
Model-Distributed DNN Training for
Memory-Constrained Edge Computing Devices

Pengzhen Li∗, Hulya Seferoglu∗, Venkat R. Dasari† and Erdem Koyuncu∗
pli33@uic.edu, hulya@uic.edu, venkateswara.r.dasari.civ@mail.mil, ekoyuncu@uic.edu

∗University of Illinois at Chicago, †US Army Research Laboratory

Abstract—We consider a model-distributed learning
framework in which layers of a deep learning model is
distributed across multiple workers. To achieve consis-
tent gradient updates during the training phase, model-
distributed learning requires the storage of multiple ver-
sions of the layer parameters at every worker. In this
paper, we design mcPipe to reduce the memory cost of
model-distributed learning, which is crucial in memory-
constrained edge computing devices. mcPipe uses an on-
demand weight updating policy, which reduces the amount
of weights that should be stored at workers. We analyze
the memory cost of mcPipe and demonstrate its superior
performance as compared to existing model-distributed
learning mechanisms. We implement mcPipe in a real
testbed and show that it improves the memory cost without
hurting converge rate and computation cost.

Index Terms—deep neural networks (DNN), distributed
training, edge computing devices, memory.

I. INTRODUCTION

Massive amount of data is generated at edge networks
with the emerging self-driving cars, drones, robots, wire-
less sensors, health monitoring devices. This vast data
is expected to be processed in real-time in many time
sensitive applications, which is extremely challenging if
not impossible with existing centralized cloud. Indeed,
transmitting such massive data to the centralized cloud,
and expecting timely processing are not realistic with
limited bandwidth between an edge network and central-
ized cloud. In many scenarios, such data cannot be pro-
cessed locally on computationally- and memory-limited
end-devices, and calls for distributed data processing.

Training deep neural networks (DNNs) is well-known
to be a very demanding task, typically requiring vast
computation, memory, and power resources. In this
context, distributed DNN training enables the resource
burden to be shared by multiple devices instead of being
undertaken by only one device. Distributed DNN training
in edge systems has unique challenges as compared to
multi-GPU platforms due to constrained and heteroge-
neous resources. In fact, DNN training mechanisms that
require large memory footprint will not be feasible for
many edge computing devices.

The two main approaches to distributed DNN training
differ with regards to whether the training data or the
DNN model is distributed across the multiple devices.
In fact, in the so-called data-distributed learning, each
worker device trains the entire DNN with the same initial
weights, but over different subsets of the training data.
The weight updates are then synchronized to have a new
coherent set of weights to be utilized at all devices. This
approach is particularly useful when inter-device com-
munication has little to no cost relative to computation
costs, such as in wired multi-GPU platforms.

When the inter-device communication rates are low,
such as in wireless edge devices, passing the huge model
parameters across devices becomes a major bottleneck
in data-distributed learning. A more appropriate DNN
training paradigm over the edge is then model-distributed
learning, an emerging technique where each device is
only responsible with training only a certain subset
of layers of the DNN. Model-distributed learning is
promising to reduce the communication requirements as
the full model parameters do not have to be exchanged
among worker devices. Moreover, since each device
keeps track of a subset of layers, it can generally promise
lower storage and memory requirements as compared to
data-distributed learning. Benefits of model-distributed
learning over data-distributed learning over multi-GPU
platforms have been investigated.

A challenge of model-distributed learning is that it
requires the storage of multiple versions of the layer
weights during the training phase. This ensures that the
forward and backward propagation passes corresponding
to one training batch always undergo the same version of
the weight at a given layer or device. Unfortunately, the
number of versions to be stored should be proportional
to the number of workers/devices in the system, mean-
ing that model-distributed learning may introduce high
storage requirements, which puts a strain on memory
constrained edge computing devices.

In this paper, we focus on model-distributed DNN
training at memory-constrained edge computing devices.
We design mcPipe to reduce the memory cost of model-978-1-6654-4579-5/21/$31.00 ©2021 IEEE

distributed learning. mcPipe uses an on-demand weight
updating policy, which reduces the amount of weights
that should be stored at workers. In particular, we
design a mechanism to store activation and error vectors
in mcPipe instead of weight matrices, which signifi-
cantly reduces the storage requirements. We analyze the
memory cost of mcPipe and demonstrate its superior
performance as compared to existing model-distributed
learning mechanisms. We implement mcPipe in a real
testbed and show that it improves the memory cost
without hurting converge rate and computation cost
as compared to baselines; data-distributed training and
PipeDream [1] for VGG16.

The structure of the rest of this paper is as follows.
Section II puts our work into perspective. Section III
presents our system model. Section IV provides back-
ground on model distributed learning and pipelining,
and introduces mcPipe with performance analysis. Sec-
tion V provides experimental evaluation of mcPipe in
real devices. Section VI concludes the paper.

II. RELATED WORK

Earlier studies on model distributed learning have
focused on multi-GPU platforms. In particular, GPipe
[2] allows different subsequences of layers on separate
workers to achieve close-to-linear speed up in DNN
training. PipeDream [1] eliminates idle workers and
thus improves efficiency via a dedicated scheduling and
batching mechanism. Weight prediction can be used to
improve the performance of both GPipe and PipeDream
[3]. In [4], we design resilient model-distributed training
schemes that are robust to failing or severely straggling
workers. As compared to this line of work, mcPipe
focuses on reducing the memory footprint of model-
distributed DNN training.

Federated learning mechanisms train DNN models
distributively across workers without exchanging data
[5]–[8] as workers collect data themselves. Our setup
is different as master collects the data, but our approach
is complementary to federated learning mechanisms that
possibly use model-distributed learning. Our work is also
complementary to resource allocation mechanisms that
accelerate convergence speed of [9]–[12].

We note that there are various techniques to reduce the
inter-worker communication costs in DNN training such
as quantization [13], [14], truncation [15], [16], gradient
sparsification [17], [18], conditional execution [19], [20].
Our work is complementary to these techniques in the
sense that communication among workers can be further
reduced using one or more of these methods.

III. SYSTEM SETUP

Learning Model: The training dataset is represented
by I , the label vector is y, and the weight matrix is w.
The weight matrix of a DNN is obtained by minimizing
the loss function f(x), which is determined by the
learning model, via gradient descent [21]; w(t+1) =
w(t) − η∇(f(w(t))), where w(t) is the weight matrix
at the tth iteration, η is the learning rate, ∇(f(w(t))) is
the gradient of f(w(t)).

Setup: We consider an edge computing setup where
end devices, edge servers, and cloud (if available) are
used for distributed DNN training. The available com-
puting devices can be classified as master or worker de-
vices, where master devices would like to perform DNN
training on their collected data, and worker devices are
willing to dedicate some of their computing resources.
It is natural to have multiple masters and workers in our
setup, and the roles of their devices may overlap, i.e., a
device can be both a master and/or worker.

For the ease of presentation, we focus on a mas-
ter/worker setup, where a master device offloads its
computationally intensive tasks to Worker n ∈ N (where
N , {1, . . . , N}). Workers are connected to the master
device as well as other workers via Ethernet or Wi-Fi
Direct links, depending on their availability.

The workers have the following properties: (i) Fail-
ures: Workers may fail or “sleep/die” or leave the
network before finishing their assigned computational
tasks. (ii) Stragglers: Workers incur probabilistic delays
in responding to the master, where delay has two com-
ponents; transmission delay for exchanging data, model,
and parameters, and computation delay.

IV. MEMORY-CONSTRAINED MODEL DISTRIBUTION

A. Model-Distributed Learning

Model distributed learning partitions model w, and
offloads each partition to a worker. Workers collectively
and distributively train the model. Each worker stores
and trains a part of the model. In particular, each worker
calculates activation and error vectors in the forward
and back-propagation phases, respectively. In this setup,
activation and error vectors instead of the whole model
is exchanged among workers, so the communication
cost reduces. The next example illustrates the main idea
behind model distributed learning.

Example 1: We consider that the training dataset {I(1),
. . . I(m)}, I(k) ∈ Rd×1, k ∈ {1, . . . ,m} is used to train
a 4-layer fully connected neural network, which has K
neurons in each layer and the last layer is the output

Worker 1 Worker 2 Worker 3 Worker 4

a1
(k)(t)

a2
(k)(t)

a3
(k)(t)

4
(k)(t)

3
(k)(t)

2
(k)(t)

w3
(t+1)

w2
(t+1)

w1
(t+1)

a1
(k+1)(t+1)

a2
(k+1)(t+1)

a3
(k+1)(t+1)

4
(k+1)(t+1)

3
(k+1)(t+1)

2
(k+1)(t+1)

w3
(t+2)

w2
(t+2)

w1
(t+2)

τ

T
im

e

(a) No Pipelining

Worker 1 Worker 2 Worker 3 Worker 4

δ
(k)(t)

a1
(k)(t)

a1
(k+1)(t)

a1
(k+2)(t)

a1
(k+3)(t)

a2
(k)(t)

a2
(k+1)(t)

a2
(k+2)(t)

a2
(k+3)(t)

a3
(k)(t)

a3
(k+1)(t)

a3
(k+2)(t)

a3
(k+3)(t)

δ4
(k+1)(t)

δ4
(k+2)(t)

δ4
(k+3)(t)

w1
(t+1)

w1
(t+2)

w1
(t+3)

a1
(k+4)(t+1)

a1
(k+5)(t+2)

a1
(k+6)(t+3)

a1
(k+7)(t+3)

w3
(t+1)

w3
(t+2)

w3
(t+3)

w3
(t+4)

δ3
(k)(t)

δ3
(k+1)(t)

δ3
(k+2)(t)

δ3
(k+3)(t)

δ2
(k)(t)

δ2
(k+1)(t)

δ2
(k+2)(t)

δ2
(k+3)(t)

w2
(t+1)

w2
(t+2)

w2
(t+3)

w2
(t+4)

a2
(k+4)(t+3)

a2
(k+5)(t+4)

a2
(k+6)(t+4)

a2
(k+7)(t+4)

a3
(k+4)(t+4)

a3
(k+5)(t+4)

δ4
(k+4)(t+4)

δ4
(k+5)(t+4)

δ3
(k+4)(t+4)

w3
(t+5)

τ

Store weights

w2
(t) to w2

(t+3)

T
im

e

(b) Pipelining
Fig. 1: Model-distributed learning with and without pipelining. Red, yellow, and green boxes represent the computing times of
activation vectors, error vectors, and weight updates, respectively.

layer. Assuming that there are four workers in the sys-
tem, they collectively train the model w(t) = {w(t)

l }3l=1

at iteration t, where w
(t)
1 is the K × d weight matrix

corresponding to the first layer, while w
(t)
l is the lth

layer K ×K weight matrix, l ∈ {2, 3}.
Worker 1 receives data I(k) from the master de-

vice (or already has the data) at the tth iteration of
weight updates (k = t in this setup), and calculates
a

(k)
1 (t) = w

(t)
1 I(k), where a(k)

1 (t) ∈ RK is the activation
vector in the first layer. Worker 1 transmits a(k)

1 (t) to
Worker 2. Similarly Worker 2 and Worker 3 calculate
a

(k)
n (t) = w

(t)
n g(a

(k)
n−1(t)), where n ∈ {1, 2}, and g is an

activation function. Worker 2 sends a(k)
2 (t) to Worker 3,

and Worker 3 sends a(k)
3 (t) to Worker 4. This completes

the forward propagation.

Worker 4 calculates its error vector δ
(k)
4 (t) =

g(a
(k)
3 (t)) − y(k), and sends δ(k)

4 (t) to Worker 3. The
error vectors of Worker 2 and 3 are calculated as
δ

(k)
n (t) = (w

(t)
n)T δ

(k)
n+1(t). ∗ g′(a(k)

n−1(t)) for n ∈ {2, 3},
where .∗ is an element-wise multiplication, and g′ is
the derivative of g. Worker 3 sends δ(k)

3 (t) to Worker
2, and Worker 2 sends δ

(k)
2 (t) to Worker 1. After

receiving the error vectors, workers update their weight
matrices. In particular, Worker 1 calculates its weight
matrix according to w

(t+1)
1 = w

(t)
1 − η(δ

(k)
2 (t)I(k)).

Workers 2 and 3 update their weight vectors according
to w

(t+1)
n = w

(t)
n − η(δ

(k)
n+1(t)g(a

(k)
n−1(t))T), n ∈ {2, 3}.

This completes the back-propagation phase. �

As seen, the model is updated across the workers
in a distributive manner by only exchanging activation

and error vectors among workers. The procedure of
Example 1 is summarized in Fig. 1(a). Model-distributed
learning is promising to reduce the communication cost
as compared to data-distributed learning as the full
model parameters do not have to be exchanged among
worker devices; exchanging activation and error vectors
is sufficient. Moreover, since each worker keeps track
of a subset of layers, it can generally promise lower
storage and memory requirements as compared to data-
distributed learning.

B. Pipelining for Model Distributed Learning

Model distributed learning explained in Section IV-A
is not work conserving; workers stay idle while waiting
for receiving activation and error vectors from other
workers, so it cannot fully utilize available computing
powers at workers. For example, Worker 1 in Example
1 stays idle after transmitting a

(k)
1 (t) and receiving

δ
(k)
2 (t). Pipelining is a promising solution to address this

problem by keeping workers busy. In particular, workers
process multiple instances of data, activation, and error
vectors. An analogy of pipelining for model distributed
learning is sliding window-based transmission instead
of stop-and-wait, which is similar to model distributed
learning without pipelining. An example pipelining pro-
cedure based on PipeDream [1] is demonstrated in the
next example and via Fig. 1(b).

Example 2: Consider the same setup in Example 1.
Assume that the last weight update at each worker is the
tth update, i.e., the most recent weight is w(t)

n at Worker
n, for n ∈ {1, 2, 3}. Then, each worker processes up
to four activation vectors before a new weight update

occurs, i.e., sliding window size or mini batch size (as
referred in [1]) is four. Then, it stops and waits for a
weight update, and a new activation vector is calculated
and sent to Worker 2 after each weight update. For
example, Worker 1 calculates a(k+p)

1 (t) = w
(t)
1 I(k+p),

p ∈ {0, . . . , 3} and sends them to Worker 2. Then, it
stops and waits for a weight update. After weight update
w

(t+1)
1 is done, a new activation vector a(k+4)

1 (t + 1)
is calculated and transmitted to Worker 2. Activation
vectors in Worker 1 is calculated according to a(α)

1 (β) =

w
(β)
1 I(α). Similar sliding window mechanism is used in

Worker 2 and 3 and activation vectors are calculated as
a

(α)
n (β) = w

(β)
n g(a

(α)
n−1(β)), n ∈ {2, 3}. This completes

the forward propagation phase.

Worker 4 calculates the error vector δ
(α)
4 (β) =

g(a
(α)
3 (β)) − y(β) and sends to Worker 3. The error

vectors at Worker 2 and 3 are calculated as δ(α)
n (β) =

(w
(β)
n)T δ

(α)
n+1(β). ∗ g′(a(α)

n−1(β)), n ∈ {2, 3}. Workers
update their weights after receiving an error vector from
a neighboring worker. For example, Worker 1 calculates
w

(t+2)
1 = w

(t+1)
1 − η(δ

(k+1)
2 (t)IT(k+1)) after receiving

δ
(k+1)
2 (t). The general rule is that the most recent weight
w

(γ)
1 is updated using the last received error vector

δ
(α)
2 (β) as w

(γ+1)
1 = w

(γ)
1 − η(δ

(α)
2 (β)IT(α)). Similarly,

Worker 2 and 3 update the most recent weight w
(γ)
n

after receiving an error vector δ(α)
n+1(β) as w

(γ+1)
n =

w
(γ)
n − η(δ

(α)
n+1(β)g(a

(α)
n−1(β))T), for n ∈ {2, 3}. This

completes the back-propagation phase. �

Example 2 demonstrates that workers are kept busier
in pipelining, so more weight updates are calculated
when pipelining is used as compared to no pipelining. In
particular, four weight updates are calculated in Worker
2 until time τ when pipelining is used while only two
weight updates are calculated during the same time
interval with no pipelining, Fig. 1. Thus, pipelining
increases the speed of training.

One of the challenges of model-distributed learning
with pipelining is that it requires the storage multiple
versions of weights. According to Example 2, w

(t)
2 is

stored at Worker 2 until w(t+4)
2 is calculated as w

(t)
2 is

needed to calculate error vectors δ(k)
2 (t), . . . , δ

(k+3)
2 (t).

Meanwhile, w
(t+1)
2 ,w

(t+2)
2 ,w

(t+3)
2 are also calculated

at Worker 2. This means that Worker 2 stores four
weights w

(t)
2 , . . . ,w

(t+3)
2 until finishing the calculation

of δ(k+3)
2 (t). The number of weight versions that needs

to be stored in workers is proportional with the mini-
batch size (it is four in Example 2). We design mcPipe
to address this issue in the next section. We note that

model-distributed learning has other challenges such as
(i) single point of failure, (ii) model partitioning and
assignment to workers. These issues are complementary
to our work and partially addressed in [1], [4].

C. mcPipe: Pipelining for Memory-Constrained Edge
Computing Devices

We design mcPipe to reduce the storage require-
ments of model distributed learning. The main idea
behind mcPipe is that weight updates are calculated
only when they are needed. In the forward propagation
phase of model-distributed learning with pipelining, the
most recent weight is used to calculate the activation
vector. On the other hand, in the back-propagation phase,
error vectors are calculated using the same weights that
their corresponding activation vectors use. For example,
δ

(k+2)
2 is calculated using weight w

(t)
2 in Example

2, although w
(t+1)
2 and w

(t+2)
2 are available, because

the corresponding activation vector of δ(k+2)
2 , which is

a
(k+2)
2 (t), is calculated using w

(t)
2 . Such an approach

has shown to have nice convergence properties [1].
To reduce the number of weights stored in workers,

mcPipe calculates the weights when they are necessary.
For example, w(t+1)

2 is not calculated immediately after
receiving δ

(k)
2 (t) in Example 2. Instead, error and ac-

tivation vectors needed to calculate the weight w
(t+1)
2

are stored, i.e., δ(k)
2 (t) and g(a

(k)
1 (t))T . These vectors

are used to calculate w
(t+1)
2 when needed, i.e., before

calculating a new activation vector. A calculated weight
matrix is deleted from the memory if (i) no other error
vector needs to use that weight (w(t)

2 is deleted from
Worker 2 after δ(k+3)

2 (t) is calculated), or (ii) there are
earlier weights (if w

(t)
2 is still needed by Worker 2,

w
(t+1)
2 is not stored). Thanks to storing only activation

and error vectors instead of weight matrices, mcPipe
reduces the memory cost significantly as formally stated
in the next theorem.

Theorem 1: Assume that the total model size is Ω,
which is shared equally across N workers. If the batch
size is m, the memory cost of mcPipe at each worker
is at most Ω

N + 2(m− 1)
√

Ω
N , while it is mΩ

N for model
distributed-learning via pipelining.

Proof: mcPipe stores one weight matrix and multiple
activation and error vectors. The memory cost of a
weight matrix is Ω

N as we assumed that the model is
equally distributed across workers. The cost of storing
a vector is

√
Ω
N . In the worst case, we store m − 1

activation and error vectors, so the total cost becomes
Ω
N + 2(m − 1)

√
Ω
N . Model-distributed learning via

pipelining stores m weight matrices in the worst case
scenario, so the cost becomes mΩ

N . �
As seen, mcPipe improves the memory cost on the

order of m as compared to model-distributed learning via
pipelining, which is significant for memory-constrained
edge computing devices. We note that mcPipe intro-
duces higher computing cost as activation and error
vectors should be multiplied multiple times to provide
on-demand weights. We show through real experiments
in the next section that the impact of the additional
computation is minimal on the convergence time.

V. EXPERIMENTAL EVALUATION

We evaluate the performance of mcPipe on a real
testbed and compare with different competing schemes.
Our experimental environment consists of two MSI
GS65 Stealth-483 computers and one 15” Macbook Pro
(Core i7). The computers are connected to the same
local area network using ethernet cables. We have used
VGG16 [22] as our training model. VGG16 is a state-
of-the-art deep neural network for image recognition.

In Fig. 2, we show the experimental results for a
two worker scenario training the VGG16 model for
the MNIST dataset. Both workers are MSI comput-
ers. The horizontal axis represents the training time
in minutes, while the vertical axis represents the ac-
curacy of the trained model. We show averages over
10 different runs of the same experiment with different
weight initializations. We compare the performance of
our scheme, mcPipe with different baselines and com-
peting schemes. In particular, “Local” represents local
computing where all training is performed on one of the
MSI computers, which are both faster than the Macbook.
“GreedyUpdates” refers to the scheme where the workers
do not worry about the consistency about the gradient
updates during the training phase. Specifically, when
a new update opportunity arises at any worker at any
given time, the worker updates its weights, erasing any
previous versions of its weights from previous times.

We can observe that both our scheme mcPipe and
PipeDream achieve almost exactly the same performance
at all training times. This is expected as mcPipe guaran-
tees almost the same performance with PipeDream with
the extra benefit of reduced storage cost per worker.
The minor accuracy difference stems from the extra
multiplications of activation and error vectors to provide
the on-demand weights. Moreover, both mcPipe and
PipeDream outperform all competitors, especially at
large training times. An interesting observation in this
context is the optimality of GreedyUpdates at the initial
phases (i.e. the first 80 minutes) of training. From this

0 50 100 150 200 250 300

Time (minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u
ra

c
y

PipeDream

GreedyUpdates

mcPipe

Local

Data Distributed

Fig. 2: Experimental results for a two-worker topology over
the MNIST dataset.

0 50 100 150 200 250 300

Time (minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u
ra

c
y

Local

PipeDream

GreedyUpdates

mcPipe

Data Distributed

Fig. 3: Experimental results for a three-worker topology over
the MNIST dataset.

observation, we can conclude that approximately steering
the weight vectors in the right direction becomes more
important than achieving consistent weight updates dur-
ing early stages of training. On the other hand, ignoring
consistency becomes costly at the late stages of training
where fine tuning of weights becomes important. In fact,
we observe that GreedyUpdates appears to hit an error
floor, while both mcPipe and PipeDream outperform
GreedyUpdates by 5%, which is very significant at high
accuracy levels. Local training performs poorly simply
because it can only utilize the computing resources of a
single machine, while data distributed training performs
poorly as a result of the overhead of passing the model
parameters across workers.

Fig. 3 provides the results for the three-worker sce-
nario. The general performance trend of difference
schemes are similar to Fig. 2. For layer-distributed
schemes such as mcPipe, accuracy at a given training
time is slightly better, owing to the extra worker available
at the system. For example, with mcPipe, reaching an

0 50 100 150 200 250 300 350 400

Time (minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

PipeDream

mcPipe

Local

Data Distributed

Fig. 4: Experimental results for a three-worker topology over
the CIFAR-10 dataset.

accuracy of 60% takes 40 and 30 minutes for a 2 and 3
worker system, respectively.

In Fig. 4, we consider the same three-worker topology,
but train the network over the more difficult CIFAR-
10 dataset. We observe that the relative performance of
different schemes are similar to the previous figures. On
the other hand, as a result of training a more challenging
dataset, the time required to reach a given level of
accuracy is now longer, as compared to Fig. 3.

VI. CONCLUSION

We investigated a model-distributed DNN training for
memory constrained edge computing devices. Existing
model-distributed learning mechanisms store multiple
versions of model weights for consistent gradient up-
dates, which puts a strain on memory-constrained edge
computing devices. We designed mcPipe, which uses
on-demand weight updating policy to reduce the amount
of stored weights. We implemented mcPipe in a real
testbed and showed that it improves the memory cost
without hurting convergence rate.

ACKNOWLEDGMENT

This work was supported in parts by the Army
Research Lab (ARL) under Grant W911NF-1820181,
National Science Foundation (NSF) under Grants CCF-
1942878 and CCF-1814717, and the University of Illi-
nois at Chicago Discovery Partners Institute Seed Fund-
ing Program.

REFERENCES

[1] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Deva-
nur, G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient
pipeline parallel dnn training,” arXiv preprint arXiv:1806.03377,
2018.

[2] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen,
H. Lee, J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient
training of giant neural networks using pipeline parallelism,” in
Advances in Neural Information Processing Systems, 2019, pp.
103–112.

[3] C.-C. Chen, C.-L. Yang, and H.-Y. Cheng, “Efficient and robust
parallel dnn training through model parallelism on multi-gpu
platform,” arXiv preprint arXiv:1809.02839, 2018.

[4] P. Li, E. Koyuncu, and H. Seferoglu, “Respipe: Resilient model-
distributed dnn training at edge networks,” in IEEE ICASSP,
2021.

[5] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving com-
munication efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[6] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Fed-
erated multi-task learning,” in Advances in Neural Information
Processing Systems, 2017, pp. 4424–4434.

[7] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan
et al., “Towards federated learning at scale: System design,” arXiv
preprint arXiv:1902.01046, 2019.

[8] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[9] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He,
and K. Chan, “When edge meets learning: Adaptive control for
resource-constrained distributed machine learning,” in IEEE IN-
FOCOM 2018-IEEE Conference on Computer Communications.
IEEE, 2018, pp. 63–71.

[10] ——, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 6, pp. 1205–1221, 2019.

[11] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning
for the internet of things with edge computing,” IEEE network,
vol. 32, no. 1, pp. 96–101, 2018.

[12] K. Portelli and C. Anagnostopoulos, “Leveraging edge com-
puting through collaborative machine learning,” in 2017 5th
International Conference on Future Internet of Things and Cloud
Workshops (FiCloudW). IEEE, 2017, pp. 164–169.

[13] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic,
“Qsgd: Communication-efficient sgd via gradient quantization
and encoding,” in Advances in Neural Information Processing
Systems, 2017, pp. 1709–1720.

[14] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and
H. Li, “Terngrad: Ternary gradients to reduce communication
in distributed deep learning,” in Advances in neural information
processing systems, 2017, pp. 1509–1519.

[15] J. Langford, L. Li, and T. Zhang, “Sparse online learning via
truncated gradient,” Journal of Machine Learning Research,
vol. 10, no. Mar, pp. 777–801, 2009.

[16] X. Yuan, P. Li, and T. Zhang, “Gradient hard thresholding
pursuit for sparsity-constrained optimization,” in International
Conference on Machine Learning, 2014, pp. 127–135.

[17] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsifi-
cation for communication-efficient distributed optimization,” in
Advances in Neural Information Processing Systems, 2018, pp.
1299–1309.

[18] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khiri-
rat, and C. Renggli, “The convergence of sparsified gradient
methods,” in Advances in Neural Information Processing Sys-
tems, 2018, pp. 5973–5983.

[19] Y. Bengio, N. Léonard, and A. Courville, “Estimating or prop-
agating gradients through stochastic neurons for conditional
computation,” arXiv preprint arXiv:1308.3432, 2013.

[20] A. Gormez and E. Koyuncu, “Class means as an early exit
decision mechanism,” arXiv preprint arXiv:2103.01148, 2021.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” in Advances
in neural information processing systems, 2012, pp. 1097–1105.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in International Con-
ference on Learning Representations (ICLR), May 2015, 2015.

