threshold of SC-LDPC code ensem-
bles over memoryless binary-input symmetric-output channels
coincides with the maximum a posteriori probability (MAP)
threshold of their underlying LDPC block code (LDPC-BC)
ensembles [2]–[5]. Further, regular SC-LDPC code ensembles
not only have capacity approaching iterative decoding thresh-
olds, but they are asymptotically good, i.e., their minimum
distance grows linearly with frame length [6]. Therefore, SC-
LDPC codes combine the best features of both regular and
irregular LDPC-BCs.

SC-LDPC codes can be formed by applying a protograph-
based construction technique [6]. In this paper we consider SC-
LDPC codes constructed by coupling together a sequence of
L disjoint (J,K)-regular LDPC-BC protographs into a single
coupled chain, where infinite L results in an unterminated
coupled chain and finite L results in a terminated coupled
chain. Without loss of generality, we consider an example
of constructing (3,6)-regular SC-LDPC codes. We begin with
an independent (uncoupled) sequence of (3,6)-regular LDPC-
BC protographs with base matrix B = [3, 3]. Fig. 1 shows
the resulting unterminated (3,6)-regular SC-LDPC code chain
obtained by applying the edge-spreading technique of [6] to
the uncoupled protographs. The edge spreading is defined by

Fig. 1. A (3,6)-regular SC-LDPC code protograph obtained from an underlying
LDPC-BC protograph with base matrix B = [3, 3]: (a) a sequence of
independent (uncoupled) protographs; (b) spreading edges to the m = 2 nearest
neighbors.

a set of component base matrices B0 = B1 = B2 = [1 1]
that must satisfy B = B0 +B1 +B2. In general, an arbitrary
edge spreading must satisfy B =

∑m
i=0 Bi, where m is referred

to as the coupling width. Applying the lifting factor M to
the SC-LDPC protograph of Fig. 1 results in an unterminated
ensemble of (3,6)-regular SC-LDPC codes in which each time
unit represents a block of 2M coded bits (variable nodes).

To minimize decoding latency and memory, sliding window
decoding (SWD) was proposed for SC-LDPC codes in [7],
where a standard BP flooding schedule is applied to all the
nodes in the window. For example, in Fig. 1, the rectangular box
represents a decoding window of size W (blocks). To decode, a
BP flooding schedule is applied to all the nodes in the window
for some fixed number of iterations, or until some stopping
criterion is met, the target block of 2M symbols in the first
window position is decoded according to the signs of their log-
likelihood ratios (LLRs), and the window shifts one time unit
(block) to the right (see Fig. 1). Decoding continues in the same
fashion until the entire chain is decoded, where the decoding
latency in bits is given by 2MW .

In order to reduce decoding latency and memory, the window
size W should be chosen as small as possible. In [8] the authors
experimentally showed that near optimal performance can be
maintained at higher signal-to-noise ratios (SNRs) as long as
W ≥ 6η, where η = m+1 is decoding constraint length. When
low latency operation is desired, however, at typical operating
SNRs, smaller values of W can sometimes result in infrequent
but severe decoder error propagation. Error propagation is trig-
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gered when, after a block decoding error occurs, the decoding
of the subsequent block is also affected, which in turn can cause
a continuous string of block errors, resulting in an unacceptable
loss in performance. This is particularly damaging for very
long code chains or for streaming applications. Klaiber et al. in
[9] proposed to adapt the number of decoder iterations and/or
shift the window position in order to combat decoder error
propagation for SC-LDPC codes. For a related class of spatially
coupled codes, viz. braided convolutional codes (BCCs), with
SWD [10], a window extension algorithm, a synchronization
mechanism, and a retransmission strategy were all used to
mitigate error propagation [11]. More recently, Zhu et al.
proposed a check node (CN) doped SC-LDPC code design [12]
to limit error propagation. A disadvantage of these approaches is
that they all require some modification of the decoding process.1

The CN doped code design was motivated by the fact that the
boundaries of a coupled chain have lower degree CNs, which
has the effect of propagating more reliable information through-
out the chain during iterative decoding. Inserting occasional
lower degree CNs in a code chain, i.e., CN doping, has the
same effect, thus allowing the decoder to recover from error
propagation, although the shape of the decoding window must
be altered at the doping points.

In a similar vein, known (or fixed) variable nodes in a coupled
chain can also aid the iterative decoding process. This motivates
us to propose a new class of variable node (VN) doped SC-
LDPC codes in this paper, which operate by inserting occasional
fixed (known) VNs in a code chain, thus allowing the decoder
to recover from error propagation, with the added advantage
of leaving the shape of the decoding window unchanged. The
CN doping and VN doping code designs introduce occasional
irregularities in the coupled chain, which results in some rate
loss. However, since code doping is primarily useful for long
or unterminated chains, the rate loss associated with doping is
very slight.2 We present numerical results showing that, similar
to CN doping, VN doping improves performance by up to two
orders of magnitude compared to undoped SC-LDPC codes in
the typical SNR operating range.

We also adapt the log-likelihood ratio (LLR) based window
extension algorithm, first proposed in [10] for BCCs, to combat
error propagation in SWD of SC-LDPC codes. This approach,
which requires the size of the decoding window to occasionally
be extended, but involves no rate loss, is shown to be capable of
reducing the decoding latency by a significant fraction without
suffering any loss in performance.

II. DECODER ERROR PROPAGATION

During SWD of SC-LDPC codes, when a block of target
symbols at time t is decoded, the window shifts to include
the most recent block of received symbols at time t+W , and
decoding commences on the block of target symbols at time
t+1. During the decoding of the time t+1 block, for a coupling
width of m, the final LLRs of the m past decoded blocks, from

1For the basic concept of doping, we refer the readers to [13] and [14].
2Since termination itself serves to truncate error propagation, the effect on

short chains is minimal.

time t − m + 1 to time t, remain involved in the decoding
process, although these LLRs are no longer updated.

Under normal operation, decoding proceeds with correctly
decoded blocks until such time as a block of target symbols
contains one or more LLRs with incorrect signs when the win-
dow shifts, thus resulting in a block decoding error. Typically,
if only a few symbols have incorrect LLRs and most of the
correct LLRs have large magnitudes, the LLRs of the incorrectly
decoded block will have only a small effect on the decoding
of the next block, and the decoder will recover and continue
to correctly decode subsequent blocks, assuming most of the
symbols in the window have large and correct LLRs. This type
of operation results in randomly distributed error blocks.

However, if an error block contains many incorrect LLRs,
particularly if they have large magnitudes and a significant
number of the LLRs associated with the correct symbols are
small, those “bad” LLRs may negatively affect the decoding
of the next block of target symbols, causing a block error that
would not have occurred under normal operating conditions.
This in turn can trigger additional block errors, resulting in
an error propagation effect, i.e., a continuous sequence of
incorrectly decoded blocks.

In an application where information is transmitted in frames
of a small fixed length L (in time units), with graph termination
(reduced check node degrees for m time units) following the
last block of transmitted variable nodes, any error propagation
will be limited and decoding will start fresh with the next
frame. However, if L is large, a significant number of blocks
could be affected by error propagation, thus severely degrading
performance. In a streaming application, with no termination,
the situation could be catastrophic, resulting in a block error
rate (BLER) that asymptotically tends to 1.

We now give an example illustrating the effect of this error
propagation. The simulated BLER performance of SWD of a
(3,6)-regular SC-LDPC code based on the coupled protograph
in Fig. 1 is shown in Fig. 2, where W = 18 and M = 2000.
The figure represents the simulation of a total of LN = 5×106

blocks (or 2MLN = 2×1010 bits), where L is the frame length
and N is the number of frames simulated, for three different
combinations of L and N . From the figure, we observe that,
with increasing L, the BLER performance becomes worse, even
though there are relatively few error-propagation frames overall,
thus confirming the above observation.3

III. ERROR PROPAGATION MITIGATION

In this section, we briefly review CN doping and then describe
the new VN doping and window extension error propagation
mitigation methods in detail.

A. A Brief Review of CN Doped SC-LDPC Codes
In order to combat error propagation in SWD of SC-LDPC

codes, a new CN doped SC-LDPC code design was proposed in

3Fig. 2 represents only a narrow range of SNRs, below the threshold of the
underlying LDPC-BC, where error propagation presents a significant problem.
For larger values of Eb/N0 and/or W , SWD typically recovers from an error
burst.
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Fig. 2. SWD BLER performance of a (3,6)-regular SC-LDPC code for three
different combinations of frame length and number of frames simulated, all
with the same total number of simulated blocks.

[12]. The key idea of CN doped SC-LDPC codes lies in occa-
sionally inserting additional check nodes into the protograph
of a regular SC-LDPC code, which is referred to as check
node doping. The resulting structured irregularity limits error
propagation by emulating graph termination, as noted earlier.
We now use (3,6)-regular SC-LDPC codes as an example to
briefly review of the CN doping process and the corresponding
decoding scheme.

Fig. 3 shows the construction and SWD schedule of CN
doped (3,6)-regular SC-LDPC codes. The red VNs at time
t = τ1 spread their three edges to the CNs at times t = τ1 +1,
t = τ1 + 2, and t = τ1 + 3; the red VNs at time t = τ2 spread
their three edges to the CNs at times t = τ2+2, t = τ2+3, and
t = τ2+4, and so on. To decode a CN doped (3,6)-regular SC-
LDPC code, the window shifting schedule of SWD applied to
the doped coupled chain is altered compared to standard SWD.
When a doping point (red VN pair) becomes the target block,
the window shifts by one VN time unit to include one new
block of VNs, as before, but it shifts by two CN time units
to include two new blocks of CNs (and thus still including the
same total number of CNs), as illustrated in Fig. 3.

B. VN Doped SC-LDPC Codes

As an alternative to introducing occasional reduced-degree
check nodes in the coupled chain (called CN doping) [12], here
the encoder fixes (sets to “0”) occasional variable nodes in the
coupled chain, called VN doping, as shown Fig. 4, where each
time unit represents a block of 2M coded symbols. The VNs
at time t = τ1 (the green empty circles) are doped by setting
the 2M coded bits corresponding to these VNs to be “0”. As a
result, the CNs at times t = τ1, τ1 + 1, τ1 + 2 (colored red and
shaded) can be viewed as degree-4, rather than degree-6, CNs,
thus emulating CN doping without actually altering the graph
structure. Similarly, if the VNs at time t = τ2 are doped, the
CNs at times t = τ2, τ2 + 1, τ2 + 2 (colored red and shaded)
can be viewed as degree-4 CNs.

If nc and nv denote the total number of CNs and the
total number of unknown VNs in VN doped SC-LDPC codes,

respectively, and if there are d doped positions, the design rate
of VN doped SC-LDPC codes with frame length L and d doped
VNs is

RL,doped = 1− nc

nv
= 1−

(
L+m

L− d

)
(1−R) , (1)

where R = 1 − J/K is the design rate of the uncoupled
protograph [6]. Compared to the design rate RL = 1 −(
L+m
L

)
(1−R) of undoped SC-LDPC codes [6], we see from

(1) that the design rate of VN doped SC-LDPC codes is smaller,
i.e., VN doping results in some rate loss, similar to CN doping.

The decoding process is the same as for undoped codes, ex-
cept that the doped code symbols and their positions are treated
as known, i.e., during the decoding process we set the LLRs of
the doped symbols to be a large constant negative value. These
known bits have the effect of transmitting perfectly reliable
information to their neighbour nodes, thus helping the decoder
recover from error propagation. An important implementation
advantage of VN doping over CN doping is that the shape of
the decoding window remains unaltered.

C. Window Extension Algorithm
In this section, rather than altering the code design, we

mitigate error propagation by occasionally extending the size
of the decoding window. By experimentally recording decoder
behavior during error propagation, we find that the average LLR
magnitudes of the blocks are typically near zero, a phenomenon
also observed for BCCs in [11].

To take advantage of this observation, we can allow the
window size W to change dynamically in SWD of SC-LDPC
codes, from an initial size Winit to a maximum size Wmax,
thereby causing additional decoding resources to be employed
when a potential error propagation condition is detected. To
formalize this process, we denote the decision LLRs of the
2M coded bits in the ith block of the current window after
some fixed number I of iterations by �i =

(
�i0, �

i
1, . . . , �

i
2M−1

)
,

i ∈ {t, t+ 1, . . . , t+W − 1}. Then the average LLR magni-
tude of the 2M code bits in block i after I iterations is given
by

�̄i =
1

2M

2M−1∑
j=0

�ij . (2)

We also define the observation span τ as the number of
consecutive blocks in the decoding window over which the
average LLRs magnitude is to be examined.

Now assume the current decoding window, with W = Winit,
covers the blocks (2M bits each) from time t to t + W − 1.
After I iterations, if any of the average LLR magnitudes of the
first τ blocks in the current window, 1 ≤ τ ≤ W , is lower than
a predefined threshold θ, i.e., if

�̄i < θ, for any i ∈ {t, t+ 1, . . . , t+ τ − 1} , (3)

then the target block is not decoded, the window size W is
increased by 2 time units4, and the decoding process restarts.
If none of the first τ blocks satisfies (3), the target block is

4Increasing the window size by 2 time units was determined experimentally
to be the best compromise between performance and complexity.
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Fig. 3. The construction and SWD schedule for CN doped (3,6)-regular SC-LDPC codes.

Fig. 4. VN doping for a (3,6)-regular SC-LDPC code with occasional fixed variable nodes spaced throughout the coupled chain.

decoded and the window shifts by 1 time unit. If the current
window size reaches Wmax, then the target block is decoded,
the window shifts by 1 time unit, and the window size is reset
to Winit.

5 An algorithmic description of this process is given in
a more complete online version [15].

IV. NUMERICAL RESULTS

In order to illustrate the effectiveness of the proposed miti-
gation methods, the bit error distribution per block of a typical
error-propagation frame in SWD of the VN doped and undoped
(3,6)-regular SC-LDPC codes of Fig. 1 sent over an AWGN
channel with BPSK signaling is plotted in Fig. 5, where
M = 1000, L = 500, and W = 18. The figure clearly shows
that VN doping truncates the error propagation at the doping
point in the center of the frame, whereas the errors continue
to the end of frame in the undoped case. Similar behavior has
been observed for CN doping (see [12]) and window extension.

The bit error rate (BER) and BLER performance of VN
doped (rate R = 0.497), CN doped (rate R = 0.497 [12]),
and undoped (rate R = 0.499) (3,6)-regular SC-LDPC codes
from Fig. 1 is shown in Fig. 6, where the termination length
is L = 500 and the window size is W = 18. We observe
that both VN doping and CN doping gain approximately two
orders of magnitude in BER and one order of magnitude in
BLER compared to the undoped code in the typical SNR
operating range (below the threshold of the underlying LDPC-
BC). Also, the fact that the performance of both doping methods
is essentially equivalent corroborates our earlier observation that
VN doping emulates the CN doping process while not requiring
any alteration to the shape of the decoding window.

5Note that, since the window size can vary, the decoding latency can be
characterized by the average window size.
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Fig. 5. Bit error distribution per block.
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Fig. 6. Performance comparison of CN doped, VN doped, and undoped SC-
LDPC codes.
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(a) W = 18
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Fig. 7. BER and BLER performance of window extension with window sizes
W = 18 and W = 9.

To illustrate the advantage of allowing a dynamic window
size, Fig. 7 shows the performance of the (3,6)-regular SC-
LDPC codes of Fig. 1 with and without window extension for
L = 250 and window sizes W = 18 and W = 9. From the
figure, we see that, for W = 18, window extension gives only
a slight improvement compared to not using window extension.
However, for W = 9, window extension gains more than two
orders of magnitude in both BER and BLER in the typical SNR
operating range. From another point of view, by comparing Figs.
7(a) and 7(b), we see that the performance with W = 9 and
window extension is roughly equivalent to that of W = 18 with
no window extension, while the average window size (decoding
latency), indicated on the BER curve with window extension in
Fig. 7(b), is reduced by about 1/3.

V. CONCLUSIONS

In this paper, we proposed two new methods of mitigating
decoder error propagation in SWD of SC-LDPC codes: VN
doping from the code design aspect and window extension from
the decoder design aspect. The first, VN doping, takes advantage
of occasional fixed (known) variable nodes in the protograph to
allow SWD to recover from error propagation, without requiring
any alteration to the shape of the decoding window (in contrast

to the previously proposed CN doping). As a result, the BER
and BLER performance of VN doped SC-LDPC codes was
shown to improve by up to two orders of magnitude in the
typical SNR operating range. The second method, window
extension, adapts the window size dynamically to bring more
decoding resources to bear in error propagation conditions.
Simulation results show that window extension with W = 9
can reduce the decoding delay (latency) on average by about
1/3 compared to using W = 18 without window extension,
while maintaining the same BER and BLER performance.
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