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ABSTRACT

The traditional approach to distributed deep neural net-
work (DNN) training is data-distributed learning, which
partitions and distributes data to workers. This approach,
although has good convergence properties, has high
communication cost, which puts a strain especially on
edge systems and increases delay. An emerging ap-
proach is model-distributed learning, where a training
model is distributed across workers. Model-distributed
learning is a promising approach to reduce communi-
cation and storage costs, which is crucial for edge sys-
tems. In this paper, we design ResPipe, a novel resilient
model-distributed DNN training mechanism against de-
layed/failed workers. We analyze the communication
cost of ResPipe and demonstrate the trade-off between
resiliency and communication cost. We implement
ResPipe in a real testbed consisting of Android-based
smartphones, and show that it improves the convergence
rate and accuracy of training for convolutional neural
networks (CNNs).

Index Terms— Deep neural networks (DNN), dis-
tributed training, edge networks, resiliency.

1. INTRODUCTION

The traditional approach to distributed deep neural
network (DNN) training is data-distributed learning,
which partitions and distributes data to workers as il-
lustrated in a master/worker setup in Fig. 1(a). In this
setup, the data is partitioned as many times as there are
workers in the system and all workers train multiple in-
stances of the same model on different subsets of the
training dataset. The workers apply the same algorithm
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to different datasets. The same model is available to
all workers after updated at the master device. Data-
distributed learning (also called data parallelism) has
been frequently used as a de-facto distributed learning
mechanism in practical systems, especially in multi-
GPU platforms. This approach, although has good
convergence properties, has high communication and
storage costs, which puts a strain especially on edge
systems. Excessive communication among computing
entities due to frequent weight synchronization in data-
distributed learning increases transmission delay and
overall training delay. Furthermore, computing entities
should receive and store all the weights, which may not
be feasible for large models when storage is limited.

Model-distributed learning is an emerging approach,
where parts/layers of a training model are distributed
across workers, Fig. 1(b). In this setup, no single worker
has a complete model, but it is distributed across all
workers. Thanks to distributing model across multi-
ple devices, the whole model does not need to be ex-
changed among master and workers, which is promis-
ing to reduce communication and storage costs. This
approach has been recently investigated in multi-GPU
platforms, [1-3].

Distributed DNN training in edge systems has unique
challenges as compared to multi-GPU platforms due to
the heterogeneous and dynamic nature of edge com-
puting systems and resources as well as unreliable
and delayed computing entities. Furthermore, model-
distributed learning is more vulnerable to delayed and
failing workers as compared to data-distributed learning,
because workers depend on each other to collectively
train the distributed model as seen in Fig. 1.

In this paper, we focus on model-distributed DNN
training at edge networks where edge devices may be
delayed or fail during training. We design ResPipe, a
novel resilient model-distributed DNN training algo-
rithm, where layers of a DNN training model instead of
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data are distributed across workers. ResPipe is resilient
against delayed/failing workers thanks to proactively
exchanging weights of the model among workers. We
analyze the communication cost of ResPipe, and show
that there is a trade-off between communication cost
and resiliency. We implement ResPipe in a testbed con-
sisting of Android-based smartphones, and show that it
improves the convergence rate and accuracy as compared
to baselines; data-distributed training and PipeDream [1]
for convolutional neural networks (CNNs).

2. RELATED WORK

Model distributed learning has been recently inves-
tigated in multi-GPU platforms to overcome communi-
cation and storage limitations and provide scalability for
DNN. GPipe [2] uses pipeline parallelism for communi-
cation efficient distributed DNN training. PipeDream [1]
improves the efficiency by eliminating the idle workers.
A weight prediction technique is developed in [3] to im-
prove accuracy of [1,4]. As compared to this line of
work, ResPipe focuses on resilient model-distribution.

Communication cost reduction techniques for dis-
tributed learning such as gradient sparsification [5, 6],
truncation [7, 8], quantization [9, 10] have been widely
studied in the literature. Our work is complementary to
this line of work, where communication among workers
can still be reduced using gradient sparsification, trunca-
tion, or quantization. Existing work at the intersection of
edge computing and machine learning usually focuses on
resource allocation and optimization across edge devices
to accelerate convergence speed [11-14]. As compared
to this line of work, our focus is on model-distributed
learning in edge computing systems, and our work is
complementary to resource allocation mechanisms. An-
other related area of work is federated learning, which
aims to train models across multiple decentralized edge
devices, without exchanging data samples [15-18]. Our
system setup, where data is collected by the master de-
vice, is different than federated learning, where data is
naturally distributed across edge devices.

3. MODEL

Setup. We consider a distributed computing system
formed of connected computing entities; end devices,

edge servers, and cloud. We divide these computing
entities into (i) masters who want to perform intensive
computations on their collected data; or (ii) workers who
are willing to dedicate some of their resources to help in
the computations. There could be multiple masters and
workers in the system, which may overlap. We consider
a multi-hop network where each device in the network is
responsible with relaying and computing offloaded tasks.

Master/Worker Model. We focus on a master/worker
setup at the edge network, where the master device of-
floads its computationally intensive tasks to Worker n €
N (where N £ {1,..., N}) via device-to-device (D2D)
links such as Wi-Fi Direct and/or Bluetooth. Computa-
tionally intensive tasks are determined by DNNss.

The workers have the following properties: (i) Fail-
ures: Workers may fail or “sleep/die” or leave the net-
work before finishing their assigned computational tasks.
(ii) Stragglers: Workers incur probabilistic delays in re-
sponding to the master, where delay has two components;
transmission delay for exchanging data, model, and pa-
rameters, and computation delay.

Learning Model. We denote the training dataset by
AT € R™*4, the label vector by z € {0,1}™, and the
weight vector of the model by x. The weight vector of a
DNN is obtained by minimizing the loss function C(x),
which is determined by the learning model, via gradient
descent [19]; x7+1 = xJ — nV(C(x7)), where x7 is the
weight vector at the ;%" iteration, 7 is the learning rate,
V(C(x7)) is the gradient of C'(x7).

4. RESILIENT MODEL-DISTRIBUTION
4.1. Model-Distributed Learning via Pipelining

In model-distributed learning, model x is partitioned
and distributed across workers. Each worker stores
and updates a subset of the model. Workers process
data A, calculates activation vector in the forward prop-
agation phase and error vector for back-propagation
phase. These vectors are exchanged among workers,
which reduces communication cost as compared to data-
distributed learning. The main idea of model-distributed
learning is provided next via an illustrative example.

Example 1 Let us consider that we train a 4-layer fully
connected neural network with dataset Ay, ... A(p).



There are K neurons in each layer. The goal is to learn
the model x = {x;}}_,, where x; is a K x K matrix.
There are 4 workers in this setup, and each layer is as-
signed to one worker, i.e., layer l is assigned to Worker |,
so Worker | keeps and updates the weight matrix x;.

In model-distributed learning, Worker 1 receives data
Ay from the master device (or already has the data)

calculates a1 = A(;) and uj = xjai. It transmits u]
to Worker 2. Similarly, Worker 2 and Worker 3 calculate
al, = g(uj,_,) and wj, = xj,a}, where n € {2,3} and
g is an activation function. Worker 2 sends a3, to Worker
3 and Worker 3 sends ug to Worker 4, which calculates
= = g(u} 3) This completes the forward-propagation.

In the back-propagation phase, Worker 4 calcu-
lates v = a4 — yJ, where y; is the output vector,
and sends v} to Worker 3. Workers 2 and 3 calculate
vl = (x{L)TVZL_H. x g (ul_)), where n € {2,3}, xis
an element-wise multiplication, and g’ is the derivative
of g. Worker 3 sends v, to Worker 2, and Worker 2 sends
v% to Worker 1. Then, Workers 1, 2, and 3 calculate
gradient vectors as A} = AJ + VZL_H(a%)T, where
n € {1,2,3}, and VC(x]) = AJ.
back-propagation phase.

Finally, each worker updates its model according to
]t = x] —9VC(x]), | € {1...4}. The model is
updated in a distributed manner across all workers. As
seen, only vectors w; and v are exchanged among work-
ers, not the model itself. |

Pipelining is crucial in model-distributed learning so
that workers should not be idle waiting for the updates of
other workers. For example, Worker 1 in Example 1 stays
idle between transmitting u and receiving v3, which is
not efficient. Pipelining addresses this issue by keeping
workers busy all the time. An example pipelining proce-
dure based on PipeDream [1] is demonstrated in Fig. 2(a)
for Example 1. We note that the gradients are computed
with delayed weights due to pipelining [1]. A crucial
challenge of the model-distributed DNN training is the
heterogeneous and time-varying resources of edge de-
vices including computing power, storage, battery, band-
width, etc. Furthermore, straggling (delayed) workers
or failures potentially affect the performance of model-
distributed learning. For example, if Worker 2 in Exam-
ple 1 is delayed (i.e., if it is a straggler), this delays all the
calculations. Thus, it is imperative to develop a resilient
model-distributed DNN training framework.

This completes the

4.2. ResPipe

ResPipe provides resiliency by introducing redun-
dant weight exchanges among workers. The main idea
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Fig. 2: Pipelining for (a) PipeDream [1] and (b) ResPipe. W4
is the ith worker in the system. Numbers in the boxes indi-
cate the data/minibatch ID. The black color represents forward
propagation, while red color represents back-propagation. We
assume that forward and backward works take one time unit.
Red boxes in (b) indicate unresponsive workers (2nd and 3rd
workers). The crossed out boxes in blue color corresponds to
lost weights due to failed workers.

of ResPipe is provided in the next example.

Example 2 Let us consider the same setup in Example 1.
To address the issue of failing workers, more weights are
exchanged among workers. Assume that only one worker
fails, but we do not know which worker. In this scenario,
each worker sends its weight matrix to its neighboring
worker periodically (less frequently than forward prop-
agation updates). In particular, ith worker sends x; to
1 + 1th worker, © + 1 < 4. In this scenario, even if one
worker fails, the system keeps training the DNN model.
Fig. 2(b) demonstrates how ResPipe recovers from two
failed workers. As seen, 1st and 4th workers keep train-
ing the model (although it takes 2 time units to finish each
forward and backward task).

Let us assume that z workers out of N could be de-
layed or failed during DNN training. Each worker in
ResPipe keeps track of their z immediate neighbor work-
ers', and send their weights to these z workers at ev-
ery T time units. The next theorem characterizes the
communication cost of data-distributed learning, model-
distributed learning, and ResPipe.

Theorem 1 Assume a fully connected L-layer neural
network with K neurons in each layer, and there are N
workers. The communication cost of data-distributed
learning is O(NLK?), while it is O(NK) for model-
distributed learning with pipelining. On the other hand

"Tn our Android testbed, the master device keeps track of workers,
and informs each worker about their z-immediate neighbors. Peer dis-
covery mechanisms can be applied in larger and decentralized systems.
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2
the communication cost of ResPipe is O(Z-), where

z is the number of delayed/failed workers, and T is the
period of updating redundant weights.

Proof. The proof is provided in [20].

Theorem 1 demonstrates that the communication cost
of ResPipe is lower than data-distributed learning. The
communication cost of ResPipe depends on the number
of delayed/failing workers (z) as well as the period of
exchanging redundant weights (7°). Noting that z and
T are the parameters that determines the resiliency of
the system, we can conclude that there is a tradeoff be-
tween resiliency and communication cost. Also, ResPipe
introduces higher communication overhead as compared
to model-distributed learning, but it provides resiliency,
which is crucial for the convergence and accuracy of the
training model as demonstrated next.”

5. EXPERIMENTAL EVALUATION

In this section, we demonstrate the performance of
ResPipe in a real testbed consisting of Android-based
smartphones. We consider a topology with one mas-
ter and three and five workers in two different scenar-
ios. The master device is a Google Nexus 5, and the
worker devices are all Google Nexus 6Ps. Since, for
this set of experiments, the master node will not need
do perform intensive computations, we have utilized the
relatively weaker Google Nexus 5 as the master node.
Master and worker devices are connected to each other
via WiFi Direct. We demonstrate the performance of
ResPipe as compared to model-distibuted (specifically
PipeDream [1]) and data-distributed learning.

Fig. 3(a) shows the accuracy of classification of the
trained model versus the time elapsed in minutes dur-
ing training for the distributed training of a CNN over
the MNIST dataset. The input is a 28 x 28 grayscale
image. Beginning with the first layer, the CNN layers

2We show in the extended version [20] that the storage cost of
ResPipe has similar characteristics to its communication cost as com-
pared to data and model-distributed training

are given by the sequence Cg, Ms, Cig, Ma, Csa, Mo,
Fiss, Fig, where C; represents a convolution layer with
1 3 x 3 x k filters applied to all £ channels of the pre-
ceding layer, M> is a 2 X 2 max-pooling layer, and F)
represent a fully connected layer with j neurons. All
convolution layers as well as the fully connected lay-
ers are followed by sigmoid activations. In this setup,
the second worker operates at its full performance (ON
mode) for Smin and fails for 1.5 min (OFF mode). This
ON/OFF mode repeats itself. Initially CNN Layers C§g
and M, are located at Worker 1, Layers C16 and M> are
located at Worker 2, and Layers Css, M3, Fisog, and Fig
are located at Worker 3. The redundant weight exchange
period of ResPipe is T" = 30sec. As seen, ResPipe im-
proves over data-distributed training thanks to reducing
communication cost by distributing model itself rather
than data. ResPipe also improves over PipeDream thanks
to providing resiliency (even though the communication
cost of ResPipe is higher). The improvement of ResPipe
increases when OFF duration of the failing worker in-
creases from 1.5 min to 5 min as seen in Fig. 3(b).

Fig. 3(c) shows accuracy versus time graph for five
worker scenario. The CNN model is C14, Ma, C1g, Cs2,
Mg, 064, F256, Floo, FlO- The second worker fails for 5
min at every 10min. ResPipe improves both convergence
time and accuracy as compared to PipeDream and data-
distributed learning thanks to providing resiliency.

6. CONCLUSION

In this paper, we designed ResPipe, a resilient
model-distributed DNN training mechanism against de-
layed/failed workers. We analyzed the communication
cost of ResPipe and demonstrated the trade-off between
resiliency and communication cost. The experimental
results in a real testbed consisting of Android-based
smartphones shows that ResPipe improves the conver-
gence rate and accuracy significantly as compared to
baselines; PipeDream and data-distributed learning.
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